3-1-2空间向量的乘法运算

3-1-2空间向量的乘法运算
3-1-2空间向量的乘法运算

3.1.2空间向量的乘法运算

一、选择题

1.设M 是△ABC 的重心,记a =BC →,b =CA →,c =AB →,a +b +c =0,则AM →

为( ) A.b -c

2 B.c -b

2 C.

b -c

3

D.

c -b

3

[答案] D

[解析] M 为△ABC 重心,

则AM →=23????12(AB →+AC →)=13(AB →+AC →)=13

(c -b ).

2.如图所示,已知A ,B ,C 三点不共线,P 为一定点,O 为平面ABC 外任一点,则下列能表示向量OP →

的为( )

A.OA →+2AB →+2AC →

B.OA →-3AB →-2AC →

C.OA →+3AB →-2AC →

D.OA →+2AB →-3AC → [答案] C

[解析] 根据A ,B ,C ,P 四点共面的条件即可求得AP →=xAB →+yAC →.即OP →=OA →+xAB →

+yAC →,

由图知x =3,y =-2

3.当|a |=|b |≠0,且a 、b 不共线时,a +b 与a -b 的关系是( ) A .共面 B .不共面 C .共线

D .无法确定

[答案] A

[解析] 本题考查空间两向量的关系.由空间任何两个向量一定为共面向量可知选A. 4.i ∥\ j ,则存在两个非零常数m ,n ,使k =m i +n j 是i ,j ,k 共面的( ) A .充分非必要条件

B .必要非充分条件

C .充要条件

D .非充分非必要条件 [答案] A

[解析] 本题考查空间三个向量共面的条件.若i 不平行j ,则k 与i ,j 共面?存在惟一的一对实数x ,y 使k =x i +y j .故选A.

5.对空间任一点O 和不共线三点A 、B 、C ,能得到P 、A 、B 、C 四点共面的是( ) A.OP →=OA →+OB →+OC → B.OP →=13OA →+13OB →+13→

C.OP →=-OA →+12OB →+12OC →

D .以上皆错 [答案] B

[解析] 解法一:∵13+13+1

3=1,∴选B.

解法二:∵OP →=13OA →+13OB →+13OC →

∴3OP →=OA →+OB →+OC →

∴OP →-OA →=(OB →-OP →)+(OC →-OP →), ∴AP →=PB →+PC →,

∴PA →=-PB →-PC →

,∴P 、A 、B 、C 共面.

6.已知正方体ABCD -A ′B ′C ′D ′ ,点E 是A ′C ′的中点,点F 是AE 的三等分点,且AF =12

EF ,则AF →

等于( )

A.AA ′→

+12AB →+12AD →

B.12AA ′→+12AB →+12AD →

C.12AA ′→+16AB →+16AD →

D.13AA ′→+16AB →+16AD → [答案] D

[解析] 由条件AF =1

2

EF 知,EF =2AF ,

∴AE =AF +EF =3AF ,

∴AF →=13AE →=13(AA ′→+A ′E →

)=13(AA ′→+12A ′C ′→)

=13AA ′+16(A ′D ′→+A ′B ′→

)=13AA ′→+16AD →+16

AB →. 7.如图所示,空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c, 点M 在OA 上,且OM →=2MA →,N 为BC 中点,则MN →

等于( )

A.12a -23b +12c B .-23 a +12b +12c

C.12a +12 b -23c

D.23a +23b -12c [答案] B

[解析] MN →=ON →-OM →=12(OB →+OC →

)-23OA →

=12(b +c )-23a =-23a +12+1

2c .∴应选B. 8.以下命题:

①若a ,b 共线,则a 与b 所在直线平行;

②若a ,b 所在直线是异面直线,则a 与b 一定不共面; ③若a ,b ,c 三向量两两共面,则a ,b ,c 三向量一定也共面;

④若a ,b ,c 三向量共面,则由a ,b 所在直线确定的平面与由b ,c 所在直线确定的平面一定平行或重合.

其中正确命题的个数为( )

A .0个

B .1个

C .2个

D .3个

[答案] A

[解析] a ,b 共线是指a ,b 的方向相同或相反,因此a ,b 所在直线可能重合,故①错;由于向量是可以自由平移的,所以空间任意两个向量一定共面,故②错;从正方体一顶点引出的三条棱作为三个向量,虽然是两两共面,但这三个向量不共面,故③错;在平行六面体ABCD —A 1B 1C 1D 1中,AB →,A 1B 1→,DC →

三向量共面,然而平面ABCD 与平面ABB 1A 1相交,故④错,故选A.

9.在三棱锥S —ABC 中,G 为△ABC 的重心,则有( ) A.SG →=12(SA →+SB →+SC →)

B.SG →=13(SA →+SB →+SC →)

C.SG →=14(SA →+SB →+SC →)

D.SG →=SA →+SB →+SC → [答案] B

[解析] SG →=SA →+AG →=SA →+13(AB →+AC →)=SA →

13(SB →-SA →)+13(SC →-SA →)=13(SA →+SB →+SC →). 10.有下列命题:

①当λ∈R ,且a 1+a 2+…+a n =0时,λa 1+λa 2+…+λa n =0;

②当λ1,λ2,…,λn ∈R ,且λ1+λ2+…+λn =0时,λ1a +λ2a +…+λn a =0;

③当λ1,λ2,…,λn ∈R ,且λ1+λ2+…+λn =0时,a 1,a 2,…,a n 是n 个向量,且a 1

+a 2+…,a n =0,则λ1a 1+λ2a 2+…+λn a n =0.

其中真命题有( ) A .0个 B .1个 C .2个 D .3个

[答案] C

[解析] 由于λa 1+λa 2+…+λa n =λ(a 1+a 2+…+a n )=λ0=0, 故命题①为真命题.

由于λ1a +λ2a +…+λn a =(λ1+λ2+…+λn )a =0×a =0, 故命题②也为真命题.

命题③为假命题,例如当n =2时,取λ1=1,λ2=-1,a 1=a (a ≠0),a 2=-a ,则λ1a 1

+λ2a 2=a +(-1)(-a )=2a ≠0,但此时有λ1+λ2=0,a 1+a 2=0,命题③不成立.

二、填空题

11.已知i ,j ,k 是三个不共面向量,已知向量a =1

2i -j +k ,b =5i -2j -k ,则4a -3b

=________.

