自控变频同步电动机软启动系统在济钢1750m3高炉风机传动中的应用

自控变频同步电动机软启动系统在济钢1750m3高炉风机传动中的应用
自控变频同步电动机软启动系统在济钢1750m3高炉风机传动中的应用

自控变频同步电动机软启动系统在济钢1750m3高炉风机传动中的应用

无换向器同步电动机、负载换向逆变器

1 引言

根据电网优化运行的要求,对于调速范围小的大型风机、水泵一般采用同步电动机,以便运行时可以向电网补充容性无功,但由于这类风机、水泵一般都是几十兆瓦以上超大容量的,必须采用软启动设备以减少大型电机启动过程中对电网和所传动设备的冲击,其中用于同步电动机的软启动装置主要有液体可调电阻启动、磁饱和电抗器启动、开关变压器启动、同步电动机自控变频器启动,而前三种原理上都是异步降压启动后再牵入同步,由于一是同步电动机做短时异步运行需要一些特殊设计如整体极靴或增加阻尼笼条,且需要严格遵守启动时的热容量限制,二是由于异步启动时电机的启动转矩与电压的平方成正比所导致的实际启动能力不足,经常会因为转页式风门关不严或设备长期停用后要求的静止启动转矩增大等原因使电机无法正常启动,而且为了保证足够的启动力矩,电机的启动电流一般会达到额定电流的2.5~3.0倍,为此对于大型同步电动机的软启动目前普遍采用的仍然是采用电流源型交—直—交变频器构成的同步电动机自控变频启动方式,由于它基于磁场定向控制原理,并采用速度闭环调节,可以有效保证电机的启动力矩,且启动电流一般不超过电机的额定电流,实现了对电网和传动设备均无冲击启动,甚至可以用于风机、水泵类负载的调速运行,这种启动方式是基于自控同步原理实现的,不进入异步运行状态,不会对电机的转子侧产生热应力,针对这一主流软启动方式,世界各大电气公司都有类似的产品,其中siemens公司更是针对这一启动方式,基于设计尽量简单、应用尽量可靠的思想,对适于这种传动方式的同步电动机和变频装置进行了优化设计,这就是H-moflex、H-modyn系列高压电机和SIMOVERT S系列变频器。

济南钢铁集团有限公司现有的3座1750m3高炉风机、2套燃气—蒸汽联合循环发电用的煤压机及2座2万m3制氧机的空压机的软启动均采用了SIMOVERT S系列自控变频启动装置,使用2年多的实践表明该软启动装置故障率低、可用性好、硬件配置合理,基本实现了免维护运行。

2 主回路组成和工作原理

SIMOVERT S变频器是专为同步电动机运行开发的全数字变频装置,功率单元采用了晶闸管三相桥式电流源型变频器,分为6脉冲和12脉冲两种,在1750m3高炉风机的软启动系统中,采用了12脉冲的功率单元结构和高—低—高的电压变换方法,在电流型逆变器的直流耦合电抗器设计上采用了siemens专利的两个独立直流母线的电抗器反向耦合的技术,采用这种电路结构后直流母线电抗器只有传统额定功率电路结构所采用直流母线电抗器的60%,使得电抗器的体积和损耗大为减少,并可以实现柜内安装。

由于采用的是电流型逆变器原理,功率回路采用了无熔断器设计,由于采用了电抗器反向耦合及脉冲监控触发和经特殊设计的整流侧脉冲组合逻辑,使得即使不用在直流平波电抗器两侧并联释能晶闸管,也能够保证在电流断续换向时将变频器电流快速拉到零,从而大大简化了主电路结构和控制线路,提高了系统的可靠性。

同步电动机自控变频的核心就是转子定向,以前都是采用在电机转子上安装编码器的方法直接测量,但这样对于设备安装要求、调试及系统的可靠性都带来了不稳定因素,为此siemens公司采用了矢量运算的方法,通过采用LEM元件高精度地检测电机侧的两相电压和两相电流后,通过电压模型便可以准确计算出气隙磁通的位置,但要计算转子侧磁通的位置,还需要知道电机转子的初始位置,在SIMOVERT S系统中,电机转子的初始定位是系统利用转子侧突加励磁在定子绕组中感应的电压进行计算后自动完成的;当电机低速运行时,由于电机的反电势和电压较低,用电压模型计算磁通位置是不准确的,由于定向的不准确,会造成电机启动力矩的减少,如果电机是重载启动或设备要求电机长期在低速条件下运行,就需要在电机转子上安装编码器。

启动转矩产生的基本原理就是基于对转子侧磁通的定向,按照矢量控制理论中力矩星形分布情况,判断每一触发时刻能产生最大加速力矩的两相定子电流,触发该对晶体管导通,给对应的两相定子绕组通电,产生一个超前转子磁场的同步定子磁场,两个磁场相互作用,使转子获得当前电流下的最大电磁转矩,转子

开始转动,整流器采用速度和电流双闭环结构控制输出电流的幅值,逆变器采用矢量控制技术控制输出电流的频率。

由于采用常规的晶闸管技术构成功率变换回路,所以影响主回路可靠运行的关键是晶闸管的可靠换向,在SIMOVERT S系统中,整流侧的晶闸管依靠电网电压换向,逆变侧的晶闸管依赖电机定子的反电势进行负载换向,但低速时(小于额定转速的8%)由于定子产生的反电动势不足以关断逆变侧的晶体管,采用电流断续法进行换相,此时逆变器以逆变超前角γ=0°运行,需要换相时,整流侧推β,暂时强迫关断正导通的一对晶体管,闭锁整流器和逆变器的输出,再给换相后应该导通的一对晶体管加上触发脉冲使其导通,从而实现换相,此期间SFC输出的电流是断续的;当转速大于额定值的8%时,同步电动机可产生足够大的反电动势,进入负载换相阶段,为了保证换向余量角不变,在转速由额定值的8%升至25%期间,变频器的输出电流由额定值的80%升至额定值,逆变超前角γ=60°,之后逆变器输出额定电流值,逆变超前角γ=50°,同时转子侧的励磁电流按照定子电压闭环进行控制,以补偿定子电流电枢反应的去磁作用,保持气隙磁通不变,改善了逆变侧的换向条件并保证了电机的过载能力。

当变频装置拖动电机启动达到95%额定转速以上时,起动自动同步装置进入自动整步微调阶段。同步装置根据频率差Δf,产生一个附加转速微调信号,自动调整变频器输出电流,对转速做微调,同步装置同时发出命令给励磁系统,调节励磁电流,使变频母线电压与电网电压平衡,最终实现无电流冲击并网,整流器的晶体管即运行于全逆变状态,其输出电流迅速降为零,关闭晶体管,然后封锁整流器和逆变器的全部触发脉冲,断开软启动装置的输出断路器MBM及输入断路器MBC,完成整个起动过程。

变频器所驱动的高压同步电动机采用了无刷励磁结构,采用具有三相交流调压功能的全数字化装置simotras HD供电,励磁功率是通过磁耦合和励磁机定转子间的相对运动实现的,值得注意的是,系统要求励磁机定子侧正确接线,应该保证由励磁机定子电流所形成的定子旋转磁场方向与同步电动机转子的实际方向相反,以保证励磁功率的正常传递。

矢量运算模型所需要的电机侧的电压电流信号均取自升压变压器的输入侧,为了避免升压变压器的剩磁影响到同步电动机转子初始位置定向的准确性,每次软启动结束后,都由一台西门子6SE70系列变压变频装置SIMOVERT MASTDRIVER VC完成升压变压器的消磁工作。

