SCI 2012 An Ultra-Low Power ECG Acquisition and Monitoring ASIC System for WBAN Applications

Abstract—

An Ultra-Low Power ECG Acquisition and Monitoring ASIC System for WBAN Applications Xin Liu,Yuanjin Zheng,Member,IEEE,Myint Wai Phyu,F.N.Endru,V.Navaneethan,and Bin Zhao

electrocardiogram(ECG)acquisition and signal processing ap-

plication sensor node for wireless body area networks(WBAN).

This sensor node can accurately record and detect the QRS peaks

of ECG waveform with high-frequency noise suppression.The

proposed system is implemented in0.18-m complementary

metal–oxide–semiconductor technology with two chips:analog

front end integrated circuit(IC)and digital application speci?c

integrated circuit(ASIC),where the analog IC consumes only

79.6W with area of4.25mm2and digital ASIC consumes9

W at32kHz with1.2mm2.Therefore,this ECG sensor node is

convenient for long-term monitoring of cardiovascular condition

of patients,and is very suitable for on-body WBAN applications.

Index Terms—Analog front end,digital application speci?c inte-

grated circuits(ASIC),electrocardiogram(ECG),QRS detection,

signal acquisition,wavelet transform.

I.I NTRODUCTION

R ECENTLY,the research on wireless body area network

(WBAN)applications develops rapidly and receives

more and more attentions,which various sensors are attached

on clothing or implanted in human body.Different biomedical

signals are acquired and processed jointly.The recorded vital

body parameters and the control commands are wirelessly

transmitted between sensor nodes and the base station such

as personal digital assistant(PDA)or laptop.The system is

further connected with a healthcare center for detailed analysis

and diagnosis by medical professionals.In Fig.1,a typical

application example of WBAN techniques are demonstrated.

Bene?ting from rapid technology advances in wireless commu-

nication,signal processing,biomedical sensing,and integrated

circuits,the WBAN technology is able to develop miniature,

lightweight,ultra-low power physiological healthcare surveil-

lance and monitoring devices,for the improvement of human

lives[1]–[6].

Manuscript received October03,2011;revised January10,2012and

February05,2012;accepted February06,2012.Date of publication March

14,2012;date of current version April11,2012.This work was supported

by the Science and Engineering Research Council of A*STAR(Agency for

Science,Technology and Research),Singapore(Program of Embedded and

Hybrid System Phase II(EHSII),SERC Grant0521180055).This paper was

recommended by Guest Editor H.-J.Yoo.

X.Liu,M.W.Phyu,F.N.Endru,V.Navaneethan,and B.Zhao are with the

Institute of Microelectronics,A*STAR,117685Singapore(e-mail:liux@ime.a-

https://www.360docs.net/doc/923357669.html,.sg).

Y.Zheng is with the Institute of Microelectronics,A*STAR,117685Singa-

pore and also with School of Electrical and Electronic Engineering,Nanyang

Technological University,639798Singapore(e-mail:yjzheng@https://www.360docs.net/doc/923357669.html,.sg).

Color versions of one or more of the?gures in this paper are available online

at https://www.360docs.net/doc/923357669.html,.

Digital Object Identi?er10.1109/JETCAS.2012.2187707

Fig.1.Demonstration of wireless body area network technique.

Electrocardiogram(ECG)is the most important indicator

among all the vital body parameters,for diagnosing many

cardiac diseases.ECG is the electrical representation of the

contractile activity of the heart over time,which can be easily

recorded using noninvasive electrodes on the chest or limbs.

ECG indicates the overall rhythm of the heart and weaknesses

in different parts of the heart muscle,and can measure and

diagnose abnormal rhythms of the heart[7].Therefore,there is

an increasing demand for long-term and real-time monitoring

and analysis of ECG signal for early diagnosis and improved

treatment of cardiac diseases.ECG can be represented by a

cyclic occurrence of patterns with different frequency contents

(QRS complex,P and T waves).In the ECG waveforms,QRS

complex re?ects the electrical activity within the heart during

the ventricular contraction.It provides much information about

the state of the heart[8].In this sense,detecting QRS peaks in

the ECG is one of the most important tasks that need to be per-

formed.This stage is crucial in basic ECG monitoring systems

and is important for all other ECG processing applications[9].

Nevertheless,monitoring ECG signal possesses some chal-

lenges as it is considered to be a weak signal.According to[10],

the signal amplitude can range from100to4mV.The main

bandwidth of ECG signals spans from0.1to250Hz,whereby

?icker noise is dominant.In addition,this signal is sus-

ceptible to common-mode interference from the mains supply

and the problem of offset generated by skin–electrode interface.

With this kind of condition,the analog front-end should be able

to provide enough noise rejection in order to be able to amplify

such signal.The gain and bandwidth of the front-end ampli?er

should be adjustable in order to deal with the different charac-

teristic of the signal.

For the purpose of ECG monitoring,various types of QRS

peak detection algorithms have been proposed,including

2156-3357/$31.00?2012IEEE

This paper proposes a power and area ef?cient

?lter-banks method[9],arti?cial neural networks[11],genetic algorithms[12],and geometrical matching approach[13].Most of such algorithms have comparatively high computational complexity and are not very suitable to be implemented in application speci?c integrated circuits(ASICs).The variety of QRS complex shape morphologies and artifacts causes the per-formance of QRS complex detection algorithms that use?xed bandwidth band-pass?lters and?xed width integration win-dows to decrease when the QRS morphology changes.To avoid this problem,a new approach to QRS complex detection based on wavelet transform(WT)has been introduced[14],[15]. Wavelet transform is a mathematical function that separates the signal into different frequency bands(scales)[16].It is a very promising technique for processing time-varying biomedical signals,such as ECG.The WT decomposes the ECG signal into several scales,where each scale has different bandwidth and time support.WT at any scale is done by?ltering the signal with an appropriate?lter.The most common approach to QRS complex detection is to?nd local maxima at four consecutive scales.In[17],the hidden Markov tree(HMT)model was used to characterize the point statistics of wavelet coef?cients across scales.For instant,if a wavelet coef?cient produced by a true signal is of large magnitude at a?ner scale,its parents at coarser scales are likely to be large as well.However,for those coef?cients caused by noise,the magnitudes will decay rapidly along the scales.With the observations from[17],[18] analyzed the multiscale products and applied them to step detection and estimation.[19]multiplied the adjacent wavelet scales to sharpen the important structures while weakening noise.[20]presented a new online detection algorithm based on a multiscale product sequence in wavelet domain to identify the rapidly changing points effectively.

