彻底弄懂最短路径问题

彻底弄懂最短路径问题
彻底弄懂最短路径问题

彻底弄懂最短路径问题

只想说:温故而知新,可以为师矣。我大二的《数据结构》是由申老师讲的,那时候不怎么明白,估计太理论化了(ps:或许是因为我睡觉了);今天把老王的2011年课件又看了一遍,给大二的孩子们又讲了一遍,随手谷歌了N多资料,算是彻底搞懂了最短路径问题。请读者尽情享用……

我坚信:没有不好的学生,只有垃圾的教育。不过没有人理所当然的对你好,所以要学会感恩。

一.问题引入

问题:从某顶点出发,沿图的边到达另一顶点所经过的路径中,各边上权

值之和最小的一条路径——最短路径。解决最短路的问题有以下算法,Dijkstra 算法,Bellman-Ford算法,Floyd算法和SPFA算法,另外还有著名的启发式搜索算法A*,不过A*准备单独出一篇,其中Floyd算法可以求解任意两点间的最短路径的长度。笔者认为任意一个最短路算法都是基于这样一个事实:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点到B。

二.Dijkstra算法

该算法在《数据结构》课本里是以贪心的形式讲解的,不过在《运筹学》

教材里被编排在动态规划章节,建议读者两篇都看看。

观察右边表格发现除最后一个节点外其他均已经求出最短路径。

(1) 迪杰斯特拉(Dijkstra)算法按路径长度(看下面表格的最后一行,就是next点)递增次序产生最短路径。先把V 分成两组:

?S:已求出最短路径的顶点的集合

?V-S=T:尚未确定最短路径的顶点集合

将T中顶点按最短路径递增的次序加入到S中,依据:可以证明V0到T 中顶点Vk的最短路径,或是从V0到Vk 的直接路径的权值或是从V0经S中顶点到Vk的路径权值之和(反证法可证,说实话,真不明白哦)。

(2) 求最短路径步骤

1.初使时令S={V0},T={其余顶点},T中顶点对应的距离值,若存在,为弧上的权值(和SPFA初始化方式不同),若不存在,为Inf。

2.从T中选取一个其距离值为最小的顶点W(贪心体现在此处),加入S(注意不是直接从S集合中选取,理解这个对于理解vis数组的作用至关重要),对T中顶点的

距离值进行修改:若加进W作中间顶点,从V0到Vi的距离值比不加W的路径要短,则修改此距离值(上面两个并列for 循环,使用最小点更新)。

3.重复上述步骤,直到S中包含所有顶点,即S=V为止(说明最外层是除起点外的遍历)。

下面是上图的求解过程,按列来看,第一列是初始化过程,最后一行是每次求得的next点。

(3) 问题:Dijkstar能否处理负权边?(来自《图论》)

答案是不能,这与贪心选择性质有关(ps:貌似还是动态规划啊,晕了),每次都找一个距源点最近的点(dmin),然后将该距离定为这个点到源点的最短路径;但如果存在负权边,那就有可能先通过并不是距源点最近的一个次优点

(dmin'),再通过这个负权边L(L<0),使得路径之和更小(dmin'+L

0,3,4

3,0,-2

4,-2,0,用dijkstra求得d[1,2]=3,事实上d[1,2]=2,就是通过了1-3-2使得路径减小。不知道讲得清楚不清楚。二.Floyd算法

参考了南阳理工牛帅(目前在新浪)的博客。

Floyd算法的基本思想如下:从任意节点A到任意节点B的最短路径不外乎

2种可能,1是直接从A到B,2是从A 经过若干个节点到B,所以,我们假设dist(AB)为节点A到节点B的最短路径的距离,对于每一个节点K,我们检查

dist(AK) + dist(KB)

很简单吧,代码看起来可能像下面这样:

for (int i=0; i

for (int j=0; j

for (int k=0; k

if (dist[i][k] + dist[k][j]

dist[i][j] = dist[i][k] + dist[k][j];

}

}

}

}

但是这里我们要注意循环的嵌套顺序,如果把检查所有节点K放在最内层,那么结果将是不正确的,为什么呢?因为这样便过早的把i到j的最短路径确定下来了,而当后面存在更短的路径时,已经不再会更新了。

让我们来看一个例子,看下图:

图中红色的数字代表边的权重。如果我们在最内层检查所有节点K,那么对于A->B,我们只能发现一条路径,就

是A->B,路径距离为9,而这显然是不正确的,真实的最短路径是A->D->C->B,路径距离为6。造成错误的原因就是我们把检查所有节点K放在最内层,造成过早的把A到B的最短路径确定下来了,当确定A->B的最短路径时dist(AC)尚未被计算。所以,我们需要改写循环顺序,如下:

ps:个人觉得,这和银行家算法判断安全状态(每种资源去测试所有线程),树状数组更新(更新所有相关项)一样的

思想。

for (int k=0; k

for (int i=0; i

for (int j=0; j

/*

实际中为防止溢出,往往需要选判断dist[i][k]和dist[k][j

都不是Inf ,只要一个是Inf,那么就肯定不必更新。

*/

if (dist[i][k] + dist[k][j]

dist[i][j] = dist[i][k] + dist[k][j];

}

}

}

}

如果还是看不懂,那就用草稿纸模拟一遍,之后你就会豁然开朗。半个小时足矣(早知道的话会节省很多个半小时了。。)

再来看路径保存问题:

void floyd() {

for(int i=1; i<=n ; i++){

for(int j=1; j<= n; j++){

if(map[i][j]==Inf){

path[i][j] = -1;//表示 i -> j 不通

}else{

path[i][j] = i;// 表示 i -> j 前驱为 i

}

}

}

for(int k=1; k<=n; k++) {

for(int i=1; i<=n; i++) {

for(int j=1; j<=n; j++) {

if(!(dist[i][k]==Inf||dist[k][j]==Inf)&&dist[i][j] >dist[i][k] +

dist[k][j]) {

dist[i][j] = dist[i][k] + dist[k][j];

path[i][k] = i;

path[i][j] = path[k][j];