为了进一步提高系统的可靠性,晶闸管的触发采用了高电位板TAS21A进行脉冲隔离放大,触发功率直接取自主回路的阻容吸收,并采用了由SE48.1+IMPAG4+SAV21组成的晶闸管触发和监控单元,实现了高低压回路的光耦隔离,脉冲触发的监控逻辑主要由接口模板SE48.1完成,对误触发的有效监控保证了晶闸管触发的可靠性及因晶闸管损坏或触发脉冲丢失等原因所造成的功率单元灾难。

在济钢1750m3高炉风机的软启动设计中,采用了一拖二的配置,即通过两套励磁和一套软启动功率柜实现对两台25000kW风机电机的分时启动。

系统主回路配置和供电系统原理见图1。

图1 1750高炉风机系统主回路及一拖二供电系统原理图

3 控制系统组成及各部分的主要功能

控制系统主要由S7-300工作站和采用simadyn-d多微处理器、多任务并行处理控制器构成的SFC组成,S7-300工作站主要负责电机的励磁和运行控制,SFC完成软启动过程中所涉及的所有设备的控制,包括断路器MBC、MBM、MBL的分合,励磁电流的设定计算、电机的速度控制、电流调节,整流和逆变部分触发脉冲的形成,软启动过程中的故障诊断及保护,系统设计上S7-300工作站和SFC部分的功能相对独立,当软启动结束后,由S7-300接管电机的运行控制,此时即使SFC部分断电也不会影响到电机的正常运行。

SFC部分的硬件采用simadyn-d通用控制器,它采用多处理器并行处理方案,最大总线周期小于1μs,处理器的典型循环扫描时间小于10ms,适合完成快速和复杂的控制任务,如液压AGC系统、SVC系统和传动级控制,硬件主要有处理器板、通讯板、通讯缓冲板、脉冲触发板、信号接口模板、输入输出板等,simadyn-d系统采用全图形式的编程语言STRUC G进行软件设计开发。功能块是软件设计的最小组态单位,包括逻辑块、算术块、诊断块、信号转换块、I/O块和通讯块等。一个功能块即一个子程序,相当于硬件设计中的集成电路。只需要用鼠标从图形库中选择预先编制好的功能块,将各功能块相互连接并设定参数,即构成实现一定的系统控制功能的软件功能包,系统调试采用IBS G、drivemonitor等在线监控和修改软件完成。

控制系统的SFC部分主要包括两个A100和A200机架,A100机架有4个处理器,A200有一个处理器,各处理器的主要控制功能如下:

(1)A100机架24槽,主要完成变频器本体的电流闭环控制、脉冲形成与监控。

D01-P1:PM6

FP-AST:完成与传动有关的顺序控制,如控制器的使能、运行模式的切换等。

FP-ERW:以电压闭环方式完成励磁电流设定值的计算。

FP-EAL:综合来自顺序控制功能包、操作员控制功能包及通讯控制功能包的控制字,实现逻辑控制功能和软启动的启/停综合控制。

FP-UHR:用于启动系统时钟同步功能。

D05-P2、D07-P3:PG16

完成传动的转矩控制,采用80C186-16 16位单片机。

FP-MN1、FP-MN2:完成电网侧变流器的电流控制,包括实际值的处理、闭环电流控制,逻辑无环流逻辑及门极脉冲发生。

D09-P4:PS16

完成矢量运算和SE21.2接口模块、TS12脉冲触发模板一起完成对电机侧逆变器的控制,同时TS12还接受来自SE48.1和SE21.2的故障信号,通过PG16完成故障推β控制。

FP-SMS:矢量控制功能包,完成对逆变器负载换相的矢量控制及监视,低速运行时断续换相触发脉冲的控制及监视,主要包括电压模型(FB-UMS)、实际值处理(FB-IST)、反电势补偿计算(FB-OFC)、触发角计算(FB-ALB)等功能块。

(2)A200机架12槽,主要完成电机的速度闭环控制及与S7-300工作站的通讯,包括:

D01-P1:PM6;

FP-NRG:完成软启动过程中的速度给定和闭环调节;

FP-WRG:电网电压前馈补偿;

FP-ANF:实现励磁装置的使能命令及励磁电流给定值的下传、与自动同步装置交换控制信号,实现对变频侧母线电压和频率的控制,完成并网过程;

FP-DIA:记录simovert软启动系统的状态,实现软启动系统的故障诊断。

控制系统的S7-300工作站由MMIP连接柜的S7-300为主站,连接系统1励磁柜MMCP1的S7-300和系统2励磁柜MMCP2的S7-300及SFC柜的A200机架组成,主要完成励磁电流外环的PID控制,启动同步并网过程,MBC、MBM、MBL断路器的分合闸顺序控制,与OP17操作面板的通讯接口,与励磁装置simotras HD的通讯接口,与SFC的通讯接口。

SIMOVERT S软启动系统启动过程的时序逻辑如图2所示,控制系统的通讯配置图如图3所示。

图2 SIMOVERT S软启动过程时序

图3 采用一拖二方式时,软启动控制系统的通讯配置图

4 结束语

1750m3高炉风机采用西门子SIMOVERT S变频器起动的成功率在99%以上,且启动平稳、稳定,对风机设备传动链冲击小,电机并网基本上无冲击,启动性能明显高于传统的起动方法,为实现高炉系统的高利用率和大量节省成本起到了决定性作用,因为如果启动过程中断,高炉必须在装满料的情况下冷却下来,造成近10天以上的时间不能使用。

付春钢逯志宏韩继金李倩更多请访问:中国自动化网(https://www.360docs.net/doc/9010307229.html,)

变频器在风机风量调节中的应用

变频器在风机风量调节中的应用 环保设备网整理 工厂生产中运送粉状物料主要有三种方法:传送带、提升机、气力吸运系统。由于气力吸运系统运送物料速度快、流量大,所以一般工厂都采用此方法。高压风机是气力吸运系统必需的动力设备。根据工艺要求,风机风量控制应随物料流量的变化而相应变化,以保证物料不堵不掉,维持生产的正常运转。目前工厂中普遍采用恒速控制风量,即高压风机的速度不变,改变风门调节风量。该方法能耗大。如果采用变频器,改为调速控制,调节高压风机的速度以改变风量,将减少能耗,可提高经济效益。 1、变频器调速工作原理 变频器是可以改变频率和电压的电源。变频器采用交2直2交变换原理,将电网三相交流电经过三相桥式整流成脉动直流;再通过电解电容和电感滤波成平滑直流;最后通过逆变器,逆变成电压和频率可调的三相交流电。 电机转速随频率变化而变化,因此改变电源频率就能改变电动机转速。在变频器、电动机、风机构成的传动系统中,通过改变电源频率来改变电动机的转速,进而调节风量,实现风机的变频调速控制。 2、调速控制风量的节能原理 与风门控制风量方式相比,采用调速控制风量有着明显的节能效果。通过图1的风机特性曲线可以说明其节能原理。图中,曲线1为风机在恒速n1下的风压2风量(H-Q)特性;曲线2为管网风阻特性(风门开度全开)。设工作点为A,输出风量Q1为100%,此时风机轴功率N1同Q1与H1的乘积即面积AH1OQ1成正比。根据工艺要求,风量从Q1降至Q2有两种控制方法。 (1)风门控制。风机转速不变,调节风门(开度减小),即增加管网阻力,使管网阻力特性变到曲线3,系统工作点由A移到B。由图1可见,此时风压反而增加,轴功率N2与面积BH2OQ2成正比,大小与N1差不多。 (2)调速控制。风机转速由n1降到n2,根据风机参数的比例定律,画出转速n2下的风压2风量(H2Q)特性,如曲线4;工作点由原来的A点移到C点。可见在相同风量Q2的情况下,风压H3大幅度降低,面积CH3OQ2也显著减少;节省的功率损耗△N同Q2与△H的乘积面积成正比,因而节能效果十分明显。 3、由流体力学可知:风量与转速的一次方成正比;风压与转速的平方成正比;轴功率与转速的三次方成正比。当风量减少,风机转速下降时,其功率降低很多。例如,风量下降到80%,转速也下降到80%,轴功率将下降到额定功率的51%;如果风量下降到50%,功率将下降到额定功率的12.5%。考虑到附加控制装置效率的影响,这个节电数是很可观的。 3、变频调速控制的优点 (1)精确的速度控制。变频器输出频率的精确度和分辨率都达到0.01Hz。也就是说,1对磁极的电动机,转速可以以每分钟不到1转的速率调节。因此,在工厂中可以根据物料流量的变化,精确地控制风机风量,既保证物料不堵不掉,又保证可靠的运行在最低转速,达到尽可能大的节能效果。 (2)软起动。变频器输出频率可以连续地从0到50Hz之间变化,变化速率可以根据工艺要求设定,因此高压风机可以实现软起动。通常高压风机容量都较大(45kW以上),直接起动时冲击电流很大(5~7倍额定电流值),造成对电网的干扰,同时对电网容量的要求也相应增加;即使安装附加的起动装置,冲击电流仍然相当大。而软起动是平稳的,没有冲击电流,从根本上解决了大容量电动机的起动问题。 (3)完善的保护功能。变频器的保护功能很强,在运行过程中能随时监测到各种故障,显示