[答案] -13i +2j +7k

12.如图所示,已知矩形ABCD ,P 为平面ABCD 外一点,且PA ⊥平面ABCD ,M 、N 分别为PC 、PD 上的点,且PM ∶MC =2∶1,N 为PD 中点,则满足MN →=xAB →+yAD →+zAP →

的实数x =________,y =________,z =________.

[答案] -23 -16 1

6

[解析] 在PD 上取一点F ,使PF ∶FD =2∶1,连结MF ,则MN →=MF →+FN →

∵FN →=DN →-DF →=12DP →-13DP →

=16DP →=16(AP →-AD →

) MF →=23CD →=23BA →

=-23→

∴MN →

=-23→-16AD →+16AP →

∴x =-23 y =-16 z =1

6

13.如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是A 1A ,B 1B 的中点,O 为BD 1

的中点.设AB →=a ,AA 1→=b ,AD →

=c ,用a ,b ,c 表示下列向量:

(1)D 1N →

=________; (2)OM →

=________.

[答案] a -12b -c -12a -1

2c

[解析] (1)D 1N →

=a -12b -c

(2)OM →

=-12a -12

c

14.在平行六面体ABCD —A 1B 1C 1D 1中,若AC 1→=x ·AB →+2y ·BC →+3z ·C 1C →

,则x +y +z =________.

[答案] 76

[解析] 在进行空间向量的线性表示时,一定要与所求一致,才不至于犯错.如图所示,有AC 1→=AB →+BC →+CC 1→=AB →+BC →+(-1)·C 1C →.

又∵AC 1→=x ·AB →+2y ·BC →+3z ·C 1C →

∴x ·AB →+2y ·BC →+3z ·C 1C →=AB →+BC →+(-1)·C 1C →,

有????

?

x =1,2y =1,3z =-1,

解得?????

x =1,

y =1

2

,z =-13,

∴x +y +z =1+12-13=7

6.

三、解答题

15.如图,长方体ABCD -A 1B 1C 1D 1中,M 为DD 1的中点,N 在AC 上,且AN ∶NC =2∶1,求证:A 1N →与A 1B →、A 1M →

共面.

[解析] A 1B →=AB →-AA 1→,A 1M →=A 1D 1→+D 1M →=AD →-121→,AN →=23AC →=23

(AB →+AD →

).

∴A 1N →=AN →-AA 1→=23(AB →+AD →)-AA 1→

=23(AB →-AA 1→)+23(AD →-121→) =23A 1B →+23

A 1M →. ∴A 1N →与A 1

B →,A 1M →

共面.

16.如图,已知平行六面体ABCD -A ′B ′C ′D ′,点E 在AC ′上,且AE ∶EC ′=1∶2,点F ,G 分别是B ′D ′和BD ′的中点,求下列各式中的x ,y ,z 的值.

(1)AE →=xAA ′→+yAB →+zAD →; (2)BF →=xBB ′→+yBA →+zBC →; (3)GF →=xBB ′→+yBA →+zBC →. [解析] (1)∵AE ∶EC ′=1∶2, ∴AE →=13

AC →

=13(AB →+BC →+CC ′→)=13(AB →+AD →+AA ′→) =13AA ′→+13AB →+13AD →, ∴x =13,y =13,z =13.

(2)∵F 为B ′D ′的中点,

∴BF →=12(BB ′→+BD ′→)=12(BB ′→+BA →+AA ′→+A ′D ′→)

=12(2BB ′→+BA →+BC →)=BB ′→

+12BA →+12BC →, ∴x =1,y =12,z =12

.

(3)∵G 、F 分别为BD ′、B ′D ′的中点, ∴GF →=12′→

,∴x =12

,y =0,z =0.

17.已知i 、j 、k 是不共面向量,a =i -2j +k ,b =-i +3j +2k ,c =-3i +7j ,证明这三个向量共面.

[解析] 设a =λb +μc ,则i -2j +k =(-λ-3μ)i +(3λ+7μ)j +2λk , ∵i ,j ,k 不共面,∴????

?

-λ-3μ=13λ+7μ=-2

2λ=1

,∴???

λ=

12

μ=-1

2

故存在实数λ=12,μ=-1

2,使a =λb +μc ,

故a ,b ,c 共面.

18.已知三个向量a ,b ,c 不共面,并且p =a +b -c ,q =2a -3b -5c ,r =-7a +18b +22c ,向量p ,q ,r 是否共面?

[解析] 假设存在实数λ,μ,使p =λq +μr ,则a +b -c =(2λ-7μ)a +(-3λ+18μ)b +(-5λ+22μ)c ,

∵a ,b ,c 不共面,∴????

?

2λ-7μ=1-3λ+18μ=1

-5λ+22μ=-1,∴???

λ=53

μ=1

3

即存在实数λ=53,μ=1

3,

使p =λq +μr ,故p 、q 、r 共面.

向量运算法则知识讲解

(1)实数与向量的运算法则:设λ、μ为实数,则有: 1)结合律:a a )()(λμμλ=。 2)分配律:a a μλμλ+=+)(,b a b a λλλ+=+)(。 (2)向量的数量积运算法则: 1)a b b a ??=。 2))()()(b a b a b a b a λλλλ===???。 3)c b c a c b a ???+=+)(。 (3)平面向量的基本定理。 21,e e 是同一平面内的两个不共线向量,则对于这一平面内的任何一向量a ,有且仅有一对实数21,λλ,满足2211e e a λλ+=。 (4)a 与b 的数量积的计算公式及几何意义:θcos ||||b a b a =?,数量积b a ?等于a 的 长度||a 与b 在a 的方向上的投影θcos ||b 的乘积。 (5)平面向量的运算法则。 1)设a =11(,)x y ,b =22(,)x y ,则a +b =1212(,)x x y y ++。 2)设a =11(,)x y ,b =22(,)x y ,则a -b =1212(,)x x y y --。 3)设点A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--u u u r u u u r u u u r 。 4)设a =(,),x y λ∈R ,则a λ=(,)x y λλ。 5)设a =11(,)x y ,b =22(,)x y ,则a ? b =1212()x x y y +。 (6)两向量的夹角公式: cos θ(a =11(,)x y ,b =22(,)x y )。 (7)平面两点间的距离公式: ,A B d =||AB u u u r (A 11(,)x y ,B 22(,)x y )。 (8)向量的平行与垂直:设a =11(,)x y ,b =22(,)x y ,且b ≠0,则有: 1)a ||b ?b =λa 12210x y x y ?-=。 2)a ⊥b (a ≠0)? a ·b =012120x x y y ?+=。 (9)线段的定比分公式: 设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12 P P 的分点,λ是实数,且12P P PP λ=u u u r u u u r ,则

