热成像技术分析

热成像技术分析
热成像技术分析

热成像技术分析

热成像技术分析

热成像技术是指利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲红外热像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像上面的不同颜色代表被测物体的不同温度。

热成像技术是根据所有物体都发热这一事实来实现的。尽管许多物体从外表看不出什么,但在其上仍有冷热之分。借助热图上的颜色可以看到温度的分布,红色、粉红表示比较高的温度,蓝色和绿色表示了较低的温度。

在全天候监控的竞技场上,除了热成像在养精蓄锐外,低照度、激光照明与红外灯等技术也纷纷安营扎寨,瓜分昼夜监控的前端市场。然而株式会社腾龙新事业推进室室长市川敬表示,低照度摄像机虽然可以在微弱的光照下成像,但在完全无光的环境下却成了摆设;通过激光照明成像的摄像机可以准确反应拍摄物体的信息,但该技术依赖于光源照明,所以应用范围受到一定限制;近红外摄像机也是一种主动

型摄像机,可其在使用寿命和照射距离上时常显得差强人意。神戎的陈大明亦表示,与低照度、激光照明与红外灯等技术相比,红外热像仪具有无可代替的绝对优势。

一.热成像技术的发现

1800年英国的天文学家Mr.WilliamHerschel用分光棱镜将太阳光分解成从红色到紫色的单色光,依次测量不同颜色光的热效应。他发现,当水银温度计移到红色光边界以外,人眼看不见任何光线的黑暗区的时候,温度反而比红光区更高。反复试验证明,在红光外侧,确实存在一种人眼看不见的“热线”,后来称为“红外线”,也就是“红外辐射”。

红外线普遍存于自然界中,任何温度高于绝对零度(-273.16℃)的物体都会发出红外线,比如冰块。

光线就是可见光,是人眼能够感受的电磁波。可见光的波长为:0.38—0.78微米。比0.38微米短的电磁波和比0.78微米长的电磁波,人眼都无法感受。比0.38微米短的电磁波位于可见光光谱紫色以外,称为紫外线,比0.78微米长的电磁波位于可见光光谱红色以外,称为红外线。红外线,又称红外辐射,是指波长为0.78~1000微米的电磁波。其中波长为0.78~2.0微米的部分称为近红外,波长为2.0~1000微米的部分称为热红外线。照相机成像得到照片,电视摄像机成像得到电视图像,都是可见光成像。自然界中,一切物体都可以辐射红外线,因此利用探测仪测定目标的本身和背景之间的红外线差并可以得到不同的红外图像,热红外线形成的图像称为热图。目标

的热图像和目标的

可见光图像不同,它不是人眼所能看到的目标可见光图像,而是目标表面温度分布图像,换一句话说,红外热成像使人眼不能直接看到目标的表面温度分布,变成人眼可以看到的代表目标表面温度分布的热图像。作为世界最先进的高科技产品,红外热像仪的知名品牌主要集中在美国。近年来,我国在红外热像仪领域也取得了巨大进步,但是在技术上相对美国还有一定差距,相信国内品牌再经过几年的发展,一定能够和美国品牌抗衡。

二.热成像技术的优势

1、作用距离远。一般的红外灯产品只有不到100米的成像距离。热像仪对物体辐射的红外线进行成像,不受环境光和照明光的限制,一般长焦热成像仪能观测3千米以上的人员和6千米以上的车辆。

2、隐蔽性强。它完全是被动地接收信号,不主动发射探测信号,这样就不容易被反侦察手段所发现。

3、穿透能力强。红外热辐射比可见光具有更强的穿透雾、霾、雨、雪的能力,因而红外热成像系统在恶劣天气条件下的成像效果几乎不受影响。特别是作用于8-14um的长波红外热像仪,具有更强的穿透雾能力。

4、全天候工作能力,抗强光干扰。红外热成像仪成像不借助照明光和环境光,而是靠目标与背景的辐射产生景物图像,因此红外热成像系统能24小时全天候工作,并且也不会像其他夜视设备那样受可见光强光干扰。而低照度摄像机在没有环境光的情况下不能成像。

5、能识别隐蔽目标。普通的伪装是以防可见光观测为主。一般犯罪分子作案通常隐蔽在草丛及树林中,由于野外环境的恶劣及人的视觉错觉,容易产生错误判断。红外热成像能透过伪装和草丛树叶,探测出隐蔽的热目标,人体和车辆的温度及红外辐射一般都远大于草木的温度及红外辐射,因此不易伪装,也不容易产生错误判断。

6、防火监控。一般的火灾都是由不明显的隐火引发的。用现有的普通方法,很难发现这种隐性火灾苗头。由于红外热成像仪是反映物体表面温度而成像的设备,应用红外热成像仪透过烟雾发现着火点,做到早知道早预防,早扑灭。

7、功耗低寿命长。激光照明或者红外灯由于需要主动照明,整机功耗比较大,有些特殊供电的场合,必须使用低功耗的红外热像仪系统。由于红外灯等主动系统的散热问题不好解决,而普通红外灯的寿命只有1000小时,激光照明的寿命大约为10000小时,但是非制冷红外热成像仪的寿命可达45000小时。

三.热成像技术的发展

美国RNO公司在1964年首次研制成功第一代的热红外成像装置,叫红外前视系统,这类装置利用光学元件运动机械,

对目标的热辐射进行图像分解扫描,然后应用光电探测器进行光——电转换,最后形成视频图像信号,并在荧屏上显示,红外前视系统至今仍是军用飞机、舰船和坦克上的重要装置。六十年代中期,在红外前视装置的基础上,开发了具有温度测量功能的热红外成像装置。这种第二代红外成像装置,通常称为热像仪。

热成像仪的品牌非常多,客户在选择时,有点无从下手,在选择红外热像仪时,建议选择大品牌的热成像仪。2012年4月,美国知名的Thermal infrared imager TIMES,发布了2011年全球热成像仪品牌排名,美国RNO连续5年荣登销量榜首,其PC160G红外热像仪更是以40%的市场份额连续8年荣登单品销量冠军。在选择时,可以根据这个排名,进行参考选择。同时选择适合自己的型号。2013年,RNO推出其全新款IR系列热成像仪,其最大的特点是将高端红外热像仪的功能,移植到了160*120分辨率的的低端热成像仪上,让RNO IR160成为世界首款具有3个可移动区域测温,并且具有可见光拍摄的的160*120热成像仪,2013年上半年,RNO IR160即成为北美销量第一的的红外热像仪,取代了RNO PC160的位置。下图就是RNO IR160热成像仪.