软启动工作原理

软启动工作原理 软启动器电动机的应用 1、软启动器工作原理与主电路图 软启动器采用三相反并联晶闸管作为调压器,将其接入电源和电动机定子之间。这种电路如三相全控桥式整流电路,主电路图见图1。使用软启动器启动电动机时,晶闸管的输出电压逐渐增加,电动机逐渐加速,直到晶闸管全导通,电动机工作在额定电压的机械特性上,实现平滑启动,降低启动电流,避免启动过流跳闸。待电机达到额定转数时,启动过程结束,软启动器自动用旁路接触器取代已完成任务的晶闸管,为电动机正常运转提供额定电压,以降低晶闸管的热损耗,延长软启动器的使用寿命,提高其工作效率,又使电网避免了谐波污染。软启动器同时还提供软停车功能,软停车与软启动过程相反,电压逐渐降低,转数逐渐下降到零,避免自由停车引起的转矩冲击。软启动与软停车的电压曲线见图2,3。 2 软启动器的选用 (1)选型:目前市场上常见的软启动器有旁路型、无旁路型、节能型等。根据负载性质选择不同型号的软启动器。 旁路型:在电动机达到额定转数时,用旁路接触器取代已完成任务的软启动器,降低晶闸管的热损耗,提高其工作效率。也可以用一台软启动器去启动多台电动机。 无旁路型:晶闸管处于全导通状态,电动机工作于全压方式,忽略电压谐波分量,经常用于短时重复工作的电动机。 节能型:当电动机负荷较轻时,软启动器自动降低施加于电动机定子上的电压,减少电动机电流励磁分量,提高电动机功率因数。 (2)选规格:根据电动机的标称功率,电流负载性质选择启动器,一般软启动器容量稍大于电动机工作电流,还应考虑保护功能是否完备,例如:缺相保护、短路保护、过载保护、逆序保护、过压保护、欠压保护等。 3、Alt48软启动器的特点 Alt48软启动器启动时采用专利技术的转矩控制。转矩斜坡上升更快速,损耗更低。具有电动机和软启动器综合保护功能,能全时连续检测电机电流,提供电机可靠和完整保护,这种保护功能在启动结束后旁路仍能起作用,这是其它软启动器都不具备的。 Alt48在保持加速力矩的同时,实时计算定子和转子的功率。在整个加速周期连续计算电机功率因数和定子损耗,通过检测电压和电流来计算功率因数,并扣除定子损耗,得到实际的转子功率和电机力矩。 4 Alt48软启动器的应用 设计采用一拖二方案,见图4,即一台软启动器带两台水泵,可以依次启动,停止两台水泵。一拖二方案主要特点是节约一台软启动器,减少了投资,充分体现了方案的经济性,实用性。

变频器在风机上的应用课件

一、概述: 目前在我国各行各业的各类机械与电气设备中与风机配套的电机约占全国电机装机量的60%,耗用电能约占全国发电总量的三分之一。特别值得一提的是,大多数风机、水泵在使用过程中都存在大马拉小车 的现象,加之因生产、工艺等方面的变化,需要经常调节气体和液体的流量、压力、温度等;目前,许多 单位仍然采用落后的调节档风板或阀门开启度的方式来调节气体或液体的流量、压力、温度等。这实际上 是通过人为增加阻力的方式,并以浪费电能和金钱为代价来满足工艺和工况对气体、液体流量调节的要求。这种落后的调节方式,不仅浪费了宝贵的能源,而且调节精度差,很难满足现代化工业生产及服务等方面 的要求,负面效应十分严重。 变频调速器的出现为交流调速方式带来了一场革命。随着近十几年变频技术的不断完善、发展。变频 调速性能日趋完美,已被广泛应用于不同领域的交流调速。为企业带来了可观的经济效益,推动了工业生 产的自动化进程。 变频调速用于交流异步电机调速,其性能远远超过以往任何交、直流调速方式。而且结构简单,调速范围 宽、调速精度高、安装调试使用方便、保护功能完善、运行稳定可靠、节能效果显著,已经成为交流电机 调速的最新潮流。 二、变频节能原理: 1. 风机运行曲线 采用变频器对风机进行控制,属于减少空气动力的节电方法,它和一般常用的调节风门控制风量的方 法比较,具有明显的节电效果。 由图可以说明其节电原理: 图中,曲线(1)为风机在恒定转速n1下的风压一风量(H―Q)特性,曲线(2)为管网风阻特性(风门全开)。曲线(4)为变频运行特性(风门全开) 假设风机工作在A点效率最高,此时风压为H2,风量为Q1,轴功率N1与Q1、H2的乘积成正比,在图中可用面积AH2OQ1表示。如果生产工艺要求,风量需要从Q1减至Q2,这时用调节风门的方法相当于增加 管网阻力,使管网阻力特性变到曲线(3),系统由原来的工况点A变到新的工况点B运行。从图中看出,风压反而增加,轴功率与面积BH1OQ2成正比。显然,轴功率下降不大。如果采用变频器调速控制方式,风 机转速由n1降到n2,根据风机参数的比例定律,画出在转速n2风量(Q―H)特性,如曲线(4)所示。可见在满足同样风量Q2的情况下,风压H3大幅度降低,功率N3随着显著减少,用面积CH3OQ2表示。节省的功率△N=(H1-H3)×Q2,用面积BH1H3C表示。显然,节能的经济效果是十分明显的。 2.风机在不同频率下的节能率

高炉鼓风机设备方案

前言 Ⅰ. 编制依据 ?国家及行业颁发的施工质量验收规范; ?本企业操作规程及科技成果; ?现场条件、施工特点及施工经验; ?招标文件; ?国家法律法规及强制性标准 Ⅱ. 工期目标 安装时间根据项目部具体安排。 Ⅲ. 质量目标 单位工程合格率100%。 分项工程合格率100% Ⅳ. 安全目标 1.杜绝工亡、重伤事故,千人负伤率控制在3‰; 2.消灭重大交通、火灾、机械设备事故; 3.创建安全文明工地,达标率不小于80﹪。 Ⅴ. 环保及文明施工目标 1.噪声排放达标。 2.现场目测无扬尘。 3.运输无遗洒。 4.生产及生活污水达标排放。