空间向量的加减数乘运算练习题集

课时作业(十四) [学业水平层次] 一、选择题 1.对于空间中任意三个向量a ,b,2a -b ,它们一定是( ) A .共面向量 B .共线向量 C .不共面向量 D .既不共线也不共面向量 【解析】 由共面向量定理易得答案A. 【答案】 A 2.已知向量a 、b ,且AB →=a +2b ,BC →=-5a +6b ,CD → =7a -2b ,则一定共线的三点是( ) A .A 、 B 、D B .A 、B 、 C C .B 、C 、D D .A 、C 、D 【解析】 BD →=BC →+CD →=-5a +6b +7a -2b =2a +4b ,BA → =-AB →=-a -2b ,∴BD →=-2BA →, ∴BD →与BA → 共线, 又它们经过同一点B , ∴A 、B 、D 三点共线. 【答案】 A 3.A 、B 、C 不共线,对空间任意一点O ,若OP →=34OA →+18OB →+18OC → ,则P 、A 、B 、C 四点( ) A .不共面 B .共面

C .不一定共面 D .无法判断 【解析】 ∵34+18+1 8=1, ∴点P 、A 、B 、C 四点共面. 【答案】 B 4. (2014·莱州高二期末)在平行六面体ABCD -A 1B 1C 1D 1中,用向量AB →,AD →,AA 1→表示向量BD 1→ 的结果为( ) 图3-1-9 =AB →-AD →+AA 1→ =AD →+AA 1→-AB → =AB →+AD →-AA 1→ =AB →+AD →+AA 1→ 【解析】 BD 1→=BA →+AA 1→+A 1D 1→=-AB →+AA 1→+AD → .故选B. 【答案】 B 二、填空题 5.如图3-1-10,已知空间四边形ABCD 中,AB →=a -2c ,CD → =5a +6b -8c ,对角线AC ,BD 的中点分别为E 、F ,则EF → =________(用向量a ,b ,c 表示).

高中数学必修二第六章第2节《平面向量的运算》解答题 (19)(含答案解析)

必修二第六章第2节《平面向量的运算》解答题 (19) 一、解答题(本大题共30小题,共360.0分) 1. 如图,在边长为1的菱形ABCD 中, ∠DAB =60° ,E 是线段CD 上一点,且满足|CE ????? |=2|DE ?????? |,设AB ????? =a ? ,AD ?????? =b ? . (1)用a ? ,b ? 表示BE ????? ; (2)在线段BC 上是否存在一点F 满足AF ⊥BE ?若存在,确定点F 的位置,并求|AF ????? |;否则,请说明理由. 2. 已知平面向量a =(3,4),b =(9,x ),c =(4,y ),且 ,a ⊥c . (1)求b ? 和c ? ; (2)若m =2a ?b ,n =a +c ,求向量m ? 与向量n ? 的夹角的大小. (3)当k 为何值时,向量ka +b 与向量a ?2b 共线.

3.已知向量a→=(sinx,2√3sinx?cosx),b→=(sinx,cosx),函数f(x)=a→?b→. (1)求f(x)的单调递增区间; ]时,求f(x)的值域. (2)当x∈[0,5π 12 4.已知平面向量a?=(3,4),b? =(9,x),c?=(4,y),且a?//b? ,a?⊥c?. (1)求b? 和c?; (2)若m??? =2a??b? ,n?=a?+c?,求向量m??? 与向量n?的夹角的大小. 5.已知ω>0,a?=(√3sinωx,?cosωx),b? =(cosωx,cosωx),f(x)=a??b? ,x1,x2是y=f(x)?1 2的其中两个零点,且|x1?x2|min=π.

向量运算法则和运算律比较1

向量运算法则和运算律

立体几何中的向量方法 一、常用方法:1、综合法;2、向量法;3、坐标法; 二、常用技巧:1、假设(存在性):假设结论成立,待定系数建立结论成立的方程(组),根据方程组是否有解来检验结论的正误。2、设元:在向量的几何运算中,将可以确定为基底的基向量设为元,用大字字母表示,其他向量用该基向量表示,可以简化计算过程。3、平方:长度求解。4:计算量:线性运算、比例(含对应坐标比)和数量积。5、赋值:法向量求解。 三、易错易混辨析(明确定理、公式运用的前提条件) 1、错把向量比直线,本质辨清是关键。⑴共线向量的平行或重合,主要是看两个向量所在的直线有没有公共点,如没有公共点,则对应的两条直线是平行的,如果有公共点,那么对应的两条直线是重合的。⑵注意辨析平行直线与平行向量:平行向量所在的直线既可以平行,也可以重合;但平行直线是指不重合的两条直线。 2、混淆向量与平面平行和直线与平面平行导致错误。线面平行要求直线必须在平面外,在利用向量证明线面平行时,需要说明对应的直线和平面的位置关系,这要求同学们在平时的学习中要注意充分理解定义、定理的实质。 3、混淆向量的夹角与空间角:利用向量数量积的性质求解有关平面或空间中角的问题时,要特别注意向量的夹角与所求角的区别与联系,切不可盲目套用而忽略角的取值范围。利用向量求二面

