始发托架计算书-附件

始发托架计算书-附件
始发托架计算书-附件

始发托架计算书

一、设计、计算总说明

算采用中国建筑科学研究院开发的PKPM2005版钢结构STS模块为计算工具。

二、计算原则

1、以偏向于安全性的原则。所有计算必须满足实际结构受力的情况,必须满足强度、刚度和稳定性的要求。

2、在满足第1项的前提下以更符合经济性指标为修改结构形式、截面参数等的依据。

3、参照其他施工单位成熟的设计经验为指导,借鉴其成熟的结构设计形式,以修改和复核计算为方向进行反力架结构设计。

4、但凡构件连接处除采用螺栓连接外,需要视情况进行必要的角焊缝加固,特殊情况下,可增设支托抗剪、焊钢板抗弯,以保证连接处强度不低于母体强度。

三、结构计算

3.1 始发托架的结构布置形式

始发托架有若干榀桁架组成,通过轨道梁把桁架连系在一起。形成整体受力结构。盾体之间作用在轨道梁上,由轨道梁传递荷载到桁架上,再由桁架传递到始发井底地基。轨道梁和桁架采用螺栓、焊接形式连接,钢板型号为Q235。如下图所示:

3.2 力学模型

如上图所示,始发托架为桁架体系结构。盾体引起的荷载直接作用在轨道梁上,通过桁架传递到井底基础。故轨道梁是计算分析的重点,而桁架只是起到把荷载均匀传递到基础。轨道梁实际是一等跨连续梁(如下图所示)。q (X)为盾体的重量,沿长度方向,盾体自重不一样,故q (X)为x 的应变量。

始发托架平面示意

始发托架立面示意

q

(x)

始发托架立面示意

3.3轨道梁受力分析:

如右图所示,由于轨道梁布置形式的特殊性,为了便于计算,把荷载P 分解成y 轴方向和z 轴方向两个力矢量P y ,P z 。P 即为上述q 线荷载在

剖切面上的点荷载。

其中:y z sin P ; P cos P; P O =ψ*=ψ*ψ=65

3.4荷载组合效应分析

考虑到盾构机始发、过站时,托架都要作为承重结构使用,故应分别计算始发、过站时盾体对托架的荷载效应。

始发姿态,盾体全部作用在始发托架上。如下图所示。

过站1姿态,前盾、刀盘作用在托架上,其余盾体在隧道内。

刀盘

始发托架轨道梁受力分解图

过站2姿态,中盾、前盾和刀盘作用在托架上,尾盾在隧道内。

刀盘

3.5荷载取值

根据盾构机自重和机身部位长度,可以得到详细的各部位的对托架的荷载作用值Q (x )。

Q (x )=H*9.8kN/t*/L ,可得下表详细资料。

则根据坐标变换有:

11657

*sin *sin 65298.22o y Q q kN m =

ψ==; 11657*cos *cos 65140.22o z Q q kN m =ψ==;

22530*sin *sin 65240.22o y Q q kN m =ψ==;

22530*cos *cos65111.22o z Q q kN m =ψ==;

33384*sin *sin 65174.22o y Q q kN m =ψ==;

33384*cos *cos6581.22o z

Q q kN m =ψ==

4477

*sin *sin 6535.22o y Q q kN m =ψ==;

4477

*cos *cos65

16.22o z Q q kN m =ψ

==;

3.6力学计算

根据以上分析和计算,我可以在PKPM 中建立轨道横梁在3

种姿态下的受力

刀盘

(kN)

16.545.2-45.2-16.568.546.60.1-130.555.113.7

-13.7-55.142.3253.6-238.8-57.1166.27.7-7.0-167.6 6.3183.9-183.9-6.3122.2 6.8-6.8-122.2 6.37.1

-7.1-6.3

258.0-252.1

224.7

-262.4

387.4

-244.4

-190.9

-193.6

255.7

91.3

-102.7

-105.34.8

-2.1始发姿态Y轴剪力包络图

(k N·m )

-18.9

-13.522.913.8

5.522.4

-0.4

14.60.5

18.9

-0.5

-25.7 0.0

1.6

18.622.3

-5.7

-39.00.09.8

14.7

63.4

0.0

-0.5169.60.8

-69.4

-44.7 0.053.1

0.0

-0.5123.10.5

-44.0

-16.8 0.02.2

0.0

-0.5

0.10.50.3

13.4-0.6

0.510.9-6.538.7

-38.1

-7.7-106.170.1-1.635.5

-31.0

50.4-79.3-0.7-0.90.4 4.9-0.70.6-0.1

-1.1

始发状态Z轴方向弯矩包络图

(kN·m)

9.9-24.4-0.811.2-0.333.4-1.50.3-0.50.30.3-0.30.3

0.436.7

-1.6

-13.2 0.03.2

33.8

33.3

-6.6

-43.6 0.01.432.5

10.2

0.0

-0.80.64.60.21.5

0.0-0.50.30.5

0.0-0.5 0.00.2

0.5 0.0-0.5 0.0

0.2

0.5

0.0

-0.4

0.0

0.2

28.6

-36.7

-0.51.60.6

-16.80.6

-4.10.6-0.60.6-0.3-0.60.5

-0.60.5

0.0-0.8

过站1姿态Y轴方向弯矩包络图

(kN·m)

-40.0

1.3-29.249.0

150.7

77.4

-0.9

32.0-0.4

0.8

40.0

-1.3

-54.70.23.7

39.4

47.7

-12.5

-83.80.321.2

31.6

135.9

-0.4

-0.7364.51.3

-149.6

-96.40.3115.6

-0.2

-0.7269.60.8

-96.6

-36.40.24.5

-0.2

-0.8

0.40.90.4始发姿态Y轴方向弯矩包络图

28.5-1.523.5-13.9

83.2

-81.9

-16.629.8

-227.9-3.612.0-67.7

-1.548.1

110.3

-173.3-2.00.810.8

-1.5

1.5

-2.1(k N)

30.2-30.2

0.0-47.3-3.3-2.5

-2.5-2.5-2.7-2.4

-2.3

-2.6

218.3

-363.9

117.0

-251.8

9.5

4.1

2.8

-1.7

1.7

-1.7

1.7

-1.7

1.8

-1.7

12.1-12.130.1-30.141.5

-41.547.3

2.52.5

-2.516.0-16.0 2.5

3.3 2.5 2.5 2.4 2.7 2.6 2.3过站1姿态Y轴方向剪力包络图

(k N)

21.2-7.6

-61.0-6.4-25.5

118.0-78.0-2.9

-3.2-55.8

-3.1

-2.9

121.8

-118.3

104.8

-122.3

181.1

-114.6

-87.9

-90.5

117.7

41.1

-46.3

-48.9

3.0

-1.7

7.6-21.2

31.921.5

0.125.5

6.419.3-26.1

-111.277.4-3.23.5 2.984.1-84.1

55.8

3.2 2.9 3.1始发姿态Z轴方向剪力包络图

(kN·m)