1.美国RNO

RNO公司于1940年成立于美国芝加哥,是全球历史最为悠久的热

像仪生产企业,在二战中,RNO热像仪曾广泛应用美国军方。经过70年的发展,RNO下设了美国RNO红外热像仪公司,美俄合资RNO 夜视仪公司。RNO是全球最为专业的热像仪公司,其下属的RNO夜视仪,在3,4代高端夜视仪领域拥有极大的知名度。

70年来,RNO一直专门致力于热像技术的开发,RNO热像仪工厂分别设在美国、英国、日本和中国。RNO夜视仪则将工厂设立在俄罗斯。

目前RNO在全球拥有近5000名雇员,其授权分销商及服务分公司遍布全球100多个国家。

美国RNO一直是全球热像仪技术的领导者。引领全球热像技术的发展。

RNO以生产中高端热像仪为主,2011年,美国RNO以高达50%的市场份额位居全球红外热像仪首位,其传奇产品PC-160以高达30%的市场份额连续5年位居全球红外热像仪销售宝座。这款售价不到5000美元的产品,以高达60HZ的帧频,-20-600度两温区选择,以及移动点移动区高温自动捕捉等功能,让其成为最具性价比产品,成为红外热像仪的一代神话。

2.美国FLUKE

福禄克电子仪器仪表公司于1948年成立,是丹纳赫(Danaher)集团的全资子公司。福禄克是一个跨国公司,总部设在美国华盛顿州的埃弗里德市,工厂分别设在美国、英国,荷兰和中国,其销售和服务分公司遍布欧洲、北美、南美、亚洲和澳大利亚。目前福禄克公司的

授权分销商已遍布世界100多个国家,雇员

约2400人。

多年来,福禄克电子仪器仪表公司创造和发展了一个特定的技术市场——为各个工业领域提供用于测试和检测故障的优质电子仪器仪表产品,并把该市场提升到重要地位。每新建的一个工厂、办公区、或设施,都可成为福禄克产品的潜在用户。从工业控制系统的安装调试到过程仪表的校验维护,从实验室精密测量到计算机网络的故障诊断,福禄克的产品帮助各行各业的业务高效运转并不断发展。无论是技术人员、工程师、科研、教学人员还是计算机网络维护人员,都通过使用福禄克的仪器仪表产品扩展了个人能力,并出色地完成了工作。正是他们,给予了福禄克最大的信任和最好的口碑,使得福禄克品牌在便携、坚固、安全、易用、和严谨的质量标准方面得到高度的美誉,成为所涉及的领域中的领导者。

3.美国FLIR

FLIR Systems Inc,(NASDAQ:FLIR)作为创新成像系统制造领域的领军企业,其产品范围涉及红外热像仪、航空摄像机和机械检测系统等。FLIR产品已在全球60余个国家内的工商业及政府领域中发挥了

重要作用。

50多年来,FLIR公司一直致力于为科研、工业、执法机关及军工领域提供红外热像仪和夜视仪设备,堪称商用红外热像仪领域中无可辩驳的领导者。FLIR产品系列应用极为广泛,涵盖预防性维护、状态监控,无损测试、研发、医疗科学、温度测量、热测试、执法机关、监视、安保及生产过程控制等各个领域,能够为入门级或专家级用户提供最为全面的支持。

FLIR在低端红外热像仪产品及具优势,其售价不到2000美金的I3,I5,虽然仅仅是入门级机型,但是深受不发达地区的低端客户青睐。2011年,FLIR凭借其I3的销量,以20%的市场份额,依然维持做其全球销量亚军的称号。

作为美国第三大热像仪品牌,FLUKE在2011年以将近15%的市场份额,位居季军。

红外热像检测技术综述

作业一红外热像检测技术综述 院(系)名称机械工程及自动化学院科目现代无损检测技术 学生姓名X X 学号XXXXXXXX 2016 年1X 月1X 日

红外热像检测技术综述 XXXX XXXX 目录 1 红外热像检测技术的原理介绍 (1) 2 红外热像检测技术的应用 (2) 2.1材料的内部制造缺陷的红外热像检测 (2) 2.3结构内部损伤及材料强度的检测 (3) 2.4在建筑节能检测中的应用 (3) 2.5建筑外外墙面饰面层粘贴质的检测 (4) 2.6在建筑物渗漏检测中的应用[13] (4) 3 红外热像检测技术国内外发展现状 (5) 3.1红外热像检测技术国外发展现状 (5) 3.2红外热像检测技术国内发展现状 (7) 4 参考文献 (10) I

1 红外热像检测技术的原理介绍 红外热成像检测技术采用主动式控制加热激发被检物内部缺陷,通过快速热图像采集和基于热波理论图像处理技术实现缺陷检测。它通过光学机械扫描系统,将物体发出的红外线辐射汇聚在红外探测器上,形成红外热图像,由此来分辨被测物体的表面温度。该技术具有检测速度快、非接触、范围广、精度高、易于实现自动化和实时观测等诸多优点,适合于裂缝、分层、积水、冲击损伤等问题的诊断。 红外线和可见光及无线电波一样是一种电磁波,红外线的波长比可见光长,比无线波短,为0.78~1000m μ,可分为近红外、中红外和远红外。任何物体只要不是绝对零度,都会因为分子的东{转和振动而发出“辐射能量”,红外辐射是其中一种。如果把物体看成是黑体,吸收所有的人射能量,则根据斯蒂芬—玻尔兹曼定律,在全波长范围内积分可得到黑体的总辐射度为: ()40 ,M M T d T λλσ∞==? (1.1) 式中:()()152121,exp 1c M T c W m m T λλμλ---??????=-???? ?????? ??? 为黑体的光谱辐射度;1c ,2c 为辐射常数,8241 3.741810c W m m μ-=???,42=1.438810c m K μ??,σ为斯蒂芬—玻尔兹曼常数,8245.6710W m K σ---=???,实际的大部分人工或天然材料都是灰体而不是黑体材料,与黑体不同,灰体材料的发射率1ε≠,灰体表面能反射一部分入射的长波()>3m λμ辐射,因此灰体表面的辐射由自身发射的和环境反射的两部分组成,用红外探测器可直接测量灰体发射和反射的总和ap M ,但无法确定各自的份额。通常假设物体表面为黑体,将ap M 称为表观辐 射度,为便于理解,一般将其转换为人们较熟悉的温度单位,称为表观温度ap T ,即: ()()()()04,,ap t l ap ap M M T M T d T λελλρλλλσ=+=? (1.2) 上述的表观温度ap T ,即为红外探测器测量所得温度。在无损检测中测量距离一般较近,可以忽瞬大气的影响,故被测物体的表面发射率。的取值是否准确是影响测量精度的关键因素。