5.施工现场夜间无光污染。 6.使用环保型灭火器。 7.尽量减少油品、化学品的泄露现象。 8.固体废弃物实现分类管理,提高回收利用率。 9.最大限度地节约水、电能源。 1.工程项目概况 该标段工程设备安装主要包括鼓风机、马达,润滑油站,高位油箱,控制油站,控制阀台,防风消音器,水泵,空冷器,隔音罩,电动单梁起重机等。鼓风机及马达是工艺中最关键的设备,对安装质量的要求十分严格,其安装质量的优劣,直接关系到生产工艺线能否正常运行,在施工过程中,我们将严格按照设计图纸及国家有关技术标准和规范进行安装施工,关键、隐蔽工程将请业主及其委派的现场专家确认并会签,不合格工程不转入下一道工序。 2.工程施工特点 2.1 本工程施工地点属于厂房内施工,施工区域小。 2.2 本工程主体设备吨位较重、加工精度高、精密部件多,安装精度要求高。 2.3 本工程施工区域相关专业间交叉配合项目多。因此,要合理安排各专业间的配合施工。 2.4 施工过程鼓风机马达采用500吨汽车吊作业其余厂房内设备使用厂房内天车作业,厂房外设备采用汽车吊作业,吊装过程要做好对设备的保护。

石化企业重催装置主风机变频软启动控制技术的应用

石化企业重催装置主风机变频软启动控制技术的应用 石化企业重催装置主风机電机为6000V/21000KW的同步电动机,该同步电动机的起动方式采用了目前国际上比较先进的变频软起动方式。该变频软启动器设备中运用了很多当今世界领先的一些新技术,使大型同步电动机组实现了真正意义上的软启动,经过实践检验该软启动器性能优良、运行可靠,不仅减少了电机起动过程中对供电系统的冲击,提高了供电系统运行的稳定性。 标签:同步电机、变频、软启动、励磁 一.同步电机变频软起动方面应用的新技术 重催主风机电动机为6000V/21000KW的同步电动机,采用的变频启动方式采用一种比较独特的变频软启动方式,与传统变频软启动的差别主要存在于该变频软启动设备没有专设转子位置检测器,而是通过在起动前励磁机对同步机转子加入励磁电流在定子绕组上感应出来的电势来确定转子的初始位置。在电机起动过程中,转子的位置检测通过软件计算来进行控制。由于变频软起动只是作为同步电动机起动,起动过程时间很短只有几分钟,因此这种方法较之采用传统的转子位置检测器更为简单、可靠。下面就将这种新技术做一具体介绍。其原理简图如图1所示。 从图中可以看出在起动前西门子励磁机6SG70对电动机转子绕组加入60%的额定直流励磁电流,在电磁感应的作用下,与同步电动机转子绕组位置相近的定子绕组上就会产生相应的感应电动势(约1V左右),该感应电动势通过降压变压器断路器及降压变压器送至高灵敏度电压变送器,变频器控制单元对变送器输出的信号进行采集处理,计算出同步电动机转子的大概位置,然后针对转子的位置对同步电动机定子加入变频电源,并通过软件计算出起动过程中不同频率下转子的位置,逐步增加电源频率直到额定频率完成变频软启动的过程。 二.励磁控制方面采用的新技术 主机所采用的同步机也为无刷励磁同步机。该套变频软启动设备采用了一种国内并不常见的励磁控制方式。其原理简图如图2所示。 它采用西门子6SG70双向可控硅调压软启动器作为同步机的励磁电源,6SG70软启动器的输出接至一个3相变6相的旋转变压器,旋转变压器的二次绕组及旋转整流盘与电机转子同轴旋转,旋转变压器输出的六相双向可控硅调压软启动器→旋转变压器→旋转整流盘就直接实现了交流→直流的变化过程。其次可靠性高,该励磁装置采用直接通过调节6SG70调压软启动器双向可控硅的触发角来改变6SG70的输出电压来达到调节励磁电流的目的,较之国内常用的三相半控桥调压方式不存在半控桥失控情况的发生。

软启动器工作原理与主电路图

软启动器工作原理与主电路图 2010年02月22日星期一 11:00 1 软启动器工作原理与主电路图 软启动器采用三相反并联晶闸管作为调压器,将其接入电源和电动机定子之间。这种电路如三相全控桥式整流电路,主电路图见图1。使用软启动器启动电动机时,晶闸管的输出电压逐渐增加,电动机逐渐加速,直到晶闸管全导通,电动机工作在额定电压的机械特性上,实现平滑启动,降低启动电流,避免启动过流跳闸。待电机达到额定转数时,启动过程结束,软启动器自动用旁路接触器取代已完成任务的晶闸管,为电动机正常运转提供额定电压,以降低晶闸管的热损耗,延长软启动器的使用寿命,提高其工作效率,又使电网避免了谐波污染。软启动器同时还提供软停车功能,软停车与软启动过程相反,电压逐渐降低,转数逐渐下降到零,避免自由停车引起的转矩冲击。软启动与软停车的电压曲线见图2,3。 2 软启动器的选用 (1)选型:目前市场上常见的软启动器有旁路型、无旁路型、节能型等。

根据负载性质选择不同型号的软启动器。 旁路型:在电动机达到额定转数时,用旁路接触器取代已完成任务的软启动器,降低晶闸管的热损耗,提高其工作效率。也可以用一台软启动器去启动多台电动机。 无旁路型:晶闸管处于全导通状态,电动机工作于全压方式,忽略电压谐波分量,经常用于短时重复工作的电动机。 节能型:当电动机负荷较轻时,软启动器自动降低施加于电动机定子上的电压,减少电动机电流励磁分量,提高电动机功率因数。 (2)选规格:根据电动机的标称功率,电流负载性质选择启动器,一般软启动器容量稍大于电动机工作电流,还应考虑保护功能是否完备,例如:缺相保护、短路保护、过载保护、逆序保护、过压保护、欠压保护等。 3 Alt48软启动器的特点 Alt48软启动器启动时采用专利技术的转矩控制。转矩斜坡上升更快速,损耗更低。具有电动机和软启动器综合保护功能,能全时连续检测电机电流,提供电机可靠和完整保护,这种保护功能在启动结束旁路后仍能起作用,这是其它软启动器都不具备的。 Alt48在保持加速力矩的同时,实时计算定子和转子的功率。在整个加速周期连续计算电机功率因数和定子损耗,通过检测电压和电流来计算功率因数,并扣除定子损耗,得到实际的转子功率和电机力矩。 4 Alt48软启动器的应用

高炉鼓风机拨风系统

高炉鼓风机拨风系统标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

高炉鼓风机拨风系统改造 杜贞晓 引言在高炉工艺流程中,高炉鼓风机是高炉动力的来源,鼓风机必须给高炉提供充足、富余的风量才能保证高炉正常生产。然而,在高炉炼铁生产过程中,各种不可预测的故障时有发生,小故障可以及时处理,但是重要的连锁信号或高压供电一旦出现问题就导致鼓风机断风或直接停机,致使高炉突然无风压,引起高炉灌渣等重大生产事故。为避免这种重大事故的发生,我们第二炼铁厂根据实际情况,提出在鼓风机之间加拨风系统。 关键词拨风保障高炉送风避免灌渣 概述 拨风系统是两座高炉鼓风机其中一台故障,不能正常送风,另一台风机通过管道把一部分风压临时拨给故障风机,防止有故障的高炉断风的系统。风机故障一般分为停机和安全运行两种情况,我们这套系统针对这两种情况设计了拨风的要求和和条件。这套系统投资小,现场设备较少,设计思路简洁明了,作用大,为避免高炉灌渣,提供了可靠有利的保障。 改造内容: 、主要方法、技术路线 当某座高炉风机出现故障时,风压力降低较大,为防止风压突然消失后,经过判断,确认后,利用相邻两座高炉互为拨风,有效避免高炉吹管出现灌渣现象,避免损失的扩大。判断条件是当高炉相邻两台风机中有一台风机突然停机或安全运行时,拨风系统通过

