基于STM32的USB OTG数据通信

基于STM32的USB OTG数据通信
基于STM32的USB OTG数据通信

目前使用的USB移动设备都只能通过PC机进行相互的文件和数据交换。人们希望通过移动设备直接与USB外设通信, 使得USB

能应用在没有PC的领域中。

USB OTG(On The Go)[1]可满足这些要求,即一个拥有OTG 功能的设备既可以扮演主机的角色操纵其他USB从设备,同时又可以担当从设备的角色接受主机的支配。该技术对于便携式设备、野外作业设备间的数据传输将是一个重要突破。基于Cortex-M3内核的STM32系列的ARM嵌入式处理器因其高的性价比而正被广泛应用。将USB与ARM相结合是进行数据采集、处理与传输的理想解决方案。本文重点讨论基于STM32的USB OTG的数据通信。

本文的创新点就在于充分结合和利用了STM32处理器低成本、低功耗、高可靠性与USB OTG技术的优点,对于已经编程实现的主机、从机栈程序有很好的移植性,对于以后数据传输的开发具有很好的参考性。将USB与STM32相结合实现USB嵌入式设备之间的数据传输,将会在移动数据传输领域具有很好的应用前景。

1 USB OTG规范

USB OTG规范是USB 2.0规范的补充,它完全遵守USB 2.0规范的外围设备。在USB OTG规范之下, 任意两个符合规范的USB 产品都可以互相连接进行通信, 而不是必须通过PC机才能通信, 从而实现了各类USB产品完全脱离电脑进行数据传输的功能。

双重角色设备必须具备有限的主机能力,同时还需要一个OTG目标列表,即包括与之通信的设备信息、设备类型、制造商等。它支持会话请求协议SRP和主机交换协议HNP。SRP协议用于B设备向A设备请求开始USB会话, HNP协议用于USB会话过程中在A设备和B设备之间传递主机地位[2]。

2 STM32的USB OTG全速控制器

ST公司在基于ARM公司的Cortex-M3架构上研发出32 bit STM32处理器后,凭借其丰富的外围模块、高速指令执行速度、低功耗、低价格而备受市场青睐。2009年又推出了STM32F107互联型系列微控制器,它集成了USB OTG接口,配合了USB HOST和SPI

功能,让微控制器可以读取USB大容量外存、MP3播放器、SD记忆卡等文件。STM32F107芯片内集成了USB OTG模块功能图如图1所示。

USB OTG全速控制器从复位和时钟控制模块(RCC)中获得时钟,微控制器内核(CPU)通过AHB外设总线访问OTG全速控制器的寄存器,USB事件由单独的USB OTG中断控制线通知微控制器内核[3]。

每个发送FIFO都配置了一个PUSH寄存器,微控制器以向PUSH寄存器写32 bit数据的方式向USB控制器传输数据,每一个OUT端点或IN通道都有一个POP寄存器,微控制器通过读POP寄存器获得来自USB总线的32 bit数据,这些数据自动从共享的接收FIFO 中载入,接收FIFO位于总共1.25 KB的USB数据RAM区。

USB协议层由串行接口控制器(SIE)驱动,并连接到由内置物理层(PHY)支持的USB全速/低速收发模块。OTG PHY由OTG全速控制器控制,并通过UTMI+总线(UTMIFS)的全速子集来收发控制和数据信号。它包括了上拉/下拉电阻的ECN电路。内置了ID线的上拉电阻,用于区分是主机状态还是设备状态,若ID线浮空,内置的上拉电阻将检测到ID线的高电平,此时控制器处于默认的设备模式下。若ID线接地。自动切换到主机模式,并需要软件初始化主机模式。

DP/DM线内置了上拉和下拉电阻[4],在设备模式下,当VBUS线上出现了有效的电平,控制器使能DP线的上拉电阻,向主机通告接入一个USB全速设备。在主机模式下,控制器同时使能DP和DM线的下拉电阻。上拉和下拉电阻可以在控制器通过主机协商协议(HNP)切换角色类型时动态地切换。

STM32F107芯片集成了USB OTG功能,USB OTG固件程序的设计可以完成数据传输的所有操作及功能。其结构图如图2所示。其中驱动程序栈包括主机驱动程序栈、从机驱动程序栈、USB OTG驱动程序栈。当完成固定程序设计后,系统软件会根据硬件的连接检查ID线的状态来选择工作模式是设备模式还是主机模式。程序流程图如图3所示。