In[21],we presented some digital ECG signal processing ap-plication speci?c integrated circuits(ASIC),which achieves low power consumption and high hardware ef?ciency.This paper only focuses on the digital system architecture and circuitry de-sign.In this extended paper,we propose a recon?gurable analog front-end and ADC,which interfaces with the digital signal pro-cessing module,so that a complete ECG acquisition and mon-itoring system is proposed and demonstrated for WBAN appli-cations with ultra-low power and small silicon area.Since the signal acquisition front-end is a recon?gurable design which can be applicable for other biomedical applications,a two-chip solution is proposed.In the signal acquisition ASIC,the gain and bandwidth of the front-end are adjustable and a low power sigma-delta ADC is used for signal digitalization.In the digital ECG signal processing ASIC,the real-time accurate QRS peak detection is realized based on wavelet transform with high fre-quency noise suppression.In more details,to acquire the ECG waveform and digitalization,our design includes a highly inte-grated analog ECG acquisition front-end,including a chopper-stabilized preampli?er,a variable gain ampli?er(VGA),and a third-order sigma-delta ADC with digital decimation?lter.In the digital ECG signal processing ASIC,to exploit the wavelet interscale dependencies,we multiply the adjacent wavelet sub-bands to enhance the edge structures while weakening noise. Thereafter,a threshold is calculated and imposed on the sum-mation of products,instead of on the wavelet coef?cients,

to Fig.2.Block diagram of the proposed ECG monitoring system

architecture.

Fig.3.Block diagram of the proposed digital signal processing ASIC for ECG. identify the important features.Therefore,our design achieves low error rate QRS peak detection.This chip enables the ECG signal processing at the sensor node with low area and power https://www.360docs.net/doc/923357669.html,bined with the wireless transceiver,the ECG QRS peak information can be extracted accurately and wire-lessly transmitted to the healthcare server for monitoring and diagnosis.Therefore,the proposed ECG ASIC is very suitable for battery-supplied healthcare WBAN applications.

II.A RCHITECTURE AND C IRCUIT D ESIGN

The proposed system architecture,which includes both analog ECG acquisition front-end and digital signal processing back-end,is shown in Fig.2.The analog front-end consists of chopper-stabilized preampli?er followed by variable gain ampli?er with adjustable gain and bandwidth.Fully-differential architecture is employed in order to suppress the common-mode noise and interferences on the signal.As the interface between the analog front-end and Digital ASIC processor,a third-order sigma-delta ADC with digital decimation?lter follows the front-end to convert the ampli?ed signal to digital format.The digitalized ECG signal is then fed into digital signal processing module to detect the QRS peaks as shown in Fig.3.To achieve satisfactory QRS peak detection performance,the digital signal processing block decomposes the digitalized ECG signal into different wavelet scales.The noise is suppressed?rstly using the multiscale wavelet analysis,and then QRS peaks are detected. The novelty of the design in the paper is that we introduce recon?gurability to the analog front-end system so that it can extend to handle different kinds of bio-potential signals by just using the same analog IC chip.In addition,a complete signal condition and analysis system including analog acquisition IC and digital ASIC processor are demonstrated.As indicated above,the proposed analog front-end IC is designed with recon?gurable function,which is achieved by making:1)input noise of the preampli?er is low enough(100

nV–1),suitable for acquisition of different kinds of bio-potential signals such as ECG/EEG/EMG/Neural signals etc.;2)total gain range (40–100dB)of preampli?er and VGA is across a large range to cover different dynamic range of bio-potential signals;3)the bandwidth of analog front-end is tunable(low pass corner100 Hz–2KHz);4)the clocking rate for sigma-delta ADC can be changed so that the EONB can be con?gured for different kind of signals.(e.g.,ECG8bit,EEG12bit).

Fig.4.Circuit schematic of chopper-stabilized preampli?er.

A.Chopper-Stabilized Preampli?er

The preampli?er is mainly used to provide a necessary ampli-?cation to the signal without introducing signi?cant noise from the devices.For this reason,chopper stabilization was selected

to primarily remove the

noise that might deteriorate the SNR at the intended low frequency application.Fig.4shows the circuit schematic of the preampli?er.

The preampli?er was designed based on negative feedback gm-boosted source degenerated differential pair with resistive loads [22].The topology in [22]was modi?ed by utilizing a CMFB to generate the desired common mode voltage at the am-pli?er output.The resistive load was replaced with MOS load transistor.The loading effect to set the respective gain is per-formed by placing a resistor with each node connected to each output of the ampli?er.Chopper stabilization is employed by placing a modulator before the input and a demodulator after the output of the ampli?er.

A fourth-order low-pass ?lter follows the ampli?er to remove noise and inherent dc offset of the ampli?er that has been modulated to the chopper frequency of 16kHz.The fourth-order low-pass ?lter consists of two OTA-based second-order low-pass ?lters in series.With a cutoff frequency of 2.57KHz,the fourth-order ?lter is suf?cient to provide attenuation of at least 60d

B at the chopper frequency.A simple ring oscillator was designed to provide an on-chip 16kHz chopper clock signal.A pair of external capacitors (for ac coupling)is used before preampli?er to remove dc offset,which is to facilitate the fast prototype of the complete system.The CMRR of the overall system is therefore limited due to the nonperfect matching of ex-ternal capacitors.Furthermore,the power-noise ef?cient pream-pli?er design by Yazicioglu [23]can potentially be incorporated into our future design.B.Variable Gain Ampli?er

The variable gain ampli?er is used to further amplify the signal,while providing ?exibility in setting the ampli?cation factor and pass-band bandwidth.Fig.5shows the system struc-ture of the VGA.It has 3-bit gain control and 4-bit bandwidth control.