}

}

}

}

}

void printPath(int from, int to) {

/*

* 这是倒序输出,若想正序可放入栈中,然后输出。

*

* 这样的输出为什么正确呢?个人认为用到了最优子结构性质,

* 即最短路径的子路径仍然是最短路径

*/

while(path[from][to]!=from) {

System.out.print(path[from][to] +"");

to = path[from][to];

}

}

《数据结构》课本上的那种方式我现在还是不想看,看着不舒服……

Floyd算法另一种理解DP,为理论爱好者准备的,上面这个形式的算法其实是Floyd算法的精简版,而真正的Floyd算法是一种基于DP(Dynamic Programming)的最短路径算法。设图G 中n 个顶点的编号为1到n。令c [i, j, k]

表示从i 到j 的最短路径的长度,其中k 表示该路径中的最大顶点,也就是说

c[i,j,k]这条最短路径所通过的中间顶点

最大不超过k。因此,如果G中包含边,则c[i, j, 0] =边 的长度;若

i= j ,则c[i,j,0]=0;如果G中不包含边

,则c (i, j, 0)= +∞。c[i, j, n] 则是从i 到j 的最短路径的长度。对于任意的k>0,通过分析可以得到:中间顶点不超过k 的i 到j 的最短路径有两种可能:该路径含或不含中间顶点k。若不含,则该路径长度应为c[i, j, k-1],否则长度为

c[i, k, k-1] +c [k, j, k-1]。c[i, j, k]可取两者中的最小值。状态转移方程:c[i, j,

k]=min{c[i, j, k-1], c [i, k, k-1]+c [k, j, k-1]},

k>0。这样,问题便具有了最优子结构性质,可以用动态规划方法来求解。

看另一个DP(直接引用王老师课件)

说了这么多,相信读者已经跃跃欲试了,咱们看一道例题,以ZOJ 1092为例:给你一组国家和国家间的部分货币汇率兑换表,问你是否存在一种方式,从一种货币出发,经过一系列的货币兑换,最后返回该货币时大于出发时的数值(ps:这就是所谓的投机倒把吧),下面

是一组输入。

3 //国家数

USDollar //国家名

BritishPound

FrenchFranc

3 //货币兑换数

USDollar 0.5 BritishPound //部分货币汇率兑换表

BritishPound 10.0 FrenchFranc FrenchFranc 0.21 USDollar

月赛做的题,不过当时用的思路是求强连通分量(ps:明明说的,那时我和华杰感觉好有道理),也没做出来,现在知道了直接floyd算法就ok了。

思路分析:输入的时候可以采用Map map = new HashMap()主要是为了获得再次包含汇率输入时候的下标以建图(感觉自己写的好拗口),或者第一次直接存入String数组str,再次输入的时候每次遍历str数组,若是equals那么就把str 的下标赋值给该币种建图。下面就是floyd算法啦,初始化其它点为-1,对角线为1,采用乘法更新求最大值。

三.Bellman-Ford算法

为了能够求解边上带有负值的单源最短路径问题,Bellman(贝尔曼,动态规划提出者)和Ford(福特)提出了从源点逐次绕过其他顶点,以缩短到达终点的最

短路径长度的方法。 Bellman-ford算法是求含负权图的单源最短路径算法,效率很低,但代码很容易写。即进行不停地松弛,每次松弛把每条边都更新一下,若n-1次松弛后还能更新,则说明图中有负环,无法得出结果,否则就成功完成。Bellman-ford算法有一个小优化:每次松弛先设一个flag,初值为FALSE,若有边更新则赋值为TRUE,最终如果还是FALSE则直接成功退出。Bellman-ford算法浪费了许多时间做无必要的松弛,所以SPFA算法用队列进行了优化,效果十分显著,高效难以想象。SPFA还有SLF,LLL,滚动数组等优化。

关于SPFA,请看我这一篇

https://www.360docs.net/doc/9f368629.html,/hxsyl/p/3248391 .html

递推公式(求顶点u到源点v的最短路径):

dist 1 [u] = Edge[v][u]

dist k [u] = min{ dist k-1 [u],

min{ dist k-1 [j] + Edge[j][u] } },

j=0,1,…,n-1,j≠u

Dijkstra算法和Bellman算法思想有很大的区别:Dijkstra算法在求解过程中,源点到集合S内各顶点的最短路径一旦求出,则之后不变了,修改的仅仅是源点到T集合中各顶点的最短路径长度。Bellman算法在求解过程中,每次循环都

要修改所有顶点的dist[ ],也就是说源点到各顶点最短路径长度一直要到Bellman 算法结束才确定下来。

算法适用条件

? 1.单源最短路径(从源点s到其它所有

顶点v)

?有向图&无向图(无向图可以看作(u,v),

(v,u)同属于边集E的有向图)

?边权可正可负(如有负权回路输出错误提示)

?差分约束系统(至今貌似只看过一道

题)

Bellman-Ford算法描述:

1.初始化:将除源点外的所有顶点的最短距离估计值d[v] ←+∞, d[s] ←0

2.迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V中的每个顶点v的最短距离估计值逐步逼近其最短距离;(运行|v|-1次,看下面的描述性证明(当做树))

3.检验负权回路:判断边集E中的每一条边的两个端点是否收敛。如果存在未收敛的顶点,则算法返回false,表明问题无解;否则算法返回true,并且从源点可达的顶点v的最短距离保存在d[v]中描述性证明:(这个解释很好)