-17.1

4.7-11.5-0.4

5.2-0.1-7.9-0.7

0.1-0.30.1

0.30.1

0.1

0.1

0.3

17.1

-0.7

-6.3 0.01.4

15.7

15.8

-2.9

-20.6 0.015.4

4.9

0.0

-0.50.12.1

0.2

0.9

0.0

-0.40.00.00.2

0.4

0.0

-0.4 0.00.2

0.4

0.0

-0.4 0.00.2

0.4

0.0

-0.3

0.0

0.2

-0.2

0.713.30.6

0.3

15.7

0.3

-1.9

0.3

-0.3-0.2

-0.30.3-0.2

-0.30.2-0.5

过站1姿态Z轴方向弯矩包络图

(kN)

0.2208.2

-4.2-41.9 4.4

16.0-4.2

5.3-4.2

-4.0

-4.2

357.1

-274.3

-159.1

-161.8

230.8

-358.5

117.4

-251.8

9.5

4.0

2.9

-1.9

2.0

-1.9

过站2姿态Y轴方向剪力包络图

49.8-48.016.7-16.7

-4.2

-208.2138.8-179.4

40.7

-23.116.049.0

-47.347.3-4.4 4.2-16.04.2-5.3 4.2 4.0(kN·m)

0.1

0.923.3 4.4

0.4-0.3

-0.7

0.20.4

0.2

0.0

0.4

49.2

-0.1

-0.8165.60.4

-64.1

-31.4 0.023.3

-0.5

-5.515.9

-3.0

-20.615.4

4.9

0.0

-0.60.10.9

0.0

-0.40.00.20.5

0.0

-0.4 0.0

0.257.1-49.2

-0.4-102.069.9-0.413.7-14.4

-0.4

-12.1

3.2

15.0

4.6

-1.30.5

-7.9

15.6

0.4

-1.9

0.0

-0.4

-0.50.42.1

0.20.2过站2姿态Z轴线方向弯矩包络图

-0.7 0.0

截面,而是把这个通长布置的梁作为抗扭转、抗剪切安全储备。

转化后截面形状参数见下图; 截面参数计算:

2150*432150A mm ==;

2230*2507500A mm ==;

23434*4017360A mm ==;

24300*309000A mm ==;

*2150*515.57500*47917360*2479000*15

25221507500173609000

s z

c

s A y y mm A

+++=

=

=+++∑∑;

32323232411*50*432150*263.5*250*307500*227121211*40*43417360*212*300*309000*23720955528041212z I mm ????=+++ ? ?

????

????

++++= ? ?????

333341111

*30*300*434*40*30*250*43*50109325083.412121212

y I mm =

+++= 4

320955528047352816.8(537252)T z Z

o

c I mm W mm h y mm ===--;

4

20955528048315685.7252B

z z

c I mm W mm y mm

===;

3109325083.4

728833.9/2

150

y y I W mm B =

=

=;

转化O

C

4.2查内力包络图,求最大内力值 4.2.1各状态下内力极值

始发态:

M +ymax =364.5kN.m ;M +zmax =169.6kN.m ; M -ymax =135.9kN.m ;M -zmax =63.4kN.m ; V ymax =387.4kN ;V zmax =181.1kN ; 过站1姿态:

M +ymax =48.6kN.m ;M +zmax =20.6kN.m ; M -ymax =33.8kN.m ;M -zmax =15.7kN.m ; V ymax =363.9kN ;V zmax =169.2kN ; 过站2姿态:

M +ymax =356.1kN.m ;M +zmax =165.6kN.m ; M -ymax =105.5kN.m ;M -zmax =49.2kN.m ; V ymax =358.5kN ;V zmax =166.6kN ;

4.2.2各状态下内力最大截面应力极值

始发姿态下内力极值

66

max

max ymax

364.5*10169.6*10184.3** 1.5*8315685.7 1.5*728833.9

y z B

z y M M MPa W W σ

γγ+++=+=+= 66

max

max ymax

135.9*1063.4*1070.3** 1.5*7352816.8 1.5*728833.9y z T z y M M MPa W W σ

γγ---

=+=+= 33

max

max max

387.4*10181.1*1027.41736036010

y z V V MPa As A τ=+=+= 过站1姿态下内力极

66

max

max

ymax 48.6*1020.6*10

22.7** 1.5*8315685.7 1.5*728833.9y z B

z y M M MPa W W σγγ+

+

+=

+

=+=

托架计算书

甬台温铁路木周岭大桥 (62+2×112+62)m预应力砼连续梁0#段托架受力计算书 中铁十三局二公司甬台温铁路木周岭特大桥项目部 浙江大学交通工程研究所 2007 . 6

甬台温铁路木周岭大桥(62+2×112+62)m预应力 混凝土连续梁零号段托架受力计算 木周岭特大桥零号节段施工时利用临时支墩,通过临时支墩连接成托架共同支承模板及零号节段悬臂部分的混凝土,所以需要对托架的受力进行分析。 1. 计算依据 (1)木周岭特大桥挂篮设计图纸,中铁十三局二公司甬台温铁路木周岭特大桥项目部; (2)甬台温铁路新建工程施工图,铁道部第四勘察设计院。 2. 托架空间几何模型及各构件的截面惯性矩 根据木周岭特大桥挂篮设计图纸可得到托架的局部几何模型,见图2.1所示,模板系统及浇筑的部分混凝土通过前横梁及后横梁传递至前支点和后支点上,其中后支点的竖向荷载传递到临时支墩的钢管混凝土上,再传递到承台上。据此,可抽象出分析托架时的有限元计算模型,见图2.2所示。 图2.1 托架局部几何

杆件a和杆件b相交点处为铰接,竖向荷载作用于此处的铰接点处。杆件a和杆件b另一端点为铰接约束条件。图中数字表示截面的主轴方向,在杆件a和杆件b上的数字与梁断面的数字符号的含义相同。 图2.2 托架计算模型 杆件a和杆件b相交点处为铰接,竖向荷载作用于此处的铰接点处。杆件a和杆件b另一端点为铰接约束条件。图中数字表示截面的主轴方向,在杆件a和杆件b上的数字与梁断面的数字符号的含义相同。 根据图2可确定出各梁杆的截面特性,详见表1所示。 表1 各梁杆截面特性 3. 计算结果及分析 采用两结点梁单元对图2所示的托架进行离散,离散后的有限单元见图3.1所示。 在未上三角形挂篮前模板的重量考虑为25t,对于零号块来说,临时支墩外侧悬臂长度为3.00m,所以作用于整个托架上的荷载重量为 250+3.00(长度)×40.40(面积)×26(重度)=3401.2kN 作用于单侧托架前端点的作用力为3401.2/4=850.3kN。另一端力传递到临时支墩