信号自动判断拨风条件,当有停机信号或安全运行时,并且停机风机风压低于设定值 200KPa时,拨风控制系统控制拨风阀自动打开,使停机的风机仍然有100多KPa的压力,使高炉能保持一定的风压,避免灌渣。 、系统原理图 此套拨风系统采用了DN600不锈钢蝶阀,每两台相临风机间加两个手动阀,两个手动阀之间加一个气动蝶阀,气源采用氮气,氮气相比空气,更稳定,压力平稳,气源没有水等其他杂志,而且冬天可以防止结冰。在设备正常运行时,三个阀门全部开启。在休风检修设备时,关闭两端手动阀门,从而可以随意检修中间的气动阀门。 、硬件组成 2008年6月,按照分厂领导要求,电气、机械、工艺等各个工种开始施工。我们厂共由风机10台,其中备用机2台,有8台鼓风机相邻两台之间做保护,现场设备有气动阀门4台,每个气动阀两侧又加装2台手动阀门,电气设备配电柜2面,现场安装压力变送器8台,敷设电缆1000米,自动化系统是由一套西门子 S7-300 PLC控制,配有 CP343、模拟量输入、模拟量输出、数字量输入、数字量输出模块、中间继电器、信号隔离栅、24V电源、转换开关、按钮、指示灯等元件,来完成整个系统的信号检测和控制输出,现场设备是单向电磁阀控制气动阀门开关的,动力气源是氮气。 、技术原理和应用领域 应用领域:第二炼铁厂3#、4#风机房拨风装置改造于2008年4月18日批准立项后,节省资金起见,由二炼铁自行负责施工,2008年8月8日最后改造完毕,进入试运行阶段。

关于金风S48/750KW风机软启动过程及故障分析

关于金风S48/750KW风机软启动过程及故障分析 摘要:金风S48/750KW风机启动时,为了避免启动电流对电网的冲击,采用由双向可控硅组成的软启动控制电路,通过控制可控硅的导通角,从而控制发电机定子绕组的输入电压,使发电机的启动电流平滑上升,减小了电机的启动损耗。并在PLC的程序控制下,当电机转速达到设定值时,自动闭合旁路接触器,使可控硅开关安全切出,最终完成发电机的并网。 关键词:软启动双向可控硅异步发电机控制流程故障分析 金风S48/750KW风机在新疆风能公司苜蓿台风电场安装39台,总计容量29250KW。从2010年至今已经运行两年有余,一些软启动故障也渐渐暴露出来。本文通过对软启动的启动过程和故障分析,为风机维护人员处理此类故障提供参考。 一、什么是软启动 (一)软启动的定义 软启动(soft start),是指在电机启动过程中,通过控制电机的启动电压,从而使电机的启动电流平滑运行的一种启动方式。 (二)软启动的种类 1.斜坡升压软启动 这种启动方式比较简单,不具备电流闭环控制,仅调整晶闸管导通角,使之与时间成一定的函数关系增加。其缺点是,由于不限流,在电机启动过程中,有时产生较大的冲击电流使晶闸管损坏,对电网影响较大,实际应用较少。 2.斜坡恒流软启动 这种方式是在电机的初始启动阶段,启动电流逐渐增加,当电流达到预先所设定的值后保持恒定,直至启动完毕。启动过程中,电流上升变化的速率是可以根据电动机负载调整设定。电流上升速率大,则启动转矩大,启动时间短。该启动方式是应用最多的启动方式,尤其适用于风机负载的启动。 3.阶跃启动 开机后以最短的时间使启动电流迅速达到设定值,即为阶跃启动。通过调节启动电流设定值,可以达到快速启动效果。 4.脉冲冲击启动

施耐德软启动的原理及应用

施耐德软启动的原理及应用 摘要:本文介绍了软启动的原理与运行特点,以及MCC 控制柜的作用与功能。 关键词:软启动器;交流电机;电机起动性;MCC;控制柜,价格,参数。 1、软启动器的性能及特点 软启动器对电机电流的检测,控制输出电压按一定线性加至全压,限制励磁启动电流,实现电机的软启动,它具有很强的抗干扰能力和控制能力,能避免在工作中受高电压和强电子的扰动。软启动器采用数字控制触发,在软启动过程中是恒电流平滑加速,避免了对电网的冲击,启动电流可根据现场负载的需要在30 %~70 %Ue (Ue 为额定电压)范围内连续可调。可以对软启动器参数进行调整,以最小电流获得最佳转矩,软启动器对机械方面的优点是可减少机械应力,延长电动机及附属机械使用寿命。启动时间可以根据不同的负载进行设定,对启动时间进行最佳优化,在该时间范围内,电动机转速缓慢上升,具有缺相,三相不平衡,过载,过流等电机的全方位保护。性价比高,操作简单,体积小,重量轻,安装调试方便,具有可控硅过热和过电压保护。 2工作原理与运行特点 三相交流异步电动机的启动转矩Ma 直接与所加电压的二次方有关,也就是说,只要降低电机接线端子上的电压就会影响这些值。软启动的工作原理是通过控制串接于电源与被控电机之间的三相反并联晶闸管的导通角使电机的端子电压从预先设定的值上升到额定电压。 2.1软启动的主要启动方式 (1)电压双斜坡启动详见说明,在启动过成中,电机的输出力矩随电压的增加而增加,在启动时提供一个初始的启动电压Us ,Us 根据负载的大小可调,将Us 调到大于负载静摩擦力矩,产生最佳启动特性。这时输出电压从Us 开始按一定的斜率上升,电机不断加速。当输出电压达到达速电压Ur,电机也基本达到额定转速。软启动器在启动过程中自动检测达速电压,当电机达到额定转速时,使输出电压达到额定电压。 (2)限流启动:就是电机的启动过程中限制其启动电流不超过设定值的软启动方式。其输出电压从零开始迅速增长,知道输出电流达到预先设定的电流限值Im ,然后保持输出电流I < Im 的条件下逐渐升高电压,直到额定电压,使电机转速逐渐升高,达到额定转速。连轧厂冷剪机中用的软启动器采用的是限流启动,减少传统方式中的在启动过程中有很大的长时

