pp0901000142[1]

pp0901000142[1]
pp0901000142[1]

Data Mining the Arabidopsis Genome Reveals Fifteen

14-3-3Genes.Expression Is Demonstrated for Two out of Five Novel Genes1

Magnus Rosenquist*,Magnus Alsterfjord,Christer Larsson,and Marianne Sommarin

Department of Plant Biochemistry,Lund University,P.O.Box117,SE–22100Lund,Sweden

In plants,14-3-3proteins are key regulators of primary metabolism and membrane transport.Although the current dogma states that14-3-3isoforms are not very specific with regard to target proteins,recent data suggest that the specificity may be high.Therefore,identification and characterization of all14-3-3(GF14)isoforms in the model plant Arabidopsis are https://www.360docs.net/doc/9f3912697.html,ing the information now available from The Arabidopsis Information Resource,we found three new GF14 genes.The potential expression of these three genes,and of two additional novel GF14genes(Rosenquist et al.,2000),in leaves,roots,and flowers was examined using reverse transcriptase-polymerase chain reaction and cDNA library polymer-ase chain reaction screening.Under normal growth conditions,two of these genes were found to be transcribed.These genes were named grf11and grf12,and the corresponding new14-3-3isoforms were named GF14omicron and GF14iota,respec-tively.The gene coding for GF14omicron was expressed in leaves,roots,and flowers,whereas the gene coding for GF14iota was only expressed in flowers.Gene structures and relationships between all members of the GF14gene family were deduced from data available through The Arabidopsis Information Resource.The data clearly support the theory that two 14-3-3genes were present when eudicotyledons diverged from monocotyledons.In total,there are1514-3-3genes(grf s1–15) in Arabidopsis,of which12(grf s1–12)now have been shown to be expressed.

14-3-3proteins were discovered by Moore and Perez(1967)as major soluble proteins in brain tissue. Since then it has become clear that14-3-3proteins are present in all eukaryotic organisms(for review,see Rosenquist et al.,2000)and have a wide range of functions(for review,see Finnie et al.,1999;Fu et al., 2000).14-3-3s typically function as dimers and bind to particular phosphorylated motifs in other proteins, thereby regulating the activity of the respective tar-get protein.In1992,the first four plant14-3-3iso-forms were reported:one in Arabidopsis(Lu et al., 1992),one each in Spinacia oleracea and Oenothera hookeri(Hirsch et al.,1992),and one in Hordeum vul-gare(Brandt et al.,1992).The Arabidopsis isoform was identified as part of a protein/G box complex and therefore named“G box factor14-3-3,”in short “GF14.”This designation has been kept for the Ara-bidopsis isoforms,and the four additional14-3-3iso-forms reported by Lu et al.(1994)were named GF14chi,phi,psi,and upsilon,and the original iso-form received the designation GF14omega.The same year,Jarillo et al.(1994)reported two“rare cold-inducible”14-3-3s from Arabidopsis,RCI1and RCI2. The RCI1was identical to GF14psi of Lu et al.(1994), whereas RCI2was a new isoform,very closely re-lated to GF14lambda(Wu et al.,1997)and until now regarded as identical.An additional four14-3-3s, GF14epsilon,kappa,mu,and nu,were identified in 1997(Wu et al.,1997).After that,the members of the 14-3-3gene family in Arabidopsis were regarded to be10.

Although the first Arabidopsis14-3-3isoform, GF14omega,was discovered as a constituent of a protein/G box complex and implicated to be in-volved in regulation of gene transcription(Lu et al., 1992),subsequent research also has shown plant14-3-3s to have a broad range of functions(for review, see Finnie et al.,1999).In particular,plant14-3-3s have been found to be important regulators of pri-mary metabolism.For example,nitrate reductase and Suc phosphate synthase,which are key enzymes in nitrogen and carbon metabolism,respectively,are both inhibited by binding of14-3-3(Bachmann et al., 1996;Moorhead et al.,1996;Toroser et al.,1998), whereas binding of14-3-3to the plasma membrane H?ATPase activates H?pumping(Jahn et al.,1997; Oecking et al.,1997)and hence stimulates nutrient uptake.

In a previous study,using surface plasmon reso-nance,we reported strong differences in binding af-finity between nine GF14isoforms and a known tar-get,the phosphorylated C terminus of the Arabidopsis plasma membrane H?ATPase isoform2,AHA2 (Rosenquist et al.,2000).This suggests that one reason for the large number of14-3-3isoforms in multicellu-lar organisms,such as plants,is functional specificity. Thus,the regulatory role of14-3-3s in carbon and nitrogen metabolism,in nutrient uptake,etc,may be

1This work was supported by the Swedish Foundation for Strategic Research(to C.L.and M.S.),by the Swedish Natural Science Research Council(to C.L.and M.S.),by the Kungliga Fysiografiska Sa¨llskapet(to M.R.),and by the Royal Swedish Academy of Sciences(to M.R.).

*Corresponding author;e-mail magnus.rosenquist@plantbio.lu.se; fax46–462224116.

executed by different14-3-3isoforms.To determine whether this is the case,it is important to first identify and then have access to all isoforms expressed.The completion of the sequencing of the Arabidopsis ge-nome has enabled determination of gene numbers within specific gene https://www.360docs.net/doc/9f3912697.html,ing the information now available via Internet,we recently identified two novel GF14genes(Rosenquist et al.,2000).After fur-ther data mining of the Arabidopsis genome,we have now identified three additional GF14genes,bringing the total number of GF14genes https://www.360docs.net/doc/9f3912697.html,ing reverse transcriptase(RT)-PCR and cDNA library PCR screen-ing,we now demonstrate that two of the five novel genes are expressed,bringing the total number of expressed14-3-3isoforms in Arabidopsis to12.

RESULTS AND DISCUSSION

Examining the Arabidopsis genome revealed three additional novel GF14genes,grf12,grf13,and grf14, in addition to the two recently reported by Rosen-quist et al.(2000),grf11and grf15(Fig.1).One of the two previously reported novel genes,grf15(Table I), only codes for approximately30%of the length of a GF14protein(Fig.1).Furthermore,the82amino acids the gene encodes correspond to the C terminus of a functional14-3-3,and show only44%identity with its closest relatives,GF14psi and upsilon(data not shown).Grf15and its putative product were therefore excluded from further analysis.To deter-mine if the four other novel genes are expressed or not,RT-PCR and cDNA library PCR screening were performed.Thus,primers designed for the novel14-3-3genes,grf s11through14,found in BAC clones F21H2,T1K7,T16E15,and T11I11(Table I),were used to PCR screen a cDNA library made from de-veloping flowers,as well as for RT-PCR on mRNA prepared from leaves,roots,and flowers,respec-tively.Only two of these four novel GF14genes,grf11 and grf12,were found to be expressed(Fig.2).No corresponding cDNAs or ESTs were found in the database,which suggests that these mRNA species are present in low abundancy.The two novel iso-forms were named GF14omicron,encoded by grf11 (F21H2.3),and GF14iota,encoded by grf12(T1K7.15; Table I),in accordance with the designations used earlier,using Greek letters for the proteins and Ara-bic numbers for the genes.Both GF14omicron

and Figure1.Gene maps of all Arabidopsis14-3-3(GF14)genes.Exons are indicated as black boxes and introns as white boxes.

Exon and intron sizes are indicated with the number of bases within in each box.The names of the resulting proteins are

within parentheses.The genes can be divided into two groups based on exon patterns:grf s1through8,and grf s9through

14,excluding the severely truncated grf15that does not readily fit into either group.The five novel genes discussed in this

paper are grf11,grf12,grf13,grf14,and grf15,of which grf11and grf15were already reported by Rosenquist et al.(2000).

The abbreviation grf stands for G box regulating factor.

The Arabidopsis14-3-3Gene Family

GF14iota contain the expected conserved regions found in all other14-3-3s(Rosenquist et al.,2000), and most divergence is found in the N and C termini (Fig.3).The annotation of grf12(T1K7.15)in the Arabidopsis sequencing project did not correspond to the sequence we obtained for the cDNA,suggest-ing that the predicted splicing in the database is incorrect.

The GF14omicron gene grf11was expressed in leaves,roots,and flowers,whereas the GF14iota gene grf12was only expressed in flowers(Fig.2).The expression of these isoforms in flowers,and particu-larly the exclusive expression of GF14iota in this tissue,is interesting because when examining bind-ing of the10previously identified GF14s to the phos-phorylated C terminus of the flower-specific Arabi-dopsis plasma membrane H?ATPase isoform9, AHA9,using surface plasmon resonance,all10 GF14s were classified as nonbinding(data not shown).The C terminus of AHA9differs from the one in AHA2(which showed different degrees of binding to the nine GF14isoforms tested;Rosenquist et al., 2000)on three out of six amino acid positions,and the 14-3-3binding motifs of AHA9and AHA2thus are sufficiently different to suggest that they are activated by different GF14s.Therefore,GF14omicron and par-ticularly GF14iota are good candidates as regulators of AHA9.