如果工作于主机模式下,则进行相应初始化、检测端口,在检测到有设备接入时复位总线、枚举并配置从机设备,在完成对从机识别后,可通过查询从机的OTG性能描述符判断是否支持HNP协议(即是否为两用OTG设备)。当工作在从机状态时则等待主机对其完成枚举。本文是在STM32开发工具RealView MDK的基于STM32固件库上进行开发,实现与U盘、PC机间的通信。

3.1 U盘读写的实现

U盘属于USB 大容量存储设备,它具有容量大、可移动、数据交互方便等优点,因而实现与U盘的读写具有很强的应用价值和市场前景。要实现U盘读写,USB 主机必须具有相应的驱动[5],对各种读写指令进行封装、解释和执行。

在系统进入主机模式前应先给开发板提供5 V供电,开启系统时钟、USB OTG时钟,然后调用void HOST_Init

(USB_OTG_CORE_DEVICE *pdev)函数将USB OTG初始化为主机模式,接着调用HOST_ChannelInit(USB_OTG_CORE_DEVICE *pdev,USB_OTG_HC *pHost

Channel)初始化传输通道,其中包括总传输长度、期望接收到的数据包数、设备端点传输类型、速度、方向的配置。最后根据主机传输协议在初始化通道内进行传输,可以调用下列函数uint32_t HOST_StartXfer (USB_OTG_CORE_DEVICE *pdev, USB_OTG_HC

*pHostChannel)进行通信。

U盘是大容量存储设备,支持Bulk-Only 传输协议,USB主机在能够正确操纵U盘之前必须先完成USB总线的枚举,在控制传输阶段先获取从设备的信息,然后根据这些信息对从设备进行重配置后, 才能建立主从通信。此外, 程序中还要实现标准Mass Storge 类协议中的磁盘操作命令UFI, 它能完成读、写、格式化磁盘等。最后建立了FATFS 文件系统,它兼容了FAT16、FAT32文件系统,它是UFI 与移动盘上文件数据连接的桥梁, UFI命令的所有数据流只有按照FATFS 标准协议传输, 才能顺利实现文件读、写等功能。

程序中实现U盘的BOT传输,除了规定控制传输端点0之外,还定义了输入、输出端点,BOT状态机的5个状态,两个状态寄存器CBW、CSW。端点输出中断程序完成写U盘,端点输入完成读U盘操作。其流程图分别如图4、图5所示。

3.2 与PC机之间通信

与PC机进行通信,系统作为USB从设备时, 要应答PC主机的标准请求、处理USB总线事务和用户功能[6]。首先调用void USB_OTG_USBD_Init ()将USB OTG工作模式配置成从机模式,接着调用底层驱动API函数USB_OTG_USBD_EP_Open ()来激活端点进行数据

传输,USB OTG定义了三个端点, 程序中定义端点0在控制传输中应答设备枚举,端点1的功能为向PC机发送数据, 端点2的功能为接受PC机发送的数据。PC主机枚举系统设备时, 必须先获得USB OTG端点的配置参数。最后通过调用如下的PCD层API函数完成SETUP 包、IN包、OUT包的传输。

uint32_t USB_OTG_USBD_EP_Read();

uint32_t USB_OTG_USBD_EP_Write();

uint32_t USB_OTG_USBD_EP_Stall();

uint32_t USB_OTG_USBD_EP_ClrStall();

uint32_t USB_OTG_USBD_EP_Flush();

本文采用意法半导体公司互联型控制芯片STMF107集成的USB OTG接口, 在基于金牛开发板上实现了从设备和主机的数据传输,作为从设备, PC机端的应用程序可以通过USB OTG 开发板的SDRAM进行数据的读写,可稳定在500 kb/s;作为主机, 可以枚举连接到USB OTG 接口上的U盘实现了对U盘的读写,最高读写速率可达800 kb/s。

本文利用了STM32F107芯片高度集成的USB OTG接口,其开发系统性能好、可靠性高、开发方便,开发者只需在软件上编程实现数据传输。同时STM32芯片提供了相关固件库,在此基础上进行开发提高了效率。

HTTP请求报头详解

HTTP头字段包括4类: general-header ; request-header ; response-header ; entity-header . ********************************************************************* ********** General Header Fields ============================= general header是request、response都可用的, 但是不能用于entity. --Cache-Control --Connection --Date --Pragma --Trailer --Transfer-Encoding --Upgrade --Via --Warning ********************************************************************* ********** Request Header Fields ====================== request-header fields 允许客户端传递关于request和客户端的附加信息到服务端, --Accept --Accept-Charset --Accept-Encoding --Accept-Language --Authorization --Expect --From --Host --If-Match --If-Modified-Since --If-None-Match --If-Range --If-Unmodified-Since

