高中数学 第二章 圆锥曲线 2_1 椭圆复习学案 新人教A版选修1-1

高中数学 第二章 圆锥曲线 2_1 椭圆复习学案 新人教A版选修1-1
高中数学 第二章 圆锥曲线 2_1 椭圆复习学案 新人教A版选修1-1

2.1 椭圆

自主复习

考点清单: 椭圆的定义及其应用 求椭圆的标准方程 椭圆的几何性质 直线与椭圆的位置关系

考点详情:

重点一:椭圆的定义及其应用

1.椭圆定义的应用主要有两个方面:一是判定平面内动点与两定点的轨迹是否为椭圆;二是利用定义求焦点三角形的周长、面积、弦长、最值和离心率等.

2.椭圆的定义式必须满足122a F F >.当到两定点的距离之和等于12F F 时,动点的轨迹是线段12F F ;当到两定点的距离之和小于12F F 时,动点的轨迹不存在. 例题:

1.在△ABC 中,∠A=90°,3

tan .4

B =

若以A,B 为焦点的椭圆经过点C,则该椭圆的离心率e=________.

【答案】

12

【解析】设AB=2c,由题意得32c AC =,52c BC =,则AC+BC=4c,由椭圆定义及离心率定义得21

42

c e c =

=.

2.在平面直角坐标系xOy 中,已知△ABC 的顶点A(-4,0)和C(4,0),顶点B 在椭圆22

1259x y +=上,则

sin sin sin A C

B

+=________.

【答案】5

4

名师导学:

1.椭圆的定义揭示了椭圆的本质属性,正确理解、掌握定义是关键,应注意定义中的常数大于12F F ,避免了动点轨迹是线段或不存在的情况.

2.椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用正

弦定理、余弦定理、122PF PF a +=

,得到a c ,的关系.若12F PF θ∠=,注意对12F PF ?的处理方法通 常是运用?????定义式的平方余弦定理面积公式22

12222121212(2a)212

S θθ??

?=?=-?

???=?

??(|PF|+|PF |)(2c)|PF|+|PF ||PF||PF |cos |PF||PF |sin .

重点二:求椭圆的标准方程

1.直接法:根据所给条件判断焦点位置,并确定a ,b 的值,按标准方程写出方程,其中难点是确定a ,b 的值.

2.待定系数法:除了直接根据定义外,常用待定系数法(先定性,后定型,再定参).

当椭圆的焦点位置不明确而无法确定其标准方程时,可设方程为22

=1x y m n

+ (0)0m n m n ≠>,>且,可

以避免讨论和繁杂的计算,也可以设为221Ax By += (A >0,B >0且A≠B),这种形式在解题中更简便.

例题:已知中心在原点的椭圆C 的右焦点为F(1,0),离心率等于

1

2

,则C 的方程是( )

A. 22134

x y +=

B. 22

14x += C. 22

142x y +=

D. 22

143

x y +=

【答案】D

【解析】由右焦点F(1,0)可知c=1,而离心率12c e a ==,则a=2,b 2=a 2-c 2

=3,故椭圆方程为22143

x y +=.

名师导学:

1.用待定系数法求椭圆标准方程的一般步骤是: (1)作判断:根据条件判断焦点的位置.

(2)设方程:焦点不确定时,要注意分类讨论,或设方程为221mx ny += (0)0m n m n ≠>,>且. (3)找关系:根据已知条件,建立关于a b c m n 、、或、的方程组. (4)求解,得方程.

2.(1)方程2222y +=1x a b 与22

22y +=(>0)x a b

λλ有相同的离心率.

(2)与椭圆2222+=1(a>b>0)x y a b 共焦点的椭圆系方程为22

222+=1(a>b>0,0)x y b k a k b k

+>++,恰当运用椭

圆系方程,可使运算简便.

重点三:椭圆的几何性质

1.椭圆的离心率范围求法是考查的热点,常见的方法有利用几何特征建立不等式或建立目标函数求解.利用几何法建立不等关系式时注意根据题目中隐含的几何特性(如两边之和大于第三边),同时注意定义应用.

2.在解关于离心率e 的二次方程时,要注意利用椭圆的离心率e ∈(0,1)进行根的取舍,否则将产生增根. 3.椭圆的范围或最值问题常常涉及一些不等式.例如,-a ≤x ≤a ,-b ≤y ≤b ,0<e <1等,在求椭圆相关量的范围时,要注意应用这些不等关系.

例题:已知O 为坐标原点,F 是椭圆C:22

221x y a b

+=(a>b>0)的左焦点,A,B 分别为C 的左,右顶点.P 为C 上一

点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M,与y 轴交于点E.若直线BM 经过OE 的中点,则C 的离心率为( )

A.

13 B. 12 C. 23 D. 3

4

【答案】A 【解析】

名师导学:

1.椭圆的标准方程有两种形式,其结构简单,形式对称且系数的几何意义明确,在解题时要防止遗漏,要

深刻理解椭圆中的几何量

2

,,,,

a

a b c e

c

等之间的关系,并能熟练地应用.

2.求椭圆的离心率的方法:(1)直接求出a,c来求解e.通过已知条件列出方程组,解出a,c的值;(2)构造a,c的齐次式,解出e.由已知条件得出关于a,c的二元次方程,然后转化为关于离心率e的一元二次方程求解;(3)通过取特殊值或特殊位置,求出离心率.