The14-3-3genes grf13(T11I11.16;Table I)and grf14 (T16E15.9;Table I)were not expressed in any of the examined tissues.The coding sequence of gene grf14 contains a single nucleotide insertion in exon4 (which we have confirmed by additional sequencing [data not shown])causing a frame shift,which cre-ates a stop codon and loss of the last45amino acids (Fig.1).Given the fact that seven of the17conserved target-binding amino acid residues,as well as the nuclear export signal(Rittinger et al.,1999),are lo-cated within the missing area,grf14does not likely produce a functional14-3-3isoform,although possi-ble expression cannot be ruled out.The fact that no expression of the gene grf13was observed is intrigu-ing.The amino acid sequence it encodes is the most divergent of all GF14s,suggesting that if it is ex-pressed it might have a very specific function.There-fore,our failure to detect transcription may be due to a rather specific expression of this isoform,either regarding developmental stage,tissue,or stress con-dition.We have refrained from naming the gene

Table I.Summary of available database information on Arabidopsis14-3-3(GF14)genes and proteins

The chromosomes and bacteria artificial chromosome(BAC)clones the different genes are found on are indicated,as well as the accession no.of the BAC clone,the gene no.in the BAC,and the accession no.of the mRNA.Accession nos.to putative and expressed gene products are also indicated.

GF14Isoform BAC Gene

mRNA

Accession No.

BAC Accession

No.

Protein

Accession No.

Chromosome1

Putative14-3-3T11I11grf13a(T11I11.16)–AC012680AAG52105b Similar to epsilon T16E15grf14(T16E15.9c)–AC068562AAF87262d Iota T1K7grf12(T1K7.15e)AF335544AC013427AAF98570 Omicron F21H2grf11(F21H2.3)AF323920AC007894AAG47840 Epsilon T16E15grf10(T16E15.8)U36446AC068562P48347 Omega F3F9grf2(F3F9.16)M96855AC013430Q01525 Phi T32G9grf4(T32G9.30)L09111AC079605P46077 Chromosome2

Mu F14N22grf9(F14N22.14)U60444AC007087AAD51784 14-3-3Like F12P23grf15(F12P23.4)–AC007264AAD28654 Chromosome3

Nu F16B3grf7(F16B3.15)U60445AC021640AAD51782 Chromosome4

Chi Contig.25(F23J3)grf1L09112AL161513P42643 Chromosome5

Upsilon F1N13grf5(F1N13?190)L09109AL391145AAB62225

Psi f P1Clone MXI10?

MBB18grf3(MXI10.21)L09110AB005248?

AB005231

P42644

Kappa P1Clone MNA5grf8(MNA5.16)U36447AB011479AAD51783 Lambda(or AFT1)F12B17grf6U68545AL353995P48349 14-3-3-Like protein AFT1g F12B17grf6(F12B17?200)–AL353995CAB89398 RCI2h–RCIIB X74141–CAA52238

a The abbreviation grf stands for G-box regulating factor.

b Incorrect annotation resulted in a shortened N terminus(first exon and5?part of second exon were not included).

c T16E15.9is located1,329bp from grf10(T16E15.8)in the same BAC clone.

d A singl

e nucleotide was counted as a fifth intron when sequence was annotated in the original entry.e Splicing suggested in database is incorrect.

f The isoform GF14psi is identical to the entry RCI1(protein accession no.S47969).

g Putative product due to alternative splicing.

h An additional thymine at the end of exon3of grf6causes a frame shift resulting in this putative isoform,which is probably the result of erroneous sequence analysis.

Rosenquist et al.

products of grf13and grf14as no expression has been shown so far.

When examining the 10previously characterized grf s,we found that the gene coding for GF14psi,grf3(MXI10.21),is divided between P1clone MXI10and MBB18(Table I).A striking discovery was that the annotation in the Arabidopsis genome project of BAC clone F12B17corresponds to a putative protein,“14-3-3-like protein AFT1,”and not to the expressed GF14lambda of Wu et al.(1997).Thus,an alternative splicing of the pre-mRNA of the GF14lambda coding gene,grf6,is suggested,resulting in the putative GF14protein “14-3-3-like protein AFT1”(CAB89398)with a completely different C terminus from the pre-viously reported GF14lambda (P48349).The C termi-nus of the putative “14-3-3-like protein AFT1”is 25amino acids longer than the C terminus of GF14lambda.Our attempts to detect mRNA corre-sponding to “14-3-3-like protein AFT1”have been negative,suggesting that the gene grf6codes for no other product than GF14lambda,and that the pre-dicted splicing in the database is incorrect.There is,in fact,no experimental evidence to date that alter-native splicing of 14-3-3genes exists.Thus,the an-notation in the database of the grf6gene (F12B17_200)in the BAC F12B17should be changed to correspond to GF14lambda.The RCIIB gene reported by Jarillo et al.(1994)results in a protein,RCI2(CAA52238),that only differs from GF14lambda in the last eight amino acids.The RCIIB gene cannot be found among the data from the Arabidopsis genome project,but is due to an additional thymine at the end of exon 3in grf6(Fig.1).Because this is most likely the result of erroneous sequence analysis,RCIIB has been ex-cluded from the present analysis.

Examining the gene maps of all GF14genes,one can observe two major groups based on exon pat-terns;grf s 1through 8form one group,where all genes are expressed,and grf s 9through 14form a second group (Fig.1).Unrooted phylogenetic trees based on either the resulting mRNA or amino acid sequences (including the putative products of grf13and grf14)show that the gene products of grf s 1through 8form three branches in one part of the tree,and that the products of grf s 9through 14form the other,more divergent,part of the tree (Fig.4;mRNA data not shown).It is intriguing that a branch-wise specificity was found when the affinity between nine of the GF14s and the phosphorylated C terminus of AHA2was measured (Rosenquist et al.,2000).

In Figure 5,the locations of the different BAC clones containing GF14genes are indicated on

the

Figure 2.Detection of novel 14-3-3gene transcripts in flower (A,B,and F),leaf (C and E),and root (D)tissues by RT-PCR and cDNA library PCR.Primary RT-PCR reactions were performed with primers corresponding to exon 2(see Fig.1)of grf11(omicron;A and C),grf12(iota;A and C),grf13(A,C,and D),and grf14(B,C,and D).Subsequent RT-PCR reactions were performed with full-length prim-ers for grf11on leaf (E)and root (D)cDNA,and for grf12on flower (F)and root (D)cDNA.Products were run on 1.5%(w/v)agarose gel (inverted image)and bands of interest are indicated with black arrowheads.The identities of these bands were confirmed by se-quencing.Sizes of standard (std)markers are indicated to the left.Note that the band grf12(iota)exon2(A)only corresponds to 290bp of the exon due to optimization of primer positions,and therefore is 17bp shorter than grf11(omicron)exon2.

The Arabidopsis 14-3-3Gene Family

chromosomes,and two major duplication events 170and 50million years ago (Vision et al.,2000),which may be responsible for the formation of some of the isoforms,are indicated.The genes grf5(upsilon)and grf7(nu)are located in regions of chromosome 5and 3,respectively,that were duplicated 170million years ago.However,considering the very close rela-tion between GF14upsilon and nu (Fig.4),it is more likely that the duplication leading to the formation of grf5(upsilon)and grf7(nu)was a much more recent event.The gene grf2(omega)and grf13are situated close together on chromosome 1,and this is also the case for grf4(phi)and grf11(omicron).These two

gene pairs,as well as grf1(chi)on chromosome 4,are located within areas that were duplicated 50million years ago.It is notable that no other GF14gene is located close to grf1(chi),suggesting that a gene related to grf11(omicron)and grf13has been lost.The fact that GF14phi,chi,and omega are much more closely related than GF14Grf13(the putative product of grf13)is to omicron (Fig.4)is noteworthy because they all seem to originate from the major duplication event 50million years ago (Fig.5).Considering their common evolutionary history,one would expect GF14Grf13and omicron to show about the same high homology as GF14phi,chi,and omega (Fig.4).

As

Figure 3.DNA sequences of the two expressed novel Arabidopsis 14-3-3(GF14)genes,grf11and grf12,and corresponding amino acid sequences for the proteins,GF14omicron and GF14iota,respectively.Conserved identity between all expressed GF14s is indicated with gray boxes,and conserved homology is indicated with white boxes.

Rosenquist et al.

proteins involved in complex formation,14-3-3s are subject to a high selection pressure,which acts to conserve these proteins.Thus,if GF14phi,chi,and omega have retained their functional specificity this will have limited their evolution.In a converse man-ner,if GF14omicron and the putative gene product of grf13(GF14Grf13)have obtained different functions this may explain their low homology,or if grf13is not expressed at all,it has of course evolved without any constraints.

Previous phylogenetic analyses of plant 14-3-3iso-forms indicate that at the time of the split into eud-icotyledons and monocotyledons,about 200million years ago,two 14-3-3isoforms were already present (Wang and Shakes,1996;Rosenquist et al.,2000).This is in accordance with both the gene map in Figure 1and the phylogenetic tree in Figure 4.The gene map (Fig.1)divides the Arabidopsis 14-3-3genes into two major groups;grfs 1through 8,and grfs 9through 14,respectively.The phylogenetic tree (Fig.4)similarly suggests two major branches:the GF14upsilon/nu/psi,phi/chi/omega,and lambda/kappa branches forming a major branch in the lower part of the tree,and the GF14mu,iota,omicron,epsilon,Grf14,and Grf13forming an upper major branch.One of the gene pairs,grf2(omega)/grf13,grf4(phi)/grf11(omi-cron),or grf1(chi)and its putative aborted neighbor,is probably the direct descendant of the two ancestral 14-3-3genes (Fig.5).