角时,向量求解一般不能保证所示角是锐角还是钝角,这时要结合实际图形对所求角进行适当的处理,不能混淆二面角与面面角的大小。 4、方向向量、法向量的最佳求法:方向向量、法向量的求设要注意结合图形特点,找到线线平行、线面垂直的最本质的有关向量(如图形中固有的平面的垂线),减少计算环节,优化解题步骤。 四、向量应用注意点 1、从点、线、面、体的关系看向量:向量是空间中有顺序的两点,两点的连线是有向线段,即可以看作是空间多面体的棱或边,也可以看作是空间中直线的一个部分,由于向量具有平行移动性,向量移动可以构成平面,共面向量与共面直线是有区别的,由向量构成平面,一般不用共线的两个向量,这与平面的确定方式有所不同。从平面向量到空间向量,是对向量的研究从一个平面扩展多个平面(至少三个),从二维平面转向三维空间,呈现多样性、复杂性的特点。 2、向量法的适用条件:空间向量法与坐标法的结合是一个重要工具,在普通的立体几何问题中,一般不是最佳方法,除非有意考查向量的应用,所以在立体几何的问题中,解题的方法首先考虑综合法,但在图形中具体线线关系、夹角、距离等不好寻找时,可以通过建立空间直角坐标系,向量在求解有关平行、垂直、夹角、距离等方面的优势才能突显出来,这类问题的立体几何图形一般是比较规则的,具有一定的特殊性,存在较多的平行、垂直关系,能找到建立空间直角坐标系所需要的三条两两垂直的直线,夹角、线段长度关系相对固定,容易求坐标值。 3、向量法的适用范围:在立体几何中构造向量,求解有关平行、垂直、夹角、距离、比值、共线(共面)等方面的问题时,要注意分析图形的特点,充分挖掘图形中的特殊关系(如平行、垂直、特殊角等),结合立体几何图形的有关性质、定理(这些是解决问题的基础),辨析向量关系与图形中相关关系的区别与联系,正确地将向量运算的结果“翻译”成相应的几何意义,关键点是考虑向量的方向性和移动性。 4、一题多解的训练:解题方法的多样化来自线线关系和向量构成的多样性,学习过程中,对待每一个题目,审题时要善于从多个角度进行思考,寻找多种解题方法,加强知识间的相互联系,拓展自己的解题思路,提高自己的综合能力。

平面向量数量积及运算基础练习题

精品 平面向量的数量积及运算练习题 一、选择题: 1、下列各式中正确的是 ( ) (1)(λ·a) ·b=λ·(a b)=a · (λb), (2)|a ·b|= | a |·| b |, (3)(a ·b)· c= a · (b ·c), (4)(a+b) · c = a ·c+b ·c A .(1)(3) B .(2)(4) C .(1)(4) D .以上都不对. 2、在ΔABC 中,若(CA CB)(CA CB)0+?-=,则ΔABC 为 ( ) A .正三角形 B .直角三角形 C .等腰三角形 D .无法确定 3、若| a |=| b |=| a -b |, 则b 与a+b 的夹角为 ( ) A .30° B .60° C .150° D .120° 4、已知| a |=1,| b |=2 ,且(a -b)和a 垂直,则a 与b 的夹角为 ( ) A .60° B .30° C .135° D .45° 5、若2AB BC AB 0?+=,则ΔABC 为 ( ) A .直角三角形 B .钝角三角形 C .锐角三角形 D .等腰直角三角形 6、设| a |= 4, | b |= 3, 夹角为60°, 则| a+b |等于 ( ) A .37 B .13 C .37 D .13 7、己知 | a |= 1,| b |= 2, a 与的夹角为60, c =3a+b, d =λa -b ,若c ⊥d,则实数λ的值为( ) A . 74 B .75 C .47 D .5 7 8、设 a,b,c 是平面内任意的非零向量且相互不共线,则其中真命题是 ( ) ① (a ·b)·c -(c ·a)·b=0 ② | a | -| b |< | a -b | ③ (b ·c)·a -(c ·a)·b 不与c 垂直 ④ (3a+2b) ·(3a -2b)= 9| a | 2-4| b | 2 A .①② B .②③ C .③④ D .②④ 9.(陕西)已知非零向量AB 与AC 满足0AB AC BC AB AC ?? ?+?= ???且12AB AC AB AC ?=, 则ABC △为 .A 等边三角形 .B 直角三角形 .C 等腰非等边三角形 .D 三边均不相等的三角形 10(全国Ⅰ文)点O 是ABC △所在平面内的一点,满足OA OB OB OC OC OA ?=?=?,则点O 是ABC △的 .A 三个内角的角平分线的交点 .B 三条边的垂直平分线的交点 .C 三条中线的交点 .D 三条高的交点 11.已知向量a =(x +z,3),b =(2,y -z ),且a ⊥b ,若x ,y 满足不等式|x |+|y |≤1,则z 的取值范围为( ). A .[-2,2] B .[-2,3] C .[-3,2] D .[-3,3]

《3.1.2 空间向量的数乘运算(1)》导学案(新部编)3

教师学科教案[ 20 – 20 学年度第__学期] 任教学科:_____________ 任教年级:_____________ 任教老师:_____________ xx市实验学校

《3.1.2 空间向量的数乘运算(1)》导学案3 学习目标 1. 掌握空间向量的数乘运算律,能进行简单的代数式化简; 2. 理解共线向量定理和共面向量定理及它们的推论; 3. 能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 学习过程 一、课前准备 (预习教材P 86~ P 87,找出疑惑之处) 复习1:化简: ⑴ 5(32a b -r r )+4(23b a -r r ); ⑵ ()() 63a b c a b c -+--+-r r r r r r . 复习2:在平面上,什么叫做两个向量平行? 在平面上有两个向量,a b r r , 若b r 是非零向量,则a r 与b r 平行的充要条件是 二、新课导学 ※ 学习探究 探究任务一:空间向量的共线 问题:空间任意两个向量有几种位置关系?如何判定它们的位置关系? 新知:空间向量的共线: 1. 如果表示空间向量的 所在的直线互相 或 ,则这些向量叫共线向量,也叫平行向量. 2. 空间向量共线:

定理:对空间任意两个向量,a b r r (0b ≠r r ), //a b r r 的充要条件是存在唯一实数λ,使得 推论:如图,l 为经过已知点A 且平行于已知非零向量的直线,对空间的任意一点O ,点P 在直线l 上的充要条件是 试试:已知5,28,AB a b BC a b =+=-+u u u r r r u u u r r r () 3CD a b =-u u u r r r ,求证: A,B,C 三点共线. 反思:充分理解两个向量,a b r r 共线向量的充要条件中的0b ≠r r ,注意零向量与任何向量共线. ※ 典型例题 例1 已知直线AB ,点O 是直线AB 外一点,若OP xOA yOB =+u u u r u u u r u u u r ,且x +y =1,试判断 A,B,P 三点是否共线? 变式:已知A,B,P 三点共线,点O 是直线AB 外一点,若12OP OA tOB =+u u u r u u u r u u u r ,那么t = 例2 已知平行六面体''''ABCD A B C D -,点M 是棱AA '的中点,点G 在对角线A 'C 上,且CG:GA ' =2:1,设CD u u u r =a r ,',CB b CC c ==u u u u r u u u r r r ,试用向量,,a b c r r r 表示向量',,,CA CA CM CG u u u r u u u r u u u u r u u u r .