重点四:直线与椭圆的位置关系

1.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然

后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单. 2.设直线与椭圆的交点坐标为1122()()A x y B x y ,,,,

则(AB k =为直线斜率). 提醒:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.

例题:设F 1,F 2分别是椭圆E:2

2

21y x b

+=(0

|AF 2|,|AB|,|BF 2|成等差数列. (Ⅰ)求|AB|;

(Ⅱ)若直线l 的斜率为l,求b 的值.

【答案】

(Ⅰ)由椭圆定义知|AF 2|+|AB|+|BF 2|=4,

又2|AB|=|AF 2|+|BF 2|,得4||3

AB =

. (Ⅱ)l 的方程为y=x+c,

其中c =设A(x 1,y 1),B(x 2,y 2),则A,B 两点坐标满足方程组222,1,

y x c y x b =+??

?+=??

化简得(1+b 2

)x 2

+2cx+1-2b 2

=0, 则12221c x x b -+=+,2

122

121b x x b -=+.

因此直线AB 的斜率为l,

所以21|||AB x x -,

214

|3

x x =-. 则2242

12122222284(1)4(12)8()49(1)1(1)b b b x x x x b b b --=+-=-=+++,

解得b =

名师导学:

1.涉及直线与椭圆的基本题型有: (1)位置关系的判断 (2)弦长、弦中点问题 (3)轨迹问题

(4)定值、最值及参数范围问题 (5)存在性问题

2.直线与椭圆位置关系的判断

(1)代数法:把椭圆方程与直线方程联立消去y ,整理得到关于x 的方程Ax 2

+Bx +C =0.记该一元二次方 程根的判别式为Δ,①若Δ>0,则直线与椭圆相交;②若Δ=0,则直线与椭圆相切;③若Δ<0,则直线与椭圆相离.

(2)几何法:在同一直角坐标系中画出椭圆和直线,利用图象和性质可判断直线与椭圆的位置关系. 3.圆锥曲线的弦中点问题是圆锥曲线中的常见题型,通常用“点差法”求弦的斜率.

如AB 是椭圆22

221(0)x y a b a b

+=>>的一条弦,00()M x y ,是AB 的中点,

则22

0220·

.AB AB OM b x b k k k a y a

=-,=- 4.涉及弦长的问题,应熟练地应用韦达定理“设而不求”地去计算弦长(即运用弦长公式),涉及垂直关系往往也是利用韦达定理,“设而不求”,简化运算.若直线与椭圆有两个公共点1122()()M x y N x y ,,,,可

结合韦达定理,代入弦长公式MN =

MN

巩固练习

1.若方程x 2+ky 2

=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )

A .(0,+∞)

B .(0,2)

C .(1,+∞)

D .(0,1)

2.已知椭圆E:22

221b y a b

+=(a>b>0)的右焦点为F(3,0),过点F 的直线变E 于A,B 两点.若AB 的中点坐标为

(1,-1),则E 的方程为( )

A. 22

14536x y +=

B. 2213627

x y +=

C. 2212718x y +=

D. 221189

x y +=

3.设椭圆C:22

221x y a b

+=(a>b>0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的

离心率为( )

A.

6

B.

13

C.

12

D.

3

4.已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A,B 两点,且|AB|=3,则C 的方程为( )

A.2

212x y +=

B.22132

x y +=

C.22

143x y +=

D.22

154

x y +=

5.椭圆22

12516

x y +=的左、右焦点分别为F 1,F 2,弦AB 过F 1,若△ABF 2的内切圆周长为π,A 、B 两点的坐标分

别为(x 1,y 1)和(x 2,y 2),则|y 2-y 1|的值为( )

A.

3

B.

103

C.

203

D.

53

6.在直角坐标系xOy 中,点P 到两点(0,的距离之和等于4,设点P 的轨迹为C,直线y=kx +1与C 交于A,B 两点. (Ⅰ)写出C 的方程;

(Ⅱ)若OA OB ⊥,求k 的值;

(Ⅲ)若点A 在第一象限,证明:当k>0时,恒有||||OA OB >.

7.已知椭圆C:22

221x y a b

+=(a>b>0),过焦点垂直于长轴的弦长为1,且焦点与短轴两端点构成等边三角形.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点Q(-1,0)的直线,交椭圆于A,B 两点,交直线x=-4于点E,AQ QB λ=,AE EB μ=,判断

λ+μ是否为定值,若是,计算出该定值;若不是,说明理由.

参考答案与解析

1.【答案】D

故选D .

2.【答案】D

∵1

2

AB PF h g k k d f -=

==-,212

OP

h g

h g

k d f d f ++===-++, ∴221

2b a -=-,即得a 2=2b 2,又由c 2=a 2-b 2=2b 2-b 2=b 2=32=9,可得b 2=9,a 2=18,则所求椭圆方程为

221189

x y +=,故应选D.

3.【答案】D

【解析】如图所示,将F 2(c,0)代入椭圆方程可得2

2||b PF a

=,∵PF 2⊥F 1F 2且∠PF 1F 2=30°,∴|PF 1|=2|PF 2|,

则2a -|PF 2|=2|PF 2|,

整理可得222|

|3b PF a a

==,即得2222

23b a a c ==-,∴

3c 2

=a 2

,3

c e a ==,故应选D.