变频技术在加热炉鼓风机应用的节能效果分析

变频技术在加热炉鼓风机应用的节能效果分析 摘要:针对板材厂中板线3#加热炉鼓风机传统风量控制方法的缺点,结合变频 调速控制方法的理论和特点, 并通过具体实例对变频调速技术运用3#加热炉鼓风 机时的节能状况进行详细分析和计算,总结出了节能效果和推广该技术的意义。 关键词:中板加热炉鼓风机变频器效果分析 引言 板材厂中板线3#加热炉年出钢总量占总产量的80%以上。由于处于高炉煤 气管网的末端,煤气热值及压力都波动都很大,生产负荷变化也较大,造成鼓风 机供风量和风压也跟着大幅的波动,给鼓风机和引风机的正常运行和加热炉最优 控制带来了较大的影响,3#加热炉现有两台鼓风机,一台是低压风机,供风量无 法满足生产要求很少使用,另一台为高压风机。引风机两台,分别是空气侧引风 机和煤气侧引风机组成,鼓风机、引风机的调节都是通过调节风管上的调节阀进 行调节,由于高压鼓风机转速高过低压鼓风机许多,所以炉子的风压、风量出现 富余,风压、风量的大幅波动严重影响炉内空煤气混合状况,增加了氧化烧损。 系统存在的主要问题有:(1)无法随时动态跟踪工艺进行风量调节以满足最佳工艺的要求,同时在生产过程中引风机、鼓风机风管上的风阀开度仅开到40%-70%,造成不必要的电能消耗。(2)由于供给的助燃风量过剩,导致钢坯氧化烧 损较高,带走的热量过多造成不必要的能源消耗和金属消耗。(3)在生产操作过程 中如果进风口风门开度调节不当,在小风量时很容易产生鼓风机共振,严重影响 设备安全运行。 一、变频节能技术原理分析 从本质上对变频节能技术进行分析的话,就是利用有效输出电压的调节,来 合理的控制风机的实际功率,实现对转速的合理调节,进而达到对风量的调整。 将变频技术应用到风机中,风口的挡板就可以不再利用,处于完全打开的状态就 可以,这样就可以利用变频技术,对风量的输出进行合理调整了。风机转速一般 按照以下公式可以得出: n=(1-s)n0 n0=60f/p 其中n代表着实际转速,n0代表理论转速,s代表转差率,f代表电机的运行频率(60是60s),p代表着电机极对数。从这个公式可以看出:在转差率 s忽略不 计的情况下(s=0-0.05),电机的实际转速n=60f/p,也就是说n与f是存在正比关 系的,当n的值增加时,f的值就也会增加;当f值减少时,控制功率也必然会 减少,因此对f值进行合理的控制和调整,就可以实现对电机转速n的调节。 二、系统控制 将备用鼓风机改为变频控制,变频器选用400Kw的G130西门子变频器柜控制。既满足了助燃风量的要求,同时随时动态跟踪工艺要求进行风量调节,实现 了最佳工艺要求。引风机采用了在引风机软启动控制柜和1#、2#炉鼓风机变频控制柜之间加装转换控制柜,利用1#、2#炉变频风机控制柜控制引风机,既降低了成本投入也满足了生产要求。另外采用变频控制降低了不仅电能的消耗,同时减 少了氧化烧损,提高了产品的质量。人机界面友好,操作简单。风压控制采用变 频器,设定为固定风压时,根据流量的需求变化自动调节频率,极大的较少了高 压风机的操作强度。风压系统具有自动手动两种控制模式,增加了系统的可靠性,控制精度高。

离心风机检修标准(DOC)

第一章离心式风机检修标准 一、综述 建龙一期工程中共装置了各类负机约台,包括全国容量最大的高炉鼓风机在内,但主要的是离心式风机,如各种加热炉的助燃风机,大电机风冷用风机,各种除尘 装置上包括电除尘和大布袋除尘装置的使用的各类除尘风机,煤气加压站中继加压风机等等。另外,虽然还有风压较高的罗茨风机以及水处理冷却塔用大直径轴流风机和通风用的轴流风机,但数量较少,或因转速较低,检修工作量不大。 本检修标准着重于常用的离心式风机,虽然用途不一,但其基本型式是离心式,因此从检修标准来讲,技术标准是一致的。 至于高炉鼓风机等个别重要设备,其技术标准将单独编制。 二、离心风机的检修周期及检修内容 1)风机的检修周期 风机的检修周期,一般按表1进行。 风机的检修周期与风机使用的场合有极大关系,介质中含尘量与含尘的特性,对风机的 磨损影响极大,应根据实际使用情况,予以调整。 2)风机的检修内容 ⑴检查、清洗各部轴承,更换轴承润滑脂或润滑油,标明正常油位,最低、最高油 位。⑵检查各部的密封情况,清扫内部尘垢; ⑶检查叶片风六挡板,导流板等有无裂纹、锈蚀、磨损、螺丝松动等情况,并进行 处理;⑷检查联轴器及其防护罩,更换磨损的橡胶弹性圈; ⑸检查和紧固各部螺栓; ⑹堵塞各处漏风并修复保温材料; ⑺检查、修理调节风门,保证其灵活,指示正确。 ⑻检查修理冷却水系统。 (n)中修(包括小修内容)

⑴根据叶轮焊接缝(或铆钉)的磨损、桧情况,进行焊补或更换叶片(铆钉),并作静 平衡校验; ⑵修理或更换联轴器; ⑶检查或更换轴承; ⑷检查、调整电动轴和风机主轴的同心度及水平度; ⑸修理或更换轴承座; ⑹修理风机外壳和叶片磨损严重的部位,补焊或更换防磨层内衬; ⑺除锈防腐处理。 (川)大修(包括中修内容) ⑴修理或更换风机主轴; ⑵制造或安装新叶轮,并作静平衡或动平衡校验; ⑶更换磨损严重的风机外壳; ⑷更换台板、轴承箱或重新浇灌基础。 三、风机主要部件及装配的质量 1)叶轮 小型风机的叶轮一般为单吸式,大型风机的叶轮为双吸式的。 叶轮是由前盘,后盘(如双吸式)和中盘,轮毂和叶片风部份组成,叶轮的检修及各部的质量标准为: ⑴叶轮局部磨穿,可以割去磨穿部份,用新材料修补,磨薄部位可以补焊,用角向砂轮打平,但焊接时必须注意热变形和消除焊接应力。 叶片磨损过薄时(一般为原厚度的30%,应更换新叶片,新叶片安装的允许偏差,应符合表2的数值。

大型高炉鼓风机同步电动机软启动及其控制

大型高炉鼓风机同步电动机软启动及其控制 作者:佚名转贴自:电力安全论坛点击数:11 更新时间:2009-5-16 摘要:本文论述了交-直-交电流型变频器用于超大型同步电动机软起动的情况,变频软起动的原理、结构及其控制。 英文摘要:The paper discusses the situation of AC to DC to AC current source inverter application in the super sized synchronous electromotor soft starting, and the principle, structure and control technique of the frequency variable soft starting. 关键词:同步电动机交-直-交变频器软起动器 1 引言 大型高炉炼铁鼓风机采用超大型同步电动机传动取代透平传动,已成为当今世界炼铁装备发展的趋势。这得益于电力电子技术及微电子技术、计算机技术的发展,成功地利用交-直-交变频器。解决了超大型同步电动机的软启动问题,平滑启动功率只需电动机功率的25%左右,从而避免了同步机异步启动时对电网难以承受的冲击。平滑的启动过程经过200s左右将加速到准同步速度即95%额定转速ne,然后并入电网,拉入同步运行。 2003年5月鞍钢第一台电动鼓风机顺利并网运行,为新1#高炉送风。风机的驱动电动机为超大型同步电动机,其额定功率为42MW,电机启动采用变频器软启动,控制系统采用SIMADYN D计算机控制系统。SIMADYN D是西门子变频器的核心技术。新1#高炉鼓风机同步电动机与启动变频器是一拖一的方式,而最近将投入运行的新2#、3#高炉是采用一拖二的方式。即一台变频器可以拖动两台同步电动机分时启动。鞍钢引进的这套西门子变频器软启动装置是西门子公司新的版本,其硬件及其软件技术水平较国内其它钢铁企业引进的同类的设备有较大的提高。 学习和掌握这些相关的技术对生产维护和今后的发展有着极其重要的现实意义。 2 变频器的技术数据及其组成 用于超大型同步电动机软起动的交-直-交电流型变频器原理图如附图所示。 2.1 主要技术数据 (1) 额定电压:2×2.9kV,3相 电压波动范围:+10%~-10%; (2) 额定频率: 50Hz±2%; (3) 直流环节功率:2×4.8MW; (4) 频率控制范围:1:10; (5) 正常运行环境温度:+5℃~40℃; (6) 正常环境温度情况下,可连续3次启动,第4次间隔60min。 2.2 变频器及其功率部分