STM32固件库的学习(重要,要常看)

1. stm32的编程中,在stdperiph_drive中添加的misc.c文件是干什么用的啊? 因为STM32 V3.5版本的库函数中没有原来版本中单独对于NVIC(中断向量嵌套)的外设驱动,把NVIC的外设驱动放在了misc.c中,实际上是代替原来的stm32f10x_nvic.c。 2. STM32F10XXX V 3.5标准外设库文件夹描述 标准外设库的第一部分是CMSIS 和STM32F10x_StdPeriph_Driver,CMSIS 是独立于供应商的Cortex-M处理器系列硬件抽象层,为芯片厂商和中间件供应商提供了简单的处理器软件接口,简化了软件复用工作,降低了Cortex-M上操作系统的移植难度,并减少了新入门的微控制器开发者的学习曲线和新产品的上市时间。 STM32F10x_StdPeriph_Driver则包括了分别对应包括了所有外设对应驱动函数,这些驱动函数均使用C语言编写,并提供了统一的易于调用的函数接口,供开发者使用。Project 文件夹中则包括了ST官方的所有例程和基于不同编译器的项目模板,这些例程是学习和使用STM32的重要参考。Utilities包含了相关评估板的示例程序和驱动函数,供使用官方评估板的开发者使用,很多驱动函数同样可以作为学习的重要参考。 3.文件功能说明

4.CMSIS文件夹结构

在实际开发过程中,根据应用程序的需要,可以采取2种方法使用标准外设库

(StdPeriph_Lib): (1)使用外设驱动:这时应用程序开发基于外设驱动的API(应用编程接口)。用户只需要配置文件”stm32f10x_conf.h”,并使用相应的文件”stm32f10x_ppp.h/.c”即可。 (2) 不使用外设驱动:这时应用程序开发基于外设的寄存器结构和位定义文件。 5. STM32F10XXX标准外设库的使用 标准外设库中包含了众多的变量定义和功能函数,如果不能了解他们的命名规范和使用规律将会给编程带来很大的麻烦,本节将主要叙述标准外设库中的相关规范,通过这些规范的学习可以更加灵活的使用固件库,同时也将极大增强程序的规范性和易读性,同时标准外设库中的这种规范也值得我们在进行其他相关的开发时使用和借鉴。 a.缩写定义 标准外设库中的主要外设均采用了缩写的形式,通过这些缩写可以很容易的辨认对应的外设。

http协议请求响应报文格式及状态码详解

HTTP协议报文格式 HTTP协议(Hypertext Transfer Protocol――超文本传输协议)浏览器端(客户端)向WEB 服务器端访问页面的过程和HTTP协议报文的格式。 基于HTTP协议的客户机访问包括4个过程,分别是建立TCP套接字连接、发送HTTP请求报文、接收HTTP应答报文和关闭TCP套接字连接: 1. 创建TCP套接字连接 客户端与WEB服务器创建TCP套接字连接,其中WEB端服务器的地址可以通过域名解析确定,WEB端的套接字侦听端口一般是80。 2. 发送HTTP请求报文 客户端向WEB服务端发送请求报文,HTTP协议的请求报文格式为: 请求消息= 请求行(实体头信息)CRLF[实体内容] 请求行= 方法URL HTTP版本号CRLF 方法= GET|HEAD|POST|扩展方法 URL = 协议名称+宿主名+目录与文件名 其中"CRLF"表示回车换行。 "请求行"中的"方法"描述了对指定资源执行的动作,常用的方法"GET"、"HEAD"和"POST"等3种,它们的含义如表15-8所示: 请求报文 一个HTTP请求报文由请求行(request line)、请求头部(header)、空行和请求数据4个部分组成,下图给出了请求报文的一般格式。 (1)请求行 请求行由请求方法字段、URL字段和HTTP协议版本字段3个字段组成,它们用空格分隔。例如,GET /index.html HTTP/1.1。 HTTP协议的请求方法有GET、POST、HEAD、PUT、DELETE、OPTIONS、TRACE、CONNECT。这里介绍最常用的GET方法和POST方法。 GET:当客户端要从服务器中读取文档时,使用GET方法。GET方法要求服务器将URL定位的资源放在响应报文的数据部分,回送给客户端。使用GET方法时,请求参数和对应的值附加在URL后面,利用一个问号(“?”)代表URL的结尾 与请求参数的开始,传递参数长度受限制。例如,/index.jsp?id=100&op=bind。POST:当客户端给服务器提供信息较多时可以使用POST方法。POST方法将请求参数封装在HTTP请求数据中,以名称/值的形式出现,可以传输大量数据。 表15-8 HTTP请求方法