4.【答案】C

【解析】据题意可得222

1,2||3,a b b AB a ?-=??=

=??

△解得a 2=4,b 2

=3,故椭圆方程为22143x y +=,故选

C.

5.【答案】

D

6.【答案】

(Ⅰ) 设P(x,y),由椭圆定义可知,点P 的轨迹C 是以

(0,

为焦点,长半轴为2的椭圆.它的短半轴

1b ==,故曲线C 的方程为2

2

14

y x +=.

(Ⅱ) 设A(x 1,y 1),B(x 2,y 2), 其坐标满足2

21,4

1.y x y kx ?+

=???=+?

消去y 并整理得(k 2+4)x 2+2kx -3=0, 故12224k x x k +=-

+,12

23

4

x x k =-+. 若OA OB ⊥,即x 1x 2+y 1y 2=0. 而y 1y 2=k 2x 1x 2+k(x 1+x 2)+1,

于是2

121222233210444

k x x y y k k k +=---+=+++,

化简得-4k 2+1=0,所以12

k =±

. (Ⅲ) 222222

1122||||()OA OB x y x y -=+-+

2222

1212()4(11)x x x x =-+--+

=-3(x 1-x 2)(x 1+x 2)

1226()

4

k x x k -=

+.

因为A 在第一象限,故x 1>0. 由1223

4

x x k =-

+知x 2<0, 从而x 1-x 2>0.又k>0, 故22||||0OA OB ->,

即在题设条件下,恒有||||OA OB >.

7.【答案】

(Ⅰ) 由条件得2

22112b a a b b a

?=?=????=??=?

,所以方程2

214x y +=,

(Ⅱ) 易知直线l 斜率存在,令l:y=k(x+1),A(x 1,y 1),B(x 2,y 2),E(-4,y 0),

由22

(1)14

y k x x y =+????+=??(1+4k 2)x 2+8k 2x+4k 2-4=0,Δ=48k 2

+16>0,

2122814k x x k +=-+,2122

44

14k x x k

-=+, 由AQ QB λ=?(-1-x 1,-y 1)=λ(x 2+1,y 2)即1212

(1)(1)

x x y y λλ-+=+??=-?, 得1211x x λ+=-+,

由AE EB μ=?(-4-x 1,y 0-y 1)=μ(x 2+4,y 2-y 0)即110120(4)(4)

()

x x y y y y μμ-+=+??

-=-?, 得1244x x μ+=-+,

∴121212122222(1)(4)(4)(1)25()8

(1)(4)(1)(4)

x x x x x x x x x x x x λμ+++++++++=-

=-++++

将2122814k x x k +=-+,2122

44

14k x x k -=+代入

有∴22222

222

22228840884083281414140(1)(4)(1)(4)

k k k k k k k k x x x x λμ---++-+++++=-=-=++++.

2019-2020年高中数学选修2-1圆锥曲线

2019-2020年高中数学选修2-1圆锥曲线 教学目标 (1)通过用平面截圆锥面,经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义; (2)通过用平面截圆锥面,感受、了解双曲线的定义; (3)能用数学符号或自然语言描述双曲线的定义. 教学重点,难点 (1)椭圆、抛物线、双曲线的定义; (2)用数学符号或自然语言描述三种曲线的定义. 教学过程 一.问题情境 1.情境: 我们知道,用一个平面截一个圆锥面,当平面经过圆锥面的顶点时,可得到两条相交直线,当平面与圆锥面的轴垂直时,截得的图形是一个圆,试改变平面的位置,观察截得的图形的变化情况。提出问题: 2.问题: 用平面去截圆锥面能得到哪些曲线?这些曲线具有哪些几何特征? 二.学生活动 学生讨论上述问题,通过观察,可以得到以下三种不同的曲线: 对于第一种情况,可在圆锥截面的两侧分别放置一球,使它们 都与截面相切(切点分别为,),且与圆锥面的侧面相切, 两球与圆锥面的侧面的公共点分别构成圆和圆. (图) 设点是平面与圆锥面的截线上任意一点,过M点作圆锥面的一条母 线,分别交圆,圆与,两点,则和,和分别是上下两球的切线.因 为过球外一点作球的切线长相等,所以,, 所以 12 MF MF MP MQ PQ +=+=. 因为,而,是常数,所以是一个常数.即截线上任意一点到两个定 点,的距离的和等于常数. 可直接给出放进双球后的图形,再由学生发现"到感知、认同即可. 三.建构数学 1.椭圆的定义: 平面内到两定点,的距离和等于常数(大于)的点的轨迹叫做椭圆,两个定点,叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距. 说明: 图

圆锥曲线综合试题(全部大题目)含答案

1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线 22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB 的交点为Q 。 (1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112|||| PC PD PQ +=. 2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==? (1)动点N 的轨迹方程; (2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=?AB OB OA 且,求直线l 的斜率k 的取值范围. 3. 如图,椭圆13 4: 2 21=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积 相等,求直线PD 的斜率及直线CD 的倾斜角. 4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||PM PN -=记动点P 的轨迹为W . (Ⅰ)求W 的方程;

(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ?的最小值. 5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围; (Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。 6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN += (1)求点P 的轨迹方程; (2)若2 ·1cos PM PN MPN -∠=,求点P 的坐标. 7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线 12 2 2=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3 MON π∠= ,双曲线的焦距为4。求椭圆方程。 (II )若0OM MN ?=(O 为坐标原点),1 3 FA AN =,求椭圆的离心率e 。