变频器软启动的原理

摘要:简要介绍了电动机软启动装置组成、特点以厦与传统启动装置的比较。结合陕西鼓风机(集团)有限会司生产制造的风机机组低压辅机系统的特点,阐明了电动机软启动装置的应用。 电动机软启动装置;传统启动装置;低压辅机系统 引言 低压辅机系统(如盘车电机、润滑油泵、液压油泵等)是风机机组重要的辅助系统,其运行的好坏直接关系到风机机组的安全性能。 电动机软启动装置是一种具有国际先进水平的电动机启动装置,该装置融合了最新的现代控制理论和专用电动机保护技术及先进的软件技术,既能改变电动机的启动特性,保证电动机可靠启动,又能降低启动电流,减少对电网的冲击,并且可以和网络进行通讯,实现智能控制。无论从功能、性能、负载适应能力、维护及可靠性等方面都是传统的启动设备(如:星/三角、自耦变压器、磁控式启动装置)无法比拟的。所以,这种智能型启动装置取代上述传统的启动装置将是一种必然趋势。 1电动机软启动装置组成 电动机软启动装置采用单片机进行逻辑控制。如图1所示,一般由电压检测、电流检测、旁路接触器、驱动电路、控制系统和键盘显示器等组成。 2电动机软启动装置选择 电动机软启动装置的选择主要取决于它的启动方式和停车方式。 电动机软启动装置一般有以下几种启动模式: 限电流启动模式就是限制电机的启动电流,主要用于轻载启动和对电机启动电流有严格要求的场合。电压斜坡启动模式就是把电机电压由小到大斜坡线性增加,主要用于重载启动和对启动电流要求不严格而启动平稳性较高的场合。突跳启动模式就是在电机启动时,先给电机施加一个较高的固定电压并持续一段时间,以克服静阻力距,主要用于重载启动,但是突跳时会给电网造成冲击。转矩控制启动模式就是把电机的启动转矩由小到大斜坡线性增加,主要适用于重载启动。电压控制启动模式就是保证启动电压压降不变的情况下,使电机发挥出最大启动力矩,主要用于轻载启动。 电动机软启动装置一般有减速停车模式、自由停

动力系统设备管理制度

2208005 动力系统设备管理制度 编号:XSC-SBC-005 (第四版) (受控) 2015-04-30发布 2015-05-01实施新兴铸管股份有限公司武安工业区生产管理部

文件修改简要

动力系统设备管理制度 编号:XSC-SBC-005 (第四版) 1 目的

明确设备分类,规范动力设备的运行管理。 2 适用范围 本制度适用于股份公司各单位水、风、气(汽)等动力设备的运行管理。 3 实施内容 3.1 动力系统设备分类: 3.1.1 供水设备:深井泵、加压泵、新水循环泵、储水池、水塔等。 3.1.2 供电设备:供电线路、配电设备、变压器等。 3.1.3 供风设备:高炉鼓风机、空气压缩机。 3.1.4 供氧(氮)设备:空分塔、氧(氮)压机、氧(氮)气球罐等。 3.1.5 煤气设备:煤气加压机及煤气柜等。 3.1.6 蒸汽设备:蒸汽锅炉、热水锅炉等。 3.1.7 动力管网:水、风、气(汽)等输送管道。 3.2 动力设备必须制订的各项管理制度名称 3.2.1 设备规程:使用、维护、检修等各项规程; 3.2.2 管理制度:事故、锅压、管网及电器等管理制度; 3.2.3 实施细则:运行管理、检修管理、润滑管理等细则; 3.2.4 各项程序:点巡检、事故分析等程序; 3.2.5 完好标准:制氧机、空压机、鼓风机、水泵等。 3.3 强化重要机组及大型设备的专业管理 3.3.1 重要机组及大型设备:D2350、D1450、D1050、DA200、DA400、H500等鼓风或空压设备;以及为其配套的大型电机。 3.3.2 开展以事业部点巡检工作为中心的设备全面管理;专检人员在做好设备点巡检的同时,做好对设备的运行、检修、润滑以及岗位人员点检的检查和各

电动机软启动技术综述_孙志平

第26卷 第3期 吉 林 化 工 学 院 学 报 V o l .26N o .3 2009年6月 J O U R N A LO FJ I L I NI N S T I T U T EO FC H E M I C A LT E C H N O L O G Y J u n . 2009 收稿日期:2009-04-23 作者简介:孙志平(1965-),男,吉林省吉林市人,吉林联力工贸有限责任公司工程师,主要从事电气仪表方面的研 究. 文章编号:1007-2853(2009)03-0070-06 电动机软启动技术综述 孙志平 (吉林联力工贸有限责任公司仪表厂,吉林吉林132021) 摘要:论述了有关三相异步电动机软启动的几种起动方式及其优缺点,同时就不同形式的软启动技术的可靠性、安全性和能源消耗情况进行讨论.关 键 词:电动机;软启动器;降压起动器;节能 中图分类号:T P 393.1 文献标识码:B 随着我国经济技术的飞速发展和建立和谐社会、节约型社会的目标的提出,人们对机电设备节能技术和智能控制系统给予了极大的关注,其中也包括电动机的软启动技术.近几年随着国内一些6k V 和10k V 的大容量电动设备投入运行的不断增加,特别是那些起动力矩较大的风机泵类电机的增多,带动了电动机软启动技术的应用和发展,一些技术先进的有关电动机起动的智能控制技术逐渐得到应用,有关软启动技术受到社会的广泛关注 [1] . 1 电动机的启动方式 通常电动机的起动方式有两种:一种是在额定电压下的直接起动方式,又被叫做硬启动,另一种是调整电机的启动电压或电流的起动方式,也被称为软启动. 在实际应用中多数电气设备是采用直接起动,这种方式系统接线简单,操作和维护方便,起动速度快,是一种最简单,最常用的起动方式.但是直接起动存在一定的危害和局限性 [2] ,如: (1)直接起动的电机的起动电流很大对电网冲击大.一般电机空载起动电流可达额定电流的4~7倍,带载起动时可达8~10倍或更大,并由此会造成电网电流瞬间增加,导致电压下降,对其他运行中电设备造成影响,还可能使低电压保护动作,威胁相关设备的安全运行,使电机本身及系 统的继电保护的整定和配合增加难度,降低了保护的灵敏度 [3] . (2)直接起动的电机由于过大的起动电流会使电机绕组发热,导致绝缘老化加速,影响电机寿命,同时机械冲击过大往往会造成电动机转子笼条、端环断裂和定子端部绕组绝缘磨损,导致击穿烧机,转轴扭曲,联轴节、传动齿轮损伤和皮带撕裂等 [4] . (3)直接起动的电机在起动时,其机械系统容易由于电气系统的突变而对机械系统造成冲击,如:风机、水泵等受电机启动过程中的压力突变往往造成泵系统管道、阀门的损伤,缩短使用寿命;影响传动精度,甚至影响正常的过程控制 [5] . 人们根据以上这些情况为了保证安全和可靠性、经济性在对电动机直接起动方式的选择上制定了一些限制条件.一是根据生产机械特性和工艺要求,确定是否允许拖动电动机直接起动;二是,根据电动机的容量与供电系统的变压器容量的比值来确定,要求电机容量要小于变压器容量的10%~15%;三是,要求电机起动过程中的电网电压降不大于额定电压的15%.对于中、大功率的电动机一般都不允许直接起动,而要求采用一定的起动设备,通过降低电机启动时的电压的方式完成正常的起动工作,被称为降压(限流)软启动 [6] . 作为电动机采取降压起动的条件:一是电动机起动时,机械不能承受全压起动的冲击转矩;二