红外热像仪和视频报警系统在安防领域的应用讲解

红外热像仪和视频报警系统在安防领域 的应用 一、系统概述随着技术进步,视频监控系统已经在国家公共安全防范的各个领域中开始了广泛使用,这使得人民的安全环境在很大程度上得到了提高。现在的视频监控系统主要采用的是可见光摄像机和人工监视、录像相结合的方式进行日常的安全防护。但由于可见光摄像机在恶劣天气或照度较低的条件下,很难滤除干扰得到有用的视频图像,因此使得整个安全防范系统在夜间或恶劣天气条件下的防范能力大打折扣。而且现在的视频监控系统必须由安保 一、系统概述 随着技术进步,视频监控系统已经在国家公共安全防范的各个领域中开始了广泛使用,这使得人民的安全环境在很大程度上得到了提高。现在的视频监控系统主要采用的是可见光摄像机和人工监视、录像相结合的方式进行日常的安全防护。但由于可见光摄像机在恶劣天气或照度较低的条件下,很难滤除干扰得到有用的视频图像,因此使得整个安全防范系统在夜间或恶劣天气条件下的防范能力大打折扣。而且现在的视频监控系统必须由安保人员对视频画面进行24小时不间断的监视、人为对视频图像进行分析报警,否则系统就起不到实时报警的功能只能起到事发后取证的作用。因此整体来说,现在的视频监控系统还处于在半天时、半天候和半自动状态。因此如何提高在“夜黑风高”的案件高发时间段的自动报警防范能力,就成为了国家公共安全防范领域内急需解决的重要问题之一。 红外热像仪及视频报警系统,是基于非制冷红外热像仪或可见光摄像机等硬件系统,采用红外/可见光复合成像、视频图像处理及自动行为分析报警等相关软件与之结合,将现有视频监控系统的良好天气下的人工监视、事后取证功能,提升为全天候条件下的免人为看护、电脑自动实时报警功能。系统可在夜间或者恶劣天气条件下(如大雨、大雾等)工作,不仅能节省大量的人力,同时可实现全天时全天候实时报警。不仅弥补了现有视频监控系统的不足,而且提升了安防系统的自动识别、自动报警等相关自动化程度,具有非常重要的社会作用,具有广阔的市场。 1、非制冷红外热像仪硬件系统

热成像技术原理及其应用

热成像技术原理及其应用(参考) 第一章导言 1 热成像系统技术基础 热成像系统能把物体发射的红外辐射(红外光)转变成可见光,从而将人类的视觉由可见光扩大到不可见红外光。人的眼睛不能响应0.4~0.7μm以外的光,要使人眼在夜间看东西象白天一样,使红外转换为可见景物的视觉判读成为可能,需目标相对背景有显著的发射率、温差和与大气窗口相一致的红外辐射传输通道;还需要一种光电器件能响应物体发射出的红外光子。 人眼是接受可见光辐射的最好敏感元件:眼睛的光谱响应范围0.4~0.7μm,正好符合太阳光源的输出峰值,这个波段集中了38%的太阳辐射能量,且地球上的物体具有良好的反射度;眼睛是一种理想的可见光波段量子噪声限探测器(量子能级的低噪声);人眼对非可见红外光有很好的滤波功能。 自然可见图像主要是由反射和反射度差产生。相反热像仪对红外光响应所形成的热图像主要是由发射率差产生。 目前热像仪工作的三个红外辐射传输的窗口是1μm~3μm,3μm~5μm,8μm~14μm。 2 热成像系统技术发展简述 最初的热成像系统是circa温度记录仪(1930);

1952年美国陆军制成第一台自动温度记录仪(采用双轴扫描和测辐射热探测器,照相胶卷记录图像),以后10年主要是民用; 1956年美国空军研制了第一台实时FLIR航扫仪(AN/A-AS-3),后发展改进研制了第一台二维图像的热像仪XA-1(单元扫描); 1960年Perkin-Elmer公司为陆军研制了地面FLIR(锑化铟、双折射棱镜扫描,5°视场、瞬时视场1mrad、帧频0.2); 1960~1974由空军和德克萨斯仪器公司及海军和休斯飞机公司分别制定扫描FLIR研制计划,研制完成60多种FLIR,产品几百件(试用于对北越轰炸); 到90年代初扫描型热像仪发展至顶盛,美国发展了采用64元、120元、180元制冷MTC探测器的热成像通用组件(以色列120元,英国32元和8条SPRITE探测器)同期世界上生产了约10万台热像仪(1代);80-90年代美国的标准组件计划是第一代红外热像仪(扫描型)发展的标志性事件。 九十年代末美国、法国(SOFRADIR)、英国、以色列相继研制并批量生产了非制冷焦平面探测器、制冷焦平面探测器,至此引发了一场热成像技术的革命,进入了2代热成像技术发展阶段。2000年,美国和法国的焦平面红外探测器产业化,这是第二代红外热像仪(凝视型)发展的标志性事件。2015年,低成本非制冷红外探测器产业化。 3 热成像系统工作原理 基本内容 辐射理论和目标识别 目标辐射的大气传输 热像仪指标体系 高效的红外光学系统 探测器及其工作条件(制冷、真空)

红外热成像技术应用与发展

红外热成像摄象机在智能视频监控中的应用与发展 一、引言 1672年,牛顿使用分光棱镜把太阳光(白光)分解为红、橙、黄、绿、青、蓝、紫等各色单色光,证实了太阳光(白光)是由各种颜色的光复合而成。1800年,英国物理学家 F. W. 赫胥尔从热的观点来研究各种色光时,偶然发现放在光带红光外的一支温度计,比其他色光温度的指示数值高。经过反复试验,这个所谓热量最多的高温区,总是位于光带最边缘处红光的外面。于是他宣布:太阳发出的辐射中除可见光线外,还有一种人眼看不见的“热线”,这种看不见的“热线”位于红色光外侧,叫做红外线。这种红外线,又称红外辐射,是指波长为0.78~1000μm的电磁波。其中波长为0.78 ~1.5μm 的部分称为近红外,波长为1.5 ~10μm的部分称为中红外,波长为10~1000μm的部分称为远红外线。而波长为2.0 ~1000μm的部分,也称为热红外线。 红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。这种红外线辐射是,基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量。分子和原子的运动愈剧烈,辐射的能量愈大;反之,辐射的能量愈小。 在自然界中,一切物体都会辐射红外线,因此利用探测器测定目标本身和背景之间的红外线差,可以得到不同的红外图像,称为热图像。同一目标的热图像和可见光图像不同,它不是人眼所能看到的可见光图像,而是目标表面温度分布的图像。或者可以说,它是人眼不能直接看到目标的表面温度分布,而是变成人眼可以看到的代表目标表面温度分布的热图像。运用这一方法,便能实现对目标进行远距离热状态图像成像和测温,并可进行智能分析判断。 众所周知,海湾战争已成为展示高科技武器使用先进技术的平台。在这些新科技中,红外热成像技术就是其中最为闪亮的高科技技术之一。红外热成像技术(Infrared thermal imaging technology)是利用各种探测器来接收物体发出的红外辐射,再进行光电信息处理,最后以数字、信号、图像等方式显示出来,并加以利用的探知、观察和研究各种物体的一门综合性技术。它涉及光学系统设计、器件物理、材料制备、微机械加工、信号处理与显示、封装与组装等一系列专门技术。该技术除主要应用在黑夜或浓厚幕云雾中探测对方的目标,探测伪装

红外热成像约翰逊准则

红外热成像约翰逊准则 This model paper was revised by the Standardization Office on December 10, 2020