The structure of the VGA can be divided into two stages.The ?rst stage is an OTA with source degenerated differential pair.This stage performs gain control by tuning the value of

Fig.5.System structure of VGA.

source degeneration resistor of the differential input pair.The second stage is a pass-band block that provides further tuning of the gain and control of the bandwidth.This stage comprises of gain-BW control block,followed by an OTA.The gain tuning is done through gain-BW control block by changing the value of capacitor on its output.This capacitor,together with capacitor ,forms capacitive divider.The bandwidth control is done by tuning the value of capacitor at the input of this block.This capacitor acts as a load for the OTA on the ?rst stage.

The VGA was designed to have gain range from 8to 58dB.The high-pass corner was set at 0.015Hz and the low-pass corner is tunable from 100Hz to 2kHz.C.Sigma–Delta ADC

In this design,sigma–delta modulator is employed together with digital decimation ?lter.Single-loop 1-bit sigma-delta ADC was particularly selected due to its simplicity and insensitivity to imperfections of analog circuits [24],[25].Prior to its implemen-tation,system level simulations in MATLAB were performed in order to derive the modulator requirements and speci?cations for individual sub-blocks.Fig.6shows the MATLAB system level model of the modulator with cascaded integrator feedback archi-tecture.In most of ECG/EEG signal acquisition applications,the requirement of ENOB of ADC is at least 8bits.Based on the sim-ulation,it can be found that third order meets this requirements and with good signal shaping capability.

The system diagram of sigma–delta ADC is shown in Fig.7.Fig.7(a)shows the equivalent switched capacitor realization of Fig.6.Fully-differential current mirror OTA is used in order to accommodate the low supply voltage and to provide more power ef?ciency.To implement the switch,bootstrapped switch

Fig.6.MATLAB system block diagram of

ADC.

Fig.7.System diagram of sigma–delta ADC:(a)switched capacitor realization of modulator;(b)block diagram of decimation ?lter.

reported in [26]is adopted.This switch was designed to operate at low voltage with device reliability considerations.The single bit quantizer is realized with a dynamic comparator followed by an SR latch.The comparator is a purely dynamic circuit,which consumes low power [27].The modulator was designed to achieve 50–60dB SNR and SFDR of 50dB over a bandwidth of 500Hz.The switching clock is derived from an on chip clock generator which gives choice on over sampling ratio of 32.Following the ADC,a decimation ?lter with decimation factor of 32is used as shown in Fig.7(b).The ?lter consists of one cascaded integrator-comb (CIC)?lter and two stages of half-band ?lters (HBF).The decimation ?lter is used in order to reduce the sampling rate of the ADC output and to suppress the out-of-band noise.

D.Four-Scale Wavelet Decomposition

The digitalized ECG waveform from decimator ?lter is fed into the digital ECG signal processing module.For ECG moni-toring purpose,the QRS peaks of ECG need to be detected.The received ECG signal is normally corrupted by many types of noise and interference,such as circuit noise and other biomed-ical signals.If we directly detect the QRS peak using the original recorded ECG waveforms,it may downgrade the detection per-formance due to noise.In order to effectively enhance the QRS

detection performance,an appropriate signal processing proce-dure for noise reduction is necessary before QRS detection.In general,the QRS detection algorithm is divided into a pre-processing stage or feature extraction stage including linear or nonlinear ?ltering and a decision stage including peak detec-tion and decision logic [28],[29].In our design,we perform a discrete wavelet transform with four-scale decomposition on the

recorded noisy ECG

signal

to extract the ECG features and characteristic points.The input ECG signal is sampled at 1kHz sampling rate for high resolution ECG analysis.Two types of ?nite impulse response (FIR)?lters are deployed in each scale,i.e.,high-pass ?lter (HPF)and low-pass ?lter (LPF).The out-puts of these ?lters can be down-sampled for removing the re-dundancy of the signal representation.However,the down-sam-pling procedure involves time-shifting issue for the signal rep-resentation,and reduces the temporal resolution of the wavelet coef?cients for when scales increase [30].Therefore,to avoid the issues of time-shifting and resolution degradation,we apply the same sampling rate in all scales.For

scale ,the outputs of decomposition

LPF and decomposition

HPF are given by

[10]

(1)(2)

where

and are the coef?cients of LPF and HPF of

scale ,respectively.For scale

1,

and are given by,respectively

[14]

(3)(4)

For

scale

,

and are obtained by

inserting zeros between each of the nonzero coef?cients

of

and [14],which can be implemented by shift registers.The LPF and HPF outputs of the input signal at

scale are equal to ?ltered signals of the input signal that passed through the equivalent

digital

?lters

and ,as given

by

(5)(6)

where represents the operation of convolution.Given 1kHz

input signal sampling rate,the 3dB bandwidths of the equivalent

?lter for

scales is provided in Table I.Since the QRS signal locates in low-frequency range [3Hz,40Hz].Therefore,four-scale WT is enough to extract the necessary characteristic points [31].If using higher scale WT,the computational complexity and power consumption will be greatly increased.