stm32入门C语言详解

阅读flash:芯片内部存储器flash操作函数我的理解——对芯片内部flash进行操作的函数,包括读取,状态,擦除,写入等等,可以允许程序去操作flash上的数据。 基础应用1,FLASH时序延迟几个周期,等待总线同步操作。推荐按照单片机系统运行频率,0—24MHz时,取Latency=0;24—48MHz时,取Latency=1;48~72MHz时,取Latency=2。所有程序中必须的 用法:FLASH_SetLatency(FLASH_Latency_2); 位置:RCC初始化子函数里面,时钟起振之后。 基础应用2,开启FLASH预读缓冲功能,加速FLASH的读取。所有程序中必须的 用法:FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); 位置:RCC初始化子函数里面,时钟起振之后。 3、阅读lib:调试所有外设初始化的函数。 我的理解——不理解,也不需要理解。只要知道所有外设在调试的时候,EWRAM需要从这个函数里面获得调试所需信息的地址或者指针之类的信息。 基础应用1,只有一个函数debug。所有程序中必须的。 用法:#ifdef DEBUG debug(); #endif 位置:main函数开头,声明变量之后。 4、阅读nvic:系统中断管理。 我的理解——管理系统内部的中断,负责打开和关闭中断。 基础应用1,中断的初始化函数,包括设置中断向量表位置,和开启所需的中断两部分。所有程序中必须的。 用法:void NVIC_Configuration(void) { NVIC_InitTypeDef NVIC_InitStructure; //中断管理恢复默认参数 #ifdef VECT_TAB_RAM //如果C/C++ Compiler\Preprocessor\Defined symbols中的定义了 VECT_TAB_RAM(见程序库更改内容的表格) NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0); //则在RAM调试 #else //如果没有定义VECT_TAB_RAM NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0);//则在Flash里调试 #endif //结束判断语句 //以下为中断的开启过程,不是所有程序必须的。 //NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //设置NVIC优先级分组,方式。 //注:一共16个优先级,分为抢占式和响应式。两种优先级所占的数量由此代码确定, NVIC_PriorityGroup_x可以是0、1、2、3、4,分别代表抢占优先级有1、2、4、8、16个和响应优先级有16、8、4、2、1个。规定两种优先级的数量后,所有的中断级别必须在其中选择,抢占级别高的会打断其他中断优先执行,而响应级别高的会在其他中断执行完优先执行。 //NVIC_InitStructure.NVIC_IRQChannel = 中断通道名; //开中断,中断名称见函数库 //NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //抢占优先级 //NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; //响应优先级 //NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //启动此通道的中断 //NVIC_Init(&NVIC_InitStructure); 中断初始化