红外热像仪探测距离_约翰逊准则 德图仪器小编在前面已经给大家做了近百篇红外热像仪技术文章,相信大家也对红外热像仪知识有所了解,今天,再给大家介绍下红外热像仪探测距离及约翰逊准则,希望能加深大家对红外热像仪的认知。 红外热像仪探测距离: 在自然界中一切温度高于绝对零度摄氏度)的物体都不断地辐射着红外线,这种现象称为热辐射。红外线是一种人眼不可见的光波,无论白天黑夜,物体都会辐射红外线。红外热像仪就是把这些人眼不可见的热辐射转变为人眼可见的热像图。由于红外热像仪只是被动地接收目标的热辐射,因此具有隐蔽性好等特点。 被动式红外热像仪一般工作在3—5μm和8—14μm这两个波段,相对于可见光和近红外而言,其波长比较长,穿透雨、雪、雾、烟尘等能力强,因此在国防、警用、安防等领域红外热像仪是一个非常有效的设备。 但用户购买热像仪常常会问一个问题:热像仪能看多远。这是一个特别重要的问题,但又是很难说清楚的问题。比如说,我们热像仪能看到146×106公里外的太阳,但不能说热像仪的探测距离能达到146×106公里。但这探测距离又是必须说清楚的一个问题,因为客户买热像仪是用来探测、监控目标的。 约翰逊准则: 探测距离是一个主观因素和客观因素综合作用的结果。主观因素跟观察者的视觉心理、经验等因素有关。要回答“热像仪能看多远”,必须先弄清楚“什么叫看清楚”,如探测一

个目标,甲认为看清楚了,但乙可能就认为没看清楚,因此必须有一个客观统一的评价标准。国外在这方面做了大量的工作,约翰逊根据实验把目标的探测问题与等效条纹探测联系起来。许多研究表明,有可能在不考虑目标本质和图像缺陷的情况下,用目标等效条纹的分辨力来确定红外热像仪成像系统对目标的识别能力,这就是约翰逊准则。目标的等效条纹是一组黑白间隔相等的条纹图案,其总高度为目标的临界尺寸,条纹长度为目标为垂直于临界尺寸方向的横跨目标的尺寸。等效条纹图案的分辨力为目标临界尺寸中所包含的可分辨的条纹数,也就是目标在探测器上成的像占的像素数。 目标探测可分为探测(发现)、识别和辨认三个等级。 探测 探测定义为:在视场内发现一个目标。这时目标所成的像在临界尺寸方向上必须占到个像素以上。 识别 识别定义为:可将目标分类,即可识别出目标是坦克、卡车或者人等。这是目标所成的像在临界尺寸方向上必须占到6个像素以上。 辨认 辨认的定义为:可区分开目标的型号及其它特征,如分辨出敌我。这是目标所成的像在临界尺寸方向上必须占到12个像素以上。

影响红外热成像法检测结果的几个因素

影响红外热成像检测结果的几个因素: 1红外热成像设备的性能; 1.1距离:由于判别饰面层的脱粘空鼓状况,至少需要识别5mm的大小范 围,所以要根据仪器的具体指标来计算仪器的最大检测距离。而不能 理解在规范中的10~50m范围内就行。 1.2视角镜头的视角越小,在相同距离下,在红外热像仪中的显示越大, 物体的细节越清晰;换一种方式来说,如果显示大小相同,那么镜头 度数越小,检测距离就可以越大、 1.3精度:红外热像仪图像的温度分辨率要求较高,测温的精度及准确度 并非十分的重要。满足在建筑领域应用时,温度分辨率小于0.1。c的要 求。因为分析图片时,温度分辨率越高,分析的图片越精细; 2被检测外墙的这种干扰因素; 2.1构造不同:不同的构造会出现不同类型的干扰,在红外图片分析中, 剔除干扰,找到真正的异常区是非常重要的。构造干扰,往往呈现出 一种规则的图像,比如梁、柱呈现出规则的低温; 2.2外墙面是否干净,是否平整,又没有色差;外墙的污渍以及色差呈现 出来的干扰是不规则的,这要根据肉眼观察、数码相片、以及复查时 加以确认; 2.3施工干扰:施工中的脚手眼、外架的附墙等。这类干扰,一般在图片 中分布的较为规则。这需要检测者有现场施工的经验,发现此类问题 时检测人员可以询问委托方核实。必要时委托方出具业主、监理和施 工单位三方签字的书面证明; 2.4环境干扰:检测中太阳照射在建筑物上投射的阴影,以及周边建筑物 的辐射干扰。此类干扰要求检测人员要在检测前,对各种环境干扰要 有一个大致的判断,这样在图片分析时,才能剔除此类干扰。 2.5实例 红外照片 6F

6F 初看红外图片,可以发现规则的方形高温区,现场查看结构图,发现高温区为填充墙,低温区为剪力墙,所以正常,此异常为构造不同造成的异常; 再细看红外图片,可看见在左边的最高的两层填充墙上出现了方形的高温区。当时判断,如果是空鼓不可能如此规则,到现场进行复测发现,在上述部位施工单位涂刷了一层胶质防水材料。 3检测时的气候条件; 3.1温度:红外辐射在被探测器接收之前,必然要经过大气、成像系统等 介质,造成红外损失。根据史蒂夫——波尔兹曼定律,黑体的全辐射 率和黑体热力学温度的四次方成正比。所以温度越高,物体发射的红 外线就越强。因而在一定范围内,高温跟有利于红外检测; 3.2日照:检测墙面的最佳时间段的选取,目的是为了突出外墙饰面层脱 粘空鼓部位与正常部位的温差,一般是选择立面受日照量最大的时刻; 3.3湿度:当大气湿度大于85%的情况下,由于水气密度增加,水汽对红 外辐射吸收的增大缘故,大气对目标物体辐射的衰减急剧加大,因此, 在雾天、雨天,不适宜进行红外检测; 3.4风速:检测气候条件应为晴好的天气,且室外平均风速不大于5m/s; 3.5实例 天气影响对红外图片的对比分析实例 图A

红外热像技术基础知识介绍

诱发企业安全事故的因素有众多,其Array中电气安全事故是当今企业的一个带有普 遍性的安全隐患,对用电系统的检查是每 一个企业安全风险评估必不可少的一项内 容。通常我们使用红外热像技术进行检测, 能有效地对电气设备进行预防性维护及评 估。 一、什么是红外热像技术? 红外辐射是自然界存在的一种最为广泛的电磁波辐射,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域,因此人的肉眼无法看见。 德国天文学家Sir William Herschel,Herschel让太阳光穿过一个棱镜并在各种颜色处放置温度计,利用灵敏的水银温度计测量每种颜色的温度,结果发现了红外辐射。Herschel发现,当越过红色光线进入他称为“暗红热”区域时,温度便会升高。 红外热成像技术是被动接收物体发出的红外辐射,其原理是基于自然界中一切温度高于绝对零度(-273℃)的物体,均会发出不同波长的电磁辐射,物体的温度越高,分子或原子的热运动越剧烈,则其中的红外辐射越强。黑颜色或表面颜色较深的物体,辐射系数大,辐射较强;亮颜色或表面颜色较浅的物体,辐射系数小,辐射较弱。红外辐射的波长在0.7μm~1mm之间,所以人眼看不到红外辐射。 通过探测物体发出的红外辐射,热成像仪产生一个实时的图像,从而提供一种景物的热 图像。并将不可见的辐射图像转变为人眼可见的、清晰的图像。热成像仪非常灵敏,能探测