盖梁抱箍法施工计算书

盖梁抱箍法施工计算书 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

目录

抱箍法施工计算书 1、计算依据 《路桥施工计算手册》 《辽宁省标准化施工指南》 《辽宁中部环线高速公路铁岭至本溪段第四合同段设计图》及相关文件2、专项工程概况 盖梁施工采用抱箍法,抱箍采用2块半圆弧形钢板制作,使用M24的高强螺栓连接,底模厚度10cm,每块长度;充分利用现场已有材料,下部采用I14工字钢作为横梁,横梁长度为,根据模板拼缝位置按照间距布置,共需27根;横梁底部采用2根I45C工字钢作为纵梁,纵梁长度为15m;抱箍与墩柱接触部位夹垫2~3mm橡胶垫,防止夹伤墩柱砼;纵横梁梁两端绑扎钢管,安装防落网。下面以体积最大的浑河大桥8#右幅盖梁为例进行抱箍相关受力计算。 浑河大桥8#墩柱直径为2m,柱中心间距,盖梁尺寸为××, C40砼,盖梁两端挡块长度为×(上口,下口)×,C40砼。 图1 抱箍法施工示意图 3、横梁计算 荷载计算 盖梁钢筋砼自重:G1=×26KN/m3= 挡块钢筋砼自重:G2=×26KN/m3= 模板自重:G3=98KN 施工人员:G4=2KN/m2××= 施工动荷载:G5=2KN/m××=,倾倒砼时产生的冲击荷载和振捣砼时产生的荷载均按2KN/㎡考虑。 横梁自重G6=××27= 横梁上跨中部分荷载:G7=G1+G2+G3+G4+G5+G6=++98+×2 += 每根横梁上所受荷载:q1= G7/15=27= 作用在每根横梁上的均布荷载:q2= q1/==m

两端悬臂部分只承受施工人员荷载,可以忽略不计。力学模型 图2 力学模型 分配梁抗弯与挠度计算 由分析可知,横梁跨中弯矩最大,计算如下: Mmax=q 2l2/8- q 2 l 1 2/2=××2=·m 图3 分配梁弯矩示意图 Q235 I14工字钢参数:弹性模量E=×105Mpa,截面惯性矩I=712cm4,截面抵抗矩W= ①抗弯计算 σ= Mmax/W= ×103=<[σ]=170Mpa 结论:强度满足施工要求。 ②挠度计算 f max = f=ql4(5-24λ2)/384EI =×(5-24×22)/(384××105×712×10-5)=<l/400= 结论:挠度变形满足施工要求。 4、纵梁计算 Q235 I45C工字钢参数:弹性模量E=×105Mpa,截面惯性矩I=35278cm4,截面抵抗矩W= 荷载计算 每根纵梁上所承受的荷载为: 横梁自重G8=××27= 纵梁自重G9=×15= 纵梁上总荷载:G9=G7/2+G8/2+G9=2+2+= 纵梁所承受的荷载假设为均布荷载:q3=G9/==m 同样,两端悬臂部分所受施工人员荷载安全防护装置荷载可忽略不计。 力学计算模型 图4 纵梁计算力学模型 (1)中间段在均布荷载作用下的弯矩

箱梁桥满堂支架设计计算

满堂支架设计计算(一) (0#台—1#墩) 目录 一、设计依据 (1) 二、地基容许承载力 (1) 三、箱梁砼自重荷载分布 (1) 四、模板、支架、枕木等自重及施工荷载 (2) 五、支架受力计算 1、立杆稳定计算 (5) 2、立杆扣件式钢管强度计算 (6) 3、纵横向水平钢管承载力 (6) 4、地基承载力的检算 (6) 5、底模、分配梁计算 (7) 6、预拱度计算 (12) 一、设计依据 1.《京承高速公路—陡子峪大桥工程施工图》 2.《公路钢筋砼及预应力砼桥涵设计规范》JTJ023-85 3.《公路桥涵施工技术规范》JTJ041-2000 4.《扣件式钢管脚手架安全技术规范》JGJ130-2001 5.《公路桥涵钢结构及木结构设计规范》JTJ025-86 6.《简明施工计算手册》 二、地基容许承载力

根据本桥实际施工地质柱状图,地表覆盖层主要以亚粘素填土为主,地基承载力较好。 为了保证地基承载力不小于12t/㎡,需要进行地基处理。地基表皮层进行土层换填,换填如下:开挖标高见图纸,底层填0.5m中砂,经过三次浇水、分层碾压(平板震动器)夯实,地基面应平整,夯实后铺设5cm石子,继续压实,并进行承载力检测。整平地基时应注意做好排水设施系统,防止雨水浸泡地基,导致地基承载力下降、基础发生沉降。钢管支架和模板铺设好后,按120%设计荷载进行预压,避免不均匀沉降。 三、箱梁砼自重荷载分布 根据设计图纸,箱梁单重为819t。 墩顶实心段砼由设于墩顶的底模直接传递给墩身,此部分不予检算。对于空心段箱梁,根据《0#台-1#墩出京线30米跨箱梁满堂支架施工总体布置图》,综合考虑箱梁横截面面积和钢管支架立杆纵向间距,空心段箱梁腹板等厚段下方,纵桥向间距最大的立杆受力最不利。根据立杆纵桥向布置,受力最不利立杆纵向间距取为d=(0.9+1.2)/2=1.05m。本计算书主要检算该范围箱梁和支架受力。 钢管支架立杆纵向间距为30cm、60cm、90cm、120cm四种形式,横向间距为120cm+3×60cm+3×90cm+60cm+3×90cm+3×60cm+120cm。根据钢管支架立杆所处的位置分为四个受力区,详见《0#台-1#墩出京线30米跨箱梁满堂支架施工总体布置图(二)》。 各受力区钢管支架立杆所承受钢筋砼自重荷载详见下表: 分区号ⅠⅡⅢⅣ钢管间距(cm)120 60 90 60 截面面积(m2) 1.20 2.65 2.38 1.49 立杆钢管数(根) 4 4 6 2 单根钢管承重(t)0.82 1.81 1.08 2.03 根据上表,位于中腹板处间距60cm的立杆受力最大,单根钢管承受最大钢筋砼荷

京沪高铁托架计算书

悬浇托架计算书 一、工程概况 京沪高速铁路土建六标五工区第四作业工区承建阳澄湖桥段位 于昆山境内,标段范围:DK1252+017.79~DK1256+911.65,里程长度4.89km。 主要工程内容:五座连续梁,分别为:跨娄江连续梁(70m+136m+70m)、跨沪宁铁路连续梁(40m+72m+40m)、跨江浦路连续梁(40m+72m+40m)、跨朝阳西路连续梁(40m+56m+40m)、跨通澄南路连续梁(40m+56m+40m)。连续梁全部为实体方墩,墩身尺寸9×3.8米。 连续梁上部结构采用挂篮悬浇法施工。0#、1#块采用托架现浇。0#块、1#块节段长度分别为9米,3.5米。在安全、经济的原则下,对托架进行设计、验算。 二、计算依据及参考资料 1、时速350公里客运专线铁路无碴轨道现浇预应力混凝土连续梁(双线)铁路工程建设通用参考图―铁道部经济规划研究院发布; 2、《铁路桥梁钢结构设计规范》(TB 10002.2-2005 J 461-2005); 3、《铁路桥涵钢筋混凝土和预应力混凝土结构设计规范》(TB 10002.3-2005 J 462-2005); 4、《结构设计原理》叶见曙——人民交通出版社; 5、《钢结构原理与设计》王国周——清华大学出版社; 6、《结构力学教程》龙驭球包世华——高等教育出版社;