The completion of the sequencing of the Arabidop-sis genome finally enabled the determination of the total number of 14-3-3genes to be 15.The challenge now is to examine the expression pattern of all GF14isoforms,to identify new target proteins,and to de-termine the functional specificity of all GF14iso-forms,in order to reveal all the cellular processes involving regulatory 14-3-3proteins in the model plant Arabidopsis.

MATERIALS AND METHODS Examination of Database Entries

GF14database entries were obtained by a simple key-word search at the National Center for Biotechnology In-formation (https://www.360docs.net/doc/9f3912697.html,).A blast search of the Arabidopsis BAC clones at The Arabidopsis Infor-mation Resource (https://www.360docs.net/doc/9f3912697.html,)revealed additional isoforms,and allowed mapping of the https://www.360docs.net/doc/9f3912697.html,putational Analysis of GF14Gene Sequences DNA sequences corresponding to GF14genes were ob-tained from the GenBank database via the National Center for Biotechnology Information.Clustal W multiple align-ments of sequences were performed using the MacVector 7.0software (Oxford Molecular Group Plc,Oxford).The alignments were carried out using the Blossum series ma-trix,with an open gap penalty of 10and an extend-gap penalty of 0.05.Alignments were examined and adjusted manually.A heuristic search using the maximum parsi-mony method was done on the alignment using the PAUP 4.0b4a software (Sinauer Associates,Inc.Publishers),with gaps treated as missing data.The tree bisection reconnec-tion branch-swapping algorithm was used.Tree building and calculation of Bootstrap values,with 12,000replicates,were also carried out using the PAUP 4.0b4a software.Gene maps were drawn from splicing patterns indicated in the respective BAC entries.The splicing patterns of grf13(T11I11.16)and grf14(T16E15.9)suggested in the database were incorrect,and hence adjusted.Plant Material

Arabidopsis ecotype Columbia-0was grown on soil at 22°C with a 9-h-light/15-h-dark photoperiod (170?E)and 70%relative humidity.Root cultures were grown in dark-ness in flasks with 100mL of Murashige and Skoog me-dium,pH 5.7,supplemented with 3%(w/v)Suc (Malamy and Benfey,1997).Plants for flower RNA preparation were grown under a long-day light regime (16h light).mRNA Isolation and RT-PCR

Leaves were harvested after 4weeks and total RNA was prepared with a conventional phenol/chloroform extrac-tion.Subsequent mRNA isolation was carried out accord-ing to the manufacturer ’s protocol using the QIAGEN Oli-gotex mRNA Purification Kit (Merck KGaA,

Darmstadt,

Figure 4.A phylogenetic tree with topology representative for the Arabidopsis 14-3-3(GF14)protein family.The putative gene prod-ucts of grf13and grf14are designated Grf13and Grf14,respectively.A heuristic search using the maximum parsimony method was done on the alignment of GF14protein sequences using the PAUP 4.0b4software (Sinauer Associates,Inc.Publishers,Sunderland,MA),with gaps treated as missing data.Bootstrap values for 12,000replicates are indicated on each branch.The hypothetical 14-3-3-like protein coded by grf15(Table I;Fig.1)was excluded from the analysis due to strong deviance in both sequence and length.The 82amino acids encoded by grf15show highest homology (44%identity)to GF14psi and upsilon,and correspond to the C terminus of a functional 14-3-3(data not shown).

The Arabidopsis 14-3-3Gene Family

Germany).First-strand synthesis was performed with the First Strand cDNA Synthesis Kit (Boehringer Mannheim,Basel).The same procedures were used on roots harvested after 10weeks of cultivation.Total RNA was extracted according to the method developed by Chang et al.(1993)from a mix of flowers in all stages of anthesis.

Primary RT-PCR was carried out with Taq polymerase (Roche,Basel)and primers designed against the largest exon of the newly identified GF14genes (see Fig.1),as well as for an alternatively spliced grf6.Fragments obtained were run on a 1.5%(w/v)agarose gel and sequenced for identification.RT-PCR subsequently was done with prim-ers corresponding to the full-length genes.Full-length frag-ments were cloned into the TA vector pGEM (Promega Corp.,Madison,WI),and sequenced.Restriction sites were added to full-length primers to facilitate cloning into suit-able vectors.

cDNA Library PCR Screening

A cDNA library from Arabidopsis ecotype Landsberg erecta developing flowers (Weigel et al.,1992)was obtained from the Arabidopsis Biological Resource Center.Conven-tional in vivo excision on the entire library was performed on infected Escherichia coli XL1-Blue with E.coli SOLR (AH Diagnostics,Stockholm).PCR with exon-specific primers was performed on the excised library,for detection pur-pose only.Full-length clones were amplified from cDNA

synthesized from the flower mRNA preparation from Ara-bidopsis (Columbia-0)described above.

ACKNOWLEDGMENT

We thank Dr.Ove Nilsson (Swedish Agricultural Uni-versity,Ume ?,Sweden)for preparation of total RNA from Arabidopsis flowers.

Received April 6,2001;returned for revision April 30,2001;accepted May 18,2001.

LITERATURE CITED

Bachmann M,Huber JL,Athwal GS,Wu K,Ferl RJ,Huber SC (1996)14-3-3proteins associate with the reg-ulatory phosphorylation site of spinach leaf nitrate re-ductase in an isoform-specific manner and reduce de-phosphorylation of Ser-543by endogenous protein phosphatases.FEBS Lett 398:26–30

Brandt J,Thordal-Christensen H,Vad K,Gregersen PL,Collinge DB (1992)A pathogen-induced gene of barley encodes a protein showing high similarity to a protein kinase regulator.Plant J 2:815–820

Chang S,Puryear J,Cairney J (1993)A simple and efficient method for isolating RNA from pine trees.Plant Mol Biol Rep 11:113–

116

Figure 5.Arabidopsis chromosome map.BAC clones harboring 14-3-3(GF14)genes are indicated with black lines.Gene names,with corresponding gene products written in parentheses,are indicated by each BAC.Centromeres are indicated with white circles.The gray dashed arrow indicates a major duplication event that took place 170million years ago,and the two gray arrows indicate another major duplication event that took place 50million years ago (Vision et al.,2000).Thin dashed and dotted lines connect relatively closely related genes and hence suggest other duplication events.The gene grf14(T16E15.9)is located 1,329bases from grf10(T16E15.8)within the same BAC clone.Given the low homology of the severely truncated 14-3-3gene grf15in F12P23,no connection to other genes is indicated.

Rosenquist et al.

Finnie C,Borch J,Collinge DB(1999)14-3-3proteins: eukaryotic regulatory proteins with many functions. Plant Mol Biol40:545–554

Fu H,Subramanian RR,Masters SC(2000)14-3-3proteins: structure,function,and regulation.Annu Rev Pharmacol Toxicol40:617–647

Hirsch S,Aitken A,Bertsch U,Soll J(1992)A plant homologue to mammalian brain14-3-3protein and pro-tein kinase C inhibitor.FEBS Lett296:222–224

Jahn T,Fuglsang AT,Olsson A,Bru¨ntrup IM,Collinge DB,Volkmann D,Sommarin M,Palmgren MG,Lars-son C(1997)The14-3-3protein interacts directly with the C-terminal region of the plant plasma membrane H?-ATPase.Plant Cell9:1805–1814

Jarillo JA,Capel J,Leyva A,Martinez-Zapater JM,Salinas J(1994)Two related low-temperature-inducible genes of Arabidopsis encode proteins showing high homology to 14-3-3proteins,a family of putative kinase regulators. Plant Mol Biol25:693–704

Lu G,DeLisle AJ,de Vetten NC,Ferl RJ(1992)Brain proteins in plants:an Arabidopsis homolog to neuro-transmitter pathway activators is part of a DNA binding complex.Proc Natl Acad Sci USA89:11490–11494

Lu G,Rooney MF,Wu K,Ferl RJ(1994)Five cDNAs encoding Arabidopsis GF14proteins.Plant Physiol105: 1459–1460

Malamy JE,Benfey PN(1997)Organization and cell dif-ferentiation in lateral roots of Arabidopsis thaliana.Devel-opment124:33–44

Moore B,Perez V(1967)Specific acidic proteins of the nervous system.In FD Carlson,ed,Physiological and

Biochemical Aspects of Nervous Integration.Prentice Hall,Englewood Cliffs,NJ,pp343–359

Moorhead G,Douglas P,Morrice N,Scarabel M,Aitken A,MacKintosh C(1996)Phosphorylated nitrate reduc-tase from spinach leaves is inhibited by14-3-3proteins and activated by fusicoccin.Curr Biol19966:1104–1113 Oecking C,Piotrowski M,Hagemeier J,Hagemann K (1997)Topology and target interaction of the fusicoccin-binding14-3-3homologs of Commelina communis.Plant J 12:441–453