首先指出,图的任意一条最短路径既不能包含负权回路,也不会包含正权回路,因此它最多包含|v|-1条边。

最短路径流程图及算法详解

:算法的设计思想 本算法采用分支定界算法实现。构造解空间树为:第一个城市为根结点,与第一个城市相邻的城市为根节点的第一层子节点,依此类推;每个父节点的子节点均是和它相邻的城市;并且从第一个根节点到当前节点的路径上不能出现重复的城市。 本算法将具有最佳路线下界的节点作为最有希望的节点来展开解空间树,用优先队列实现。算法的流程如下:从第一个城市出发,找出和它相邻的所有城市,计算它们的路线下界和费用,若路线下界或费用不满足要求,将该节点代表的子树剪去,否则将它们保存到优先队列中,并选择具有最短路线下界的节点作为最有希望的节点,并保证路径上没有回路。当找到一个可行解时,就和以前的可行解比较,选择一个较小的解作为当前的较优解,当优先队列为空时,当前的较优解就是最优解。算法中首先用Dijkstra算法算出所有点到代表乙城市的点的最短距离。算法采用的下界一个是关于路径长度的下界,它的值为从甲城市到当前城市的路线的长度与用Dijkstra算法算出的当前城市到乙城市的最短路线长度的和;另一个是总耗费要小于1500。 伪代码 算法AlgBB() 读文件m1和m2中的数据到矩阵length和cost中 Dijkstra(length) Dijkstra(cost) while true do for i←1 to 50 do //选择和node节点相邻的城市节点 if shortestlength>optimal or mincost>1500 pruning else if i=50 optimal=min(optimal,tmpopt)//选当前可行解和最优解的 较小值做最优解 else if looped //如果出现回路 pruning //剪枝 else 将城市i插入到优先队列中 end for while true do if 优先队列为空 输出结果 else 取优先队列中的最小节点 if 这个最小节点node的路径下界大于当前的较优解 continue

最短路径算法—dijkstra总结

最短路径算法—D i j k s t r a 总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

Dijkstra 算法解释 本文引用三篇文章:分别是谢光新-Dijkstra 算法, zx770424 -Dijkstra 算法, 中华儿女英雄 -Dijkstra 算法 有兴趣的朋友请引用原文,由于分类很不相同难以查找,此处仅作汇总。 谢光新的文章浅显易懂,无需深入的数学功力,每一步都有图示,很适合初学者了解。 zx770424将每一步过程,都用图示方式和公式代码\伪代码对应也有助于,代码的理解。 中华儿女英雄从大面上总结了Dijkstra 的思想,并将演路图描叙出来了。起到总结的效果。 希望这篇汇总有助于大家对Dijkstra 算法的理解。

Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。 简介 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN, CLOSE表的方式,这里均采用永久和临时标号的方式。注意该算法要求图中不存在负权边。 算法描述 (这里描述的是从节点1开始到各点的dijkstra算法,其中Wa->b表示a->b的边的权值,d(i)即为最短路径值) 1.置集合S={2,3,...n}, 数组d(1)=0, d(i)=W1->i(1,i之间存在边) or +无穷大(1.i之间不存在边) 2.在S中,令d(j)=min{d(i),i属于S},令S=S-{j},若S为空集则算法结束,否则转3 3.对全部i属于S,如果存在边j->i,那么置d(i)=min{d(i), d(j)+Wj->i},转2 Dijkstra算法思想为:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。 算法具体步骤 (1)初始时,S只包含源点,即S=,v的距离为0。U包含除v外的其他顶点,U中顶点u距离为边上的权(若v与u有边)或)(若u不是v的出边邻接点)。 (2)从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。 (3)以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u(u U)的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k 的距离加上边上的权。 (4)重复步骤(2)和(3)直到所有顶点都包含在S中。 复杂度分析 Dijkstra 算法的时间复杂度为O(n^2) 空间复杂度取决于存储方式,邻接矩阵为O(n^2)

基于Floyd算法的最短路径问题的求解c++

摘要 现实生活中许多实际问题的解决依赖于最短路径的应用,其中比较常用的是floyd 算法。通过floyd算法使最短路径问题变得简单化。采用图的邻接矩阵或邻接表实现最短路径问题中图的存储。采用Visual C++6.0的控制台工程和MFC工程分别实现基于floyd算法求最短路径的应用。 关键词:最短路径;floyd算法;邻接矩阵;MFC工程

目录 1需求分析 (1) 2算法基本原理 (1) 2.1邻接矩阵 (1) 2.2弗洛伊德算法 (2) 3类设计 (2) 3.1类的概述 (2) 3.2类的接口设计 (3) 3.3类的实现 (4) 4基于控制台的应用程序 (7) 4.1主函数设计 (7) 4.2运行结果及分析 (8) 5基于MFC的应用程序 (9) 5.1图形界面设计 (9) 5.1程序代码设计 (11) 5.3运行结果及分析 (20) 结论 (21) 参考文献 (22)

1需求分析 Floyd算法又称为插点法,是一种用于寻找给定的加权图中多源点之间最短路径的算法。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。 假若要在计算机上建立一个交通咨询系统则可以采用图的结构来表示实际的交通网络。这个资讯系统可以回答游客提出的各种问题。例如,一位旅客要从A城到B城,他希望选择一条途中中转次数最少的路线。假设图中每一站都需要换车,则这个问题反映到图上就是要找一条从顶点A到B所含边的数目最少的路径。我们只需从顶点A出发对图作广度优先搜索,一旦遇到顶点B就终止。由此所得广度优先生成树上,从根顶点A到顶点B的路径就是中转次数最少的路径,路径上A与B之间的顶点就是途径中的中转站数。但是这只是一类最简单的图的最短路径的问题。有时对于旅客来说,可能更关心的是节省交通费用;对于司机来说里程和速度则是他们感兴趣的信息。为了在图上标示有关信息可对边赋以权的值,权的值表示两城市间的距离,或图中所需时间,或交通费用等等。此时路径长度的量度就不再是路径上边的数目,而是路径上边的权值之和。边赋以权值之后再结合最短路径算法来解决这些实际问题。Floyd算法是最短路径经典算法中形式较为简单,便于理解的一种。 2算法基本原理 2.1 邻接矩阵 邻接矩阵(Adjacency Matrix):是表示顶点之间相邻关系的矩阵。设G=(V,E)是一个图,其中V={v1,v2,…,vn}。G的邻接矩阵是一个具有下列性质的n阶方阵:(1)对无向图而言,邻接矩阵一定是对称的,而且对角线一定为零(在此仅讨论无向简单图),有向图则不一定如此。 (2)在无向图中,任一顶点i的度为第i列所有元素的和,在有向图中顶点i的出度为第i行所有元素的和,而入度为第i列所有元素的和。 (3)用邻接矩阵法表示图共需要个空间,由于无向图的邻接矩阵一定具有对称关系,所以扣除对角线为零外,仅需要存储上三角形或下三角形的数据即可,因此仅需