三、整体设计 0#块、1#块悬出部分长6.1m。设计托架横梁长6.1米。 根据安全,经济的原则,并保证托架拆装的方便性,拟采用如下结构:墩身每侧布置两片托架。安装时,先将托架吊装放置于牛腿上,然后将其竖梁上部用JL32精轧螺纹钢与墩身锚固即可。托架外框横梁、斜撑、左侧竖杆均采用双[36c格构式杆件。内框竖、横、斜杆均采用单[36c型钢。杆件之间均用螺栓联结。墩身托架布置图附后。 图一:设计模型 四、计算分析内容 1、牛腿受力以及牛腿底部混凝土局部承压计算 2、JL32预应力拉杆计算 3、各杆件的强度、刚度、稳定性验算 4、各杆螺栓联结结点设计、验算 五、计算简图 1、计算荷载

盖梁抱箍法计算书

附件6 抱箍法计算书 二道窝铺大桥最大的盖梁为C30钢筋砼,总方量为36.03m3,砼容重取25KN/m3。采用两根50a工字钢作为纵梁,间距1.6~2m,纵梁长12m,纵梁上布置14工字钢作为横梁,横梁长4m,间距为40cm,共31根。抱箍采用两块半圆形钢板制作,钢板厚12mm,高66cm,抱箍牛腿钢板厚20mm,宽35cm,采用30根M24的高强螺栓连接,为提高墩柱与抱箍之间的摩擦力,保护墩柱混凝土面,墩柱与抱箍之间设置3mm厚的橡胶垫。布置结构如图所示: 1、荷载大小 ⑴施工人员、机具、材料荷载取值: P1=2.5KN/㎡ ⑵混凝土冲击及振捣混凝土时产生的荷载取值: P2=2.5KN/㎡ ⑶盖梁钢筋混凝土自重荷载: ①变截面处: P31=30.625KN/㎡ ②均截面处: P32=40KN/㎡

⑷模板支架自重荷载取值: P4=1.5KN/㎡ 2、I14工字钢受力检算 14工字钢的弹性模量E=2.1×105MPa,惯性矩I=712cm4,截面系数W=102 cm3,理论重量m=16.89kg/m,Q235钢的抗剪强度f v取85 MPa,抗弯强度f m取145MPa,则以单根横梁为例进行验算。 ⑴荷载计算 ①施工人员、机具、材料荷载: q1=P1l=2.5×0.4=1KN/m ②混凝土冲击及振捣混凝土时产生的荷载: q2=P2l=2.5×0.4=1KN/m ③盖梁钢筋混凝土自重荷载: q31=P31l=30.626×0.4=12.25KN/m;q32=P32l=40×0.4=16KN/m ④模板、支架及横梁自重荷载 q4=P4l+ g k=1.5×0.4+0.17=0.77KN/m 考虑分项系数,其中①②项为1.4,③④项为1.2,则均截面处的荷载为: (1+1)×1.4+(16+0.77)×1.2=22.924 KN/m 变截面处的荷载为: (1+1)×1.4+(12.25+0.77)×1.2=18.424KN/m 横梁的受力模型为简支结构,则根据弯矩计算公式: M max= ql2/8=22.924×22/8=11.462KN.m, 抗弯强度验算: 应力σ= M max /W=11.462 KN.m /(102cm3)=114 MPa<f m=145 MPa,符合要求。 挠度验算: ω=5ql4/384EI=5×22.924×16×1012/384×2.1×105×712×104=0.003mm<[ω] =l/800=2.5mm,符合要求 3、I50a工字钢受力检算 50a工字钢的弹性模量E=2.1×105MPa,惯性矩I=46500cm4,截面系数W=1860 cm3,理论重量m=93.654kg/m,Q235钢的抗剪强度f v取85 MPa,抗弯强度f m取145MPa,纵梁的跨距为7m,则以单根纵梁为例进行验算。

桥梁支架计算书

**高速公路(贵州境)***合同段 **分离式桥现浇箱梁支架计算书 编制: 复核: 审核: *********有限公司 年月日

**分离式立交桥现浇箱梁支架计算书 一、计算依据: 1、《路桥施工计算手册》; 2、《材料力学》; 3、《结构力学》; 4、《**高速公路两阶段施工图设计变更设计》 二、工程概况: **分离式立交桥为连接原有道路的主线跨线桥,上部结构跨径组合为:2×30m,桥宽5.5m;采用单箱单室截面,梁高150cm,箱梁采用满堂支架现浇施工。 梁体范围内地面为煤系地层,施工满堂支架时需将地面压实,上铺石粉或浇筑混凝土进行找平,支架底托下垫10cm×15cm方木,顶托上纵向铺工字钢,横向铺设10cm×10cm方木。 一、底板纵向分配梁的计算 现浇箱梁跨径组合为2×30m,由于箱梁整体为对称结构,因此计算时纵向只需考虑2个截面即可,及跨中和梁端(见图)。横向分为中间部分、腹板部分和翼板部分,翼板部分荷载较小,不予考虑。采用容许应力计算不考虑荷载分项系数,为了支架安全,总体考虑1.3倍的安全系数进行计算。

根据《路桥施工计算手册》查得,钢材的力学指标取下值: []σ145Μpa =,[]85pa τ=M ,52.110pa E =?M 。 纵梁选用10号工字钢,设计受力参数为: W=49.0cm 3,I=245.0cm 4,S=28.2cm 3,d=0.45cm 一、验算截面分析 我们根据箱梁截面,初步选定支架的纵向间距为90cm ,横向间距为60cm 。根据梁体截面分析,梁端截面为支架受力的最不利截面,因此只需要计算梁端截面处支架的受力情况即可。具体截面如下: 二、计算 支架纵向间距为90cm 处的分配梁计算 梁端截面

支架计算书

2m高标准联箱梁: 方案一:箱梁横梁下60cm(纵向)×90cm(横向)排距进行搭设,腹板及翼缘转角下120cm(纵向)×90cm(横向)排距进行搭设,过渡段空箱下(距桥墩中线6m范围)按120cm(纵向)×90cm(横向) 排距进行搭设,其余空箱下按120cm (纵向)×180cm(横向)排距进行搭设,步距采用150cm。 方案二:箱梁横梁下60cm(纵向)×120cm(横向)排距进行搭设,过渡段腹板空箱下(距桥墩中线6m范围)按90cm(纵向)×120cm(横向) 排距进行搭设,其余腹板下按120cm(纵向)×60cm(横向)排距进行搭设,空箱下按120cm(纵向)×120cm(横向)排距进行搭设,步距采用150cm。 ⑴主线桥2m高3跨标准联支架搭设示意图 宽2m高箱梁支架横断面搭设示意图(方案一)(单位mm) 宽2m高箱梁支架纵断面搭设示意图(方案一)(单位mm)

宽2m高箱梁支架搭设平面示意图(方案一)(单位mm) 宽2m高箱梁支架横断面搭设示意图(方案二)(单位mm) 宽2m高箱梁支架纵断面搭设示意图(方案二)(单位mm)