In Fig.8,the block diagram of four-scale DWT is illustrated.Since the coef?cients are symmetric,the number of multipliers can therefore be reduced into half.The data input to LPFs and HPFsare the sameat eachscale,the numberofdelay elements can therefore be shared to minimize the hardware cost.The numbers of nonzero coef?cients remain the same at different scales,and

心电图基本知识及常见异常心电图表现

心电图基本知识及常见异常心电图表现特点 一、胸导联:??V1~V6导联的具体位置: ?V1:胸骨右缘第4肋间。?V2:胸骨左缘第4 肋间。 V3:V2与V4两点连线的中点。 V4:左锁骨中线与第5肋间相交处。 V5:左腋前线V4水平处。?V6:左腋中线V4水平处。? 二、心电图各波段的意义: ? ? P波:为心房除极波,反映左、右心房除极过程中的电位和时间变化。正常P波在aVR导联倒置,Ⅰ、Ⅱ、aVF、V3~V6导联直立,其余导联(Ⅲ、aVL、V1、V2)可直立、低平、双向或倒置。正常P波的时间≤0.11s;电压在肢导联<0.25mV,胸导联<0.2mV。 P-R段:是电激动过程在房室交界区以及希氏束、室内传导系统所产生的微弱电位变化,一般呈零电位,显示为等电位线(基线)。? P-R间期:自P波的起点至QRS波群的起点,反映激动从窦房结发出后经心房、房室交界、房室束、束支及普肯耶纤维网传到心室肌所需要的时间。正常成年P-R间期为0.12~0.20s。?

QRS波群:为左、右心室除极的波,反映左、右心室除极过程中的电位和时间变化。正常成人QRS波群时间为0.06~0.10s。??S-T段:从QRS波群终点至T波起点的一段平线,反映心室早期缓慢复极的电位和时间变化。正常情况下,S-T段表现为一等电位线。在任何导联,S-T段下移不应超过0.05mV;S-T段抬高在V1-V3导联不超过0.3mV,其他导联均不应超过0.1 mV。 ?T波:为心室复极波,反映心室晚期快速复极的电位和时间变化。正常T波是一个不对称的宽大而光滑的波,前支较长,后支较短;T波的方向与QRS波群主波方向一致。 Q-T间期:从QRS波群的起点至T波终点,代表左、右心室除极与复极全过程的时间。Q-T间期的正常范围为0.32~0.44s。 ?三、常见异常心电图的表现:?1、心房肥大的心电图表现:?(1)左房肥大:心电图表现为P波增宽(>0.11s),常呈双峰型,双峰间期≥0.04s,以在V1导联上最为显著。多见于二尖瓣狭窄,故称“二尖瓣型P波”。 (2)右房肥大:心电图表现为P波尖而高耸,其幅度>0.25mV,以Ⅱ、Ⅲ、aVF导联表现最为突出,常见于慢性肺源性心脏病,故称“肺型P波”,也可见于某些先天性心脏病。?2、心室肥大心电图表现:?(1)左室肥大:心电图表现为①QRS波群电压增高:RV5或R V6>2.5mV,RV5或RV6+SV1>4.0mV(男)或>3.5mV(女)。②心电轴左偏。③QRS 波群时间延长到0.10~0.11s。④ST-T改变,以R波为主的导联中,ST段下移≥0.05mV,T波低平、双向或倒置:左室肥大常见于高血压心脏病、二尖瓣关闭不全、主动脉瓣病变、心肌病等。其中QRS波群高电压最为重要,是诊断左室肥大的主要依据。 (2)右室肥大:心电图表现为①V1 R/S>1,V5R/S<1,V1或V3 R的QRS波群呈RS、RSR’、R或QR型。②心电轴右偏,重症可>+110°。③RV1+SV5>1.2mV,aVR导联的R/Q或R/S>1,RaVR>0.5mV。④V1或V3 R等右胸导联ST-T下移>0.05mV,T波低平、双向或倒置。 ?3、心肌梗死心电图表现: (1)进展期:心肌梗死数分钟后出现T波高耸,S-T段斜行上移或弓背向上抬高,时间在6小时以内。?(2)急性期:心肌梗死后6小时至7天。S-T段逐渐升高呈弓背型,并可与T 波融合成单向曲线,此时可出现异常Q波,继而S-T段逐渐下降至等电位线,直立的T波开始倒置,并逐渐加深。此期坏死型Q波、损伤型S-T段抬高及缺血性T波倒置可同时并存。?(3)愈合期:心肌梗死后7~28天,抬高的S-T段基本恢复至基线,坏死型Q波持续存在,缺血型T波由倒置较深逐渐变浅。 (4)陈旧期:急性心肌梗死后29天及以后。S-T段和T波不再变化,常遗留下坏死的Q波,常持续存在终生,亦可能逐渐缩小。 ?4、心肌缺血心电图表现:?(1)典型心绞痛:面对缺血区的导联上出现S-T段水平型或下垂型下移≥0.1mV,T波低平、双向或倒置,时间一般小于15分钟。 (2)变异型心绞痛:常于休息或安静时发病,心电图可见S-T段抬高,常伴有T波高耸,对应导联S-T段下移。?(3)慢性冠状动脉供血不足:在R波占优势的导联上,S-T段呈水平型或下垂型压低≥10.05mV;T波低平、双向或倒置。 5、心律失常心电图表现:?窦性心动过速的心电图表现:?(1)窦性P波,即P波在Ⅰ、Ⅱ、aVF、V3~V6导联直立,aVR导联倒置。 (2)P-R间期0.12~0.20s。?(3)心率100~160次/分钟。? 窦性心动过缓的心电图表现:?(1)窦性心律。 (2)心率在60次/分钟以下,通常不低于40次/分钟。