Rittinger K,Budman J,Xu J,Volinia S,Cantley LC, Smerdon SJ,Gamblin SJ,Yaffe MB(1999)Structural analysis of14-3-3phosphopeptide complexes identifies a dual role for the nuclear export signal of14-3-3in ligand binding.Mol Cell4:153–166

Rosenquist M,Sehnke P,Ferl RJ,Sommarin M,Larsson C (2000)Evolution of the14-3-3protein family:does the large number of isoforms in multicellular organisms re-flect functional specificity?J Mol Evol51:446–458 Toroser D,Athwal GS,Huber SC(1998)Site-specific regu-latory interaction between spinach leaf sucrose-phosphate synthase and14-3-3proteins.FEBS Lett435:110–114 Vision TJ,Brown DG,Tanksley SD(2000)The origins of genomic duplications in Arabidopsis.Science290: 2114–2117

Wang W,Shakes DC(1996)Molecular evolution of the 14-3-3protein family.J Mol Evol43:384–398

Weigel D,Alvarez J,Smyth DR,Yanofsky MF,Meyerow-itz EM(1992)Leafy controls floral meristem identity in Arabidopsis.Cell69:843–859

Wu K,Rooney MF,Ferl RJ(1997)The Arabidopsis14-3-3 multigene family.Plant Physiol114:1421–1431

The Arabidopsis14-3-3Gene Family

JPEG图像的编解码实现

毕业论文论文题目(中文)JPEG图像的编解码实现 论文题目(外文)Encoding and decoding of JPEG image

摘要 JPEG是一种十分先进的图像压缩技术,它用有损压缩方式去除冗余的图像数据,在获得极高的压缩率的同时能展现十分丰富生动的图像。本文设计和实现一个JPEG图像编解码器来进行图像转换,利用离散余弦变换、熵编码、Huffman编码等图像压缩技术将BMP图像转换成JPEG图像,即进行图像的压缩。验证JPEG压缩编码算法的可行性。通过比对图像压缩前后实际效果,探讨压缩比,峰值信噪比等评价图像数据压缩程度及压缩质量的关键参数,对JPEG 压缩编码算法的实用性和优越性进行研究。 关键词:JPEG;编码;解码;图像压缩

Abstract JPEG is a very advanced image compression technology, it uses lossy compression to remove redundant image data, in obtaining a very high compression rate can show a very rich and vivid image. In this project, a JPEG image codec is designed and implemented to transform image, using discrete cosine transform, entropy coding, Huffman coding and other image compression techniques to convert BMP images into JPEG images. Verifies the feasibility of JPEG compression coding algorithm. Through the comparison of the actual effect of image compression, the key parameters of compression ratio, peak Snr, and the compression quality of image data are discussed, and the practicability and superiority of JPEG compression coding algorithm are researched. Key words: JPEG; encoding; decoding; image compression

5.4变压器习题及详解答案

课时练 5.4变压器 说明:5、8为多项选择题,其他的均为单项选择题。 1.一台理想变压器,原、副线圈匝数分别为n1和n2,正常工作时的输入电压、电流、电功率分别是U1、I1、P1,输出电压、电流、电功率分别是U2、I2、P2,已知n1<n2,则()A.U1<U2,P1=P2B.P1=P2,I1<I2 C.I1<I2,U1>U2D.P1>P2,I1>I2 2.如图所示,理想变压器原、副线圈的匝数比n1∶n2=4∶1,原线圈两端连接光滑导轨,副线圈与电阻R相连组成闭合回路。当直导线AB在匀强磁场中沿导轨匀速地向右做切割磁感线运动时,电流表A1的读数为12 mA,那么电流表A2的读数为() A.0 B.3 mA C.48 mA D.与R大小有关 3.将输入电压为220 V,输出电压为6 V的理想变压器改绕成输出电压为30 V的变压器,副线圈原来是30匝,原线圈匝数不变,则副线圈新增匝数为() A.120匝B.150匝C.180匝D.220匝 4.如图甲、乙所示电路中,当A、B接10 V交变电压时,C、D 间电压为4 V,M、N接10 V直流电压时,P、Q间电压也为4 V。 现把C、D接4 V交流,P、Q接4 V直流,下面哪个选项可表示 A、B间和M、N间的电压() A.10 V10 V B.10 V 4 V C.4 V10 V D.10 V0 5.如图(a)所示,左侧的调压装置可视为理想变压器,负载电路中R=55 Ω,○A、○V为理想电流表和电压表。若原线圈接入如图(b)所示的正弦交变电压,电压表的示数为110 V,下列表述正确的是() A.电流表的示数为2 A B.原、副线圈匝数比为1∶2 C.电压表的示数为电压的有效值 D.原线圈中交变电压的频率为100 Hz 6.如图所示,为一理想变压器,S为单刀双掷开关,P为滑动变阻器触头,U1为加在原线圈两端的电压,I1为原线圈中的电流强度,则以下说法错误的是()A.保持U1及P的位置不变,S由a合到b时,I1将增大 B.保持P的位置及U1不变,S由b合到a时,R消耗的功率将减小 C.保持U1不变,S合在a处,使P上滑,I1将增大 D.保持P的位置不变,S合在a处,若U1增大,I1将增大 7.如图所示,在铁芯上、下分别绕有匝数n1=800和n2=200 的 两个线圈,上线圈两端与u=51sin314t V 的交流电源相连,将下线 圈两端接交流电压表,则交流电压表的读数可能是() A.2.0 V B.9.0 V C.12.7 V D.144.0 V 8.某同学设计的家庭电路保护装置如图所示,铁芯左侧线圈 L1由火线和零线并行绕成。当右侧线圈L2中产生电流时,电流 经放大器放大后,使电磁铁吸起铁质开关K,从而切断家庭电 路。仅考虑L1在铁芯中产生的磁场,下列说法正确的有() A.家庭电路正常工作时,L2中的磁通量为零 B.家庭电路中使用的电器增多时,L2中的磁通量不变 C.家庭电路发生短路时,开关K将被电磁铁吸起 D.地面上的人接触火线发生触电时,开关K将被电磁铁吸起 9.如图所示,一台有两个副线圈的变压器,原线圈匝数n1=1 100匝。接入电压U1=220 V的电路中。 (1)要求在两个副线圈上分别得到电压U2=6 V、U3=110 V,它们的匝数n2、n3分别为多少?(2)若在两副线圈上分别接上“ 6 V,20 W”、“110 ——60 W”的两个用电器,原线圈的输入电流为多少?

电力系统分析课后作业题及练习题

第一章 电力系统的基本概念 1-1 什么叫电力系统、电力网及动力系统 1-2 电力线、发电机、变压器和用电设备的额定电压是如何确定的 1-3 我国电网的电压等级有哪些 1-4 标出图1-4电力系统中各元件的额定电压。 1-5 请回答如图1-5所示电力系统中的二个问题: ⑴ 发电机G 、变压器1T 2T 3T 4T 、三相电动机D 、单相电灯L 等各元件的额定电压。 ⑵ 当变压器1T 在+%抽头处工作,2T 在主抽头处工作,3T 在%抽头处工作时,求这些变压器的实际变比。 1-6 图1-6中已标明各级电网的电压等级。试标出图中发电机和电动机的额定电压及变压器的额定变比。 1-7 电力系统结线如图1-7所示,电网各级电压示于图中。试求: 习题1-5图 习题1-6图 习题1-4图

⑴发电机G 和变压器1T 、2T 、3T 高低压侧的额定电压。 ⑵设变压器1T 工作于+%抽头, 2T 工作于主抽头,3T 工作于-5%抽头,求这些变压器的实际变比。 1-8 比较两种接地方式的优缺点,分析其适用范围。 1-9 什么叫三相系统中性点位移它在什么情况下发生中性点不接地系统发生单相接地时,非故障相电压为什么增加3倍 1-10 若在变压器中性点经消弧线圈接地,消弧线圈的作用是什么 第二章 电力系统各元件的参数及等值网络 2-1 一条110kV 、80km 的单回输电线路,导线型号为LGJ —150,水平排列,其线间距离为4m ,求此输电线路在40℃时的参数,并画出等值电路。 2-2 三相双绕组变压器的型号为SSPL —63000/220,额定容量为63000kVA ,额定电压为242/,短路损耗404=k P kW ,短路电压45.14%=k U ,空载损耗93=o P kW ,空载电流 41.2%=o I 。求该变压器归算到高压侧的参数,并作出等值电路。 2-3 已知电力网如图2-3所示: 各元件参数如下: 变压器:1T :S =400MVA ,12%=k U , 242/ kV 2T :S =400MVA ,12%=k U , 220/121 kV 线路:2001=l km, /4.01Ω=x km (每回路) 习题1-7图 115kV T 1 T 2 l 1 l 2 习题2-3图