到小于0.1℃的温差。 二、红外热像技术的特点: 非接触式测温 红外热像传感器无需与物体表面进行接触,即可远距离测温和成像。 热分布图像 通过将物体表面的温度值进行调色,红外热像技术可以直观地观察物体表面 热分布图像。 区域测温 红外热像测试的是物体表面整个面的温度值,可以同时测试上万个点甚至数十万个点的温度值。 三、什么是红外热像仪? 通俗地讲红外热像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。通过查看热图像,可以观察到被测目标的整体温度分布状况,研究目标的发热情况,从而进行下一步工作的判断。 人类一直都能够检测到红外辐射。人体皮肤内的神经末梢能够对低达±0.009°C (0.005°F) 的温差作出反应。例如,尽管人类可以凭借动物的热感知能力在黑暗中发现温血猎物,

红外热像仪原理、主要参数和应用

红外热像仪原理、主要参数和应用 红外热像仪原理、主要参数和应用 1. 红外线发现与分布 1672年人们发现太阳光(白光)是由各种颜色的光复合而成的。当时,牛顿做出了单色光在性质上比白光跟简单的著名结论。我们用分光棱镜可把太阳光(白光)分解为红、橙、黄、绿、青、蓝、紫等单色光。1800年英国物理学家赫胥尔从热的观点来研究各色光时,发现了红外线。 红外线的发现标志着人类对自然的又一个飞跃。随着对红外线的的不断探索与研究,已形成红外技术这个专门学科领域。 红外线的波长在0.76--100μM之间,按波长的范围可分为近红外、中红外、远红外、极远红外四类,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。 红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量,分子和原子的运动愈剧烈,辐射的能量愈大,反之,辐射的能量愈小。 温度在绝对零度以上的物体,都会因自身的分子运动而辐射出红外线。通过红外探测器将物体辐射的功率信号转换成电信号,成像装置的输出的就可以完全一一对应地模拟扫描物体表面温度的空间分布,经电子系统处理后传至显示屏上,得到与物体表面热分布相应的热像图。运用这一方法,便能实现对目标进行远距离热状态图像成像和测温并进行分析判断。 2. 红外热像仪的原理 红外热像仪是利用红外探测器、光学成像物镜和光机扫描系统(目前先进的焦平面技术则省去了光机扫描系统)接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元上,在光学系统和红外探测器之间,有一个光机扫描机构(焦平面热像仪无此机构)对被测物体的红外热像仪进行扫描,并聚焦在单元或分光探测器上,由探测器将红外辐射能转换电信号,经放大处理、转换为标准视频信号通过电视屏或监测器显示红外热像图。 这种热像图与物体表面的分布场相对应;实际上是被测目标物体各部分红外辐射的热像分布图由于信号非常弱,与可见光相比缺少层次和立体感,因此,在实际动作过程中为更有效地判断被测目标的红外热场,常采用一些辅助措施来增加仪器的实用功能,如图像亮度、对比度的控制,实际校正,伪色彩描绘等高线和直方进行运算、打印等。 简而言之,红外热像仪是通过非接触探测红外热量,并将其转换生成热图像和温度值,进而显示在显示器上,并可以对温度值进行计算的一种检测设备。红外热像仪能够将探测到的热量精确量化,能够对发热的故障区域进行准确识别和严格分析。 3. 红外热像仪的主要参数 (1) 工作波段:工作波段是指红外热像仪中所选择的红外探测器的响应波长区域,一般是3~5μm或8~12μm。 (2) 探测器类型:探测器类型是指使用的一种红外器件。如采用单元或多元(元数8、10、16、23、48、55、60、120、180、等),采用硫化铝(PBS)、硒化铅(PnSe)、碲化铟(InSb)、碲镉汞(PbCdTe)、碲锡(PbSnTe)、锗掺杂(Ge:X)和硅掺杂(SI:X)等。 (3) 扫描制式:一般为我国标准电视制式,PAL制式。

热成像仪原理

热成像仪原理 热成像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲热像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。 热像仪的应用非常广泛,只要有温度差异的地方都有应用。比如:在建筑领域,检查空鼓、缺陷、瓷砖脱落、受潮、热桥等;在消防领域可以查找火源,判定事故的起因,查找烟雾中的受伤者;公安系统可以找夜间藏匿的人;汽车生产领域可以检测轮胎的行走性能、空调发热丝、发动机、排气喉等性能;医学可以检测针灸效果、早期发现鼻咽癌、乳腺癌等疾病;电力检查电线、连接处、快关闸、变电柜等。 热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲热像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。 任何有温度的物体都会发出红外线,热像仪就是接收物体发出的红外线,通过有颜色的图片来显示被测量物表面的温度分布,根据温度的微小差异来找出温度的异常点,从而起到与维护的作用。一般也称作红外热像仪。 一.热像仪的发展 热像仪在最早是因为军事目的而得以开发,近年来迅速向民用工业领域扩展。自二十世纪70年代,欧美一些发达国家先后开始使用热像仪在各个领域进行探索。 热像仪也经过几十年的发展,已经发展成非常轻便的现场测试设备。由于测试往往产生的温度场差异不大和现场环境复杂等因素,好的热像仪必须具备160*120像素、分辨率小于0.1℃、空间分辨率小、具备红外图像和可见光图像合成功能等。 热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲热像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。 二.热像仪的品牌 作为世界最先进的高科技产品,热像仪的知名品牌主要集中在美国。近年来,我国在热像仪领域也取得了巨大进步,但是在技术上相对美国还有一定差距,相信国内品牌再经过几年的发展,一定能够和美国品牌抗衡。 热像仪的品牌非常多,客户在选择时,有点无从下手,在选择热像仪时,建议选择大品牌的热像仪。 2012年4月,美国知名的Thermal infrared imager TIMES,发布了2011年全球热像仪品牌排名,美国RNO连续5年荣登销量榜首,其PC160G热像仪更是以40%的市场份额连续8年荣登单品销量冠军。在选择时,可以根据这个排名,进行参考选择。同时选择适合自己的型号。 1. 美国RNO RNO公司于1940年成立于美国芝加哥,是全球历史最为悠久的热像仪生产企业,在二战中,RNO热像仪曾广泛应用美国军方。经过70年的发展,RNO下设了美国RNO热像仪公司,美俄合资RNO夜视仪公司。RNO是全球最为专业的热像仪公司,其下属的RNO夜视仪,在3,4代高端夜视仪领域拥有极大的知名度。

红外热成像检测技术的应用和展望

红外热成像检测技术的应用和展望 摘要:无损检测,是指在不会对材料或元件的有效性或可靠性造成损害的前提下,对其内部的异性结构(缺陷或损伤)进行探测、定位、识别及测量的一种实用性技术。红外热成像技术是在红外探测器、微电子和计算机技术的基础上发展起来的,属于综合性高新技术,该技术正朝着快速扫描、非致冷、焦平面阵列式接收、计算机图像处理的方向发展,利用便携式笔记本电脑控制的系统正日趋完善。 关键词:无损检测;热成像技术;应用;发展趋势