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

高中数学-选修2-1-椭圆题型大全-(1)

高中数学-选修2-1-椭圆题型大全-(1)

椭圆题 1、命题甲:动点P 到两点B A ,的距离之和);,0(2常数>=+a a PB PA 命题乙: P 的轨迹是以A 、B 为焦点的椭圆,则命题甲是命题乙的 ( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分又不必要条件 2、已知1 F 、2 F 是两个定点,且4 2 1=F F ,若动点P 满足4 2 1 =+PF PF 则动点P 的轨迹是( ) A 、椭圆 B 、圆 C 、直线 D 、线段 3、已知1 F 、 2 F 是椭圆的两个焦点, P 是椭圆上的一个动点,如果延长1 F P 到Q ,使得2 PF PQ =,那么动点Q 的轨迹是 ( ) A 、椭圆 B 、圆 C 、直线 D 、点 4、已知1 F 、2 F 是平面α内的定点,并且) 0(22 1>=c c F F ,M 是α 内的动点,且a MF MF 221 =+,判断动点M 的轨迹. 5、椭圆 19 252 2=+y x 上一点M 到焦点1 F 的距离为2,N 为1 MF 的中 点,O 是椭圆的中心,则ON 的值是 。 6、若方程13 52 2=-+-k y k x 表示椭圆,求k 的范围. 7、 轴上的椭圆”的 表示焦点在”是“方程“y ny mx n m 1022=+>>( ) A 、充分而不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分又不必要条件

8、已知方程 11 252 2=-+-m y m x 表示焦点在y 轴上的椭圆,则实数 m 的范围是 . 9、已知方程2 22 =+ky x 表示焦点在y 轴上的椭圆,则实数k 的范围是 . 10、方程2 31y x -= 所表示的曲线是 . 11、如果方程2 22 =+ky x 表示焦点在y 轴上的椭圆,求实数k 的取值范围。 12、已知椭圆0 6322 =-+m y mx 的一个焦点为)2,0(,求m 的值。 13、已知方程2 22 =+ky x 表示焦点在X 轴上的椭圆,则实数k 的范围是 . 14、根据下列条件求椭圆的标准方程: (1)两个焦点的坐标分别为(0,5)和(0,-5),椭圆上一点P 到两焦点的距离之和为26; (2)长轴是短轴的2倍,且过点(2,-6); (3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点) 2,3(),1,6( 21 --P P ,求椭圆方程. 15、以)0,2(1 -F 和)0,2(2 F 为焦点的椭圆经过点)2,0(A 点,则该椭 圆的方程为 。 16、如果椭圆:k y x =+22 4上两点间的最大距离为8,则k 的 值为 。 17、已知中心在原点的椭圆C 的两个焦点和椭圆 36 94:222=+y x C 的两个焦点一个正方形的四个顶点,且椭圆C

专题圆锥曲线(高三数学第二轮复习专题讲座)

数学专题复习系列 圆锥曲线 一、知识结构 1.方程的曲线 在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫 做方程的曲线. 点与曲线的关系 若曲线C 的方程是f(x,y)=0,则点P 0(x 0,y 0)在曲线C 上?f(x 0,y 0)=0; 点P 0(x 0,y 0)不在曲线C 上?f(x 0,y 0)≠0 两条曲线的交点 若曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则 f 1(x 0,y 0)=0 点P 0(x 0,y 0)是C 1,C 2的交点? f 2(x 0,y 0) =0 方程组有n 个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没有 交点. 2.圆 圆的定义 点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程 (1)标准方程 圆心在c(a,b),半径为r 的圆方程是 (x-a)2+(y-b)2=r 2 圆心在坐标原点,半径为r 的圆方程是 x 2+y 2=r 2 (2)一般方程 当D 2+E 2 -4F >0时,一元二次方程 x 2+y 2 +Dx+Ey+F=0 叫做圆的一般方程,圆心为(-2D ,-2E ,半径是2 4F -E D 22+.配方,将方程x 2 +y 2 +Dx+Ey+F=0化为 (x+2D )2+(y+2 E )2=44F -E D 22+ 当D 2 +E 2 -4F=0时,方程表示一个点 (-2D ,-2 E ); 当D 2 +E 2-4F <0时,方程不表示任何图形. 点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则

高中数学选修2-1 圆锥曲线的定义

高中数学选修2-1 圆锥曲线定义练习卷 一、选择题(本大题共10小题,每小题5分,共50分。在每小题给出 的四个选项中,只有一个选项是符合题目要求的) 1.已知为椭圆的焦点,为椭圆上一点, 垂直于x轴,且,则椭圆的离心率为()A.B.C.D. 2.方程表示的曲线是() A.一条直线和一双曲线B.两条直线 C.两个点D.圆 3.已知点(4,2)是直线被椭圆所截得的线段的中点,则的 方程是() A.B. C.D. 4.若不论k为何值,直线与曲线总有公共点, 则的取值范围是( ) A.B. C. D. 5.过抛物线的焦点作一条直线与抛物线相交于两点,它们的 横坐标之和等于5,则这样的直线() A.有且仅有一条B.有且仅有两条 12 F F , 22 22 1(0) x y a b a b +=>>M 2 MF 12 60 F MF ∠= 1 2232 22 ()(1)0 x y xy -+-= l 22 1 369 x y +=l 20 x y -= 240 x y +-= 2340 x y ++=280 x y +-= (2) y k x b =-+221 x y -= b ([ (22) -,[22] -, 24 y x =A B , 姓 名 : _ _ _ _ _ _ _ _ _ _ 班 级 : _ _ _ _ _ _ _ _ _ _ 考 号 : _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - 线 - - - - - - - - - - - - - - 内 - - - - - - - - - - - - - - 请 - - - - - - - - - - - - - - 不 - - - - - - - - - - - - - - 要 - - - - - - - - - - - - - - 答 - - - - - - - - - - - - - - 题 - - - - - - - - - - - - - - - - - - - - - - - - - ●