宽2m高箱梁支架搭设平面示意图(方案二)(单位mm) 支架体系计算书 1.编制依据 ⑴郑州市陇海路快速通道工程桥梁设计图纸 ⑵《建筑施工碗扣式钢管脚手架安全技术规范》(JGJ166-2008) ⑶《建筑施工模板安全技术规范》(JGJ162-2008) ⑷《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011)。 ⑸《混凝土结构工程施工规范》(GB50666-2011) ⑹《建筑结构荷载规范》(GB50009-2012) ⑺《建筑施工手册》第四版(缩印本) ⑻《建筑施工现场管理标准》(DBJ) ⑼《混凝土模板用胶合板》(GB/T17656-2008) ⑽《冷弯薄壁型钢结构技术规范》(GB 50018-2002) ⑾《钢管满堂支架预压技术规程》(JGJ/T194—2009) 2.工程参数 根据箱梁设计、以及箱梁支架布置特点,我们选取具有代表性的箱梁,拟截取箱梁以下部位为计算复核单元,对其模板支架体系进行验算,底模厚度15mm、次龙骨100×100mm方木间距以计算为依据,主龙骨为U型钢,其下立杆间距: ⑴(主线3跨标准联,跨径3*30m),宽高,箱梁断面底板厚22cm、顶板厚 25cm,跨中腹板厚,翼板厚度为20cm。 根据不同位置采用不同的支架间距。 方案一:箱梁横梁下60cm(纵向)×90cm(横向)排距进行搭设,腹板及翼缘转角下120cm(纵向)×90cm(横向)排距进行搭设,过渡段空箱下(距桥墩中线6m范围)按120cm(纵向)×90cm(横向) 排距进行搭设,其余空箱下按120cm (纵向)×180cm(横向)排距进行搭设,步距采用150cm。 方案二:箱梁横梁下60cm(纵向)×120cm(横向)排距进行搭设,过渡段腹

抱箍计算

武冈至靖州(城步)高速公路土建工程第三合同段 (K21+400~K32+300) 中国中铁 盖梁施工抱箍 受力计算书 中铁五局(集团)有限公司 武靖高速公路第三合同段项目经理部

盖梁施工抱箍受力计算书 一、抱箍结构设计 抱箍具体尺寸见抱箍设计图,主要包括钢带与外伸牛腿的焊接设计两方面的内容,其中牛腿为小型构件,一般不作变形计算,只作应力计算。 二、受力计算 1、施工荷载 1)、盖梁混凝土和钢筋笼(2**=方,平均密度吨/3m)自重为: ×=(吨) 2)、钢模自重为:吨 3)、支垫槽钢(采用10型槽钢,理论线密度10kg/m,共17根,每根长)自重为: ××17=(吨) 4)、工字钢(采用40b型工字钢,理论线密度为m,共2根,每根长18m)自重为:2×18×=(吨) 5)、连接工字钢的钢板(共4块,每块重79kg)自重为: 4×=(吨) 6)、钢模两翼护衬(单侧护衬重150kg)自重为: 2×=(吨) 7)、施工活荷载: 10人+混凝土动载+振捣力=10×+×+=(吨) 8)、总的施工荷载为: ++++++=(吨) 9)、考虑安全系数为,则施工总荷载为: ×=(吨) 10)、单个牛腿受力: ÷=(吨) 2、计算钢带对砼的压应力 σ可由下式计算求得: 钢带对立柱的压应力 1 μσBπD=KG 1 其中: μ—摩阻系数,取 B—钢带宽度,B=600mm D—立柱直径,D=1800mm K—荷载安全系数,取 G—作用在单个抱箍上的荷载,G=848kN σ=KG/(μBπD)=×848×1000/×600××1800)=<[]cσ 则: 1 =,满足要求。 其中:

塔楼模板支架施工方案计算书

青田县瓯江四桥(步行桥)工程 塔楼施工方案 检算书 计算: 复核: 审核: 中铁四局集团有限公司 青田县瓯江四桥(步行桥)工程项目经理部 二〇一六年九月十日 青田项目部塔楼施工模板支架计算书 1编制依据 (1)《青田县瓯江四桥(步行桥)工程相关设计图纸》; (2)《建筑扣件式钢管脚手架安全技术规范》(JGJ130-2011); (3)《建筑施工计算手册》(第二版); (4)《建筑施工承插型盘扣式钢管支架安全技术规程》JGJ231-2010 (5)《建筑施工模板安全技术规范》JGJ162-2008 (6)《建筑结构荷载规范》GB50009-2012

(7)《钢结构设计规范》GB50017-2003 (8)《混凝土结构设计规范》GB50010-2010 (9)《建筑地基基础设计规范》GB50007-2011 (10)《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011 2方案简介 青田县瓯江四桥(步行桥)工程设计瓯南桥头塔楼一座、瓯南滨水塔楼一座、瓯北滨水塔楼一座、瓯北桥头塔楼一座,总建筑面积为2817.76m2。 其中瓯南桥头塔楼位于P1墩处,地上三层,建筑高度16.940m,为混凝土框架结构;瓯南滨水塔楼地上四层,建筑高度29.928m,结构形式为混凝土剪力墙结构; 瓯南、瓯北桥头塔楼及滨水塔楼外排脚手架及承重支架全部采用盘扣式钢管脚手架。 瓯北滨水塔楼地上七层,建筑高度36.368m,结构形式为混凝土剪力墙结构;瓯北桥头塔楼地上四层,建筑高度17.720m,为混凝土框架结构。瓯南、瓯北桥头塔楼为钻孔桩加承台基础,待承台及基础梁施工完成后搭设内外脚手架,然后再进行柱梁板钢筋模板混凝土施工,待下层施工完成后继续安装上层脚手架并进行下一步工序施工。 瓯南滨水塔楼采用P3和P4墩承台作为基础,瓯北滨水塔楼采用P8和P9墩承台作为基础,在承台施工时预留塔楼墙柱插筋,待墩身施工完成后,搭设塔楼内外脚手架进行塔楼墙柱梁板的施工,瓯南、瓯北桥头塔楼建筑施工完成后再进行相应的箱梁施工。瓯南、瓯北桥头塔楼计划于2017年1月16日进行装饰施工;瓯南、瓯北滨水塔楼装饰施工计划于2016年6月10日开始。 根据现场实际情况以及经济合理性,瓯南、瓯北塔楼施工起重吊装选择汽车吊进行物资的上下倒运作业。 按照主体结构施工顺序,在墙柱钢筋及模板施工完成后,开始进行梁的施工。首先进行满堂支撑架的架设,再进行顶板模板的施工,之后进行梁位置的定位放线,再施工梁模板和梁钢筋,最后进行梁的加固。 (1)梁模支设:模板采用15mm竹胶板,加固肋条采用100×100木方及φ48×3.0钢管做背肋,对于高度小于600mm的梁不采用对拉螺杆,当梁高600~800mm时设一道对拉拉杆,高度大于800mm的梁设两道对拉螺杆,螺杆水平向间距@600mm。 (2)搭设梁底模支架,在柱子上弹出轴线、梁位置及水平标高线,钉柱头模板。按设计标高调整顶托标高,然后放梁底模,并拉线找平,当梁底跨度大于或等于4m时,梁底模起拱按设计要 求做,当设计无具体要求时,起拱高度为1‰-3‰跨长。 (3)梁模支架设单排立杆加顶托、二道水平拉杆并设剪刀撑。根据所弹墨线安装梁侧模板,顶撑杆及斜撑等。立杆纵向间距控制在500-600㎜,梁底增设一根立杆,即横距500㎜,其他同楼板支撑系统,梁下钢管扣件必须设置双扣件,防止滑扣。