红外热成像无损检测技术(又称红外热波无损检测技术),是一门跨学科的技术,它的研究和应用,对提高航空航天器,多种军、民用工业设备的安全可靠性具有重要意义。1.红外热成像检测技术的原理 红外热成像无损检测技术的基本原理是利用被检物的不连续性缺陷对热传导性能的影响,使得物体表面温度不一致,即物体表面的局部区域产生温度梯度,导致物体表面红外辐射能力发生差异。借助红外热像仪探测被检物的辐射分布,通过形成的热像图序列就可推断出内部缺陷情况。 从理论上分析可知,材料或构件因内部缺陷将导致局部力学性能的强度改变,由于材料内部结构的不连续性,这种缺陷将引起材料或构件的热传导不连续,致使材料或构件的温度梯度不同,因而显现出的红外热图像也有所不同。通过研究被检测材料的内部缺陷及结构力学性能,找出其热传导特性与红外热图像之间的关系和机理,根据显示图像的温度梯度就可以确定缺陷的位置和范围,由温度梯度随时间变化的速率可以确定缺陷的深度。 采用红外热成像技术进行检测的特点是不受材料的几何结构及材质的限制,可以实现非接触、大面积的检测。 2.红外热成像检测技术的分类 根据探测方式不同,红外热成像检测技术可划分为透射式和反射式,其中反射式更便于使用;根据引起温差的方式不同,可划分为主动式和被动式。 主动式红外热成像检测技术可以对物体表面进行快速、准确的检测,并具有直观、非接触、单次检测面积大等特点。根据主动式激励源不同,主要划分脉冲红外热成像检测技术、锁相红外热成像检测技术和超声红外热成像检测技术等。 2.1脉冲红外热成像检测技术 脉冲红外热成像技术是一种集光、机、电为一体的非接触式无损检测方法,也是目前研究最多和最成熟的方法之一。工作原理如图1所示:以高能脉冲闪光灯作为激励热源,热流在被测构件内部传导过程中,若构件内部存在缺陷或损伤,则使得物体内部热分布将存在不连续性结构,从而导致其缺陷或损伤处的表面温度与无缺陷或损伤处有明显不同。 图1冲红外热成像检测技术的工作原理 脉冲红外热成像检测方式虽然简单实用,但是也存在着一些缺点:适于检测平板类构件,对于复杂结构构件检测存在困难;对热源的均匀性要求非常高;检测构件厚度有限,

红外热成像基本原理概论

红外热成像仪基本原理与发展前景概论 光电1201 王知权 120150111 前言 红外热像仪是利用红外探测器、光学成像物镜和光机扫描系统(目前先进的焦平面技术则省去了光机扫描系统)接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元上,在光学系统和红外探测器之间,有一个光机扫描机构(焦平面热像仪无此机构)对被测物体的红外热像进行扫描,并聚焦在单元或分光探测器上,由探测器将红外辐射能转换成电信号,经放大处理、转换或标准视频信号通过电视屏或监测器显示红外热像图。 原理 红外线是一种电磁波,具有与无线电波和可见光一样的本质。红外线的发现是人类对自然认识的一次飞跃。利用某种特殊的电子装置将物体表面的温度分布转换成人眼可见的图像,并以不同颜色显示物体表面温度分布的技术称之为红外热成像技术,这种电子装置称为红外热像仪。 这种热像图与物体表面的热分布场相对应;实质上是被测目标物体各部分红外辐射的热像分布图由于信号非常弱,与可见光图像相比,缺少层次和立体感,因此,在实际动作过程中为更有效地判断被测目标的红外热分布场,常采用一些辅助措施来增加仪器的实用功能,如图像亮度、对比度的控制,实标校正,伪色彩描绘等高线和直方进行数学运算、打印等。 红外成像系统简介 红外技术是一门研究红外辐射的产生、传播、转化、测量及其应用的技术科学。任何物体的红外辐射包括介于可见光与微波之间的电磁波段。通常人们又把红外辐射称为红外光、红外线。实际上其波段是指其波长约在0.75μm到1000μm 的电磁波。通常人们将其划分为近、中、远红外三部分。近红外指波长为 0.75-3.0μm;中红外指波长为3.0-20μm;远红外则指波长为20-1000μm。由于大气对红外辐射的吸收,只留下三个重要的“窗口”区,即1-3μm、3-5μm 和8-13μm可让红外辐射通过。 红外探测器是红外技术的核心,它是利用红外辐射与物质相互作用所呈现出来的物理效应来探测红外辐射的传感器,多数情况下是利用这种相互最用所呈现出的电学效应。红外探测器主要分为光子探测器和热敏感探测器两大类型。其中,光子探测器按原理啊可分为光电导探测器、光伏探测器、光电磁探测器和量子阱探测器。 光子探测器的材料有PbS,PbSe,InSb,HgCdTe(MCT),GaAs/InGaAs等,其中HgCdTe和InSb斗需要在低温下才能工作。光子探测器按其工作温度又可分为制

红外成像技术的发展及应用

红外成像技术的发展及应用 热成像仪是从对红外线敏感的光敏元件上发展而来,但是光敏元件只能判断有没有红外线,无法呈现出图像。在第二次世界大战中交战各国对热成像仪的军事用途表现出了兴趣,对其进行了零星的研究和小规模应用,1943年美国就与RNO合作生产了一款代号M12的机型,其功能和外观已经能看出热成像仪的雏形,这应该算是最找的一款热成像仪,算是热成像仪的鼻祖。 1952年,一款非常重要的材料研-锑化铟被开发出来,这种新的半导体材料促进了红外线热成像仪的进一步发展。不久之后,德州仪器和RNO公司联合开发出了具有实用价值的前视红外线(Forward looking infrared)热成像仪。这一系统采用的是单原件感光,利用机械装置控制镜片转动,将光线反射到感光元件上。 随着碲镉汞材料制造工艺的成熟,在军事领域大规模采用热成像仪成为了可能。60年代之后出现了由60或更多的感光元件组成的线性整列,美国的RNO公司将热成像仪的应用拓展至民用领域发展。然而由于最初采用的是非制冷感光元件,制冷部件加上机械扫描机构使得整个系统非常庞大。 等到CCD技术成熟之后,焦平面阵列式热成像仪取代了机械扫描式热成像仪。至80年代半导体制冷技术取代了液氮、压缩机制冷之后开始出现了便携、手持的热成像仪。90年代之后,RNO公司又开发

出了基于非晶硅的非制冷红外焦平面阵列,进一步降低了热成像仪的生产成本。 红外线,又称红外辐射,是指波长为0.78~1000微米的电磁波。其中波长为2~1000微米的部分称为热红外线。 目标的热图像和目标的可见光图像不同,它不是人眼所能看到的可见光图像,而是表面温度分布图像。红外热成像使人眼不能直接看到表面温度分布,变成可以看到的代表目标表面温度分布的热图像。所有温度在绝对零度(-273)℃以上的物体,都会不停地发出热红外线。红外线(或热辐射)是自然界中存在最为广泛的辐射,它还具有两个重要的特性:(1)物体的热辐射能量的大小,直接和物体表面的温度相关。热辐射的这个特点使人们可以利用它来对物体进行无需接触的温度测量和热状态分析,从而为工业生产,节约能源,保护环境等方面提供了一个重要的检测手段和诊断工具。(2) 大气、烟云等吸收可见光和近红外线,但是对3~5微米和8~14微米的热红外线却是透明的。因此,这两个波段被称为热红外线的“大气窗口”。利用这两个窗口,使人们在完全无光的夜晚,或是在烟云密布的战场,清晰地观察到前方的情况。由于这个特点,热红外成像技术在军事上提供了先进的夜视装备,并为飞机、舰艇和坦克装上了全天候前视系统。这些系统在现代战争中发挥了非常重要的作用。 全球红外热像仪市场发展具有广阔的前景并呈现良好的发展趋势。红外热像仪是一种用来探测目标物体的红外辐射,并通过光电转换、电信号处理等手段,将目标物体的温度分布图像转换成视频图像