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

高中数学圆锥曲线详解【免费】

解圆锥曲线问题常用方法+椭圆与双曲线的经典 结论+椭圆与双曲线的对偶性质总结 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2 =2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2 =4x 上一点P 到点A(3,42) (2)抛物线C: y 2 =4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点分析:(1)A 在抛物线外,如图,连PF ,则PF PH =

高中数学选修椭圆公式大全(精选课件)

高中数学选修椭圆公式大全 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P处的外角,则焦点在直线PT上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点。...文档交流 仅供参考... 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切。 5. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程 是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切 线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a 〉b>0)的左右焦点分别为F 1,F 2, 点P为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为1 2 2tan 2 F PF S b γ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y )。 9. 设过椭圆焦点F作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F 的椭圆准线于M 、N两点,则MF⊥NF ....文档交流 仅 供参考...

10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N,则M F⊥NF 。...文档交流 仅供参考... 11. A B是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为 AB 的中点,则2 2OM AB b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被 Po 所平分的中点弦 的方程是22 00002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22 221x y a b +=内,则过 Po 的弦中点的轨迹方 程是22002222x x y y x y a b a b +=+。 推 导 1. 椭圆22 221x y a b +=(a 〉b>o)的两个顶点为1(,0)A a -,2(,0)A a , 与y 轴平行的直线交椭圆于P1、P 2时A 1P 1与A 2P 2交 点的轨迹方程是22 221x y a b -=。...文档交流 仅供参考... 2. 过椭圆22 221x y a b += (a >0, b >0)上任一点00(,)A x y 任 意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且20 20 BC b x k a y =(常数)....文档交流 仅供参考... 3. 若P 为椭圆22 221x y a b +=(a 〉b >0)上异于长轴端点的任 一点,F 1, F 2是焦点, 12PF F α∠=, 21PF F β∠=,则 tan t 22 a c co a c αβ -=+。 4. 设椭圆22 221x y a b +=(a>b>0)的两个焦点为 F 1、F 2,

(完整word版)高中数学圆锥曲线结论(最完美版本)

椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦 点在直线PT 上的射影H 点的轨迹是以 长轴为直径的圆,除去长轴的两个端 点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0 P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过 Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是 00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点 分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为1 2 2tan 2 F PF S b γ ?=. 8. 椭圆 22 22 1x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、 Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于 两点P 、Q, A 1、A 2为椭圆长轴上的顶 点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴 的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22 221x y a b -=(a >

高中数学解题策略专题精编--圆锥曲线

高中数学解题策略专题--圆锥曲线 直线与圆锥曲线的问题是解析几何解答题的主要题型,是历年高考的重点和热点。欲更快地解题,需要解决好以下两个问题:(1)条件或目标的等价转化;(2)对于交点坐标的适当处理。 一、条件或目标的认知与转化 解题过程是一系列转化过程,解题就是要将所解题转化为已经解过的题。转化的基础是——认知已知、目标的本质和联系。有了足够的认知基础,我们便可化生为熟或化繁为简。 1、化生为熟 化生为熟是解题的基本策略。在直线与圆锥曲线相交问题中,弦长问题及弦中点问题是两类基本问题。因此,由直线与圆锥曲线相交引出的线段间的关系问题,要注意适时向弦长或弦中点问题转化。 (1)向弦中点转化 例1.已知双曲线 =1(a>0,b>0)的离心率,过点A(0,-b)和B(a,0)的直线与原点间的距离为(1)求双曲线方程; (2)若直线(km≠0)与双曲线交于不同两点C、D,且C、D两点都在以A为圆心的同一个圆上,求m的取值范围。 略解:(1)所求双曲线方程为 (2)由消去y得: 由题意知,当时,① 设中点 则C、D均在以A为圆为的同一圆上 又 ∴② 于是由②得③ 由②代入①得,解得m<0或m>4 ④ 于是综合③、④得所求m的范围为 (2)向弦长转化

例2.设F是椭圆的左焦点,M是C1上任一点,P是线段FM上的点,且满足 (1)求点P的轨迹C2的方程; (2)过F作直线l与C1交于A、D两点,与C2交点B、C两点,四点依A、B、C、D顺序排列,求使成立的直线l 的方程。 分析:为避免由代换引发的复杂运算,寻觅替代的等价条件:设弦AD、 BC的中点分别为O1、O2,则,故,据此得于是,所给问题便转化为弦长与弦中点问题。 略解:椭圆C1的中心点P分所成的比λ=2。 (1)点P的轨迹C2的方程为 (2)设直线l的方程为① ①代入椭圆C1的方程得, 故有故弦AD中点O1坐标为 ②①代入椭圆C2的方程得,又有故弦BC中点O2坐标为, ③∴由②、③得④ 注意到⑤ 于是将②、③、④代入⑤并化简得:由此解得。 因此,所求直线l的方程为 2.化繁为简 解析几何是用代数方法解决几何问题,因此,解答解析几何问题有这样的感受:解题方向或途径明朗,但目标难以靠近或达到。解题时,理论上合理的思路设计能否在实践中得以实现?既能想到,又能