心电图机简介

心电图机 心电图机是指用来记录心脏活动时所产生的生理电信号的仪器。由于心电图机诊断技术成熟、可靠,操作简便,价格价格适中,对病人无损伤等优点,已成为各级医院中最普及的医用电子仪器之一。 基本简介 心电图机采用10.4英寸大型液晶显示屏,可以清晰地显示心电图波形。通过屏幕上的触摸键可以很容易的进行被检者信息输入、滤波器切换等操作各种以25mm/s记录速度采集的信息,能以50mm/s的记录速度快速打印输出(实时波形记录除外)。 基本特性 心电图机特别适合集体检查等需要快速进行操作的情况可任意选择3导联,记录长达3分钟的心率不齐分析检查。极大的提高了以一般记录时间难以捕捉到的心率不齐的能力可任意指定一个导联检测心电图波形的R-R间期变动(最长10分钟),通过定量分析,提高对自律神经紊乱判断的有效依据以经过经验总结的分析方法为基础的新十二导联分析程序提供更加完善的分析程序,提供了基于自动分析分类基准与分析结果的注释说明,该功能可以使自动分析的客观诊断结果与医生的主观诊断形成互补。 基本分类 按机器功能分类 心电图机按照机器的功能可分为图形描记普通式心电图机(模拟式心电图机)和图形描记与分析诊断功能心电图机(数字式智能化心电图机)。 按记录器的分类 1、动圈式记录器:动圈式记录器的结构原理是由磁钢组成的固定磁路和可转动的线圈。心 电图机功率放大器的输出信号加到记录器的线圈上,线圈上固定有记录笔。在有心电信号输出时,功率放大器向线圈输出电流,线圈转动。当线圈的偏转角度与盘状弹簧的回零力矩相

同时,停上偏转。这样,线圈带动的记录笔便在记录纸上描记出心电图波形。 心电图机 2、位置反馈记录器:位置反馈记录器是一种不用机械回零弹簧的记录器,特殊的电子电路 可起到回零弹簧的作用。机器断电时,位置反馈记录器的记录笔可任意拨动。 3、点阵热敏式记录器:热敏式记录器是利用加热烧结在陶瓷基片上的半导体加热点,在遇 热显色的热敏纸上烫出图形及字符的。 按供电方式分类 按供电方式来分,可分为直流式、交流式和交、直两用式心电图机。其中,交、直两用式居多。直流供电式多使用充电电池进行供电。交流供电式是采用交流-直流转换电路,先将交流变为直流,再经高稳定的稳压电路稳定后,供给心电图机工作。 信号导数来分类 按一次可记录的信号导数来分,心电图分为单导及多导式(如三导、六导、十二导)。单导心电图机的心电信号放大通道只有一路,各导联的心电波形要逐个描记。即它不能反映同一时刻各导心电的变化。多导心电图机的放大通道有多路,如六导心电图机就有六路放大器,可反映某一时刻六个导联的心电信号同时变化情况。 重要参数 输入电阻 即前级放大器的输入电阻。输入电阻越大,因电极接触电阻不同而引起的波形失真越小,共模抑制比越高。一般要求大于2MΩ,国际上大于50MΩ。 共模抑制 心电图机一般采用差动式放大电路,这种电路对于同相(又称共模信号,例如周围的电磁场所产生的干扰信号)有抑制作用,对异相信号(又称差模信号,需采集的心电信号就是差模信号)有放大作用。共模抑制比(CMRR),指心电图机的差模信号(心电信号)放大倍数Ad与共模信号(干扰和噪声)放大倍数Ac之比,表示抗干扰能力的大小。要求大于80dB,国际上大于100dB。 极化电压

心电图的基本知识(有图)

心电图的基本知识 (1)什么是心电图 心脏在机械收缩之前,先发生电激动而产生微小电流,这一电流可以经人体组织传到体表。若用心电图机连续记录全部心脏的电活动,就是心电图。 (2)心电图基本波形 P波:反映心房电激动的电压改变。 QRS波:反映心室电激动的电压改变。 PR间期:代表电激动由心房传到心室的时间。 T波:反映心室电激动恢复期的电压改变。 QT间期:代表心室电激动的全部时间。 正常心电图

心电图纸每小格横坐标表示时间0.04s(秒),纵坐标表示电压0.1mv(毫伏)。 (1)P波 形态:一般为钝图形,有时有轻度切迹担波峰间距小于0.03秒。V1V2导联顶部尖。 宽度:0.06~0.11秒。 高度:小于0.25毫伏。 方向:直立:Li、La、avF。V3~V6;倒置:avR;可以直立也可以倒置。V1、V2、Lm、avL。 (2)PR间期:0.12~0.20秒

(3)QRS综合波 正常时有些导联可出现小Q波,但其深度小于0.25R,宽度小于0.04秒。 宽度:0.06~0.10秒。 高度:V1的R波小于10毫伏,V5的R波小于25毫伏。 形态:V1V2avR主波向下,(R/S)<1,V5V6主波向上,(R/S)>1。 (4)ST段 正常人ST段下移不超过0.05毫伏,ST段上升不超过0.1毫伏。而V1~V3上升不超过0.3毫伏。 (5)T波 形态:波形平滑不对称,上升慢而下降快。 高度:QRS主波向上的导联,T波不应低于同导联R波的1/10。 方向:同P波的方向。 (6)QT间期: 正常人当心率在60~100次/分时,QT间期为0.32~0.44秒。 (7)心电轴 在每一个心动周期中,激动的方向是不断改变的。心电轴为一个心动周期中电激动总的方向正常心电轴为0~90度。小于0度为电轴左偏,大于90度为电轴右偏。