最短路径问题教学案例

专题学习:最短路径问题 一、教学目标: 知识与技能: 理解并掌握平面内一条直线同侧两个点到直线上的某一点距离之和为最小值时点的位置的确定。 过程与方法: 能利用轴对称解决实际问题中路径最短的问题。 情感态度与价值观: 通过独立思考,合作探究,培养学生运用数学知识解决实际问题的基本能力,感受学习成功的快乐。 二、教学重、难点 教学重点:将实际问题转化成数学问题,运用轴对称解决生活中路径最短的问题,确定出最短路径的方法。 教学难点:探索发现“最短路径”的方案,确定最短路径的作图及说理。 三、学法指导 自主探索,合作交流。 四、教学过程 (一)、创设情景,引入新知。 同学们:我们已经学习过“两点之间的所有连线中,线段最短。”和“直线外一点与直线上各点连接的所有线段中,垂线段最短。”等问题,我们称他们为最短路径问题。 (二)、自主学习,探究新知。 1、如图所示,从A地到c地有四条路可供选择,你会选走哪条路最近?你的理由是什么? 2、两点在一条直线异侧: F E D C B A

活动1: 已知:如图,A,B在直线l的两侧,在l上求一点P,使得这个点到点AB的距离和最短,即PA+PB最小。 思考:为什么这样做就能得到最短距离呢?你如何验证PA+PB最短呢? 3、两点在一条直线同侧 活动2:如图,牧马人从A地出发到一条笔直的河边l饮马,然后到B地,牧马人到河边的什么地方饮马,可使所走的路径最短? (1)你能将这个问题抽象为数学问题吗? (2)这是一个实际问题,你打算首先做什么? 将A,B 两地抽象为两个点,将河l 抽象为一条直线. 你能用自己的语言说明这个问题的意思,并把它抽象为数学问题吗? (1)从A 地出发,到河边l 饮马,然后到B 地; (2)在河边饮马的地点有无穷多处,把这些地点与A,B 连接起来的两条线段的长度之和,就是从A 地到饮马地点,再回到B 地的路程之和; (3)现在的问题是怎样找出使两条线段长度之和为最短的直线l上的点.设C 为直线上的一个动点,上面的问题就转化为:当点C 在l 的什么位置时, AC 与CB 的和最小

前N条最短路径问题的算法及应用

第36卷第5期2002年9月 浙 江 大 学 学 报(工学版) Jo ur nal o f Zhejiang U niv ersity(Eng ineer ing Science) Vol.36No.5Sep.2002 收稿日期:2001-10-24. 作者简介:柴登峰(1974-),男,浙江江山人,博士生,从事遥感图像处理、地理信息系统方面研究.E-mail:chaidf@z https://www.360docs.net/doc/9f368629.html, 前N 条最短路径问题的算法及应用 柴登峰,张登荣 (浙江大学空间信息技术研究所,杭州浙江310027) 摘 要:现有最短路径问题指的是狭义最短路径问题,针对该问题而设计的算法只能求得最短的一条路径.前N 条最短路径拓宽了最短路径问题的内涵(即不仅要求得最短路径,还要求得次短、再次短…第N 短路径),是广义最短路径问题.在图论理论基础上分析问题之后,设计了一个递归调用Dijkstr a 算法的新算法,该算法可以求取前N 条最短路径,而且时间、空间复杂度都为多项式阶.该算法已经成功应用于一个交通咨询系统中,自然满足实时应用需要. 关键词:最短路径;N 条最短路径;网络分析;地理信息系统;交通咨询系统 中图分类号:P 208;O 22 文献标识码:A 文章编号:1008-973X (2002)05-0531-04 Algorithm and its application to N shortest paths problem CHAI Deng-f eng,ZHAN G Deng-rong (I nstitute of Sp ace and I n f ormation T echnical ,Zhej iang U niv er sity ,H angz hou 310027,China ) Abstract :As the shor test path denotes one path ,algorithms designed for shor test path problem can g et only one path .N shortest paths are N paths including the shortest one ,the one inferior to the shortest one,eto.After reviewing the application of shortest poth pro blem ,an N shortest paths problem w as put fo rw ard and described.Gr aph theo ry w as used to analy ze the problem and results in fo ur theoretical con-clusions .T hen ,algo rithm recursively calling the Dijkstra algor ithm was desig ned and analy zed .Bath time co nplexity and space conplex ity are poly nom ial order.The algo rithm w as tested by ex periment and applied to a traffic consultatio n system of Guang zhou City ,it can meet the need of r eal-time application.Key words :sho rtest path;N shor test paths;netw ork analysis;tr affic consultation system ;GIS 20世纪中后期,随着计算机的出现和发展,图论的理论和应用研究得到广泛重视,图论作为一个数学分支的地位真正得到了确立.现在,图论的应用已经深入到众多领域,GIS 网络分析就是图论在地理信息领域的重要应用[3] ,此外,还有城市规划、电子导航、交通咨询等等. 最短路径问题是图论中的一个典范问题[1],主要研究成果有Dijkstra 、Floy d 等优秀算法[1,2],Dijk-stra 还被认为是图论中的好算法[1] .目前的研究工作主要集中于算法实现的优化改进与应用方面[3,4].最短路径问题通常有两类[2]:一类是求取从某一源点到其余各点的最短路径;另一类是求取每一对顶 点之间的最短路径.它们从不同的角度描述问题,但有一个共同的缺陷:这里的最短路径指两点之间最 短的那一条路径,不包括次短、再次短等等路径.在此不妨称以上两类问题为狭义最短路径问题,为此设计的算法只能求得最短的一条路径,而不能得到次短、再次短等等路径. 实际上,用户在使用咨询系统或决策支持系统时,希望得到最优的决策参考外,还希望得到次优、再次优等决策参考,这同样反映在最短路径问题上.因此,有必要将最短路径问题予以扩充,成为N 条最短路径问题,即不但要求得到最短路径,还要得到次短、再次短等路径.这称之为广义最短路径问题.