钢管支架计算书630

钢管支架计算书 天津海河大桥钢箱梁吊装时,需在M19节段吊装过程中搭设钢管移动支架,下面根据支架搭设方案进行计算: 1、荷载计算 M19节段重量为187.08T,整体受力。 2、计算钢管支架的轴力 据提供的数据:P总=1870.8KN,钢管支架自重为450KN,则最下面钢管所承受的最大轴力为:N=2320.8KN,取N=2400KN进行控制计算 3、验算钢管的强度(4Φ720,D=10MM) 钢管支架的强度验算由下式计算:N/A m <[б] б=N/A m =2400/(4×223)=2.69KN/cm2 б=N/A m =2400/(4×194.7)=3.08KN/cm2 而[б]=170Mpa=17 KN/cm2,故安全。 4、整体稳定性验算 钢管支架的整体稳定性由下式计算: N/A m <ψ[б] (1)截面力学特性(如下图) 钢管支架截面力学特性计算图(尺寸单位:cm) 如图所示,立柱由4Φ720,d=10mm的钢管组成,查表有 A m =223cm2,I X /=140579.2cm4 A m =194.7cm2,I X /=93639.59cm4 I X =4×(I X /+A m ×r 2 2)=4×(140579.2+3102×223) =86283516.8cm4 I X =4×(I X /+A m ×r 2 2)=4×(93639.59+3102×194.7) =75217238cm4

(2):计算整体稳定性折减系数 计算构件的长细比λ h : 由《钢结构设计手册》查得格构式压弯杆件的长细比计算公式: λ h =(λ 2+27A d /A q )1/2 λ h =(λ 2+27A d /A q )1/2 λ 0 =L /i=3600/25.1=143.42 λ =L /i=3600/21.93=164.16 26948.5056 51273.76 A d =1218.4cm2 A d =83390.66cm2 35887.76 A q =2×4800=864cm2 A q =71706.72cm2 代入计算有λ h =143.4 代人计算有λ h =164.2 查《钢结构设计手册》附表,得ψ 1=0.339 ψ 1 =0.273 (3)立柱的整体稳定性验算由公式有: N/A m <ψ[б] б=N/A m =2400/(4×223)=2.69KN/cm2 б=N/A m =2400/(4×194.7)=3.08KN/cm2 ψ[б]=0.273×170=46.4Mpa=4.6KN/cm2 而ψ[б]=0.339×170=57.6Mpa=5.6KN/cm2,故安全。 (4)单根立柱的整体稳定性验算 A m =223cm2, I X /=140579.2cm4 回转半径i=(I X / A m )0.5=25.1cm λ =L /I=1500/25.1=39.8(以15m设置一道 横联计算) λ 0 =L /I=800/25.1=31.9 查《钢结构设计手册》附表,得ψ 1=0.883 ψ 1 =0.936 由公式有:N/A m <ψ[б] б=N/A m =2400/4/223=2.69KN/cm2 б=N/A m =2400/4/194.7=3.08KN/cm2 而ψ[б]=0.883×170=150.11Mpa=15KN/cm2,故安全。 ψ[б]=0.936×170=159.12Mpa=15.9KN/cm2,

盖梁托架计算书

3.2托架计算 盖梁尺寸:长22米,宽2.2米,高2.2米 盖梁自重及支架自重均按恒载考虑组合系数1.2,施工荷载按活载考虑组合系数1.4。 3.2.1木楞计算 木楞断面5*10cm,矩形截面抵抗矩:W=bh2/6=83.3cm3,矩形截面惯性矩I=bh3/12=416.7cm4 材质为柞木,按《路桥施工计算手册》P176,[σ]—19MPa,[τ]—3.8MPa ,E—12×103MPa 木楞长度4.5m,间距为20cm,跨径为0.3m,按三等跨连续梁均布荷载合理; 混凝土容重—26KN/m3 施工荷载—1.0KPa 倾到混凝土产生的冲击—2.0KPa 振捣混凝土产生的荷载—2.0KPa 盖梁高度2.2m,q1=2.2×26×0.2=11.44KN/m×1.2=13.728 KN/m q2=(1+2+2)×1.4=7kpa Σq=q2×0.2+13.728=15.128KN/m 弯矩:M=ql2/10=0.1×15.128×0.32=0.136KN.m σ=M/W=136/83.3=1.63MPa<[σ]—19MPa,满足要求; 三跨连续均布荷载挠度计算:f=0.677×ql4/100EI=0.677× 15.128×103×0.34/(100×12×109×416.7×10-8)=1.66× 10-5m

—3.8MPa ,E—12×103MPa 木梁长度4m,间距为30cm,跨径为0.6m,其上木楞间距20cm,可按三等跨连续梁均布荷载计算; 混凝土荷载q1=2.2×26×0.3=17.16KN/m×1.2=20.59 KN/m q2=(1+2+2)×1.4=7kpa Σq=7×0.3+20.59=22.69KN/m 弯矩:M=ql2/10=0.1×22.69×0.62=0.817KN.m σ=M/W=817/167=4.89MPa<[σ]—19MPa,满足要求; 三跨连续均布荷载挠度计算:f=0.677×ql4/100EI=0.677× 22.69×103×0.64/(100×12×109×833×10-8)=1.99× 10-4m

盖梁抱箍法施工设计计算书

盖梁抱箍法施工设计计算书 一、设计检算说明 1、计算原则 (1)在满足结构受力情况下考虑挠度变形控制。 (2)综合考虑结构的安全性。 (3)采取比较符合实际的力学模型。 (4)尽量采用已有的构件和已经使用过的支撑方法。 2、贝雷架无相关数据,根据计算得出,无资料可附。 3、对部分结构的不均布,不对称性采用较大的均布荷载。 4、本计算未扣除墩柱承担的盖梁砼重量。以做安全储备。 5、抱箍加工完成实施前,必须先进行压力试验,变形满足要求后方可使用。 二、侧模支撑计算 1、荷载计算(按最大盖梁) 砼浇筑时的侧压力:P m =K 丫h 式中:K---外加剂影响系数,取 1.2 ; Y--砼容重,取26kN/m 3; h--- 有效压头高度。 砼浇筑速度v按0.3m/h,入模温度按20 C考虑。 则:v/T=0.3/20=0.015<0.035 h=0.22+24.9v/T=0.22+24.9 X 0.015=0.6m P m= K yh=1.2 X 26 X 0.6=19kPa 砼振捣对模板产生的侧压力按4kPa 考虑。 则:P m=19+4=23kPa 盖梁长度每延米上产生的侧压力按最不利情况考虑(即砼浇筑至盖梁顶时) P=P m X(H-h)+P m X h/2=23 X 2+23 X 0.6/2=53.9kN 2 、拉杆拉力验算 拉杆(0 20圆钢)间距1.2m , 1.2m范围砼浇筑时的侧压力由上、下两根拉杆承受。则有:(y= (T1+T2)/A=1.2P/2 n2 =1.2 X 53.9/ (2 nXO.01 2)=102993kPa=103MPa<[ c]=160MPa(可) 3 、竖带抗弯与挠度计算 设竖带两端的拉杆为竖带支点,竖带为简支梁,梁长l0=2.2m ,砼侧压力按均布荷载 q0 考虑。 竖带[14b的弹性模量E=2.1 x 105MPa;惯性矩lx=609.4cm 4;抗弯模量Wx=87.1cm