7个基于STM32单片机的精彩设计实例

7个基于STM32单片机的精彩设计实例,附原理图、代码等相关资料 STM32单片机现已火遍大江南北,各种教程资料也是遍布各大网站论坛,可谓一抓一大把,但大部分都差不多。今天总结了几篇电路城上关于STM32的制作,不能说每篇都是经典,但都是在其他地方找不到的,很有学习参考意义的设计实例。尤其对于新手,是一个学习stm32单片机的“活生生”的范例。 1、STM32与FPGA强强联合,实现完整版信号发生器 话说之前看过作者的另外一个作品,是STM32和FPGA实现的示波器,当然感觉不做。现在作者又推出了信号发生器。重点是TFT触屏来控制波形,相当于一个终端,STM32用来通信,起到了FPGA和TFT之间的纽带作用。最后波形输出作者使用了巴特沃斯滤波器,让输出的波形更加干净。虽然以高端的信号发生器无法比拟,但是用于平时信号输出使用时足够了。 2.采用STM32单片机基于uCOS II系统控制VS1053B语音芯片制作的MP3播放器 一看到uCOS II,就觉得是个高级货,绝对不是一般的小打小闹。该制作耗时半年能完成制作,不得不佩服作者的坚持。这个使用了VC1053B音频模块,TFT液晶显示,还是用了NRF24L01无线模块(暂时没明白这个无线如何使用的),最后作者还很细心的提供了理论指导,方便大家制作。 3.使用OV7670让STM32转身变成照相机(附原理图、代码源文件) 经常使用STM32的同学有没有做过照相机呢?虽说在智能手机遍布的时代,正经相机也要束之高阁了。但是能使用STM32做个相机,拿出去拍个照也是非常拉风的。这个相机使用了ST32F103C8T6(ST32F103C8T6数据手册),摄像头用的是OV7670,带SD卡和触摸屏2.4寸,整体尺寸和卡片机差不多。 4.基于STM32的手机WIFI 控制四轴飞行器设计 我们平时看到的四轴飞行器多是遥控手柄控制的,给你推荐的这个是手机通过wifi就可以控制了,重点在作者还提供了安卓版本的app,直接安装就可以控制飞行器了,当然前提是要根据作者提供的原理图、pcb、代码做出个飞行器了。对APP感兴趣的朋友不妨写写ios 版本的。 5、使用STM32F103RC实现数字万用表设计,具备常用功能 作为电子工程师,最经常用到的就是万用表,可以很少人知道万用表里面的结构、测电压的过程。现在就有人用STM32F103(STM32F103数据手册)做了个数字万用表,只有三个常用功能:测电压(0-50v),测电阻(1k-390k),短路档,使用了LCD5110显示数据,大家不妨动动手开发其他功能。 6、基于RFID技术、以STM32为终端的智能小区管理系统 话说现在高档小区越来越多,对小区的智能化管理也在日渐智能化。这个设计就使用了当下很火的wifi智能控制。系统由多个智能服务终端和系统服务器所组成。智能服务终端就是一个基于STM32的完备系统,涵盖了室内环境监测、高温火警GSM报警、A卡管理助手、天气助手、用户电子账单、万年历、小区意见反馈等功能。

stm32库函数解释

部分库函数简介 一、通用输入/输出(GPIO)--------------------------------------------------------------------------------------------3 二、外部中断/事件控制器(EXTI)-----------------------------------------------------------------------------------7 三、通用定时器(TIM)-------------------------------------------------------------------------------------------------9四:ADC寄存器------------------------------------------------------------------------25 五:备份寄存器(BKP)-------------------------------------------------------------------------------------------------33 六、DMA控制器(DMA)---------------------------------------------------------------37 七、复位和时钟设置(RCC)------------------------------------------------------------------------------------------41 八、嵌套向量中断控制器(NVIC)-----------------------------------------------------------------------------------49

http协议交互过程

竭诚为您提供优质文档/双击可除 http协议交互过程 篇一:wireshake抓包分析tcp与http过程详解 http协议报文格式详解 在我们日常生活中最常见的应用环境就是上网浏览网页,很多上班族到办公室的第一件事就是打开电脑,而开机后的第一件事就是打开ie、Firefox、myie、greenbrowser、opera等浏览器时,做的第一件事就是浏览一下例如.cn,的新闻,而这种简单的应用操作,完成的交互过程就是一个典型的http协议的应用过程。 http是基于tcp的连接,因此,建立http连接必须经过tcp的过程,tcp的建立过程是3次握手的过程。然后就是http过程,http只有两种报文,请求和应答报文。完成http过程后,3次断开tcp连接。 http tcp的第一阶段 http开始之前先3次握手,第一阶段就是客户向服务器发送同步请求,flag字段的syn位置1。 第二阶段

第二阶段就是服务器向客户回复一个ack包,其中Flag 字段的syn位和ack字段置1。 tcp的第三阶段: tcp的第三阶段是客户向服务器发送ack,至此,tcp的3次握手结束 tcp三次握手结束之后就是http请求 客户发出http请求之后,服务器收到请求发送ack: 服务器发送应答报文 篇二:http协议分析报告实例 http协议分析 1实验目的 分析http协议报文首部格式,理解http协议工作过程2实验内容 截获http报文,分析http协议报文首部格式,学习http 协议工作过程。3实验原理 超文本传送协议http(hypertexttransferprotocol),是万维网客户程序与万维网服务器程序之间的交互所要严 格遵守的协议。http是一个应用层协议,它使用tcp连接进行可靠的传送。对于万维网站点的访问要使用的http协议。 http的uRl的一般形式是:http://:/ www采用b/s结构,客户使用浏览器在uRl栏中输入http 请求,即输入对方服务器的地址,向web服务器提出请求。