人教版高中物理选修2-1变压器·典型例题解析

高中物理学习材料 (灿若寒星**整理制作) 变压器·典型例题解析 【例1】一只电阻、一只电容器、一只电感线圈并联后接入手摇交流发电机的输出端.摇动频率不断增加,则通过它们的电流I R、I C、I L如何改变[ ] A.I R不变、I C增大、I L减小 B.I R增大、I C增大、I L减小 C.I R增大、I C增大、I L不变 D.I R不变、I C增大、I L不变 解答:应选C. 点拨:手摇发电机的磁场、线圈形状和匝数都是不变的,输出电压与频率成正比.纯电阻电路中,电阻R与频率无关,I R=U/R,所以I R与频率成正比;纯电容电路中,容抗X C=1/2πfC,I C=U/X C=2πfCU,与频率的二次方成正比;纯电感电路中,X L=2πfL,I L=U/X L=U/2πfL,与频率无关. 【例2】图18-17为理想变压器,它的初级线圈接在交流电源上,次级线圈接在一个标有“12V 100W”的灯泡上.已知变压器初、次级线圈匝数之比为18∶1,那么灯泡正常工作时,图中的电压表读数为________V,电流表读数为________A. 解答:由公式U1/U2=n1/n2,得U1=U2n1/n2=216(V); 因理想变压器的初、次级功率相等, 所以I1=P1/U1=P2/U2=0.46(A)

即电压表、电流表读数分别为216V、0.46A. 点拨:分析理想变压器问题时应注意正确应用电压关系和电流关系、特别是初、次级功率相等的关系. 【例3】如图18-18所示,甲、乙两电路是电容器的两种不同的接法,它们各在什么条件下采用?应怎样选择电容器? 点拨:关键是注意容抗与交流电的频率成反比.甲应是电容较大的电容器,乙应是电容较小的电容器. 参考答案 甲是电容较大的电容器通交流,阻直流、乙是电容较小的电容器通直流,去掉交流. 【例4】如图18-19所示,理想变压器的两个次级线圈分别接有“24V 12W”、“12V 24W”的灯泡,且都正常发光,求当开关断开和闭合时,通过初级线圈的电流之比. 点拨:关键是初、次级功率始终相等. 参考答案:1∶3. 跟踪反馈 1.如图18-20所示,一平行板电容器与一个灯泡串联,接到交流电源上,灯泡正常发光,下列哪种情况可使灯泡变暗[ ] A.在电容器两极间插入电介质 B.将电容器两板间的距离增大 C.错开电容器两极的正对面积 D.在电容器两极间插入金属板(不碰及极板) 2.关于电子电路中的扼流圈,下列说法正确的是[ ] A.扼流圈是利用电感线圈对交流的阻碍作用来工作的 B.高频扼流圈的作用是允许低频交流通过,而阻碍高频交流通过 C.低频扼流圈的作用是不仅要阻碍高频交流通过,还要阻碍低频交流通过 D.高频扼流圈的电感比低频扼流圈的电感大 3.变压器原线圈1400匝,副线圈700匝,并接有电阻R,当变压器工作时原副线圈中 [ ] A.电流频率之比为2∶1

变压器精选练习题16道

1、如图,当滑动变阻器滑动触头p逐渐向上移动时,接在理想变压器两端的四个理想电表示数() A.V1不变、V2不变、A1变大、A2变大 B.V1不变、V2不变、A1变小、A2变小 C.V1变大、V2变大、A1变小、A2变小 D.V1变小、V2变小、A1变大、A2变大 2、如图所示,理想变压器原、副线圈的匝数比为10:1,电压表和电流表均为理想交流电表,从某时刻开始在原线圈两端加上交变电压,其瞬时值表达式为,则() A.电压表的示数为 B.在滑动变阻器触头P向上移动的过程中,电流表A2的示数变小 C.在滑动变阻器触头P向上移动的过程中,电流表A1的示数变大 D.在滑动变阻器触头P向上移动的过程中,理想变压器的输入功率变小 3、某变压器原、副线圈匝数比为55∶9,原线圈所接电源电压按图所示规 律变化,副线圈接有负载。下列判断正确的是( ) A.输出电压的最大值为36V B.原、副线圈中电流之比为55∶9 C.变压器输入、输出功率之比为55∶9 D.交流电源有效值为220V,频率为50Hz 4、如图所示,理想变压器副线圈通过导线接两个相同的灯泡L1和L2。导线的等效电阻为R。现将原来断开的开关S闭合,若变压器原线圈两端的电压保持不变,则下列说法中正确的是() A.副线圈两端的电压不变 B.通过灯泡L1的电流增大 C.原线圈中的电流减小 D.变压器的输入功率减小 5、生活中处处用电,而我们需要的电都是通过变压器进行转换的,为了测一个已知额定电压为100V的灯泡的额定功率,如图,理想变压器的原、副线圈分别接有理想电流表A和灯泡L,滑动变阻器的电阻值范围时0-100Ω不考虑温度对灯泡电阻的影响,原、副线圈的匝数比为2:1,交流电源的电压为U0=440V,适当调节滑动变阻器的触片位置,当灯泡在额定电压下正常工作时,测得电流表A的示数为1.2A,则() A.灯泡的额定功率为40W B.灯泡的额定电流为2.4A C.滑动变阻器上部分接入的电阻值为50Ω D.滑动变阻器消耗的电功率为240W 6、如图7,有一理想变压器,原副线圈的匝数比为n,原线圈接正弦交流电,输出端接有一个交流电压表和一个电动机。电动机线圈电阻为R,当输入端接通电源后,电流表读数为I,电压表读数为U,电动机带动一重物匀速上升。下列判断正确的是() A、电动机两端电压为 B、电动机消耗的功率为U2/R C、电动机的输出功率为nUI-(nI)2R D、变压器的输入功率为UI/n 7、理想变压器原、副线圈匝数比为4∶1,若原线圈上加u=400sin100πt (v)的交变电压,则在副线圈两端 () A、用交变电压表测得电压为100 v B、用交变电压表测得电压为100 v C、交变电流的周期为0.02s D、频率为100π hz 8、如图8所示,T为理想变压器,副线圈回路中的输电线ab和cd的电阻不可忽略, 其余输电线电阻可不计,则当电键S闭合时 ( ) A.交流电压表V1和V2的示数一定都变小 B.交流电压表只有V2的示数变小 C.交流电流表A1、A2和A3的示数一定都变大 D.只有A1的示数变大

2321中心对称

23.2 .1中心对称(1)教学设计 第一课时 教学内容 两个图形关于这个点对称或中心对称、对称中心、关于中心的对称点等概念及其运用它们解决一些实际问题. 教学目标 了解中心对称、对称中心、关于中心的对称点等概念及掌握这些概念解决一些问题. 复习运用旋转知识作图,?旋转角度变化,?设计出不同的美丽图案来引入旋转180°的特殊旋转──中心对称的概念,并运用它解决一些实际问题. 重难点、关键 1.重点:利用中心对称、对称中心、关于中心对称点的概念解决一些问题. 2.难点与关键:从一般旋转中导入中心对称. 教具、学具准备 小黑板、三角尺 教学过程 一、检查导读单完成情况 1、组长检查自己小组成员的完成情况,然后向老师汇报 2、每个小组派代表对导读单上的问题进行展示、讲解,老师给予评价

二、生成单问题的解决 1、各同学对生成单上的问题进行交流,讨论,作答。(老师在各小组巡视,讲解共同存在的问题) 2、每小组派一名代表在黑板上展示本组老师指定的问题,并讲解本组的解题思路、方法,板书过程。 3、其他小组可以补充,存在问题的指出问题,老师最后指导,进行评价 三、交流本节课的收获 1、各小组畅所欲言,谈本节课的收获、感悟,包括知识、模糊点的澄清、经验的获得、获得成功后的成就感。 2、归纳出本节课的要点。 四、重点的训练、拓展 发放训练单,对重点知识强化训练,个别指导差生,教师组织参与评价,针对共性问题集中指导。 五、教师归纳总结,布置作业。

23.2.1.中心对称(1)问题导读生成单——评价单 班级:组名:姓名: 一.自读课本 1.什么叫旋转?什么叫旋转角? 2. 请同学们独立完成下题. 如图,△ABC绕点O旋转,使点A旋转到 点D处,画出旋转后的三角形,?并写出简要 做法 二、探索新知 问题:作出如图的两个图形绕点O旋转 180°的图案,并回答下列的问题: 1.以O为旋转中心,旋转180°后两个图 形是否重合? 2.各对称点绕O旋转180°后,这三点是否在一条直线上? 像这样, 这个点叫做对称中心. 这两个图形中的对应点叫做关于中心的对称点. 例1.如图,四边形ABCD绕D点旋转180°,请作出旋转后的图案,写出作法并回答. (1)这两个图形是中心对称图形吗?如果是对称中心是哪一点?如果不是,请说明理由. (2)如果是中心对称,那么A、B、C、D关于中心的对称点是哪些点. 例2.如图,已知AD是△ABC的中线,画出以点D为对称中心,与△ABD?成中心对称的三角形. 三、巩固练习:教材P64 练习1.2