高中数学选修圆锥曲线复习

1 / 8 选修2-1圆锥曲线与方程(复习) 编者:史亚军 1. 掌握椭圆、双曲线、抛物线的定义及标准方程;椭圆、双曲线、抛物线的几何性质; 2. 能解决直线与圆锥曲线的一些问题; 3.激情投入,积极思考,勇于发言,培养科学的态度和正确的价值观。 学习重点:椭圆、双曲线、抛物线的定义、标准方程及几何性质 学习难点:椭圆、双曲线、抛物线的定义、标准方程及几何性质 使用说明: (1)快速阅读教材第二章和所学导学案; (2)用严谨认真的态度完成导学案中要求的内容,用红色笔画出疑惑之处,并尝试完成下 列问题,总结规律方法; (3)不做标记的为C 级,标记★为B 级,标记★★为A 级。 预习案(20分钟) 一.知识再现 问题1:回忆椭圆、双曲线、抛物线的第一定义及标准方程? (1)椭圆的定义: 椭圆的标准方程: (2)双曲线的定义: 双曲线的标准方程: (3)抛物线的定义: 抛物线的标准方程: 组长评价: 教师评价:

问题2:根据下面的标准方程,作出相应椭圆、双曲线、抛物线的图形,并说明图像具有的几何性质? (1)2212516x y += (2)22 12516 x y -= (3)28y x = 问题3:回忆椭圆、双曲线、抛物线的第二定义? 一动点M 到定点F 的距离和它到一条定直线l 的距离的比是一个常数e , 如果常数e ∈ ,那么这个点的轨迹是椭圆; 如果常数e ∈ ,那么这个点的轨迹是双曲线; 如果常数e = ,那么这个点的轨迹是抛物线; 其中定点叫做焦点,定直线叫做准线,常数e 就是离心率。 请用第二定义推导焦半径公式:(12,F F 分别为左右焦点) (1)点P 是椭圆上一动点:1PF = ;2PF = ; (2)点P 是双曲线左支上一动点:1PF = ;2PF = ; (3)点P 是抛物线上一动点:1PF = ;2PF = ;

高中数学选修1,1《椭圆》教案_0

高中数学选修1,1《椭圆》教案 (一)教材的地位和作用 本节是继直线和圆的方程之后,用坐标法研究曲线和方程的又一次实际演练。椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。因此这节课有承前启后的作用,是本章和本节的重点内容之一。 (二)教学重点、难点 1.教学重点:椭圆的定义及其标准方程 2.教学难点:椭圆标准方程的推导 (三)三维目标 1.知识与技能:掌握椭圆的定义和标准方程,明确焦点、焦距的概念,理解椭圆标准方程的推导。 2.过程与方法:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、类比、归纳问题的能力。https://www.360docs.net/doc/966010295.html, 3.情感、态度、价值观:通过主动探究、合作学习,相互交流,对知识的归纳总结,让学生感受探索的乐趣与成功的喜悦,增强学生学习的信心。 二、教学方法和手段 采用启发式教学,在课堂教学中坚持以教师为主导,学生为主体,思维训练为主线,能力培养为主攻的原则。 授人以鱼,不如授人以渔。要求学生动手实验,自主探究,合作交流,抽象出椭圆定义,并用坐标法探究椭圆的标准方程,使学生的学习过程成为在教师引导下的再创造过程。 三、教学程序 1.创设情境,认识椭圆:通过实验探究,认识椭圆,引出本节课的教学内容,激发了学生的求知欲。 2.画椭圆:通过画图给学生一个动手操作,合作学习的机会,从而调动学生的学习兴趣。 3.教师演示:通过多媒体演示,再加上数据的变化,使学生更能理性地理解椭圆的形成过程。 4.椭圆定义:注意定义中的三个条件,使学生更好地把握定义。

5.推导方程:教师引导学生化简,突破难点,得到焦点在x轴上的椭圆的标准方程,利用学生手中的图形得到焦点在y轴上的椭圆的标准方程,并且对椭圆的标准方程进行了再认识。 6.例题讲解:通过例题规范学生的解题过程。 7.巩固练习:以多种题型巩固本节课的教学内容。 8.归纳小结:通过小结,使学生对所学的知识有一个完整的体系,突出重点,抓住关键,培养学生的概括能力。 9.课后作业:面对不同层次的学生,设计了必做题与选做题。 10.板书设计:目的是为了勾勒出全教材的主线,呈现完整的知识结构体系并突出重点,用彩色增加信息的强度,便于掌握。 四、教学评价 本节课贯彻了新课程理念,以学生为本,从学生的思维训练出发,通过学习椭圆的定义及其标准方程,激活了学生原有的认知规律,并为知识结构优化奠定了基础。 高中数学选修1-1《椭圆》教案【二】 教学准备 教学目标 教学目标:1.掌握求适合条件的椭圆的标准方程的方法. 2.理解椭圆的比值定义,椭圆的准线的定义. 3.掌握椭圆的准线方程并能运用准线方程判定椭圆的焦点位置. 教学重难点 教学重点:椭圆的比值定义,椭圆的准线的定义及其运用. 教学难点:椭圆的准线的运用https://www.360docs.net/doc/966010295.html, 教学过程 教学过程: 一、知识回顾:

高中数学-圆锥曲线专题

高三数学-圆锥曲线知识点 圆锥曲线的统一定义: 平面内的动点P(x,y)到一个定点F(c,O)的距离与到不通过这个定点的一条定直线I的距离之比是一个常数e(e >0),则动点的轨迹叫 做圆锥曲线。其中定点F(c,0)称为焦点,定直线I称为准线,正常数e称为离心率。当0v e< 1时,轨迹为椭圆;当e=1时,轨迹为抛物线;当e> 1时,轨迹为双曲线。

两点,则MFL NF. 1、点P 处的切线PT 平分△ PFF 2在点P 处的内角. 2、PT 平分△ PF 1F 2在点P 处的内角,则焦点在直线 PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点 3、以焦点半径PF 为直径的圆必与以实轴为直径的圆 相切.(内切:P 在右支;外切:P 在左支) 1 (a >o,b > o )上,则过F O 的双曲线的切线方程是 ^2 a b 2 2 2 t — (1)等轴双曲线:双曲线 x y a 称为等轴双曲线,其渐近线方程为 y x ,离心率e , 2 . (2)共轭双曲线:以已知双曲线的虚轴为实轴, 2 实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.笃 a 2 2 y_ 互为共轭双曲线,它们具有共同的渐近线: 2 L o . b 2 (3)共渐近线的双曲线系方程: 2 y b 2 2 0)的渐近线方程为笃 a 2 y o 如果双曲线的渐近线为 b 2 0时,它的双曲 2 线方程可设为二 2 a 0). 1. 点P 处的切线PT 平分△ PF1F2在点P 处的外角. 2. 以焦点半径PF1为直径的圆必与以长轴为直径的圆内切 3. P o (X o ,y o )在椭圆 2 y 2 1上,则 过 P o 的椭圆的切线方程是 2 a x °x y o y 1 b 2 4. P 0( x o , y 0) 在椭圆 2 y 2 1夕卜, 则过 P 0 作椭圆的两条切线切点为 P 、 P 2,则切点弦P 1P 2的直线方程是 辱 ^2 1. a b 5. 2 再 1 (a > b > 0)的焦半径公式 b 2 | MF i | a ex o , | MF 2 | ex o ( F i ( c,0) , F 2(C ,0) M(X o ,y 。)). 6. 设过椭圆焦点F 作直线与椭圆相交P 、Q 两点,A 为椭圆长轴上一个顶点,连结 AP 和AQ 分别交相应于焦点 F 的椭圆准线于 M N 7. 过椭圆一个焦点 F 的直线与椭圆交于两点 P 、Q, A 1、A 为椭圆长轴上的顶点, AiP 和AQ 交于点 M AP 和AQ 交于点N,贝U MF 丄NF. 8. 2 x AB 是椭圆— 2 a 2 y_ b 2 1的不平行于对称轴的弦, M (x o , y o )为AB 的中点,贝U k OM k AB b 2 二,即 K AB a b 2X o 2 a y o 9. 若P o (x o ,y o )在椭圆 -H-* 2 y x )x y o y 2 1内,则被Po 所平分的中点弦的方程是 与 乎 2 X 。 __2 a y 。2 b 2 2 2 x y 4、若P o (X o ,y 。)在双曲线r 2 a b 1. 【备注1】双曲线:

高中数学选修圆锥曲线基本知识点与典型题举例

高中数学选修圆锥曲线基本知识点与典型题举例 一、椭圆 1.椭圆的定义: 第一定义:平面内到 点的轨迹叫做椭圆,这两个定点叫做椭圆的 ,两焦点的距离叫做 第二定义: 平面内到 的距离之比是常数 的点的轨迹是椭圆,定点叫做椭圆的焦点,定直线l 叫做椭圆的 ,常数e 叫做椭圆的离心率. 2.椭圆的标准方程及其几何性质(如下表所示) 标准方程 图形 顶点 对称轴 焦点 焦距 离心率 例1. F 1,F 2是定点,且|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则M 点的轨迹方程是( ) (A)椭圆 (B)直线 (C)圆 (D)线段 例2. 已知ABC ?的周长是16,)0,3(-A ,B )0,3(, 则动点的轨迹方程是( ) (A) 1162522=+y x (B))0(1162522≠=+y y x (C)1251622=+y x (D))0(125 162 2≠=+y y x