地图中最短路径的搜索算法研究综述 (1)

地图中最短路径的搜索算法研究 学生:李小坤导师:董峦 摘要:目前为止, 国内外大量专家学者对“最短路径问题”进行了深入的研究。本文通过理论分析, 结合实际应用,从各个方面较系统的比较广度优先搜索算法(BFS)、深度优先搜索算法(DFS)、A* 算法的优缺点。 关键词:最短路径算法;广度优先算法;深度优先算法;A*算法; The shortest path of map's search algorithm Abstract:So far, a large number of domestic and foreign experts and scholars on the" shortest path problem" in-depth study. In this paper, through theoretical analysis and practical application, comprise with the breadth-first search algorithm ( BFS ), depth-first search algorithm ( DFS ) and the A * algorithms from any aspects of systematic. Key words: shortest path algorithm; breadth-first algorithm; algorithm; A * algorithm; 前言: 最短路径问题是地理信息系统(GIS)网络分析的重要内容之一,而且在图论中也有着重要的意义。实际生活中许多问题都与“最短路径问题”有关, 比如: 网络路由选择, 集成电路设计、布线问题、电子导航、交通旅游等。本文应用深度优先算法,广度优先算法和A*算法,对一具体问题进行讨论和分析,比较三种算的的优缺点。 在地图中最短路径的搜索算法研究中,每种算法的优劣的比较原则主要遵循以下三点:[1] (1)算法的完全性:提出一个问题,该问题存在答案,该算法能够保证找到相应的答案。算法的完全性强是算法性能优秀的指标之一。 (2)算法的时间复杂性: 提出一个问题,该算法需要多长时间可以找到相应的答案。算法速度的快慢是算法优劣的重要体现。 (3)算法的空间复杂性:算法在执行搜索问题答案的同时,需要多少存储空间。算法占用资源越少,算法的性能越好。 地图中最短路径的搜索算法: 1、广度优先算法 广度优先算法(Breadth-First-Search),又称作宽度优先搜索,或横向优先搜索,是最简便的图的搜索算法之一,这一算法也是很多重要的图的算法的原型,Dijkstra单源最短路径算法和Prim最小生成树算法都采用了和宽

最短路径问题教案

课题:§13·4 课题学习最短路径问题(第2课时) 内容分析 1.课标要求 “课题学习”,着重在于考查学生综合运用数学知识和方法等解决简单的实际问题,增强应用意识,提高实践能力。本节课是“最短路径问题(第2课时)”,让学生经历用“平移变换”和“两点之间,线段最短”来寻求分析问题和解决问题的方法的过程,在观察、操作、想象、论证、交流的过程中,体会图形变化在解决问题中的作用,感悟转化的思想。 2.教材分析 知识层面:本节课的教学内容是研究一道有趣的“造桥选址”问题,充分体现了利用平移变换实现问题转化,从而有效求解。学生是在已经学习了三角形及平移、轴对称知识的基础上进行的有关最短路径问题的研究。最短路径问题在现实生活中经常遇到,初中阶段主要以“两点之间,线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”为知识基础,有时还要借助轴对称、平移、旋转等变换进行研究。 本节课以“造桥选址”为背景,开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用平移将线段和最小问题转化为“两点之间,线段最短”(或“三角形两边之和大于第三边”)问题。对它的学习和研究,有助于对最短路径问题的分析、解决。为今后在求立体图形、圆、平面直角坐标系中求最值问题提供了方法。 能力层面:学生在七年级和上节课的学习过程中,已经掌握了用与最值有关的公理、定理解决问题的推理能力。“造桥选址”是实际生活中的极值问题,在这个问题中,平移起了一个桥梁作用,学习过程的本质是推理与化归的过程。有助于提高学生的推理能力、应用意识;分析问题、解决问题的能力。 思想层面:本节课在将实际问题抽象成几何图形的过程中渗透数学建模的思想。在如何将三条线段的和转化为两条线段的和的探索过程中体现了转化的思 想。在最值问题的证明中,“任取”一点'C(除了点C外),由于点'C的任意性, 所以结论对于直线上的每一点(除了点C外)都成立,这在数学中常采用的方法,体现了化归的思想。 3.学情分析 最短路径问题从本质上说是最值问题,作为初中学生,在此之前很少涉及最值问题,解决这方面问题的数学经验尚显不足,特别是面对具有具体背景的最值问题,更会感到陌生,无从下手。 与上节课相比,本节课的问题更为复杂,出现了三段线段的和最小问题,解答“当点N在直线2l的什么位置时,NB AM+ +最小?”需要将其转化为“当 MN 点N在直线2l的什么位置时,NB AM+最小?”。能否这样转化,如何实现这样的转化?有的学生会存在理解上和操作上的困难,还有的学生可能会受思维惯性的影响(上节课学习了“利用轴对称解决最短路径问题”)。在教学中要巧妙引导,其本质还是在于对“两点之间,线段最短”的深刻理解。

最短路径问题的算法分析及建模案例

最短路径问题的算法分析及建模案例

最短路径问题的算法分析及建模案例 一.摘要 (3) 二.网络最短路径问题的基础知识 (5) 2.1有向图 (7) 2.2连通性................... 错误!未定义书签。 2.3割集....................... 错误!未定义书签。 2.4最短路问题 (8) 三.最短路径的算法研究.. 错误!未定义书签。 3.1最短路问题的提出 (9) 3.2 Bellman最短路方程错误!未定义书签。 3.3 Bellman-Ford算法的基本思想错误!未定义书签 3.4 Bellman-Ford算法的步骤错误!未定义书签。 3.5实例....................... 错误!未定义书签。 3.6 Bellman-FORD算法的建模应用举例错误!未定义 3.7 Dijkstra算法的基本思想 (9) 3.8 Dijkstra算法的理论依据 (9) 3.9 Dijkstra算法的计算步骤 (9) 3.10 Dijstre算法的建模应用举例 (10) 3.11 两种算法的分析错误!未定义书签。