平面向量的运算法则

平面向量运算法则 (1)实数与向量的运算法则:设λ、μ为实数,则有: 1)结合律:a a )()(λμμλ=。 2)分配律:a a μλμλ+=+)(,b a b a λλλ+=+)(。 (2)向量的数量积运算法则: 1)a b b a ??=。 2))()()(b a b a b a b a λλλλ===???。 3)c b c a c b a ???+=+)(。 (3)平面向量的基本定理。 21,e e 是同一平面内的两个不共线向量,则对于这一平面内的任何一向量a ,有且仅有一对实数21,λλ,满足2211e e a λλ+=。 (4)a 与b 的数量积的计算公式及几何意义:θcos ||||b a b a =?,数量积b a ?等于a 的长度||a 与b 在a 的方向上的投影θcos ||b 的乘积。 (5)平面向量的运算法则。 1)设a =11(,)x y ,b =22(,)x y ,则a +b =1212(,)x x y y ++。 2)设a =11(,)x y ,b =22(,)x y ,则a -b =1212(,)x x y y --。 3)设点A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--。 4)设a =(,),x y λ∈R ,则a λ=(,)x y λλ。 5)设a =11(,)x y ,b =22(,)x y ,则a ?b =1212()x x y y +。 (6)两向量的夹角公式: cos θ=(a =11(,)x y ,b =22(,)x y )。 (7)平面两点间的距离公式:

向量的乘法

向量的乘法 课时4 向量的数乘【学习目标】要求学生掌握和理解实数与向量的积的定义、运算律,理解向量共线的条件并会判断两向量共线的条件。【知识梳理】 1.实数与向量的积:定义:实数λ与向量的积是一个向量,记作λ,并规定:.运算定律:结合律:第一分配律:第二分配律: 2.向量共线定理: 【例题选讲】 1.已知向量、求作向量-2.5 和2 -3 。 例2.计算:(1)3( - )-2( +2 ) (2)2(2 +6 - )-3(-3 +4 -2 ) (3)(m+ n)( + )-(m+ n)( - ) 例3.已知向量 =2 -2 , =-3( - ),求证:,是共线向量。 例4.已知 =4 +2 , = +2 ,求证:M、P、Q三点共线。 【归纳反思】 1.在代数里,几个相等的实数相加,便得到几倍实数的概念,将它推广到几个相等的向量相加,就是正整数n与向量的积,关于数乘向量的这种运算,若将n推广到实数,就得到实数与向量的积的概念。 2.数乘向量可以像实数多项式那样去运算。 3.实数与向量的积是向量。 4.向量共线的等价条件是:()共线()【课内练习】 1.已知向量、是非零向量,在下列条件中,能使、共线的是(1)2 -3 =4 且 +2 =-3 (2)存在相异实数,使 + = (3)x +y = (其中实数x,y满足x+y=0)(4)已知梯形ABCD中,其中2.下列命题中,为真命题的是(1) // 存在唯一的实数,使 =λ;(2) // 存在不全为零的实数,使;(3)与不共线若,则(4)与不共线不存在实数使。 3.如图,中,,则为 A (2 + )B (2 + ) C (2 + ) D (2 + ) 4.如图,OADB是以向量,为边的平行四边形,又BM= BC,CN= CD,试用表示。 5.如图,点E、F分别是四边形ABCD的对角线AC,BD的中点,设,试用表示 【巩固提高】 1.已知点E是正方形ABCD的CD边的中点,若,则为A B C D 2.已知三个顶点A、B、C及平面内一点P,若则 A 点P 在内部 B 点P在外部 C 点P在AB边所在直线上 D 点P在AC线

3.1.1空间向量及其运算

3. 1.1空间向量及其运算(一) 教学目标: ㈠知识目标:⒈空间向量;⒉相等的向量;⒊空间向量的加减与数乘运算及运算律; ㈡能力目标:⒈理解空间向量的概念,掌握其表示方法; ⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. ㈢德育目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物. 教学重点:空间向量的加减与数乘运算及运算律. 教学难点:应用向量解决立体几何问题. 教学方法:讨论式. 教学过程: Ⅰ.复习引入 [师]在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量?向量是怎样表示的呢? [生]既有大小又有方向的量叫向量.向量的表示方法有: ①用有向线段表示; ②用字母a、b等表示; ③用有向线段的起点与终点字母:AB. [师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.[生]长度相等且方向相同的向量叫相等向量. [师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向量运算: ⒈向量的加法: ⒉向量的减法: ⒊实数与向量的积: 实数λ与向量a的积 是一个向量,记作λa,其长度 和方向规定如下: (1)|λa|=|λ||a| (2)当λ>0时,λa 与a同向; 当λ<0时,λa与a反向; 当λ=0时,λa=0. [师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢? [生]向量加法和数乘向量满足以下运算律 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 数乘分配律:λ(a+b)=λa+λb [师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们阅读课本

《空间向量的数乘运算》教学设计

教学设计 3.1.2空间向量的数乘运算 整体设计 教材分析 本节课是在学习了空间向量的相关概念和空间向量加减法法则的基础上学习的,是空间向量加减法法则的进一步应用和补充.本节课在介绍实数与向量乘积的意义的基础上引入空间向量共线定理,类比平面向量基本定理得到空间向量共面定理,为后面将要学习的空间向量基本定理打下基础,具有承上启下的重要作用. 因为空间向量的数乘运算以及空间向量共线定理与平面向量数乘运算以及共线定理完全一样,空间向量共面定理其实就是平面向量基本定理的逆定理,所以在教学中仍应采用类比、比较的教学方法,通过问题驱动、启发式、自主探究式的教学方法引导学生自主地完成本节课的学习. 课时分配 1课时 教学目标 知识与技能 1.掌握空间向量的数乘运算及其运算律. 2.理解共线向量定理和向量共面定理. 过程与方法 1.运用类比方法,经历向量的数乘运算和向量共线定理由平面向空间推广的过程; 2.引导学生借助空间几何体理解空间向量数乘运算及其运算律的意义. 情感、态度与价值观 1.培养学生的类比思想、转化思想,培养探究、研讨、综合自学应用能力; 2.培养学生的空间想象能力,能借助图形理解空间向量数乘运算及其运算律的意义; 3.培养学生空间向量的应用意识. 重点难点 教学重点: 1.空间向量的数乘运算及其运算律、几何意义;