jpeg编解码过程详解海王博客园

JPEG编解码过程详解- 海王- 博客园 JPEG(Joint Photographic Experts Group)是联合图像专家小组的英文缩写。它由国际电话与电报咨询委员会CCITT(The International Telegraph and Telephone Consultative Committee)与国际标准化组织ISO于1986年联合 成立的一个小组,负责制定静态数字图像的编码标准。 小组一直致力于标准化工作,开发研制出连续色调、多级灰度、静止图像的数字图像压缩编码方法,即JPEG 算法。JPEG算法被确定为国际通用标准,其适用范围广泛,除用于静态图像编码外,还推广到电视图像序列的帧 内图像压缩。而用JPEG算法压缩出来的静态图片文件称为JPEG文件,扩展名通常为*.jpg、*.jpe*.jpeg。 JPEG专家组开发了两种基本的压缩算法、两种数据编码方法、四种编码模式。具体如下: 压缩算法: l 有损的离散余弦变换(Discrete Cosine Transform,DCT);l 无损的预测技术压缩。 数据编码方法: l 哈夫曼编码; l 算术编码; 编码模式:

l 基于DCT顺序模式:编/解码通过一次扫描完成; l 基于DCT递进模式:编/解码需要多次扫描完成,扫描效果从粗糙到精细,逐级递进; l 无损模式:基于DPCM,保证解码后完全精确恢复到原图像采样值; l 层次模式:图像在多个空间多种分辨率进行编码,可以根据需要只对低分辨率数据作解码,放弃高分辨率信息。 在实际应用中,JPEG图像使用的是离散余弦变换、哈夫曼编码、顺序模式。 JPEG压缩编码算法的主要计算步骤如下: (0) 8*8分块。 (1) 正向离散余弦变换(FDCT)。 (2) 量化(quantization)。 (3) Z字形编码(zigzag scan)。 (4) 使用差分脉冲编码调制(DPCM)对直流系数(DC)进行编码。 (5) 使用行程长度编码(RLE)对交流系数(AC)进行编码。 (6) 熵编码。 笔者在实践过程中查阅了大量的资料,发现大多数书籍资料和网上资料都是从编码角度分析JPEG的编/解码方式,

【高中物理】变压器·典型例题解析

变压器·典型例题解析 【*例1】一只电阻、一只电容器、一只电感线圈并联后接入手摇交流发 电机的输出端.摇动频率不断增加,则通过它们的电流I R、I C、I L如何改变 [ ] A.I R不变、I C增大、I L减小 B.I R增大、I C增大、I L减小 C.I R增大、I C增大、I L不变 D.I R不变、I C增大、I L不变 解答:应选C. 点拨:手摇发电机的磁场、线圈形状和匝数都是不变的,输出电压与频率 成正比.纯电阻电路中,电阻R与频率无关,I R=U/R,所以I R与频率成正比;纯电容电路中,容抗X C=1/2πfC,I C=U/X C=2πfCU,与频率的二次方成正比;纯电感电路中,X L=2πfL,I L=U/X L=U/2πfL,与频率无关. 【例2】图18-17为理想变压器,它的初级线圈接在交流电源上,次级线圈接在一个标有“12V 100W”的灯泡上.已知变压器初、次级线圈匝数之比为18∶1,那么灯泡正常工作时,图中的电压表读数为________V,电流表读数为________A. 解答:由公式U1/U2=n1/n2,得U1=U2n1/n2=216(V); 因理想变压器的初、次级功率相等, 所以I1=P1/U1=P2/U2=0.46(A) 即电压表、电流表读数分别为216V、0.46A. 点拨:分析理想变压器问题时应注意正确应用电压关系和电流关系、特别是初、次级功率相等的关系. 【例3】如图18-18所示,甲、乙两电路是电容器的两种不同的接法,它们各在什么条件下采用?应怎样选择电容器?

点拨:关键是注意容抗与交流电的频率成反比.甲应是电容较大的电容器,乙应是电容较小的电容器. 参考答案 甲是电容较大的电容器通交流,阻直流、乙是电容较小的电容器通直流,去掉交流. 【例4】如图18-19所示,理想变压器的两个次级线圈分别接有“24V 12W”、“12V 24W”的灯泡,且都正常发光,求当开关断开和闭合时,通过初级线圈的电流之比. 点拨:关键是初、次级功率始终相等. 参考答案:1∶3. 跟踪反馈 1.如图18-20所示,一平行板电容器与一个灯泡串联,接到交流电源上,灯泡正常发光,下列哪种情况可使灯泡变暗 [ ] A.在电容器两极间插入电介质 B.将电容器两板间的距离增大 C.错开电容器两极的正对面积 D.在电容器两极间插入金属板(不碰及极板) 2.关于电子电路中的扼流圈,下列说法正确的是 [ ]

JPEG编码过程详解

JPEG(Joint Photographic Experts Group)是联合图像专家小组的英文缩写。它由国际电话与电报咨询委员会 CCITT(The International Telegraph and Telephone Consultative Committee)与国际标准化组织ISO于1986年联合 成立的一个小组,负责制定静态数字图像的编码标准。 小组一直致力于标准化工作,开发研制出连续色调、多级灰度、静止图像的数字图像压缩编码方法,即JPEG 算法。JPEG算法被确定为国际通用标准,其适用范围广泛,除用于静态图像编码外,还推广到电视图像序列的帧 内图像压缩。而用JPEG算法压缩出来的静态图片文件称为JPEG文件,扩展名通常为*.jpg、*.jpe*.jpeg。 JPEG专家组开发了两种基本的压缩算法、两种数据编码方法、四种编码模式。具体如下: 压缩算法: ● 有损的离散余弦变换(Discrete Cosine Transform,DCT); ● 无损的预测技术压缩。 数据编码方法: ● 哈夫曼编码; ● 算术编码; 编码模式: ● 基于DCT顺序模式:编/解码通过一次扫描完成; ● 基于DCT递进模式:编/解码需要多次扫描完成,扫描效果从粗糙到精细, 逐级递进; ● 无损模式:基于DPCM,保证解码后完全精确恢复到原图像采样值; ● 层次模式:图像在多个空间多种分辨率进行编码,可以根据需要只对低 分辨率数据作解码,放弃高分辨率信息。 在实际应用中,JPEG图像使用的是离散余弦变换、哈夫曼编码、顺序模式。JPEG压缩编码算法的主要计算步骤如下: (0) 8*8分块。 (1) 正向离散余弦变换(FDCT)。 (2) 量化(quantization)。 (3) Z字形编码(zigzag scan)。 (4) 使用差分脉冲编码调制(DPCM)对直流系数(DC)进行编码。 (5) 使用行程长度编码(RLE)对交流系数(AC)进行编码。 (6) 熵编码。 笔者在实践过程中查阅了大量的资料,发现大多数书籍资料和网上资料都是从编码角度分析JPEG的编/解码方式, 并且都只是介绍编码过程中的主要方法。所以,本文从解码角度详细分析JPEG的编/解码过程,并且加入许多笔

电力系统分析——习题

1: 110kv 架空线路长70km ,导线采用LGJ-120型钢芯铝线,计算半径r=7.6mm ,相间距 离为3.3m ,导线分别按等边三角形和水平排列,是计算输电线路的等值电路参数,并比较分析排列方式对参数的影响。 2: 110kv 架空线路长90km ,双回路共杆塔,导线及地线在杆塔上的排列如题图2-2所示, 导线采用LGJ-120型钢芯铝线,计算半径r=7.6mm ,试计算输电线路的等值电路参数。 3: 500kv 输电线路长600km ,采用三分裂导线3×LGJQ-400,分裂间距为400mm ,三相水 平排列,相间距离为11m ,LGJQ-400导线的计算半径r=13.6mm 。试计算输电线路Ⅱ型等值电路的参数: (1)不计线路参数的分布特性; (2)近似计及分布特性; (3)精确计及分布特性。 (4)并对三中条件计算所得结果进行比较分析。 4: 一台1SFL -3500/35型双绕组三相变压器,额定变比为35/11,查得△0P =30kw ,0I =%, △S P =,S V =8%,求变压器参数归算到高、低压侧的有名值。

5: 型号为SFS-40000/220的三相三绕组变压器,容量比为100/100/100,额定变比为 220/11,查得△0P =,0I =%,△(12)S P -=217kW ,△(13)S P -=,△(23)S P -=,(12)S V -=17%, (13)S V -=%,(23)S V -=6%。试求归算到高压侧的变压器参数有名值。 6: 一台SFSL-31500/110行三绕组变压器,额定变比为110/11,容量比为110/100/,空 载损耗80kvar ,短路损耗△(12)S P -=450kW ,△(13)S P -=240kW ,△(23)S P -=270kW ,短路电压(12)S V -=%,(13)S V -=%,(23)S V -=21%。试计算变压器归算到各电压级参数。 7: 三台单相三绕组变压器组成三相变压器组,每台单项变压器的数据如下:额定容量为 30000kVA ;容量比为100/100/50:绕组额定电压为127/;△0P =,0I =%,△(12)S P -=111kW , △(13)S P -=,△(23)S P -=,(12)S V -=%,(13)S V -=%,(23)S V -=%。试求三相结成0Y /0Y /△时变压器组的等值电路及归算到低压侧的参数有名值。 8: 一台三相双绕组变压器,已知:N S =31500kVA ,TN k =220/11,△0P =59kW ,0I =%, △S P =208kw ,S V =14% 。 (1)计算归算到高压侧的参数有名值; (2)作出∏型等值电路并计算其参数; (3)当高压侧运行电压为210kV ,变压器通过额定电流,功率因数为时,忽略激磁电流, 计算∏型等值电路各支路的电流及低压侧的实际电压,并说明不含磁耦合关系的∏型等值电路是怎样起到变压器作用的。 9: 系统接线示于题图2-9,已知各元件参数如下