1.Diklstra算法和Bellman-Ford算法 思想有很大的区别错误!未定义书签。 Bellman-Ford算法在求解过程中,每 次循环都要修改所有顶点的权值,也就 是说源点到各顶点最短路径长度一直 要到Bellman-Ford算法结束才确定下 来。...................... 错误!未定义书签。 2.Diklstra算法和Bellman-Ford算法 的限制.................. 错误!未定义书签。 3.Bellman-Ford算法的另外一种理解错误!未定 4.Bellman-Ford算法的改进错误!未定义书签。 摘要 近年来计算机发展迅猛,图论的研究也得到了很大程度的发展,而最短路径 问题一直是图论中的一个典型问题,它已应用在地理信息科学,计算机科学等 诸多领域。而在交通路网中两个城市之间的最短行车路线就是最短路径问题的 一个典型例子。 由于最短路径问题在各方面广泛应用,以及研究人员对最短路径的深入研究, 使得在最短路径问题中也产生了很多经典的算法。在本课题中我将提出一些最 短路径问题的算法以及各算法之间的比较,最后将这些算法再应用于实际问题

《最短路径问题探究》教案

最短路径问题探究 一、教材分析与学情分析 1.教材分析 (1)教学内容 《最短路径问题探究》是九年级下为让学生能灵活的运用对称、平移解决近几年中考中常见的最短路径问题而设置的一节专题课. 初中三年,孩子们也具备了一定的学习能力,在老师的指导下,能针对某一问题展开讨论并归纳总结.但受年龄特征的影响,他们知识迁移能力不强,自主探究能力较差,不善于思考。所以本节课设计为通过对最短路径问题探究,在于引导学生学会思考,帮助学生掌握良好的学习方法为一节学法指导课 (2)地位和作用 近几年各地中考均有最短路径问题的考试,为让学生能熟练解决该类问题,本节课在已有平移、对称知识的基础上,引导学生探究如何运用平移、对称解决最短路径问题。它既是平移、对称知识运用的延续,又能培养学生自主探究,学会思考,在知识与能力转化上起到桥梁作用. 2.学情分析 (1)已有基础知识与生活经验分析 学生已掌握对称、平移、勾股定理等知识,但综合运用能力还较差。加之来自社会、家长和老师的压力较大,学生学的辛苦.对于学习方法不好的同学来说,感觉疲惫,无法体验学习的乐趣;从平时教学反映出学生不重视学习方法,不注意归纳总结,不会思考,更不善于思考,学生学得累。所以想通过本节课引导学生学会学习,学会思考,从而使其感受到学习的快乐,提高学习的兴趣,避免死做题,读死书,以达到提高学习能力的目的. (2)学生起点能力分析 学生已学过一些关于空间与图形的简单推理知识,具备了一定的合情推理能力,能应用勾股定理、线段公理等知识解决简单的问题,但演绎推理的意识和能力还有待加强,思维缺乏灵活性.综合运用能力较差,学习死,不能做到学习与研究相结合. 二、教学目标: 依据新课程标准的理念和学生实际情况,制定如下教学目标: ●知识与技能目标 1、结合具体实例,能灵活的运用勾股定理、线段公理解决实际问题 2、学会思考,逐步提高思维技能和思维的有效性,初步学会探究问题 ●方法与过程目标 1、经历问题的探究,学会从中提取有用信息,善于思考,善于提问,善于归纳总结,培养良好思维习惯. 2、经历运用已有的生活经验,已有的数学知识,培养思维能力、推理能力和有条理的表达能力 ●情感与态度目标

弗洛伊德算法求解最短路径

课程设计任务书

目录 第1章概要设计 (1) 1.1题目的内容与要求 (1) 1.2总体结构 (1) 第2章详细设计 (2) 2.1主模块 (2) 2.2构建城市无向图 (3) 2.3添加城市 (4) 2.4修改城市距离 (5) 2.5求最短路径 (6) 第3章调试分析 (7) 3.1调试初期 (7) 3.2调试中期 (7) 3.3调试末期 (7) 第4章测试及运行结果 (7) 附页(程序清单) (10)

第1章概要设计 1.1题目的内容与要求 内容:给出一张无向图,图上的每个顶点表示一个城市,顶点间的边表示城市间存在路径,边上的权值表示城市间的距离。试编写程序求解从某一个城市出发到达任意其他任意城市的最短路径问题。 要求: 1)能够提供简单友好的用户操作界面,可以输入城市的基本信息,包括城市名 称,城市编号等; 2)利用矩阵保存城市间的距离; 3)利用Floyd算法求最短路径; 4)独立完成系统的设计,编码和调试; 5)系统利用C语言完成; 6)按照课程设计规范书写课程设计报告。 1.2总体结构 本程序主要分为四个模块(功能模块见图1.1):主模块对整个程序起一主导作用,开始构建一城市无向图,对其进行添加城市顶点,以及对原来的距离数据进行修改,整体构建结束可以实现求一城市到其他城市的最短路径问题。 图1.1 功能模块图

第2章详细设计 2.1主模块 用户根据屏幕上显示的操作提示输入要进行操作的模块,通过调用相对应的模块程序,达到用户所想进行操作。程序的总框架大致分为四个模块:1.建立城市无向图2.添加城市模块3.修改城市距离4.求最短路径。具体实现过程见2.2:建立城市无向图2.3:添加城市2.4:修改城市距离2.5:求最短路径。流程图中通过输入n,由n的值来选择调用相对应子函数,实现所选择的功能,调用完后可以返回调用主函数进行下一次选择,从而实现反复调用子函数而实现四个模块的功能等。 图2.1 主模块流程图

Dijstra 最短路径算法

Dijstra 最短路径算法 1课程设计目的 为进一步巩固学习《数据通信与通信网技术》课程。加强对Dijstra最短路径算法的认识,所以需要通过实践巩固基础知识,为使我们取得最现代化的设计技能和研究方法,课程设计训练也就成为了一个重要的教学环节。通过Dijstra 最短路径算法的设计和实现,达到进一步完善对通信网基础及应用课程学习的效果。增加对仿真软件的认识,学会对各种软件的操作和使用方法;加深理解路径算法的概念;初步掌握系统的设计方法,培养独立工作能力。 2设计方案论证 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。 Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。 在日常生活中,我们如果需要常常往返A地区和B地区之间,我们最希望知道的可能是从A地区到B地区间的众多路径中,那一条路径的路途最短。最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。算法具体的形式包括: (1)确定起点的最短路径问题:即已知起始结点,求最短路径的问题。 (2)确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题。在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题。 (3)确定起点终点的最短路径问题:即已知起点和终点,求两结点之间的最短路径。 (4)全局最短路径问题:求图中所有的最短路径。 2.1 设计内容 沈阳大学