例3. 若F (c ,0)是椭圆22 221x y a b +=的右焦点,F 与椭圆上点的距离的最大值为M ,最小值为m ,则椭圆上与F 点的距离等于 2 M m +的点的坐标是( ) (A)(c ,2b a ±) 2 ()(,)b B c a -± (C)(0,±b ) (D)不存在 例4 设F 1(-c ,0)、F 2(c ,0)是椭圆22x a +2 2y b =1(a >b >0)的两个焦点,P 是以F 1F 2为直径的圆与椭圆的一个交点,若∠PF 1F 2=5 ∠PF 2F 1,则椭圆的离心率为( ) (A)32 (B)63 (C)22 (D)23 例5. P 点在椭圆 120 452 2=+y x 上,F 1、F 2是两个焦点,若21PF PF ⊥,则P 点的坐标是 . 例6. 写出满足下列条件的椭圆的标准方程: (1)长轴与短轴的和为18,焦距为6; . (2)焦点坐标为)0,3(-,)0,3(,并且经过点(2,1); . (3)椭圆的两个顶点坐标分别为)0,3(-,)0,3(,且短轴是长轴的3 1 ; ____. (4)离心率为2 3 ,经过点(2,0); 二、双曲线 1.双曲线的定义: 第一定义:平面内到 等于定值 的点的轨迹叫做双曲线,这两个定点叫做双曲线的 ,两焦点的距离叫做双曲线的 第二定义: 平面内到 距离之比是常数 的点的轨迹是双曲线,定点叫做双曲线的焦点,定直线l 叫做双曲线的 ,常数e 叫做双曲线的离心率 标准方程

高考数学圆锥曲线综合题型归纳解析

圆锥曲线综合题型归纳解析 【知识点精讲】 一、定值问题 解析几何中定值问题的证明可运用函数的思想方法来解决.证明过程可总结为“变量——函数——定值”,具体操作程序如下: (1)变量——选择适当的量为变量; (2)函数——把要证明为定值的量表示成变量的函数; (3)定值——化简得到函数的解析式,消去变量得到定值。 求定值问题常见的方法有两种: (1)从特殊情况入手,求出定值,在证明定值与变量无关; (2)直接推理、计算,并在计算过程中消去变量,从而得到定值。 二、求最值问题常用的两种方法 (1)几何法:题中给出的条件有明显的几何特征,则考虑用几何图形的性质来解决。 (2)代数法:题中给出的条件和结论的几何特征不明显,则可以建立目标函数,在求该函数的最值。求函数的最值常见的方法有基本不等式法、单调性法、导数法、和三角换元等,这是代数法。 三、求定值、最值等圆锥曲线综合问题的“三重视” (1)重视定义在解题中的应用(优先考虑); (2)重视曲线的几何特征特别是平面几何的性质与方程的代数特征在解题中的作用; (3)重视根与系数的关系(韦达定理)在解题中的应用(涉及弦长、中点要用)。 四、求参数的取值范围 根据已知条件及题目要求建立等量或不等量关系,再求参数的范围。 题型一、平面向量在解析几何中的应用 【思路提示】解决平面向量在解析几何中的应用问题要把几何特征转化为向量关系,并把向量用坐标表示。常见的应用有如下两个: (1)用向量的数量积解决有关角的问题: ①直角12120a b x x y y ?=+=r r g ; ②钝角10||||a b a b ?-<= == r r r r g r r g 。

高中数学+选修2-1+(精)几类很经典的圆锥曲线问题

几类圆锥曲线问题 一、弦长问题 圆锥曲线的弦长求法 设圆锥曲线C ∶f(x ,y)=0与直线l ∶y=kx+b 相交于A(11,y x )、B(22,y x )两点,则弦长|AB|为: (2)若弦AB 过圆锥曲线的焦点F ,则可用焦半径求弦长,|AB|=|AF|+|BF|. 例1 过抛物线2 4 1x y - =的焦点作倾斜角为α的直线l 与抛物线交于A 、B 两点,旦|AB|=8,求倾斜角α. 分析一:由弦长公式易解.解答为: ∵ 抛物线方程为y x 42 -=, ∴焦点为(0,-1). 设直线l 的方程为y-(-1)=k(x-0),即y=kx-1. 将此式代入y x 42 -=中得:0442 =-+kx x .∴k x x x x 442121-=+-=, 由|AB|=8得:()()41441822 -??--?+=k k ∴1±=k 又有1tan ±=α得:4π α= 或4 3πα= . 分析二:利用焦半径关系.∵2 ,221p y BF p y AF +-=+ -= ∴|AB|=-(1y +y 2)+p=-[(kx 1-1)+(kx 2-1)]+p=-k(1x +x 2)+2+p .由上述解法易求得结果,可由同学们自己试试完成. 二、最值问题 方法1:定义转化法 ①根据圆锥曲线的定义列方程;②将最值问题转化为距离问题求解. 例2、已知点F 是双曲线x 24-y 2 12=1的左焦点,定点A 的坐标为(1,4),P 是双曲线右支上的动点,则|PF |+ |PA |的最小值为________. 解析 如图所示,根据双曲线定义|PF |-|PF ′|=4, 即|PF |-4=|PF ′|.又|PA |+|PF ′|≥|AF ′|=5, 将|PF |-4=|PF ′|代入,得|PA |+|PF |-4≥5, 即|PA |+|PF |≥9,等号当且仅当A ,P ,F ′三点共线, 即P 为图中的点P 0时成立,故|PF |+|PA |的最小值为9.故填9.

高中数学圆锥曲线解题技巧总结

高中数学圆锥曲线解题 技巧总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

解圆锥曲线问题的常用方法大全 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020 =-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 分析:(1)A 在抛物线外,如图,连PF ,则PF PH =现,当A 、P 、F 三点共线时,距离和最小。

相关文档
最新文档