JPEG图像压缩原理

JPEG编码 JPEG是联合图象专家组(Joint Picture Expert Group)的英文缩写,是国际标准化组织(ISO)和CCITT联合制定的静态图象的压缩编码标准。和相同图象质量的其它常用文件格式(如GIF,TIFF,PCX)相比,JPEG是目前静态图象中压缩比最高的。我们给出具体的数据来对比一下。例图采用Windows95目录下的Clouds.bmp,原图大小为640*480,256色。用工具SEA(version1.3)将其分别转成24位色BMP、24位色JPEG、GIF(只能转成256色)压缩格式、24位色TIFF压缩格式、24位色TGA压缩格式。得到的文件大小(以字节为单位)分别为:921,654,17,707,177,152,923,044,768,136。可见JPEG比其它几种压缩比要高得多,而图象质量都差不多(JPEG处理的颜色只有真彩和灰度图)。 正是由于JPEG的高压缩比,使得它广泛地应用于多媒体和网络程序中,例如HTML语法中选用的图象格式之一就是JPEG(另一种是GIF)。这是显然的,因为网络的带宽非常宝贵,选用一种高压缩比的文件格式是十分必要的。 JPEG有几种模式,其中最常用的是基于DCT变换的顺序型模式,又称为基线系统(Baseline),以下将针对这种格式进行讨论。 1.JPEG的压缩原理 JPEG的压缩原理其实上面介绍的那些原理的综合,博采众家之长,这也

正是JPEG有高压缩比的原因。其编码器的流程为: 图9.3 JPEG编码器流程 解码器基本上为上述过程的逆过程: 图9.4 解码器流程 DCT 下面对正向离散余弦变换(FDCT)变换作几点说明。 (1)对每个单独的彩色图像分量,把整个分量图像分成8×8的图像块,如图所示,并作为两维离散余弦变换DCT的输入。通过DCT变换,把能量集中在少数几个系数上。 (2)DCT变换使用下式计算: 它的逆变换使用下式计算:

高中物理:变压器练习题

高中物理:变压器练习题 1.如图所示四个电路,能够实现升压的是( ) 【解析】选D。变压器只能对交变电流变压,不能对直流电变压,故A、B错误。由于电压与线圈匝数成正比,所以D项能实现升压。 2.一理想变压器的原、副线圈的匝数比为3∶1,在原、副线圈的回路中分别接有阻值相同的电阻,原线圈一侧接在电压为220 V的正弦交流电源上,如图所示。设副线圈回路中电阻两端的电压为U,原、副线圈回路中电阻消耗的功率的比值为k,则( ) A.U=66V,k= B. U=22V,k= C.U=66V,k= D.U=22V,k= 【解题指南】解答本题时应从以下三点进行分析: (1)掌握变压器的功率、电压、电流关系。 (2)根据变压器的匝数比推出原、副线圈的电流比,求得k值。 (3)根据变压器的电压关系和电路的特点求得电压。 【解析】选A。由于变压器的匝数比为3∶1,可得原、副线圈的电流比为1∶3,根据 P=I2R可知原、副线圈中电阻R的功率之比k=,由=,其中U 2=U,则U 1 =3U,结合原、 副线圈的电流比为1∶3,可得原线圈中电阻R上的电压为,所以有3U+=220V,得

U=66V,故选项A正确。 【补偿训练】如图所示为理想变压器原线圈所接正弦交流电源两端的电压—时间图 像。原、副线圈匝数比n 1∶n 2 =10∶1,串联在原线圈电路中的交流电流表的示数为1A, 则( ) A.变压器原线圈所接交流电压的有效值为311 V B.变压器输出端所接电压表的示数为22V C.变压器输出端交变电流的频率为50 Hz D.变压器的输出功率为220W 【解析】选C。变压器原线圈所接交流电压的有效值为U 1 =V=220 V,选项A错误; 变压器输出端所接电压表的示数为U 2=U 1 =×220V=22 V,选项B错误;变压器输 出端交变电流的频率为f=Hz=50 Hz,选项C正确;变压器的输出功率等于输入功 率,P=U 1I 1 =220×1W=220 W,选项D错误。故选C。 3.(多选)一理想变压器原、副线圈的匝数比为10∶1,原线圈输入电压的变化规律如图甲所示,副线圈所接电路如图乙所示,P为滑动变阻器的滑片。下列说法正确的是( )

JPEG文件编解码详解

JPEG文件编/解码详解 cat_ng 猫猫 JPEG(Joint Photographic Experts Group)是联合图像专家小组的英文缩写。它由国际电话与电报咨询委员会 CCITT(The International Telegraph and Telephone Consultative Committee)与国际标准化组织ISO 于1986年联合 成立的一个小组,负责制定静态数字图像的编码标准。 小组一直致力于标准化工作,开发研制出连续色调、多级灰度、静止图像的数字图像压缩编码方法,即JPEG 算法。JPEG算法被确定为国际通用标准,其适用范围广泛,除用于静态图像编码外,还推广到电视图像序列的帧 内图像压缩。而用JPEG算法压缩出来的静态图片文件称为JPEG文件,扩展名通常为*.jpg、*.jpe*.jpeg。 JPEG专家组开发了两种基本的压缩算法、两种数据编码方法、四种编码模式。具体如下: 压缩算法: ● 有损的离散余弦变换(Discrete Cosine Transform,DCT); ● 无损的预测技术压缩。 数据编码方法: ● 哈夫曼编码; ● 算术编码; 编码模式: ● 基于DCT顺序模式:编/解码通过一次扫描完成; ● 基于DCT递进模式:编/解码需要多次扫描完成,扫描效果从粗糙到精细, 逐级递进; ● 无损模式:基于DPCM,保证解码后完全精确恢复到原图像采样值;

层次模式:图像在多个空间多种分辨率进行编码,可以根据需要只对低分辨率数据作解码,放弃高分辨率信息。 在实际应用中,JPEG图像使用的是离散余弦变换、哈夫曼编码、顺序模式。 JPEG压缩编码算法的主要计算步骤如下: (0) 8*8分块。 (1) 正向离散余弦变换(FDCT)。 (2) 量化(quantization)。 (3) Z字形编码(zigzag scan)。 (4) 使用差分脉冲编码调制(DPCM)对直流系数(DC)进行编码。 (5) 使用行程长度编码(RLE)对交流系数(AC)进行编码。 (6) 熵编码。 笔者在实践过程中查阅了大量的资料,发现大多数书籍资料和网上资料都是从编码角度分析JPEG的编/解码方式, 并且都只是介绍编码过程中的主要方法。所以,本文从解码角度详细分析JPEG的编/解码过程,并且加入许多笔 者实践过程中遇到的问题和解决方法,希望从另一个角度说明问题,以更好帮助读者结合其他资料解决问题。 不过,介绍解码过程之前,首先要了解JPEG文件中数据的存储格式。 一、JPEG文件格式介绍 JPEG文件使用的数据存储方式有多种。最常用的格式称为JPEG文件交换格式(JPEG File Interchange Format,JFIF )。而JPEG文件大体上可以分成两个部分:标记码(Tag)和压缩数据。

变压器习题及详解答案

课时练变压器 说明:5、8为多项选择题,其他的均为单项选择题。 1.一台理想变压器,原、副线圈匝数分别为n1和n2,正常工作时的输入电压、电流、电功率分别是U1、I1、P1,输出电压、电流、电功率分别是U2、I2、P2,已知n1<n2,则()A.U1<U2,P1=P2B.P1=P2,I1<I2 C.I1<I2,U1>U2 D.P1>P2,I1>I2 2.如图所示,理想变压器原、副线圈的匝数比n1∶n2=4∶1,原线圈两端连接光滑导轨,副线圈与电阻R相连组成闭合回路。当直导线AB在匀强磁场中沿导轨匀速地向右做切割磁感线运动时,电流表A1的读数为12 mA,那么电流表A2的读数为() A.0 B.3 mA C.48 mA D.与R大小有关 3.将输入电压为220 V,输出电压为6 V的理想变压器改绕成输出电压为30 V的变压器,副线圈原来是30匝,原线圈匝数不变,则副线圈新增匝数为() A.120匝 B.150匝 C.180匝 D.220匝 4.如图甲、乙所示电路中,当A、B接10 V交变电压时,C、D间电压为4 V,M、N接10 V直流电压时,P、Q间电压也为4 V。现把C、D接4 V交流,P、Q接4 V直流,下面哪个选项可表示A、B间和M、N间的电压() A.10 V 10 V B.10 V 4 V C.4 V 10 V D.10 V 0 5.如图 (a)所示,左侧的调压装置可视为理想变压器,负载电路中R=55 Ω,○A、○V为理想电流表和电压表。若原线圈接入如图(b)所示的正弦交变电压,电压表的示数为110 V,下列表述正确的是() A.电流表的示数为2 A B.原、副线圈匝数比为1∶2 C.电压表的示数为电压的有效值 D.原线圈中交变电压的频率为100 Hz 6.如图所示,为一理想变压器,S为单刀双掷开关,P为滑动变阻器触头,U1为加在原线圈两端的电压,I1为原线圈中的电流强度,则以下说法错误的是() A.保持U1及P的位置不变,S由a合到b时,I1将增大 B.保持P的位置及U1不变,S由b合到a时,R消耗的功率将减小C.保持U1不变,S合在a处,使P上滑,I1将增大 D.保持P的位置不变,S合在a处,若U1增大,I1将增大 7.如图所示,在铁芯上、下分别绕有匝数n1=800和n2=200 的两个线圈,上线圈两端与u =51sin314t V 的交流电源相连,将下线圈两端接交流电压表,则交流电压表的读数可能是() A. V B. V C. V D. V 8.某同学设计的家庭电路保护装置如图所示,铁芯左侧线圈L1由火线和零线并行绕成。当右侧线圈L2中产生电流时,电流经放大器放大后,使电磁铁吸起铁质开关K,从而切断家庭电路。仅考虑L1在铁芯中产生的磁场,下列说法正确的有() A.家庭电路正常工作时,L2中的磁通量为零 B.家庭电路中使用的电器增多时,L2中的磁通量不变 C.家庭电路发生短路时,开关K将被电磁铁吸起 D.地面上的人接触火线发生触电时,开关K将被电磁铁吸起 9.如图所示,一台有两个副线圈的变压器,原线圈匝数n1=1 100匝。接入电压U1=220 V的电路中。 (1)要求在两个副线圈上分别得到电压U2=6 V、U3=110 V,它们的匝数n2、n3分别为多少(2)若在两副线圈上分别接上“ 6 V,20 W”、“110 ——60 W”的两个用电器,原线圈的输入电流为多少 10.如图所示,交流发电机电动势的有效值E=20 V,内阻不计,它通过一个R=6 Ω的指示灯连接变压器。变压器输出端并联24只彩色小灯泡,每只灯泡都标有“6 V, W”,且灯泡都正常发光,导线电阻不计。求:

JPEG图像格式详解

JPEG图像格式详解 JPEG 压缩简介 ------------- 1. 色彩模型 JPEG 的图片使用的是 YCrCb 颜色模型, 而不是计算机上最常用的 RGB. 关于色彩模型, 这里不多阐述. 只是说明, YCrCb 模型更适合图形压缩. 因为人眼对图片上的亮度 Y 的变化远比色度 C 的变化敏感. 我们完全可以每个点保存一个 8bit 的亮度值, 每 2x2 个点保存一个 Cr Cb 值, 而图象在肉眼中的感觉不会起太大的变化. 所以, 原来用 RGB 模型, 4 个点需要 4x3=12 字节. 而现在仅需要 4+2=6 字节; 平均每个点占 12bit. 当然 JPEG 格式里允许每个点的 C 值都记录下来; 不过 MPEG 里都是按 12bit 一个点来存放的, 我们简写为 YUV12. [R G B] -> [Y Cb Cr] 转换 ------------------------- (R,G,B 都是 8bit unsigned) | Y | | 0.299 0.587 0.114 | | R | | 0 | | Cb | = |- 0.1687 - 0.3313 0.5 | * | G | + |128| | Cr | | 0.5 - 0.4187 - 0.0813| | B | |128| Y = 0.299*R + 0.587*G + 0.114*B (亮度) Cb = - 0.1687*R - 0.3313*G + 0.5 *B + 128 Cr = 0.5 *R - 0.4187*G - 0.0813*B + 128 [Y,Cb,Cr] -> [R,G,B] 转换 ------------------------- R = Y + 1.402 *(Cr-128) G = Y - 0.34414*(Cb-128) - 0.71414*(Cr-128) B = Y + 1.772 *(Cb-128) 一般, C 值 (包括 Cb Cr) 应该是一个有符号的数字, 但这里被处理过了, 方法是加上了 128. JPEG 里的数据都是无符号 8bit 的. 2. DCT (离散余弦变换) JPEG 里, 要对数据压缩, 先要做一次 DCT 变换. DCT 变换的原理, 涉及到数学知识, 这里我们不必深究. 反正和傅立叶变换(学过高数的都知道) 是差不多了. 经过这个变换, 就把图片里点和点间的规律呈现出来了, 更方便压缩.JPEG 里是对每 8x8

高二物理 变压器典型例题解析

【*例1】一只电阻、一只电容器、一只电感线圈并联后接入手摇交流发电机的输出端.摇动频率不断增加,则通过它们的电流I R、I C、I L如何改变 [ ] A.I R不变、I C增大、I L减小 B.I R增大、I C增大、I L减小 C.I R增大、I C增大、I L不变 D.I R不变、I C增大、I L不变 解答:应选C. 点拨:手摇发电机的磁场、线圈形状和匝数都是不变的,输出电压与频率成正比.纯电阻电路中,电阻R与频率无关,I R=U/R,所以I R与频率成正比;纯电容电路中,容抗X C=1/2πfC,I C=U/X C=2πfCU,与频率的二次方成正比;纯电感电路中,X L=2πfL,I L=U/X L=U/2πfL,与频率无关. 【例2】图18-17为理想变压器,它的初级线圈接在交流电源上,次级线圈接在一个标有“12V 100W”的灯泡上.已知变压器初、次级线圈匝数之比为18∶1,那么灯泡正常工作时,图中的电压表读数为________V,电流表读数为________A. 解答:由公式U1/U2=n1/n2,得U1=U2n1/n2=216(V); 因理想变压器的初、次级功率相等, 所以I1=P1/U1=P2/U2=0.46(A) 即电压表、电流表读数分别为216V、0.46A. 点拨:分析理想变压器问题时应注意正确应用电压关系和电流关系、特别是初、次级功率相等的关系. 【例3】如图18-18所示,甲、乙两电路是电容器的两种不同的接法,它们各在什么条件下采用?应怎样选择电容器?

点拨:关键是注意容抗与交流电的频率成反比.甲应是电容较大的电容器,乙应是电容较小的电容器. 参考答案 甲是电容较大的电容器通交流,阻直流、乙是电容较小的电容器通直流,去掉交流. 【例4】如图18-19所示,理想变压器的两个次级线圈分别接有“24V 12W”、“12V 24W”的灯泡,且都正常发光,求当开关断开和闭合时,通过初级线圈的电流之比. 点拨:关键是初、次级功率始终相等. 参考答案:1∶3. 跟踪反馈 1.如图18-20所示,一平行板电容器与一个灯泡串联,接到交流电源上,灯泡正常发光,下列哪种情况可使灯泡变暗 [ ] A.在电容器两极间插入电介质 B.将电容器两板间的距离增大 C.错开电容器两极的正对面积 D.在电容器两极间插入金属板(不碰及极板) 2.关于电子电路中的扼流圈,下列说法正确的是 [ ] A.扼流圈是利用电感线圈对交流的阻碍作用来工作的 B.高频扼流圈的作用是允许低频交流通过,而阻碍高频交流通过

变压器的基础测试题目(附答案)

测试题 (变压器) 姓名:得分: 一、填空:(每空2分,共30分) 1.一台单相变压器额定电压为380V/220V,额定频率为50HZ,如果误将低压侧接 到380V上,则此时Φm ,I0 ,Z m ,p Fe。(增加,减少或不变) 2.一台额定频率为50Hz的电力变压器接于60Hz,电压为此变压器的6/5倍额定 电压的电网上运行,此时变压器磁路饱和程度,励磁电流,励磁电抗,漏电抗。 3.如将变压器误接到等电压的直流电源上时,由于E= , U= ,空载电流将,空载损耗将。 4.一台变压器,原设计的频率为50Hz,现将它接到60Hz的电网上运行,额定电 压不变,励磁电流将,铁耗将。 5.变压器的副端是通过对原端进行作用的。 6.引起变压器电压变化率变化的原因是。 7.如将额定电压为220/110V的变压器的低压边误接到220V电压,则激磁电流 将,变压器将。 8.三相变压器组不宜采用Y/y联接组,主要是为了避免。 9.变压器副边的额定电压指。 10.为使电压波形不发生畸变,三相变压器应使一侧绕组。 二、选择(每题3分,共30分) 1.三相电力变压器带电阻电感性负载运行时,负载电流相同的条件下,φ cos越高,则。 A:副边电压变化率Δu越大,效率η越高,B:副边电压变化率Δu越大,效率η越低, C:副边电压变化率Δu越大,效率η越低,D:副边电压变化率Δu越小,效率η越高。 2.一台三相电力变压器S N =560kVA,U 1N /U 2N =10000/400(v), D/Δ接法,负载时忽 略励磁电流,低压边相电流为808.3A时,则高压边的相电流为。 A: 808.3A B: 56A C: 18.67A D: 32.33A 3.一台变比为k=10的变压器,从低压侧作空载实验,求得副边的励磁阻抗标幺 值为16,那末原边的励磁阻抗标幺值是。 A:16 B:1600 C:0.16 4.变压器的其它条件不变,外加电压增加10℅,则原边漏抗X1,副边漏抗X2和励 磁电抗X m将。 A:不变B:增加10% C:减少10% (分析时假设磁路不饱和)5.一相电力变压器磁势平衡方程为。 A:原,副边磁势的代数和等于合成磁势

相关文档
最新文档