数据结构课程设计-Floyd算法求解最短路径

数据结构课程设计报告撰写要求 (一)纸张与页面要求 1.采用国际标准A4型打印纸或复印纸,纵向打印。 2.封页和页面按照下面模板书写(正文为:小四宋体1.5倍行距)。 3.图表及图表标题按照模板中的表示书写。 (二)课设报告书的内容应包括以下各个部分:(按照以下顺序装订) 1.封页(见课设模版) 2、学术诚信声明,所有学生必须本人签字,否则教师拒绝给予成绩。 2.任务书(学生教师均要签字,信息填写完整) 3.目录 4.正文一般应包括以下内容: (1)题目介绍和功能要求(或描述) 课程设计任务的详细描述(注意不能直接抄任务书),将内容做更详细的具体的分析与描述; (2) 系统功能模块结构图 绘制系统功能结构框图及主要模块的功能说明; (3) 使用的数据结构的描述: 数据结构设计及用法说明; (4) 涉及到的函数的描述 ; (5) 主要算法描述( 程序流程图) (6) 给出程序测试/运行的结果 设计多组数据加以描述(包括输入数据和输出结果) (7) 课程设计的总结及体会 (8) 参考文献 格式要求:[1]作者,等. 书名.出版地:出版社,出版年 5.附录:程序清单 (应带有必要的注释)

沈阳航空航天大学 课程设计报告 课程设计名称:数据结构课程设计 课程设计题目:利用弗洛伊德(Floyd)算法求解 最短路径 院(系):计算机学院 专业:计算机科学与技术(物联网方向) 班级:34010105 学号: 姓名: 指导教师: 说明:结论(优秀、良好、中等、及格、不及格)作为相关教环节考核必要依据;格式不符合要求;数据不实,不予通过。报告和电子数据必须作为实验现象重复的关键依据。

运筹学C语言实现Dijkstra算法求解图的最短路径

西安科技大学 运筹学课程设计报告姓名:袁薪洋

一、算法思想 运用Dijkstra算法求解图的最短路径。 Dijkstra算法思想为:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S 表示,初始时S中只有一个源点,以后每求得一条最短路径, 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。 二、算法流程或步骤 Dijkstr算法具体步骤: (1)初始时,S只包含源点,即S=,v的距离为0。U包含除v 外的其他顶点,U中顶点u距离为边上的权(若v与u有边)或)(若u不是v的出边邻接点)。 (2)从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。 (3)以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u(u U)的距离(经过顶点k)比原来距离(不经过顶点

k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。 (4)重复步骤(2)和(3)直到所有顶点都包含在S中。 三、算法源程序 #include int m; int n; float a[100][100]; float dist[100]; int prev[100]; float MAX_V ALUE=10000; void dijkstra() { if(m<0||m>n) //当无顶点的情况 return; bool *s=new bool[n+1]; for(int i=0;i

最短路径算法及其在路径规划中的应用

最短路径算法及其路径规划中的应用 摘要: 这篇文章把徒步运动的路径规划问题转化为求解图中任意两点间的最短路径问题,进而针对此问题介绍了Floyd算法,对该算法的时间花费进行分析,并介绍了在实际问题中如何灵活运用该算法解决路径决策中遇到的问题。 关键词:路径规划、最短路径、决策、Floyd算法 将实际地图的转化为有向图 在策划一次徒步旅行时,设计正确的旅行的线路特别重要,首先我们必须先要得到那个地区的地图,以便进行后续的线路规划。当我们拿到某一地区的地图时,我们可以把地图上的每一条线路用线段表示,用顶点表示地图上的岔路口,即多条线段的交点,这样就形成了一个由点和线段组成的图。我们可以在每条线段上标上数字,表示两点之间的实际距离,或者表示通过这条路径所需的时间。当然,如果两点之间没有线段相连,我们可以认为距离为无穷大,用∞表示。有时候某些线路是单向的,即只能从一个方向到另一个方向,不能逆行。这种情况在具体的路径设计中非常常见,比如,在繁华的都市内会有一些单行道,在山区景点中,常会出现一些上山索道,这些都是单向线路的常见例子。有时候,沿某条线路的两个方向所需的时间不同,这种例子更为常见,比如上山与下山,顺风与逆风等等。对于这两种情况,我们可以在表示路径的线段上加上箭头表示该路径的方向,形成有向图。 到达v2的距离为8,而从v2到v1的距离为3。 从点v1到v0的距离为5,而从v0到v1的距离 为∞。这种带有箭头的有向图,比不带箭头的无 向图能够表示更一般的情形,可以说无向图只是 有向图的一种特殊情况。 如果我们知道任意两点间的最短路径,这对 我们进行路径规划将会有很大的帮助,但当地图 较为复杂时,凭直觉估计最短路径的方法往往不 可靠,这时就必须借助计算机的强大计算能力,寻找最短路径。下面,我们就以 这种有向图为工具,来探究寻找最短路径的方法。

最短路径算法在物流运输中的应用

本科生毕业设计(论文)题目:线性表的设计和实现 学生姓名:张三 学号: 1153 院系:基础科学学院信息技术系 专业年级:2012级信息与计算科学专业 指导教师:李四 年月日

摘要 随着现代物流业的发展,如何优化和配置物流的运输路径成为了一个热点的问题。其中,最具代表性的问题就是如何在一个道路网络中选择两点之间的合适路径,使其距离最短。为了解决这个问题,本文介绍了两种最常用的最短路径求解方法——DIJKSTRA算法与FLOYD算法,分析了它们的适用范围以及时间复杂度。最后,对一个具体的航空公司物流配送问题进行了求解,得到了理论最优路径。 关键词:最短路径问题;DIJKSTRA算法;物流运输