2.空间向量的加减运算在空间几何体中的应用; 3.空间向量共线定理和共面定理. 教学难点: 1.空间想象能力的培养,思想方法的理解和应用; 2.空间向量的数乘运算及其几何的应用和理解; 3.空间向量共线定理和共面定理的理解. 教学过程 引入新课 提出问题:请同学们回忆“平面向量的数乘运算”的意义是什么,有什么性质,满足什么运算律. 活动设计:首先同学之间相互交流,教师适时介入,并一一板书出来. 活动结果:(板书) 1.实数λ和向量a的乘积λa是一个向量. 2.||λa=||λ||a. 3.λa的方向 ①当λ>0时,λa的方向和a方向相同; ②当λ<0时,λa的方向和a方向相反. 4.数乘运算的运算律: ①λ(μ a)=(λμ)a; ②λ(a+b)=λa+λb. 设计意图:这既复习了“平面向量的数乘运算”的意义、性质和运算律,又为类比得出“空间向量的数乘运算”的意义、性质和运算律作好了准备,而且在下面得出“空间向量的数乘运算”的意义、性质和运算律时,只需将“平面向量的数乘运算”中的“平面”换成“空间”即可.何乐而不为呢! 探究新知 提出问题1:上节课我们已经学习了空间向量的加减法运算,请同学们类比“平面向量的数乘运算”的意义、性质和运算律,猜想(给出)“空间向量的数乘运算”的意义、性质和运算律.即实数λ和向量a的乘积(λa)的意义是什么?有什么性质?满足什么运算律? 活动设计:教师从2a,-2a的意义中发现并类比平面中数乘的意义对学生进行引导,学生自己画出2a,-2a并总结λa的意义和运算律,然后自由发言,教师进行补充.师生发

向量的数量乘积

平面向量基本定理及坐标表示 【知识要点】 1.平面向量数量积的概念; 2.两向量夹角的概念及其取值范围 3.平面向量数量积的运算律 4.平面向量数量积的坐标表示 5.向量垂直的坐标表示的充要条件 【典型例题】 1.已知||3a =,||4b =,且()(3)33a b a b +?+=,则,a b 的夹角为____________ 2. 已知(3,0)a =,(,5)b k =且a 与b 的夹角为34 π,则k 的值为________________ 3.已知向量 (6,2)a =,(3,)b k =-的夹角是钝角,则k 的取值范围是_______________ 4.有四个向量满足a y x =-,2b x y =-且a b ⊥,||||1a b ==,则,x y 的夹角余弦值为 5.已知||3a =,||2b =,,a b 的夹角为60,则|2|a b -=______________ 6.已知两向量,a b ,||2a =,||2b =,,a b 的夹角为45,要使b a λ-与a 垂直,则λ=_________ 7.已知1)a =-,(1,b =,则a 在b 方向上的投影等于 ( ) A B 1 C 2 D 4 8.给定两个向量(3,4)a =,(2,1)b =-且()(),a xb a b +⊥-则x = ( ) A 23 B 232 C 233 D 234 9.P 是ABC ?所在平面上一点,若PA PB PB PC PC PA ?=?=?,则P 是ABC ?的 ( ) A 外心 B 内心 C 重心 D 垂心 10.已知(1,2)a =,(3,2)b =-,当k 为何值时, (1) ka b +与3a b -平行 (2) ka b +与3a b -垂直

向量的加减乘除运算

向量的加法满足平行四边形法则和三角形法则. 向量的加法OB+OA=OC. a+b=(x+x',y+y'). a+0=0+a=a. 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c). 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0 向量的减法 AB-AC=CB.即“共同起点,指向被 向量的减法减” a=(x,y)b=(x',y') 则a-b=(x-x',y-y'). 3、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣. 当λ>0时,λa与a同方向; 向量的数乘 当λ<0时,λa与a反方向; 向量的数乘当λ=0时,λa=0,方向任意. 当a=0时,对于任意实数λ,都有λa=0. 注:按定义知,如果λa=0,那么λ=0或a=0. 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩. 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或××反方向(λ<0)上缩短为原来的∣λ∣倍. 数与向量的乘法满足下面的运算律 结合律:(λa)·b=λ(a·b)=(a·λb). 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λ b. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b.②如果a≠0且λa=μa,那么λ=μ. 4、向量的数量积 定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a·b.若a、b不共线,则a·b=|a|·|b|·cos 〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣. 向量的数量积的坐标表示:a·b=x·x'+y·y'.向量的数量积的运算律 a·b=b·a(交换律); (λa)·b=λ(a·b)(关于数乘法的结合律); (a+b)·c=a·c+b·c(分配律); 向量的数量积的性质 a·a=|a|的平方.

高中数学选修2-1 同步练习 专题3.1.1空间向量及其加减运算、空间向量的数乘运算(原卷版)

第三章 空间向量与立体几何 3.1.1 空间向量及其加减运算 3.1.2 空间向量的数乘运算 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在平行六面体ABCD ﹣A 1B 1C 1D 1中,1AB AD AA ++= A .1AC B .1CA C .1BC D .1CB 2.已知空间任意一点O 和不共线的三点A ,B ,C ,若2CP CA CB =+,则下列结论正确的是 A .22OP OA OB OC =+- B .23OP OA OB OC =--+ C .23OP OA OB OC =+- D .22OP OA OB OC =+- 3.若OA ,OB ,OC 是空间不共面的三个向量,则与向量OA OB +和OA OB -不共面的向量是 A .BA B .OA C .OB D .OC 4.如图,已知AB =c ,AC =b ,若点D 满足2BD DC =,则AD = A .21 33+b c B .5 233-c b C . 2133 -b c D .123 3 + b c 5.如图,已知空间四边形ABCD 的对角线为AC ,BD ,设G 是CD 的中点,则1 ()2 AB BD BC + +=