心电图基本知识

预激综合征 预激综合征是指病人除正常的房室传导途径外,还存在有附加的房室传导途径(旁路),引起心电图异常并可出现阵发性室上性心动过速。 诊断依据 1.典型预激综合征:(1)P-R间期<0.12秒,P波正常。 (2)QRS时间>0.11秒。 (3)QRS波群起始部分变粗钝,称为预激波或δ波。 (4)继发性ST-T改变。 临床上又分为三型:A型预激:预激波和QRS波群在各胸导联均向上,其旁道位于左心室后基底部。 B型预激:预激波和QRS波群的主波V1导联向下,在左胸导联V5向上,其旁道位于右室外侧壁。 C型预激:预激波和QRS波群V1-V2导联向上,V3-V5导联向下。 为左室侧壁预激。 2.变异型预激:LGL型预激:(1)P-R间期≤0.11秒。 (2)QRS波群时间正常。 (3)没有δ波MAhAim型预激:(1)P-R间期≥0.12秒。 (2)QRS综合波起始波有δ波,但δ波小。 (3)QRS时间≥0.12秒,但增宽轻微。 完全性左束支传导阻滞 完全左束支传导阻滞的心电图特点有以下几点: ①QRS波群的时限≧0.12秒; ②QRS波群的形态的改变:V5导联呈宽大、平顶或有切迹的R波。凡是在v5或v6导联R波之前出现q波,则应排外完全性左束支传导阻滞。 ③V1、V2呈宽大、较深的S波,呈现QS或rS波。(Ⅱ、Ⅲ、aVF与V1相似)。 ④继发ST—T波改变,凡QRS波群向上的导联(如Ⅰ、aVL、V5等)ST段下降,T 波倒置。在QRS波群主波向下的导联(如Ⅱ、aVR、V1等)ST段抬高、T波直立。 不完全性左束支传导阻滞心电图形成的原理与完全性左束支传导阻滞的心电图形成原理相同,二者心电图形相似,只是不完全性左束支传导阻滞QRS时间小于0.12秒。但要注意,不完全性左束支阻滞的心电图与左心室肥厚的图型相似,必须结合临床其他资料进行区别。 完全性右束支阻滞 完全性右束支传导阻滞的心电图表现:①QRS波群时间≥0.12s;②V1或V2导联QRS呈rsR′型或M型,此为最具特征性的改变;Ⅰ、V5、V6导联S波增宽而有切迹,其时限≥0.04s;

心电图基础知识点总结资料讲解

心电图:一个小格为0.04秒,一个大格为0.2秒;一个小格为0.1mv,一个大格为0.5mv,两个大格为1mv。 标准电压:1mv=10mm。 P波:代表心房肌除级的电位变化。 P波时限一般小于0.12秒。振幅:P波振幅在肢体导联一般小于0.25mv,胸导联一般小于0.2mv。 P波方向: Ⅰ、Ⅱ、AVF、v4~v6导联向上,AVR导联向下,其余导联呈双向、倒置、低平均可。 PR间期:从P波的起点至QRS波群的起点,代表心房开始除级至心室开始除级的时间。 PR间期时限:0.12~0.20秒,老年人及心动过缓的情况下,PR间期可略延长,但一般不超过0.22秒。 QRS波群:代表心室肌除级的电位变化。 时间:正常人QRS时间一般不超过0.11秒。多数在0.06~0.10秒。 R峰时间:V1、V2导联一般不超过0.04秒,V5、V6导联不超过0.05秒。 Q波:正常人Q波时限一般不超过0.03秒(除Ⅲ和AVR导联外)。Ⅲ导联Q波的宽度可达0.04秒。 正常情况下,Q波深度不超过同导联R波振幅的四分之一。 正常人V1、V2导联不应出现Q波。但偶尔出现可呈QS波。 J波:QRS波群的终末与ST段起始之交接点称为J点。 ST段:自QRS波群的终点至T波的起点间的线段。代表心室缓慢的复级过程。 T波:代表心室快速复级时的电位变化。 方向:Ⅰ、Ⅱ、V4~V6导联向上,AVR导联向下,Ⅲ、AVL、AVF、V1~V3 导联可以向上,双向或向下。若v1的T波方向向上,则V3~V6导联就不应再 向下。 振幅:除Ⅲ、AVL、AVF、V1~V3导联外。其他导联T波振幅一般不应低于同 导联R波的10分之一。T波在胸导联有时可高达1.2~1.5mv尚属正常。 QT间期:指QRS波群得起点至T波终点的间距,代表心室肌除级和复级全过 程所需的时间。 QT间期:正常范围为0.32~0.44秒。 U波:在T波之后0.02~0.04秒。 早期复级:V3~V5导联、Ⅱ、Ⅲ、AVF导联ST段呈凹面向上抬高。 右心房肥大:P波高尖,其振幅≥0.12mv,以Ⅱ、Ⅲ、AVF导联表现最突出,又称“肺型P波”。

心电图基础知识

一、心电图产生原理 心脏机械收缩之前,先产生电激动,心房和心室的电激动可经人体组织传到体表。 心电图(electocardiogram,ECG)是利用心电图机从体表记录心脏每一心动周期所产生电活动变化的曲线图形。 心肌细胞在静息状态时,膜外排列阳离子带正电荷,膜内排列同等比例阴离子带负电荷,保持平衡的极化状态,不产生电位变化。当细胞一端的细胞膜受到刺激(阈刺激),其通透性发生改变,使细胞内外正、负离子的分布发生逆转,受刺激部位的细胞膜出现除极化,使该处细胞膜外正电荷消失而其前面尚未除极的细胞膜外仍带正电荷,从而形成一对电偶(dipole)。电源(正电荷)在前,电穴(负电荷)在后,电流自电深流入电穴,并沿着一定的方向迅速扩展,直到整个心肌细胞除极完毕。此时心肌细胞膜内带正电荷,膜外带负电荷,称为除极(depolarization )状态。嗣后,由于细胞的代谢作用,使细胞膜又逐渐复原到极化状态,这种恢复过程称为复极(repolarization)过程,复极与除极先后程序一致,但复极化的电偶是电穴在前,电源在后,并较缓慢向前推进,直至整个细胞全部复极为止(图4-1-l)。 就单个细胞而言,在除极时,检测电极对向电源(即面对除极方向)产生向上的波形,背向电源(即背离除极方向)产生向下的波形,在细胞中部则记录出双向波形。复极过程与除极过程方向相同,但因复极化过程的电偶是电穴在前,电源在后,因此记录的复极波方向与除极波相反(图4-1-2)。 需要注意,在正常人的心电图中,记录到的复极波方向常与除极波主波方向一致,与单个