铁路大桥主墩0#块托架计算书

铁路大桥主墩0#块托架计算书 目录 一、设计依据1 二、计算数据1 三、计算荷载1 四、底模桁架计算3 五、横梁计算6 六、三角托架计算11 七、牛腿计算13 八、结论13

主墩0#块托架计算书 一、设计依据 1、《钢结构设计手册》第三版 2、《铁路桥涵钢筋混凝土和预应力混凝土结构设计规范》J462-2005 3、《钢结构设计规范》(GB 50017-2003) 二、计算数据 1、钢筋混凝土容重:ρ=26.5kN/m3 2、钢模板(外模、底模):Q1=1.4kN/m2×418m2=585.2kN 3、外侧模总重量:Q2=253.86kN 4、箱梁内模总重量:Q3=335.72KN 5、翼缘板区混凝土总重量:Q4=245.79KN 6、顶板混凝土总重量:Q5=660.38KN 7、人群荷载及各种施工荷载:Q6=2kN/m2 三、计算荷载 托架荷载设计值 0号块平面布置示意图如下 1、底板区(单边) 1-1截面(底板区0米处) W1 =ρ×(5-1.1×2)×2.147+Q6×(5-1.1×2)+ρ×0.3×0.3 =26.5×(5-1.1×2)×2.147+ 2×(5-1.1×2)+26.5×0.3×0.3 =167.29kN/m

2-2截面(底板区2.5米处) W2 =ρ×(5-1.1×2)×1.3+Q6×(5-1.1×2)+ρ×0.3×0.3 =26.5×(5-1.1×2)×1.3+2×(5-1.1×2)+26.5×0.3×0.3 =104.45kN/m 3-3截面(底板区3.0米处) W3=ρ×(5-1.1×2)×1.29+Q6×(5-1.1×2)+ρ×0.3×0.3 =26.5×(5-1.1×2)×1.29+2×(5-1.1×2)+26.5×0.3×0.3 =103.70kN/m 2、翼板区 W4= q2+q4=235.86+245.79=499.65 kN 3、腹板区(单边单侧) 1-1截面(腹板区0米处) W5=ρ×11×1.1 +Q6×1.1 =26.5×11×1.1+2×1.1 =322.85kN/m 2-2截面(腹板区2.5米处) W6 =ρ×10.653×0.6+Q6×1.1 =26.5×10.653×0.6+2×1.1 =312.73kN/m 3-3截面(腹板区3.0米处) W7 =ρ×10.583×1.1+Q6×1.1 =26.5×10.583×1.1+2×1.1 =310.69kN/m 4、顶板区(单边) 1-1截面(顶板区0米段) W8 =ρ×(5-1.1×2)×0.96+ρ×1.2×0.4 =26.5×(5-1.1×2)×0.96+26.5×1.2×0.4 =83.95kN/m 2-2截面(顶板区2.5米段)

模板支架计算书

模板支架 计 算 书 一、概况: 现浇钢筋砼楼板,板厚(max=160mm),最大梁截面为300×600 mm,沿梁方向梁下立杆间距为800 mm,最大层高4.7 m,施工采用Ф48×3.5 mm钢管搭设滿堂脚手架做模板支撑架,楼板底立杆纵距、横距相等,即la=lb=1000mm,步距为1.5m,模板支架立杆伸出顶层横杆或模板支撑点的长度a=100 mm。剪力撑脚手架除在两端设置,中间隔12m -15m设置。应支3-4根立杆,斜杆与地面夹角450-600。搭设示意图如下: 二、荷载计算: 1.静荷载 楼板底模板支架自重标准值:0.5KN/ m3 楼板木模板自重标准值:0.3KN/m2 楼板钢筋自重标准值:1.1KN/ m3 浇注砼自重标准值:24 KN/ m3 2.动荷载 施工人员及设备荷载标准值:1.0 KN/ m2 掁捣砼产生的荷载标准值:2.0 KN/ m2 架承载力验算: 大横向水平杆按三跨连续梁计算,计算简图如下: q 作用大横向水平杆永久荷载标准值:

qK1=0.3×1+1.1×1×0.16+24×1×0.16=4.32 KN/m 作用大横向水平杆永久荷载标准值: q1=1.2 qK1=1.2×4.32=5.184 KN/m 作用大横向水平杆可变荷载标准值: qK2=1×1+2×1=3KN/m 作用大横向水平杆可变荷载设计值: q2=1.4 qK2=1.4×3=4.2 KN/m 大横向水平杆受最大弯矩 M=0.1q1Ib2+0.117q2Ib2=0.1×5.184×12+0.117×4.2×12=1.01 KN/m 抗弯强度:σ=M/W=1.01×106/5.08×103=198.82N/ m2<205N/ m2=f 滿足要求 挠度:V=14×(0.667 q1+0.99 qK2)/100EI =14×(0.667×5.184+0.99×3)/100×2.06×105×12.19×104 =2.6 mm<5000/1000=5 mm滿足要求 3.扣件抗滑力计算 大横向水平杆传给立杆最大竖向力 R=1.1q1Ib+1.2q2Ib=1.1×5.184×1+1.2×4.2×1=10.74KN>8KN,不能滿足,应采取措施,紧靠立杆原扣件下立端,增设一扣件,在主节点处立杆上为双扣件,即R=10.74KN <16KN,滿足要求。 4.板下支架立杆计算: 支架立杆的轴向力设计值为大横杆传给立杆最大竖向力与楼板底模板支架自重产生的轴向力设计值之和,即: N=R+0.5×1.2+10.74+0.5×1.2=11.34KN 模板支架立杆的计算长度I0=h+2a=1.5+2×0.1=1.7 m 取长度系数μ=1.5 λ=I0/I=KμI0/i 取K=1,λ=1.5×170/1.58=161.39<〔λ〕=210,滿足要求 取K=1.155λ=1.155×1.5×170/1.58=186.4 Ψ=0.207 验算支架立杆稳定性,即 N/ΨA=11.34×103/0.207×489=112.03N/ mm2<205 N/ mm2=f,滿足要求

抱箍计算书

3.3.3钢抱箍及主梁、分配梁安装 钢抱箍安装前要根据设计盖梁底标高、底模厚度、分配梁厚度、主梁高度准确计算出钢抱箍顶面位置,并将钢抱箍顶面位置用石笔画在立柱上。再用起重机分片或整体吊装钢抱箍,然后将主梁(槽钢)放到钢抱箍上,并用对拉螺杆将两主梁对拉起来。最后在主梁上摆放好分配梁。钢抱箍、主梁、分配梁安全验算。 (1) 主梁计算 ①荷载计算: a) 盖梁自重荷载P1 P1=γBH=26KN/m3×1.8 m×1.4m=65.6KN/m, 换算到每根主梁:均布荷载q1=P1/2=32.8KN/m; b) 模板、分配横梁自重 分配横梁采用[10槽钢,间距50cm,q2=0.12×2/0.5×7.5/2=0.15KN/m; 模板自重q3=0.5×(2×1+1.9×1×2)/2=1.45KN/m; c) 施工荷载(人员、机具、材料、其它临时荷载) 按q4=2.5KN/m均布荷载计; ②荷载组合: q=q1+q2+q3+q4=32.8+0.5+1.45+2.5=37.25KN/m; ③计算简图: ④计算: a) 解除B点约束,代以支反力R B,用力法解得R B=q(6a2+5b2)/(4b)=463.5KN,R A=q(a+b)-R B/2=200.7KN,