软启动技术在电机控制中的应用

软启动技术在电机控制中的应用 1 引言 交流异步电动机由于结构简单、维护方便、价格便宜,广泛地作为电气传动主要的原动力。在交流异步电机的启动控制中,我们常用的有全压直接启动和降压启动两种方式。作为传统的启动方式,应用很广泛,但在某些有特殊要求的场合,这些传统的启动方式也有着这样或那样的弊端。近十来年,由于变频及软启动技术的发展,从根本上解决了电机控制中存在的一些难题,特别是软启动技术在解决大、中容量的电机启动问题中有着卓越的功能,可以说是替代传统启动方式,特别是降压启动的一项新技术。 2 传统的启动方式及其弊端 1.启动高达5~7倍的启动电流,造成电动机绕组因过热引起高温,从而加速绝缘老化; 2.供电网络电压降过大,当电压≤0.85U n 时,影响其他设备的正常使用,尤其是欠压保护动作; 3.启动时能量损失过大,浪费电能,尤其是当频繁启动时; 4.对被带动的设备造成极大的冲击力,缩短设备使用寿命,影响精确度; 5造成机械传动部件的非正常磨损,加速设备老化,缩短寿命; 6.接触器等控制设备故障率较高。 因此,对电动机启动是否能直接启动有着一定的限制条件: a.机械设备是否允许电机直接启动,这是先决条件; b.直接启动时,不允许电机的容量大于10%—15%主变压器的容量; c.启动过程中电压降△U不大于15%U n 。 以往的解决中、大功率电动机的启动问题往往采用一些传统的启动方式及设备,如:频敏变阻器启动(只适用于绕线式电机)、自藕变压器降压启动、Y/△转换方式启动、延边三角形启动方式等。他们的启动方式性能如下: 注:U n :额定电压l q 、M q :电动机全压启动时电流及启动转矩 K:降压系数=U q /U n ,U q 启动电压。 这些传统的降压启动方式普遍存在着起动设备复杂,部分启动方式存在启动电流大或启动转矩偏小的弊端,而且在电机的运行保护方面,存在着功能不甚完善或不灵敏的情况。而软启动技术作为一种先进的电机控制技术,在这些方面与传统的控制方式相比,有着无可比拟的优点,是控制技术的发展方向。 3 软启动技术及其优点

变频器在通风机中的应用

摘要 对于井下矿山系统而言,通风机作为重要的安全设备,起着安全保障的作用。随着生产对风机调速性能要求的不断提高,传统风机主要采用三相交流电固定转速,从启动到正常运转后一直是保持一个转速,不能根据不同需求而改变转速,既浪费了电能,又由于启动电流过大、启动不平滑容易造成电气、机械故障。 本文以一个使用变频器控制车间铁龙回风斜井185KW的通风机的应用案例,以此风机的节能来展开讲述。根据不同时段和需求要求的不同风量,在不使用变频器控制的情况下,风机只能以最大转速运行。结合变频器来控制风机的转速,实现平滑调速,达到节能的效果。 关键词:风机变频器调速节能

前言 在矿山、冶金、石油等工业生产中,使用着大量的风机,这些机械设备一般都用交流电动机驱动,且功率都比较大,消耗的电能非常可观。仔细观察这些设备的运行状况,可以发现它们大多都不是常年工作在额定功率之上,而是经常只有50—70%,甚至更低的输出量。传统的依靠挡板、阀门或空放回流调节方法致使电动机长期处于低效率、低功率因数状态运行,白白损失掉大量的电能,越是大功率的风机,情况越是严重。 随着我国经济的高速发展,微电子技术,计算机技术,自动化控制技术都得到了迅速发展,交流变频调速技术也已经进入了一个崭新的时代,其应用越来越光。而风机作为矿山企业必不可少的设备与企业的生产效率紧密相关,随着能源的日益紧缺,企业中的设备节能问题就显得尤为重要,采用变频器来控制风机负载,不仅能够实现平滑调速,而且大大节省能耗。

一、改造前风机存在的问题 1、电能的严重浪费。改造之前铁龙回风斜井通风机以额定功率185KW运行,因此造成能源浪费,增加了生产成本。 2、启动电流大,机械容易损伤。风机采用直接启动,启动时间长,启动电流大,对电机的绝缘有着较大的威胁,曾经造成过经常跳闸、交流接触器被烧坏等电气故障。而电动机在启动过程中所产生的单轴转矩现象使风机产生较大的机械振动应力,严重影响到电动机、风机及其它机械的使用寿命。 3、自动化程度低。风机依靠人工调节挡板,更不具备风量的自动实时调节功能,自动化程度低。在故障状态下,如风流短路,将对正常生产造成严重影响。为了设备的安全生产和降低生产成本,提升整体的自动化水平,对风机进行变频调速改造具有非常重要的意义。 二、变频器概述 变频调速是目前国际上最先进的调速技术,变频调速器是一种变频变压的调速,也可称〝交-直-交〞变频器。由于变频器的主回路采用了大功率的晶体管模块,控制回路采用了大规模的集成电路,再加上多种保护功能和自诊断显示功能。因此,具有很高的可靠性,而且维修方便。另外变频器内置有丰富的软件功能,外设有多个控制端子和外部计算机通讯接口,很轻易实现自动控制和过程控制。此外,由于变频器采用了先进的变频变压的控制方法,因此可以很好的实现软启动、软停止和无极变速。变频器对电机速度的控制正确,启动力矩大、电流小,而且功率因数很高,在很好满足工厂现场要求的同时,改善了供电电网,大大缓解了工厂电源容量紧张,而且节约了大量的电能。

变频器在焦化厂风机变频改造上的应用

变频器在焦化厂风机变频改造上的应用 (希望森兰变频器制造公司,四川成都 610225) 杜俊明 摘要:炼焦鼓冷系统用液力耦合器调速,在变频器未实际应用以前,液力耦合器调速不失为交流电机较为理想的调速方式,其效率﹑低耗能大,用变频调速方 式取代后可以获得非常好的经济效益。 关键词:风机液力耦合器调速,变频器,节能 一、概述 炼焦过程是炼焦煤在炭化室经过干燥脱水、软化熔融、半焦化和半焦收缩成焦等阶段。在200摄氏度以前,煤表面的水分、吸附在煤中的二氧化碳、甲烷等析出。随着进入软化熔融阶段,在此阶段中,煤大分子侧链断裂和分解,产生热解产物,在半焦形成和开始缩聚之前,热解产生的蒸汽和煤气,主要含有甲烷、一氧化碳、化合水及焦油蒸汽等。温度继续升高,析出的气体中氢和苯蒸汽的含量增加。在半焦至焦碳阶段中,随着焦质致密、缩聚,氢大量的产生。在炭化室炼焦的特定条件下,上述初次分解的产物,通过赤热的半焦及焦碳层到达炉墙边,然后沿着高温的炉墙与焦碳之间的空隙到达炉顶空间。 炭化室出来的荒煤气首先在桥管处被大量的循环氨水喷洒。在次过程中,热煤气与70~75摄示度的呈细雾状的氨水接触,高温煤气放出热量,使氨水雾滴迅速升温和汽化,结果,煤气温度降到80~85摄示度,未被汽化的氨水温度升高到75~78摄示度。煤气中的焦油气约为50~60%被冷却下来,部分焦油与煤尘和焦炭粒混在一起构成焦油渣。煤气经初冷器后温度可降至30摄示度,此时,轻质焦油和氨水就冷凝下来。炼焦炉出来的焦炉煤气经集气管、吸气管、初冷器、捕焦油器、回收氨和苯的系统等一系系列的设备,然后才能变成净煤气送给不同的用户,或送至贮罐。在这一过程中煤气要克服许多阻力才能达到用户的地点,为此,煤气应具有足够的压力。另外,为了使焦炉内的荒煤气按规定的压力制度抽出,要是煤气管线中具有一定的吸力,因此,必须在焦化工艺的流程中,选择合理的位置设置鼓风机,一般焦化厂鼓风机的位置选择在初冷器之后和捕焦油器之前,这是因为此时鼓风机的负荷较小,电捕焦油器处于正压状态下操作,比较安全。 二、现状 某焦化厂炼焦炉鼓冷系统有400kW离心风机两台,一用一备,安装在两台初冷器之前,即一台鼓风机同时对两台初冷器中的煤气进行抽取。工艺上要保证初冷器内维持120Pa正压,则鼓风机需要调速,原系统采用液力偶合器调速。另外,还要求两台初冷器内的正压相

相关文档
最新文档