STM32固件库详解42324

STM32固件库详解 最近考试较多,教材编写暂停了一下,之前写了很多,只是每一章都感觉不是特别完整,最近把其中的部分内容贴出来一下,欢迎指正。本文内容基于我对固件库的理解,按照便于理解的顺序进行整理介绍,部分参考了固件库的说明,但是也基本上重新表述并按照我理解的顺序进行重新编写。我的目的很简单,很多人写教程只是告诉你怎么做,不会告诉你为什么这么做,我就尽量吧前因后果都说清楚,这是我的出发点,水平所限,难免有很大的局限性,具体不足欢迎指正。基于标准外设库的软件开发 STM32标准外设库概述 STM32标准外设库之前的版本也称固件函数库或简称固件库,是一个固件函数包,它由程序、数据结构和宏组成,包括了微控制器所有外设的性能特征。该函数库还包括每一个外设的驱动描述和应用实例,为开发者访问底层硬件提供了一个中间API,通过使用固件函数库,无需深入掌握底层硬件细节,开发者就可以轻松应用每一个外设。因此,使用固态函数库可以大大减少用户的程序编写时间,进而降低开发成本。每个外设驱动都由一组函数组成,这组函数覆盖了该外设所有功能。每个器件的开发都由一个通用API (application programming interface 应用编程界面)驱动,API对该驱动程序的结构,函数和参数名称都进行了标准化。

ST公司2007年10月发布了版本的固件库,MDK 之前的版本均支持该库。2008年6月发布了版的固件库,从2008年9月推出的MDK 版本至今均使用版本的固件库。以后的版本相对之前的版本改动较大,本书使用目前较新的版本。 使用标准外设库开发的优势 简单的说,使用标准外设库进行开发最大的优势就在于可以使开发者不用深入了解底层硬件细节就可以灵活规范的使用每一个外设。标准外设库覆盖了从GPIO到定时器,再到CAN、I2C、SPI、UART和ADC 等等的所有标准外设。对应的C源代码只是用了最基本的C编程的知识,所有代码经过严格测试,易于理解和使用,并且配有完整的文档,非常方便进行二次开发和应用。 STM32F10XXX标准外设库结构与文件描述 1. 标准外设库的文件结构 在上一小节中已经介绍了使用标准外设库的开发的优势,因此对标准外设库的熟悉程度直接影响到程序的编写,下面让我们来认识一下STM32F10XXX的标准外设库。STM32F10XXX的标准外设库经历众多的更新目前已经更新到最新的版本,开发环境中自带的标准外设库为版本,本书中以比较稳定而且较新的版本为基础介绍标准外设库的结构。

献给新手:解析STM32的库函数

意法半导体在推出STM32微控制器之初,也同时提供了一套完整细致的固件开发包,里面包含了在STM32开发过程中所涉及到的所有底层操作。通过在程序开发中引入这样的固件开发包,可以使开发人员从复杂冗余的底层寄存器操作中解放出来,将精力专注应用程序的开发上,这便是ST推出这样一个开发包的初衷。 但这对于许多从51/AVR这类单片机的开发转到STM32平台的开发人员来说,势必有一个不适应的过程。因为程序开发不再是从寄存器层次起始,而要首先去熟悉STM32所提供的固件库。那是否一定要使用固件库呢?当然不是。但STM32微控制器的寄存器规模可不是常见的8位单片机可以比拟,若自己细细琢磨各个寄存器的意义,必然会消耗相当的时间,并且对于程序后续的维护,升级来说也会增加资源的消耗。对于当前“时间就是金钱”的行业竞争环境,无疑使用库函数进行STM32的产品开发是更好的选择。本文将通过一个简单的例子对STM32的库函数做一个简单的剖析。 以最常用的GPIO设备的初始化函数为例,如下程序段一: GPIO_InitTypeDef GPIO_InitStructure; 1 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4; 2 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; 3 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; 4 GPIO_Init(GPIOA , &GPIO_InitStructure 5 这是一个在STM32的程序开发中经常使用到的GPIO初始化程序段,其功能是将GPIOA.4口初始化为推挽输出状态,并最大翻转速率为50MHz。下面逐一分解: 首先是1,该语句显然定义了一个GPIO_InitTypeDef类型的变量,名为GPIO_InitStructure,则找出GPIO_InitTypeDef的原型位于“stm32f10x_gpio.h” 文件,原型如下: typedef struct { u16 GPIO_Pin; GPIOSpeed_TypeDef GPIO_Speed; GPIOMode_TypeDef GPIO_Mode; }GPIO_InitTypeDef; 由此可知GPIO_InitTypeDef是一个结构体类型同义字,其功能是定义一个结构体,该结构体有三个成员分别是u16类型的GPIO_Pin、 GPIOSpeed_TypeDef 类型的GPIO_Speed和GPIOMode_TypeDef 类型的 GPIO_Mode。继续探查GPIOSpeed_TypeDef和GPIOMode_TypeDef类型,在“stm32f10x_gpio.h”文件中找到对GPIOSpeed_TypeDef的定义: typedef enum { GPIO_Speed_10MHz = 1,

http请求处理流程(讲的很清楚)