红外热成像检测技术的应用与展望

红外热成像检测技术的应用与展望 无损检测,是指在不会对材料或元件的有效性或可靠性造成损害的前提下,对其内部的异性结构(缺陷或损伤)进行探测、定位、识别及测量的一种实用性技术。红外热成像技术是在红外探测器、微电子和计算机技术的基础上发展起来的,属于综合性高新技术,该技术正朝着快速扫描、非致冷、焦平面阵列式接收、计算机图像处理的方向发展,利用便携式笔记本电脑控制的系统正日趋完善。 红外热成像无损检测技术(又称红外热波无损检测技术),是一门跨学科的技术,它的研究和应用,对提高航空航天器,多种军、民用工业设备的安全可靠性具有重要意义。 1.红外热成像检测技术的原理 红外热成像无损检测技术的基本原理是利用被检物的不连续性缺陷对热传导性能的影响,使得物体表面温度不一致,即物体表面的局部区域产生温度梯度,导致物体表面红外 辐射能力发生差异。借助红外热像仪探测被检物的辐射分布,通过形成的热像图序列就可 推断出内部缺陷情况。 从理论上分析可知,材料或构件因内部缺陷将导致局部力学性能的强度改变,由于材 料内部结构的不连续性,这种缺陷将引起材料或构件的热传导不连续,致使材料或构件的 温度梯度不同,因而显现出的红外热图像也有所不同。通过研究被检测材料的内部缺陷及 结构力学性能,找出其热传导特性与红外热图像之间的关系和机理,根据显示图像的温度 梯度就可以确定缺陷的位置和范围,由温度梯度随时间变化的速率可以确定缺陷的深度。 采用红外热成像技术进行检测的特点是不受材料的几何结构及材质的限制,可以实现

非接触、大面积的检测。 2.红外热成像检测技术的分类 根据探测方式不同,红外热成像检测技术可划分为透射式和反射式,其中反射式更便于使用;根据引起温差的方式不同,可划分为主动式和被动式。 主动式红外热成像检测技术可以对物体表面进行快速、准确的检测,并具有直观、非接触、单次检测面积大等特点。根据主动式激励源不同,主要划分脉冲红外热成像检测技术、锁相红外热成像检测技术和超声红外热成像检测技术等。 2.1脉冲红外热成像检测技术 脉冲红外热成像技术是一种集光、机、电为一体的非接触式无损检测方法,也是目前研究最多和最成熟的方法之一。工作原理如图1所示:以高能脉冲闪光灯作为激励热源,热流在被测构件内部传导过程中,若构件内部存在缺陷或损伤,则使得物体内部热分布将存在不连续性结构,从而导致其缺陷或损伤处的表面温度与无缺陷或损伤处有明显不同。 图1冲红外热成像检测技术的工作原理 脉冲红外热成像检测方式虽然简单实用,但是也存在着一些缺点:适于检测平板类构件,对于复杂结构构件检测存在困难;对热源的均匀性要求非常高;检测构件厚度有限,当检测厚度较高的构件时,难以显示缺陷结果。 2.2锁相红外热成像检测技术

使用红外热成像仪检测中存在的问题及对策

使用红外热成像仪检测中存在的问题及对策 开封供电公司变电运行部运行部赵阳 摘要:随着”三集五大”体系建设和变电设备“状态检修”的大力推进,传统的传统的变电设备检修和运行模式发生了根本性改变,能够实时、有效、动态地评价设备健康状况成为确保设备安全、稳定运行的前提,红外成像仪是目前变电运行人员检测运行设备健康状况的有力保证,可以有效的避免因设备发热而造成的非计划停电,为提高供电可靠率做出了贡献 关键词:变电红外热成像仪检测规范存在的问题对策 引言:本文针对当前变电设备红外成像检测技术的应用中存在问题及改进方法进行了思考以及对红外测温未来发展的展望。由于这种技术无需对所测设备停电,即可准确发现安全隐患,所以更要充分利用好、发挥好红外成像检测这一高科技手段,夯实变电设备“状态检修”基础,确保运行的可控、在控、预控。 一目前在使用中所存在的问题: (1)重设备,轻人员,培训工作不到位。 目前,红外成像设备已基本覆盖到重要的生产班组,极大提高了生产一线的技术装备水平,然而,好的检测设备必须得到正确和规范的应用,才可能发挥其最好的性能,不能只重视检测设备的配置,而忽略了对人员进行必要的培训,目前对红外成像仪方面培训的主要方

式还是以产品说明书为主,没有专业的培训教材和权威的培训师资,虽然厂家的技术人员会不定期到各基层单位组织测温培训,但由于运行人员倒班的原因,造成了一线人员缺乏热像仪的操作技能培训,同时,昂贵的机器也需要专业的使用和维护技巧,没有经过专业培训,在使用红外线成像器材时就不可避免要出现:保养不当、充电电池报废、昂贵的红外线镜头被划损等等现象,既造成了经济损失,也影响了测温工作的正常开展。 对策:(1)建立完善的红外成像检测制度,对红外检测工作的准备、风险预控、规范、安全注意事项等进行详细的规定。同时根据各站所管辖的一、二次设备详细列表并建立测温表单,以表单的形式使测温制度和规范落到实处;(2)加强红外热成像仪使用技术的培训,考虑到运行人员工作的特殊性,可以首先由相关厂家的技术人员对各个部门的技术专责进行培训并考核,然后由各个部门的专责负责对各个集控站,变电站站长进行培训,最后由各个集控站,变电站站长在现场向各自站运行人员进行现场培训,由各个部门专责不定期到各站检查培训效果并加以考核,同时将培训和考核结果与每个月的绩效工资挂钩。制定针对红外测温的奖罚措施,这样才能从根本上保证运行人员“愿意学,学的会” 2、重测温,轻分析,技术标准不到位 目前,能够娴熟掌握红外成像分析软件的运行人员寥寥无几,怕麻烦、图省事,直接把测温照片复制粘贴,往缺陷上报系统上一传了