ABSTRACT With the development of modern logistics industry, how to optimize and configure the transport path of logistics has become a hot issue. Among them, the most representative problem is how to select the appropriate path between two points in a road network to minimize the distance. In order to solve this problem, this paper introduces two most common shortest path solutions ——Dijkstra algorithm and Floyd algorithm, and analyzes their application range and time complexity. Finally, a specific airline logistics distribution problem is solved, and the theoretical optimal path is obtained. Keywords:Minimum path problem;Dijkstra algorithm;Logistics transportation

物流运输系统中最短路径算法及应用复习进程

物流运输系统中最短路径算法及应用

物流运输系统中最短路径算法及应用 摘要:根据GIS中网络计算的实际情况,根据A*算法和Dijkstra算法中快速搜索技术的实现入手,采用最短路径算法结合GIS的方法,提出了一种解决物流运输中车辆路径问题的高效率实现的方法。 引言: 在竞争日益激烈的现代商业社会,企业只有以市场为核心去适应不断变化的 环境并及时对市场做出发应,才能在竞争中立于不败之地。物流管理正是以实 现上述要求为目标的。而物流配送是现代化物流管理中的一个重要环节。它是指按用户的定货要求,在配送中心进行分货、配货,并将配好的货物及时送交收货人的活动。在物流配送业务中,存在许多优化决策的问题。本文只讨论物流配送路径优化问题。合理选择配送路径,对加快配送速度、提高服务质量、降低配送成本以及增加经济效益都有很大影响。所谓的车辆路径问题(Vehicle Routing Problem)VRP。它也是目前在物流系统中较受关注的一个方面。它是指在客户需求位置已知的情况下,确定车辆在各个客户间的行程路线,使得运输路线最短或运输成本最低。 一、系统介绍 求解物流配送路径优化问题的方法有很多是路径引导的功能。本设计主要功能是从给定的车辆位置和多个目标点位置,计算车辆遍历所有目标点的代价最优值,并给出代价值和路径描述,并在地图上进行路径显示。路径引导模块的主要过程:初始化路网->得到车辆信息和目标点信息->求车辆遍历所有目标点的代价最优值和遍历次序(仅求遍历次序,而不需求走什么道路)->求每个目标点遍历的最优路径(求具体的道路)->输出遍历次序和路径描述 二、车辆遍历所有目标点的代价最优值算法

城市道路最短路径算法的研究

城市道路最短路径算法的研究 收稿日期:2006-02-23 基金项目:吉林省交通厅资助项目(040123) 作者简介:杨天石(1973-),男(汉),湖南岳阳,工程师 主要研究测绘工程与G IS 的工程。 杨天石1,刘晓东2,于小平3 (1.中国有色金属工业长沙勘察设计研究院,长沙410011; 21长春工程学院勘查与测绘工程学院,长春130021;31吉林大学地探学院,长春130026) 摘 要:建立城市公交最短路径有利于城市交通建 设有序和稳定的发展,目前采用GIS 技术可以有效地管理公交车辆。从系统的最短路径入手,对行走路线作了分析,并给出了用于空间分析的最短路径追踪方法。此外介绍了该系统在具体城市交通应用中所要遵循的原则。 关键词:最短路径;Dijkstra 算法;GIS ;MapObject 中图分类号:P208文献标识码:A 文章编号:100928984(2006)022******* 0 引言 城市道路是城市的重要基础设施,它的运行的 直接影响着城市的规划、建设和管理。面对未来的城市,道路有效地运行,无疑是城市发展的一个重要方面。 城市交通担负着客流传输、能源输送等工作,也是城市赖以生存和发展的物质基础。但由于多方面的原因,造成在运行时利用不高,我国现有公路网络的运行不是令人满意的。另一方面,我国现有的公路资料都以图纸、图表等形式记录保存,采用人工方式管理,效率低下,资料系统性差。对于变化的区域,数据维护困难,各部门也存在为了建设方便重复收集资料,标准不统一,管理混乱等情况。而城市道路做为地面工程规划设计、施工和运行管理的基础数据,必须为合理地开发利用道路,加强城市道路的统一规划管理提供科学依据。 鉴于以上情况,必须建立城市道路数据库与信息系统,利用竣工测量,实现动态更新,为城市规划 与建设管理提供高精度、高可靠性、现势性的城市道路数据信息;同时充分利用系统提供道路的一系列空间分析和道路辅助设计功能。这将大大提高道路信息的社会和经济效益。 1 道路系统的模型框架 城市道路信息系统是利用地理信息系统技术、现代关系数据库、网络技术、多媒体技术和其它专业技术,采集、管理、更新与处理城市道路信息的,具有空间决策支持和专家系统综合分析能力的综合性信息系统。同一般的地理信息系统相比,具有道路数据的网络性和连通性特点,这是系统的重要环节,所以在道路数据的更新与分析中建立道路的拓扑关系显得尤为重要。1.1 系统数据加工 MapObject 所采用的是shape 格式的数据,而shape 不能支持拓扑,直接实现算法比较困难。这里 就需要自己建立拓扑关系,达到网络分析的目的。步骤如下: (1)在ArcMap 中编辑所需要的数据层(如:线 层,这里为“中心线”),在Editor 菜单下的Options 中的T opology 的属性页中选择好适当的ClusterT oler 2ance 值,然后对整幅图进行Integrate ,确保所有的线 没有拓扑错误。在ArcCatalog 里将刚才所编辑的shape 文件转换成C overage 格式,打开该文件的C ov 2erage Properties ,用Build 建立好Node 。 (2)用ArcMap 打开建立好拓朴后的C overage 数 据的Arc 和Node 层,并分别将其导成一个线状的和一个点状的Shape 文件,分别取名为line.shp 和node.shp 。1.2 数据模型建立11211 构建矩阵 定义3个数组,分别存放相应Arc 的起点、终点 ISS N 100928984 C N 2221323/N 长春工程学院学报(自然科学版)2006年第7卷第2期J.Changchun Inst.T ech.(Nat.Sci.Edi.),2006,V ol.7,N o.219/28 57259

相关文档
最新文档