.NET平台处理HTTP请求 .NET平台处理HTTP请求的过程大致如下: 1、IIS得到一个请求;,。 2、查询脚本映射扩展,然后把请求映射到文件 3、代码进入工作者进程(IIS5里是;IIS6里是,工作者进程也叫辅助进程; 4、 .NET运行时被加载; 5、非托管代码调用()方法; 6、每一个请求调用一个IsapiWorkerRequest; 7、使用WorkerRequest调用()方法; 8、通过传递进来的WorkerRequest创建一个HttpContext对象 9、通过把上下文对象作为参数传递给(),然后调用该方法,从应用程序池中获取一个HttpApplication实例; 10、调用(),启动管道事件序列,钩住模块和处理器; 11、调用,开始处理请求; 12、触发管道事件; 13、调用HTTP处理器和ProcessRequest方法; 14、把返回的数据输出到管道,触发处理请求后的事件。 当客户端向Web服务器请求一个页面文件时,这个HTTP请求会被进程截获(WWW服务),它判断文件后缀,如果是*.aspx、*.asmx等,就把这个请求转交给,而则会通过一个Http PipeLine的管道,将这个HTTP请求发送给进程,当这个HTTP请求进入进程之后, framework就会通过HttpRuntime来处理这个HTTP 请求,处理完毕后将结果返回给客户端。 当一个HTTP请求被送入到HttpRuntime之后,这个HTTP请求通过HTTP管道(HttpRuntime是HTTP管道的入口)被送入到一个被称之为HttpApplication Factory的一个容器当中,而这个容器会给出一个HttpApplication实例来处理传递进来的HTTP请求,同时HttpApplication实例会创建一个HttpContext对象来记录HTTP请求的上下文,而后这个HTTP请求会依次进入到如下几个容器中:HttpModule --> HttpHandler Factory --> HttpHandler当系统内部的HttpHandler的ProcessRequest方法处理完毕之后,整个Http Request就被处理完成了。 如果想在中途截获一个HttpRequest并做些自己的处理,就应该在HttpRuntime运行时内部来做到这一点,确切的说时在HttpModule这个容器中做到这个的。 过程详解: 从本质上讲,主要是由一系列的类组成,这些类的主要目的就是将Http请求转变为对客户端的响应。HttpRuntime类是的一个主要入口,它有一个ProcessRequest方法,这个方法以一个 HttpWorkerRequest 类作为参数。HttpRuntime类几乎包含着关于单个Http请求的所有信息:所请求的文件、服务器端变量、QueryString、Http头信息等等。使用这些信息来加载、运行正确的文件,并且将这个请求转换到输出流中,一般来说,就是HTML页面;二般来说,也可以是张图片^_^。

http请求响应过程

http请求与响应过程 (1)请求方法URI协议/版本 请求的第一行是“方法URL议/版本”:GET/sample.jsp HTTP/1.1 以上代码中“GET”代表请求方法,“/sample.jsp”表示URI,“HTTP/1.1代表协议和协议的版本。 根据HTTP标准,HTTP请求可以使用多种请求方法。例如:HTTP1.1目前支持7种请求方法:GET、POST、HEAD、OPTIONS、 PUT、DELETE和TARCE。 GET 请求获取由Request-URI所标识的资源。 POST 在Request-URI所标识的资源后附加新的数据。 HEAD 请求获取由Request-URI所标识的资源的响应消息报头。 OPTIONS 请求查询服务器的性能,或查询与资源相关的选项和需求。 PUT 请求服务器存储一个资源,并用Request-URI作为其标识。 DELETE 请求服务器删除由Request-URI所标识的资源。 TRACE 请求服务器回送收到的请求信息,主要用语测试或诊断。 在Internet应用中,最常用的方法是GET和POST。 URI完整地指定了要访问的网络资源,通常只要给出相对于服务器的根目录的相对目录即可,因此总是以“/”开头,最 后,协议版本声明了通信过程中使用HTTP的版本。 (2)服务器响应状态码 状态代码: 状态代码由3位数字组成,表示请求是否被理解或被满足。 状态描述: 状态描述给出了关于状态代码的简短的文字描述。 状态代码的第一个数字定义了响应的类别,后面两位没有具体的分类。 第一个数字有五种可能的取值: - 1xx: 指示信息—表示请求已接收,继续处理。 - 2xx: 成功—表示请求已经被成功接收、理解、接受。 - 3xx: 重定向—要完成请求必须进行更进一步的操作。 - 4xx: 客户端错误—请求有语法错误或请求无法实现。 - 5xx: 服务器端错误—服务器未能实现合法的请求。 状态代码状态描述说明 200 OK --客户端请求成功 400 Bad Request --由于客户端请求有语法错误,不能被服务器所理解。 401 Unauthonzed --请求未经授权,请求身份认证。这个状态代码必须和WWW-Authenticate报头域一起使用 403 Forbidden --服务器收到请求,但是拒绝提供服务。服务器通常会在响应正文中给出不提供服务的原因