-红外热成像技术在医疗领域中的应用

热成像技术在医疗领域中的应用 一、医用热像图的理论基础 热成像技术(Thermography)又称温差摄影,是利用红外辐射照相原理研究体表温度分布状态的一种现代物理学检测技术。与精密的解剖学相比,热成像系统在反映人体生理的改变以及新陈代谢的进程方面有着独一无二的特性。 人是恒温动物,能维持一定的体温。用物理学的观点来看,人体就是一个自然的生物红外辐射源。它不断地向周围空间发散红外辐射能。当人体患病或某些生理状况发生变化时,这种全身或局部的热平衡受到破坏或影响,于是在临床上表现为组织温度的升高或降低。因此测定人体温度的变化,也就成为临床医学诊断疾病的一项重要指标。 医用热成像技术就是采用焦平面热探测器阵列(或光机扫描)将红外辐射能量转为电子视频信号,经过处理后形成被测物体的红外热图像,这种图像可在彩色监视器上显示,同时可送入计算机进行相应的数据处理,或存贮在硬盘或软盘上,也可由打印机打印成照片。红外热像图的诊断原理正是利用红外辐射能照相来研究体表温度分布状态,并将病变时的人体热像和正常生理状态下的人体热像进行比较,从而为某些疾病的诊断提供客观依据。 红外热成像探测的是人体自身皮肤辐射出的红外线,检查时既无创伤,又无不适,快速方便。它是绝对被动和不伤害人体的,这一点对于诊断工具来说,是非常重要的。 二、医用热像仪的应用领域 从热像仪的工作原理可知,热像仪探测的是人体表面的热辐射,皮肤是一个良好的红外辐射体,其比辐射率可达0.99以上,所以,体内器官的温度差异是可以经过热传导至体表从而被热像仪探测到的;同时,当体内深层器官的病变严重时,在体表也能探测到温度的差异,因此,医用热像仪不仅能诊断体表或接近体表的一些疾病,如皮肤、乳房、甲状腺肿瘤、血管疾病、关节病变等,而且对深层器官疾病的病变也起到很好的临床诊断作用。 医用热像技术用于临床诊断已有几十年历史,现已成为了诊断浅表肿瘤、血管疾病和皮肤病症等的有效工具。现就几个典型病症的诊断来进行简要的介绍。 1

浅谈红外热成像无损检测技术及其应用

浅谈红外热成像无损检测技术及其应用 摘要:随着社会的进步,科学技术的发展也越来越快,传统的无损检测技术渐渐已经不能满足时代的需求了,此时红外热成像无损检测技术被广泛的应用起来,红外热成像无损检测技术在现代各种新型企业和传统的工业中发挥着很大的作用。 关键词:红外热成像;无损检测技术;优缺点 从现在的新型科技企业来说,很多企业的设备在车间生产线上都安装和设置了无损检测程序,之前也有很多传统的无损检测技术出现,不过这些技术不管是在管理方面还是在实践上都存在一定的缺点,而红外热成像无损检测技术能较好的改善一些传统的无损检测技术不能达到的一些检测效果,如今它在很多领域也得到了应用,因为有它检测的便捷、准确性高等优点逐渐得到人们的认可。 1 红外热成像无损检测技术的简介 红外热成像无损检测技术是利用红外热成像原理来工作的。它是由热成像技术、红外标定技术、图象处理技术和图象压缩与恢复技术等多项高技术的集成。举个例子,就石油化工企业生产程序来说,对这个生产线所需要的仪器设备进行检测,首先是启动设备,之后在设备工作的时候就会散发出热量,每个仪器所散发出的热量是不一样的,在设备工作的时候,可以利用红外热成像仪器检测被测仪器的热量,这些热量会发射出辐射,在自然界中一切物体都会有电磁波辐射,之后根据辐射就会在红外热成像仪器上成像,根据成像的不同可以判断被测仪器的工作状态。 2 红外热成像无损检测技术的原理 相位法红外无损检测利用调制激励源在被测物体内部产生周期热波,由于物体内部缺陷产生的反射受到入射波的干扰而在物体表面形成一个可被红外热像仪记录的波形,用红外热像仪采集多幅热图像,经过图像序列信号重构,得到被测物体表面温度变化信号,提取被测物体表面各点温度变化的相位图和幅值图,据此判定缺陷的存在和特征。图1给出了采用红外相位法技术进行无损检测的原理。 2.1 红外无损检测系统的组成 如图2所示,一个典型的红外无损检测系统由以下几部分组成:热激励系统、红外热成像系统、红外图像采集、处理和分析系统。 2.2 激励系统 主动式红外无损检测系统必须要有一个热激励系统,用以造成被测材料内部稳态或瞬态不均匀温度场,使被测材料内部缺陷显示出来。光源激励系统主要包

红外热成像智能视觉监控系统

红外热成像智能视觉监控系统 “红外热成像智能视觉监控系统”是我司采用国内国际先进厂商监控设备并进行二次开发的“智能监控管理系统”。包括“红外热成像防火图像监控系统”、“嵌入式智能视觉分析安保系统”及“防感应雷系统”三部分。 该系统具有热成像防火检测、防盗入侵检测、非法停车检测、遗弃物检测、物品搬移检测、自动PTZ跟踪、徘徊检测等功能模块,可以很好为场区周界防范提供各种监控管理需求。而且产品具有自学习自适应能力,即使是在各种极端恶劣的环境和照明条件下也可以保持极高的性能——在保持%超高检测率的同时,只有极低的误报率(少于1个/天)。 防火检测: 通过红外热成像防火图像监控系统,工作人员在监控中心可对监控点周边半径1公里至5公里或更大的区域(设置动态轮循状态)进行24小时实时动态系统监控,能在第一时间侦察到地表火情或烟雾,并及时触发联动报警。帮助尽早发现灾情或隐患,及时处理可能突发的火灾及其他异常事件,并且为灾情发生时现场指挥提供依据。 防盗检测: 基于嵌入式智能视觉分析技术的监控跟踪系统,具有入侵检测和自动PTZ跟踪功能模块。支持无人值守、自动检测、报警触发录像、短信自动外发报警等功能。 车辆监控: 支持车容车貌监控、场区路线、远程实时WEB监控、监控录像、视频

存储、回放查询等功能。满足中心或其他相关单位对车辆运输的监控管理。防雷系统: 考虑到野外环境下系统运行的稳定性,防止外界强电压、大电流浪涌串入系统,损坏系统的设备,造成系统不能正常运行,我们将从视频信号、RS485控制信号、网络信号、电源四个方面做好防雷保护措施,以保证系统较好的抗干扰性。 系统拓扑图: 技术说明详解: ◆前端热成像仪技术详述 1)红外成像原理 自然界中一切温度高于绝对零度(-273.16摄氏度)的物体都不断地辐射着红外线,这种现象称为热辐射。红外线是一种人眼不可见的光波,无论白天黑夜,物体都会辐射红外线,但红外线不论强弱,人们都看不到。红外热像仪就是利用红外探测器、光学成像物镜接收被测目标的红外辐射信号(一切物体,只要其温度高于绝对零度,就会有红外辐射),经过红外光学系统红外探测器的光敏源上利用电子扫描电路对被测物的红外热像进行扫描转换成电信号,经放大处理、转换或标准视频信号通过电视屏或监测器显示红外热图像。利用这种原理制成的仪器为红外热成像仪。下图为一个典型的红外热成像系统工作原理图: 红外热成像系统,产生的图像是热图像,这种热像图与物体表面的热分布场相对应,实质上是被测目标物体各部分红外辐射的热像分布图,由于信

相关文档
最新文档