心肌细胞不同。这是因为正常人心室的除极从心内膜向心外膜,而复极则从心外膜开始,向心内膜方向推进,其机制尚不清楚。可能因心外膜下心肌的温度较心内膜下高,心室收缩时,心外膜承受的压力又比心内膜小,故心外膜处心肌复极过程发生较早。 由体表所采集到的心脏电位强度与下列因素有关:①与心肌细胞数量(心肌厚度)呈正比关系;②与探查电极位置和心肌细胞之间的距离呈反比关系;③与探查电极的方位和心肌除极的方向所构成的角度有关,夹角愈大,心电位在导联上的投影愈小,电位愈弱(图4-1-3)。 这种既其有强度,又具有方向性的电位幅度称为心电“向量”( vector ) ,通常用箭头表示其方向,而其长度表示其电位强度。心脏的电激动过程中产生许多心电向量。 由于心脏的解剖结构及其电活动相当错综复杂,致使诸心电向量间的关系亦较复杂,然而一般均按下列原理合成为“心电综合向量”( resullant vector ) :同一轴的两个心电向量的方向相同者,其幅度相加;方向相反者则相减。两个心电向量的方向构成一定角度者,则可应用“合力”原理将二者按其角度及幅度构成一个平行四边形,而取其对角线为综合向量(图4-1-4)。可以认为,由体表所采集到的心电变化,乃是全部参与电活动心肌细胞的电位变化按上述原 理所综合的结果。 心电图各波段的组成和命名 心脏的特殊传导系统由窦房结、结间束(分为前、中、后结间束)、房间束(起自前结间束,称Bachmann束)、房室结、希氏束(His bundle)、束支(分为左、右束支,左束支又分为前分支和后分支)以及普肯耶纤维(Pukinje fiber)构成。心脏的传导系统与每一心动周期顺序出现的心电变化密切相关(图4-1-5)。

基本心电图图例简介

基本心電圖圖例 簡介 注意:本簡介僅供使用者瞭解心電圖基本病例與參數,本手冊從第一導程的心電圖角度,讓使用者可以認識正常心電圖與異常 心電圖之間的不同。 警告:本簡介之內容並非涵蓋所有心電圖異常病例。本簡介僅供參考,假如您發現您的心電圖波形與標準心電圖波形不一樣, 或是與文中所述異常心電圖病例相似,請儘速就醫尋求醫師 診斷。

目錄 認識心臟 (1) 1.1心臟的基本功能 (1) 1.2心臟的傳導系統 (2) 1.3心律不整(A RRHYTHMIA) (3) 認識心電圖 (4) 2.1瞭解心電圖參數 (4) 2.2心電圖波形與相關參數 (5) 心電圖圖例 (7) 3.1正常節律 (7) 3.2節律過緩 (7) 3.3節律過速 (8) 3.4上心室性頻脈(SVT) (8) 3.5心房顫動 (9) 3.6心房顫動 (9) 3.7心房撲動 (10) 3.8心室性節律 (10) 3.9心室性頻脈 (12) 3.10心室顫動 (12) 3.11竇性心律不整 (13) 3.12竇性節律暫停 (14) 3.13陣發性心房性頻脈(PAT) (15) 3.14N ODAL R HYTHM (15) 3.15左心室肥大 (16) 3.16第一級心房心室傳導阻滯 (17) 3.17第二級心房心室傳導阻滯 (17)

3.18第三級心房心室傳導阻滯 (18) 3.19右束枝傳導阻滯(RBBB) (18) 3.20左束枝傳導阻滯(LBBB) (20) 3.21早發性心房收縮(PAC) (20) 3.22P REMATURE N ODAL C ONTRACTION (PNC) (20) 3.23早發性心室收縮(PVC) (21) 3.24雙聯律B IGEMINY (22) 3.25三聯律T RIGEMINY (22) 3.26T WO PVC S TOGETHER (23) 其他不規律心電圖圖例 (24) 4.1不規律的ECG (24) 4.2電極倒置的訊號 (24) 4.3設置有心律調節器的ECG (25) 4.4訊號微弱 (26) 4.5雜訊 (27) 詞彙表 (28) 附錄 (30) 以RMH2.0模擬12導程心電圖量測圖解 (30) 第一導程L EAD I (30) 第二導程L EAD II (31) 第三導程L EAD III (32) 加強肢導L EAD A V R (33) 加強肢導L EAD A V L (34) 加強肢導L EAD A V F (35) 胸前導程V1-V6 (36)