b) 弯矩图: c) 最大弯距: A 、 B 点弯矩:M 1=-1/2×q×2.42=-2.88q=-155.1KN·m , 跨中弯矩 :M 2=1/2×q×(32-2.42)=1.62q=87.2KN·m , 则:M max =M 1=155.1KN·m ; d) 截面抗弯模量W 拟选用工字钢为主梁,允许应力[σ]=170MPa , [σ]=M max /w , w= M max /[σ]=155.1×103/(170×103)=0.91m 3=910cm 3, 初步选用40a 工字钢W=1090cm 3>910cm 3,可满足强度要求; ⑤ 挠度验算: 将均布力q 由A 、B 点分成三段进行挠度叠加计算,计算结果公式如下(以竖直向上位移为正): a) c 、d 点挠度: EI q EI l l M EI l ql l l EI ql y c 2832.3624)34(242113211231-=??+?++-=, b) 跨中挠度: EI q EI ql EI l y 915.3384516M 242221-=-??-=跨中, c) 最大挠度验算: I40a 惯性矩:I=21720cm 4=2.172×10-4m 4 ,弹性模量E=2×105MPa , 221qa 22 1qa

支架计算书

1 方案简述 本现浇梁采用满堂支架施工,支架搭设高度按照最高处11m控制(硬化地面至箱梁底板高度)。箱梁腹板下支架横桥向采用30cm间距布置,顶底板下横桥向采用60cm 布置,翼缘板下横桥向采用90cm布置(顺桥向钢管间距始终为30cm和90cm不等),具体布置见满堂支架搭设平面图及箱梁截面图。 本桥纵断面位于R=2000m的竖曲线上,平面位于R=350m(起点AK0+148.96,终点AK0+277.724)。 桥型布置图 满堂支架搭设横断面图

底模系统纵桥向采用10cm×10cm方木(腹板下纵向采用14cm高工字钢)直接立于钢管架顶托上,横向采用10cm×10cm方木作为分配梁,中心距30cm、净间距20cm,顶面铺设1.4cm厚竹胶板底模,侧模、内膜采用竹胶板拼装。 满堂支撑支架搭设时,沿墩身横向中线搭设第一排,然后间距按照30cm设置4排,横桥向间距参考上图,保证墩顶实心段部分承重支架为30cm顺桥向布置,其它部分按照顺桥向间距90cm布置;由于桥梁为曲线布置,因此支架采用采用折线形式搭设,中间断开部分采用短钢管和扣件连接。 2 受力计算 由于支架顺桥向布置为30cm、90cm两种间距形式,因此分两种工况计算钢管架受力,第一种为墩顶实心段部分,钢管支架30cm顺桥向布置;第二种为梁体变截面及标准截面段,钢管支架按照顺桥向90cm布置。

S1=24.15m2S2=0.75m2S3=0.75m2 2.1 工况一下中间部分受力计算(S1部分) 第一工况下计算实心段部分支架及模板系统受力,具体支架布置形式参照方案图。 由于工况一下,箱梁截面为实心截面,因此只需计算中间部分支架横向布置为60cm 和翼缘板下受力即可。 2.1.1 中间部分S1受力计算 ⑴荷载取值 S1部分钢筋混凝土:24.15 m2×1m×26KN/m3÷(10.5m×1m)=59.8KN/ m2; 底模系统:取值3KN/ m2; 施工荷载:取值1KN/ m2; 浇筑混凝土冲击荷载:4KN/ m2; 考虑1.3倍安全系数后,荷载组合取值为: Q=1.3×(59.8+3+1+4)=88.14KN/m2=0.08814N/mm2 ⑵竹胶板受力计算 竹胶板规格采用2.44m×1.22m×0.014m,考虑竹胶板处于湿状,由《桥路工程常

抱箍的计算

抱箍的计算 抱箍所能承受的荷载可由抱箍与墩柱之问的摩擦力平衡,其摩擦系数μ由墩柱面的平整度和粗糙程度而定,一般可取为μ=0.3—0.5。设计时应选择拧紧螺栓的数量,并验算其抗剪强度,同时应验算抱箍钢板的局部抗剪强度和抗挤压强度。 抱箍法力学原理:是利用在墩柱上的适当部位安装抱箍并使之与墩柱夹紧产生的最大静摩擦力,来克服临时设施及盖梁的重量。 2.1 抱箍的结构形式 抱箍的结构形式涉及箍身的结构形式和连接板上螺栓的排列。 a箍身的结构形式 抱箍安装在墩柱上时必须与墩柱密贴。由于墩柱截面不可能绝对圆,各墩柱的不圆度是不同的,即使同一墩柱的不同截面其不圆度也千差万别。因此,为适应各种不圆度的墩身,抱箍的箍身宜采用不设环向加劲的柔性箍身,即用不设加劲板的钢板作箍身。这样,在施加预拉力时,由于箍身是柔性的,容易与墩柱密贴。在施工当中,为保证密贴的效果更加明显,一般在抱箍与柱子之间垫以土工布。 b连接板上螺栓的排列 抱箍上的连接螺栓,其预拉力必须能够保证抱箍与墩柱间的摩擦力能可靠地传递荷载。因此,要有足够数量的螺栓来保证预拉力。如果单从连接板和箍身的受力来考虑,连接板上的螺栓在竖向上最好布置成一排。但这样一来,箍身高度势必较大。尤其是盖梁荷载很大时,

需要的螺栓较多,抱箍的高度将很大,将加大抱箍的投入,且过高的抱箍也会给施工带来不便。因此,只要采用厚度足够的连接板并为其设置必要的加劲板,一般均将连接板上的螺栓在竖向上布置成两排。这样做在技术上是可行的,实践也证明是成功的的 2.2连接螺栓数量的计算 抱箍与墩柱间的最大静摩擦力等于正压力与摩擦系数的乘积,即F=f×N 式中F-抱箍与墩柱间的最大静摩擦力; N-抱箍与墩柱间的正压力; f-抱箍与墩柱间的静摩擦系数。 而正压力N与螺栓的预紧力是对平衡力,根据抱箍的结构形式,假定每排螺栓个数为n,则螺栓总数为4 n,若每个螺栓预紧力为F1,则抱箍与墩柱间的总正压力为N=4×n×F1。 对于抱箍这样的结构,为减少螺栓个数,可采用材质为45号钢,直径30mm的大直径螺栓或M27高强度螺栓。但采用M27高强度螺栓有两个缺点:一是高强度螺栓经过一次加力松弛循环后一般不能再用,这与抱箍需多次重复使用的要求不相符;再次安装抱箍时需更换新螺栓,加大了投入;二是市场上没有M27高强度螺栓,必须到专门的厂家购买,不能满足随时更换的要求。因此,一般均采用材质45号钢的M30大直径螺栓。每个螺栓的允许拉力为[F]=As×[σ] 式中As —螺栓的横截面积,As=πr2 [σ]—钢材允许应力。对于45号钢,[σ]=2000kg/cm2。

相关文档
最新文档