A .BC B .CG C . 1 2 BC D .AG 6.如图,在底面为平行四边形的四棱柱中,是 与 的交点,若 ,则 下列向量中与 相等的向量是 A .11 22 -++a b c B . 11 22++a b c C . 11 22 -+a b c D .11 22 - -+a b c 7.在平行六面体1111ABCD A B C D -中,向量, , 是 A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 8.对于空间任意一点O 和不共线的三点A ,B ,C ,且有(),OP xOA yOB x C z zO y ∈=++R ,,则 1x y z ++=是P ,A ,B ,C 四点共面的 A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件 二、填空题:请将答案填在题中横线上. 9.给出下列命题: ①零向量没有方向; ②若两个空间向量相等,则它们的起点相同、终点也相同; ③若空间向量a ,b 满足=|a ||b |,则=a b ;

空间向量的数乘运算(一)

3.1.2空间向量的数乘运算(一) ------共线向量和共面向量 雷店高中 佘佳 【教学目标】 知识目标:理解共线向量定理和共面向量定理及它们的推论; 掌握空间直线、空间平面的向量方程和线段中点的向量公式. 能力目标:培养学生的空间想象能力; 培养学生的类比思想、转化思想; 培养学生探讨、研讨、综合自学应用能力; 培养学生空间向量的应用意识。 【教学重点】:共线、共面定理及其应用. 【教学难点】:共面定理的证明及应用 【教学方法】:问题探究式,启发引导式。 【课时安排】:一课时 【教学过程】: 一、引入新课 提出问题:平面向量的数乘运算的意义、性质、满足什么条件。由同学们互相交流,讨论,教师引导,并得出结果。 二 、新课讲解 思考:能否直接推广到空间向量,?空间向量的数乘运算的定义,方向,大小,运算律是怎样的? 利用道具和动画演示向量的平移,指出空间中任何两个向量都可以平移到同一个平面当中来,并指出任何两个空间向量的问题都可以用平面向量的结论来完成。并引出空间向量的数乘运算以及它的运算律。 思考:1.空间中任意两个向量共面吗? 2.两个向量贡献的充要条件是什么?能否推广到空间向量呢? 3.空间中三点共线上的充要条件是什么? (1).共线(平行)向量: 如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向 量。读作:a 平行于b ,记作://a b . 2.共线向量定理: 对空间任意两个向量,(0),//a b b a b ≠ 的充要条件是存在实数λ,使a b λ= (λ唯一). 由此可判断空间中两直线平行或三点共线问题 推论:如果l 为经过已知点A ,且平行于已知向量a 的直线,那么对空间任一点O , 点P 在直线l 上的充要条件是存在实数t ,满足等式a t OA OP += ①, 其中向量a 叫做直线l 的方向向量。 在l 上取A B a = ,则①式可化为O P O A t A B =+ 或(1)O P t O A t O B =-+ ② a l P B A

向量及向量的基本运算

向量及向量的基本运算 一、教学目标:1.理解向量的有关概念,掌握向量的加法与减法、实数与向量的积、向 量的数量积及其运算法则,理解向量共线的充要条件. 2.会用向量的代数运算法则、三角形法则、平行四边形法则解决有关问题.不断培养并深化用数形结合的思想方法解题的自觉意识. 二、教学重点:向量的概念和向量的加法和减法法则. 三、教学过程: (一)主要知识: 1)向量的有关概念 ①向量:既有大小又有方向的量。向量一般用c b a ,,……来表示,或用有向线段的起点与终点的大写字母表示,如:。向量的大小即向量的模(长度),记作||。 ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行。<注意与0的 区别> ③单位向量:模为1个单位长度的向量。 ④平行向量(共线向量):方向相同或相反的非零向量。任意一组平行向量都可以移到同一 直线上。相反向量:我们把与向量a 长度相等,方向相反的向量叫做a 的相反向量。记作-a 。 ⑤相等向量:长度相等且方向相同的向量。相等向量经过平移后总可以重合,记为b a =。 2)向量加法 ①求两个向量和的运算叫做向量的加法。设b a ==,,则a +b =+=。 向量加法有“三角形法则”与“平行四边形法则”。 说明:(1)a a a =+=+00; (2)向量加法满足交换律与结合律; 3)向量的减法 ① 相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量。记作a -,零向量的相反向量仍是零向量。关于相反向量有: (i ))(a --=a ; (ii) a +(a -)=(a -)+a =0 ; (iii)若a 、b 是互为相反向量,则a =b -,b =a -,a +b =0 。 ②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,记作:)(b a b a -+=-。求 两个向量差的运算,叫做向量的减法。 b a -的作图法:b a -可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)。 注:(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。

初中数学向量的线性运算图文答案

初中数学向量的线性运算图文答案 一、选择题 1.在平行四边形ABCD 中,AC 与BD 交于点M ,若设AB a =u u u r r ,AD b =u u u r r ,则下列选项 与1122 a b -+r r 相等的向量是( ). A .MA u u u r B .MB u u u r C .MC u u u u r D .MD u u u u r 【答案】D 【解析】 【分析】 根据向量加法的平行四边形法则和平行四边形的性质逐一判断即可. 【详解】 解:∵在平行四边形ABCD 中, AB a =u u u r r ,AD b =u u u r r , ∴AC AB AD a b =+=+u u u r u u u r u u u r r r ,BD AD AB b a =-=-u u u r u u u r u u u r r r ,M 分别为AC 、BD 的中点, ∴() 11112222 a M AC a b A b =+==----u u u r u u u r r r r r ,故A 不符合题意; () 11112222 MB BD b a a b =-=--=-u u u r u u u r r r r r ,故B 不符合题意; () 11112222a M AC a b C b =+=+=u u u u r u ur r u r r r ,故C 不符合题意; () 11112222MD BD b a a b ==-=-+u u u u r u u u r r r r r ,故D 符合题意. 故选D. 【点睛】 此题考查的是平行四边形的性质及向量的加、减法,掌握平行四边形的对角线互相平分和向量加法的平行四边形法则是解决此题的关键. 2.四边形ABCD 中,若向量与 是平行向量,则四边形ABCD ( ) A .是平行四边形 B .是梯形 C .是平行四边形或梯形 D .不是平行四边形,也不是梯形 【答案】C 【解析】 【分析】 根据题目中给的已知条件 与 是平行向量,可得AB 与CD 是平行的,且不确定 与 的大小,有一组对边平行的四边形可能是梯形或者平行四边形,故可得答案.