心电图基础知识

以上是主页君在网上随意找到的正常的ECG图示,可能很多人问,为什么很多时候正常的心电图看起来和上图不一样呢?其实,上图是一种理想的状态下的图示,只不过是为了说明心电图而画出的理论图示。正常的ECG在不同导联上有这完全不同的表现,我们学习的目标是认识正常的心电图,才有能力分辨异常心电图,发现其中的异常,从而得出判断,起到辅助诊断的目的。 一、心电图基本知识(这是额外要求,初学者了解,不懂也不影响学习) 心电图反映心脏兴奋的产生、传导和恢复过程中的生物电变化,和心脏的机械舒缩活动无直接关系。 (一)心电图各波段的意义 P波:反映左、右心房除极过程中的电位和时间变化。 P-R段:主要反映激动通过房室交接区所产生的电位变化。?Q1lS波群:反映左、右心室除极过程中电位和时间的变化。 S-T段:代表心室早期复极(2期平台)的电位和时间的变化。?T波:反映心室晚期快速复极(3期)过程中的电位和时间的改变。 U波:一般认为是心室肌传导纤维(浦肯野纤维)的复极波所造成,也有人认为是心室的后电位所致。 (二)心电产生的原理?1.静息电位心肌细胞未受到刺激(处于静息状态)时存在于细胞膜内、外两侧的电位差,称为静息电位。以细胞膜为界,膜外呈正电位、膜内为负电位,并稳定于一定数值的静息电位状态,称为极化状态。?2.动作电位当细胞受到刺激时,其亚微结构就会发生改变,于是对钠离子的通透性加大,从而造成钠离子快速内流,此时可测得+30mv 的电压,这就是动作电压。这时细胞膜上的Na+—K+ATP泵逆浓度差把钾离子送回细胞内而排除钠离子,恢复原有的极化状态。3?. 除极和复极 1除极:指细胞由静息膜电位转变成动作电位的过程,不消耗能量,其速度较快。?2复极:指动作电位恢复到静息膜电位的过程,消耗ATP,逆浓度差进行,速度较慢。3?除极时正电荷在前,负电荷在后(指在细胞外);人为地使对着正电荷描记向上的波、对着负电荷描记向下的波。(三)心电图电位强度与形态的决定因素 1.形态探查电极面对心肌除极的方向,可描记出一个向上的波。探查电极面对心肌复极的方向,则可描记出一个向下的波。 2.电位强度与下列因素有关:①与心肌细胞的数量成正比;②与探查电极和心脏的距离的平方成反比;③探查电极的方位和心脏除极的方向所构成的角度越大,电位越小。?(四)心电向量的概念 心脏是由无数心肌细胞所组成的,在除极与复极过程的每一瞬间都可以产生许多大小不—、方向不尽相同的心电向量,按平行四边形法或头尾相加法依次综合起来,这个最后综合起来的向量叫做瞬间综合心电向量。1.向量是一种既能表示方向又能表示力量大小的物理学名称,一般用“箭矢”表示。 2.心脏是由无数个心肌构成的,综合方向就是它的代数和。

心电图基础理论知识

心电图基础知识(一)正常心电图 心电图各波正常值及意义 心电图是由一系列的波组所构成,每个波组代表着每一个心动周期。一个波组包括P波、QRS波群、T波及U波。看心电图首先要了解每个波所代表的意义。 (1)P波:心脏的激动发源于窦房结,然后传导到达心房。P波由心房除极所产生,是每一波组中的第一波,它反映了左、右心房的除极过程。前半部分代表右房,后半部分代表左房。 (2)QRS波群:典型的QRS波群包括三个紧密相连的波,第一个向下的波称为Q波,继Q 波后的一个高尖的直立波称为R波,R波后向下的波称为S波。因其紧密相连,且反映了心室电激动过程,故统称为QRS波群。这个波群反映了左、右两心室的除极过程。 (3)T波:T波位于S-T段之后,是一个比较低而占时较长的波,它是心室复极所产生的。 (4)U波:U波位于T波之后,比较低小,其发生机理未完全明确。一般认为是心肌激动的“激后电位”。 正常心电图各波段的正常值及意义如下: (1)P波:呈钝圆形,可有轻微切迹。P波宽度不超过0.11秒,振幅不超过0.25毫伏。P波方向在Ⅰ、Ⅱ、aVF、V4-6导联直立,aVR导联倒置。在Ⅲ、aVL、V1-3导联可直立、倒置或双向。P波的振幅和宽度超过上述范围即为异常,常表示心房肥大。P波在aVR导联直立,Ⅱ、Ⅲ、aVF导联倒置者称为逆行型P波,表示激动自房室交界区向心房逆行传导,常见于房室交界性心律,这是一种异位心律。 (2)PR间期:即由P波起点到QRS波群起点间的时间。一般成人P-R间期为0.12~0.20秒。P-R间期随心率与年龄而变化,年龄越大或心率越慢,其PR间期越长。P-R间期延长常表示激动通过房室交界区的时间延长,说明有房室传导障碍,常见于房室传导阻滞等。 (3)QRS波群:代表两心室除极和最早期复极过程的电位和时间变化。 ①QRS波群时间:正常成人为0.06~0.10秒,儿童为0.04~0.08秒。V1、V2导联的室壁激动时间小于0.03秒,V5、V6的室壁激动时间小于0.05秒。QRS波群时间或室壁激动时间延长常见于心室肥大或心室内传导阻滞等。 ②QRS波群振幅:加压单极肢体导联aVL导联R波不超过1.2毫伏,aVF导联R波不超过 2.0毫伏。如超过此值,可能为左室肥大。aVR导联R波不应超过0 .5毫伏,超过此值,可能为右室肥大。如果六个肢体导联每个QRS波群电压(R+S或Q+R的算术和)均小于0.5毫伏或每个心前导联QRS电压的算术和均不超过0.8毫伏称为低电压,见于肺气肿、心包积液、全身浮肿、粘液水肿、心肌损害,但亦见于极少数的正常人等。个别导联QRS波群振幅很小,并无意义。 心前导联:V1、V2导联呈rS型、R/S<1,RV1一般不超过1.0毫伏。V5、V6导联主波向上,呈qR、qRS、Rs或R型,R波不超过2.5毫伏,R/S>1。在V3导联,R波同S波的振幅大致相等。正常人,自V1至V5,R波逐渐增高,S波逐渐减小。 (4)Q波:除aVR导联可呈QS或Qr型外,其他导联Q波的振幅不得超过同导联R波的1/4,时间不超过0.04秒,而且无切迹。正常V1、V2导联不应有Q波,但可呈QS 波型。超过正常范围的Q波称为异常Q波,常见于心肌梗塞等。 (5)S-T段:自QRS波群的终点(J点)至T波起点的一段水平线称为S-T段。正常任一导联S-T向下偏移都不应超过0.05 毫伏。超过正常范围的S-T段下移常见于心肌缺血或劳损。正常S-T段向上偏移,在肢体导联及心前导联V4—6 不应超过0.1毫伏,心前导联V1—3不超过0.3毫伏,S-T 上移超过正常范围多见于急性心肌梗塞、急性心包炎等。 (6)T波:T波钝圆,占时较长,从基线开始缓慢上升,然后较快下降,形成前肢较长、后肢

相关文档
最新文档