数学选修2-1 3.1空间向量及其运算教案

第三章空间向量与立体几何 §3.1空间向量及其运算 3.1.1 空间向量及其加减运算 师:这节课我们学习空间向量及其加减运算,请看学习目标。 学习目标:⒈理解空间向量的概念,掌握其表示方法; ⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 师:在必修四第二章《平面向量》中,我们学习了平面向量的一些知识,现在我们一起来复习。(不要翻书) (在黑板或背投上呈现或边说边写) 1、在平面中,我们把具有__________________的量叫做平面向量; 2、平面向量的表示方法:

① 几何表示法:_________________________ ② 字母表示法:_________________________ (注意:向量手写体一定要带箭头) 3、平面向量的模表示_________________,记作____________ 4、一些特殊的平面向量: ① 零向量:__________________________,记作___(零向量的方向具有任意性) ② 单位向量:______________________________ (强调:都只限制了大小,不确定方向) ③ 相等向量:____________________________ ④ 相反向量:____________________________ 5、平面向量的加法: 6、平面向量的减法: 7、平面向量的数乘:实数λ与向量a 的积是一个向量,记作λa ,其长度和方向规定如下: (1)|λa |=|λ||a | (2)当λ>0时,λa 与a 同向; 当λ<0时,λa 与a 反向; 当λ=0时,λa =0. 8、向量加法和数乘向量满足以下运算律 加法交换律:a +b =b +a 加法结合律:(a +b )+c =a +(b +c ) 数乘分配律:λ(a +b )=λa +λb 数乘结合律:λ(a μ)=a )(λμ [师]:刚才我们复习了平面向量,那空间向量会是怎样,与平面向量有怎样的区别和联系呢?请同学们阅读书P84-P86.(5分钟) [师]:对比平面向量,我们得到空间向量的相关概念。(在刚复习的黑板或幻灯片上,只需将平面改成空间) [师]:空间向量与平面向量有什么联系? [生]:向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的.所以凡涉及 空间两个向量的问题,平面向量中有关结论仍适用于它们。

(完整版)平面向量数量积运算专题(附答案)

平面向量数量积运算 题型一 平面向量数量积的基本运算 例1 (1)(2014·天津)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若AE →·AF → =1,则λ的值为________. (2)已知圆O 的半径为1,P A ,PB 为该圆的两条切线,A ,B 为切点,那么P A →·PB → 的最小值为( ) A.-4+ 2 B.-3+2 C.-4+2 2 D.-3+22 变式训练1 (2015·湖北)已知向量OA →⊥AB →,|OA →|=3,则OA →·OB → =________. 题型二 利用平面向量数量积求两向量夹角 例2 (1)(2015·重庆)若非零向量a ,b 满足|a |=22 3 |b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2 C.3π4 D.π (2)若平面向量a 与平面向量b 的夹角等于π 3,|a |=2,|b |=3,则2a -b 与a +2b 的夹角的余弦 值等于( ) A.126 B.-126 C.112 D.-1 12 变式训练2 (2014·课标全国Ⅰ)已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB → 与 AC → 的夹角为________.

题型三 利用数量积求向量的模 例3 (1)已知平面向量a 和b ,|a |=1,|b |=2,且a 与b 的夹角为120°,则|2a +b |等于( ) A.2 B.4 C.2 5 D.6 (2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB → |的最小值为________. 变式训练3 (2015·浙江)已知e 1,e 2是平面单位向量,且e 1·e 2=1 2.若平面向量b 满足b ·e 1=b ·e 2 =1,则|b |=________. 高考题型精练 1.(2015·山东)已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD → 等于( ) A.-3 2a 2 B.-34a 2 C.3 4 a 2 D.3 2 a 2 2.(2014·浙江)记max{x ,y }=????? x ,x ≥y ,y ,x

向量及向量的基本运算

向量及向量的基本运算 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

向量及向量的基本运算 一、教学目标:1.理解向量的有关概念,掌握向量的加法与减法、实数与向量 的积、向量的数量积及其运算法则,理解向量共线的充要条件. 2.会用向量的代数运算法则、三角形法则、平行四边形法则解决有关问题.不断培养并深化用数形结合的思想方法解题的自觉意识. 二、教学重点:向量的概念和向量的加法和减法法则. 三、教学过程: (一)主要知识: 1)向量的有关概念 ①向量:既有大小又有方向的量。向量一般用c b a ,,……来表示,或用有向线段 的起点与终点的大写字母表示,如:AB 。向量的大小即向量的模(长度),记作|AB |。 ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行。< 注意与0的区别> ③单位向量:模为1个单位长度的向量。 ④平行向量(共线向量):方向相同或相反的非零向量。任意一组平行向量都 可以移到同一直线上。相反向量:我们把与向量a 长度相等,方向相反的向量叫做a 的相反向量。记作-a 。 ⑤相等向量:长度相等且方向相同的向量。相等向量经过平移后总可以重合, 记为b a =。 2)向量加法 ①求两个向量和的运算叫做向量的加法。设b BC a AB ==,,则 a +b =BC AB +=AC 。向量加法有“三角形法则”与“平行四边形法则”。 说 明:(1)a a a =+=+00; (2)向量加法满足交换律与结合律;

3)向量的减法 ① 相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量。记作a -, 零向量的相反向量仍是零向量。关于相反向量有: (i ))(a --=a ; (ii) a +(a -)=(a -)+a =0 ; (iii)若a 、b 是互为相反向量,则a =b -,b =a -,a +b =0 。 ②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,记作:)(b a b a -+=-。求两个向量差的运算,叫做向量的减法。 b a -的作图法:b a -可以表示为从b 的终点指向a 的终点的向量(a 、b 有 共同起点)。 注:(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。 (2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点。 4)实数与向量的积 ①实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下: (Ⅰ)a a ?=λλ; (Ⅱ)当0>λ时,λa 的方向与a 的方向相同;当0<λ时,λa 的方向与a 的 方向相反;当0=λ时,0 =a λ,方向是任意的。 ②数乘向量满足交换律、结合律与分配律。实数与向量的积的运算律:设λ、μ为实数,则

相关文档
最新文档