stm32启动文件详解

STM32启动文件详解 一、启动文件的作用 1.初始化堆栈指针SP; 2.初始化程序计数器指针PC; 3.设置堆、栈的大小; 4.设置异常向量表的入口地址; 5.配置外部SRAM作为数据存储器(这个由用户配置,一般的开发板可没有外部SRAM); 6.设置C库的分支入口__main(最终用来调用main函数); 7.在版的启动文件还调用了在文件中的SystemIni()函数配置系统时钟。

二、汇编指令

三、启动代码 ----- 栈 Stack_Size EQU 0x00000400 ; 栈的大小 AREA STACK, NOINIT, READWRITE,ALIGN=3 Stack_Mem SPACE Stack_Size ; 分配栈空间 __initial_sp ; 栈的结束地址(栈顶地址) 分配名为STACK,不初始化,可读可写,8(2^3)字节对齐的1KB空间。 栈:局部变量,函数形参等。栈的大小不能超过内部SRAM大小。 AREA:汇编一个新的代码段或者数据段。STACK段名,任意命名;NOINIT表示不初始化;READWRITE可读可写;ALIGN=3(2^3= 8字节对齐)。 __initial_sp紧挨了SPACE放置,表示栈的结束地址,栈是从高往低生长,结束地址就是栈顶地址。

----- 堆 Heap_Size EQU 0x00000200 ; 堆的大小(512Bytes) AREA HEAP, NOINIT, READWRITE,ALIGN=3 __heap_base ; 堆的起始地址 Heap_Mem SPACE Heap_Size ; 分配堆空间 __heap_limit ; 堆的结束地址 分配名为HEAP,不初始化,可读可写,8(2^3)字节对齐的512字节空间。__heap_base堆的起始地址,__heap_limit堆的结束地址。堆由低向高生长。动态分配内存用到堆。 PRESERVE8 -- 指定当前文件的堆/栈按照8 字节对齐。 THUMB-- 表示后面指令兼容THUMB 指令。THUBM 是ARM 以前的指令集,16bit;现在Cortex-M 系列的都使用THUMB-2 指令集,THUMB-2 是32 位的,兼容16 位和32 位的指令,是THUMB 的超级。 3.向量表 AREA RESET, DATA, READONLY EXPORT __Vectors E XPORT __Vectors_End E XPORT __Vectors_Size 定义一个名为RESET,可读的数据段。并声明__Vectors、__Vectors_End 和__Vectors_Size 这三个标号可被外部的文件使用。 __Vectors DCD __initial_sp ; Top of Stack DCD Reset_Handler ; Reset Handler

STM32库函数功能详解

STM32库函数简介 一、通用输入/输出(GPIO)--------------------------------------------------------------------------------------------3 二、外部中断/事件控制器(EXTI)-----------------------------------------------------------------------------------7 三、通用定时器(TIM)-------------------------------------------------------------------------------------------------9 四:ADC寄存器------------------------------------------------------------------------25 五:备份寄存器(BKP)-------------------------------------------------------------------------------------------------33 六、DMA控制器(DMA)---------------------------------------------------------------37 七、复位和时钟设置(RCC)------------------------------------------------------------------------------------------41 八、嵌套向量中断控制器(NVIC)-----------------------------------------------------------------------------------49

STM32固件库详解

STM32固件库详解基于标准外设库的软件开发 STM32标准外设库概述 STM32标准外设库之前的版本也称固件函数库或简称固件库,是一个固件函数包,它由程序、数据结构和宏组成,包括了微控制器所有外设的性能特征。该函数库还包括每一个外设的驱动描述和应用实例,为开发者访问底层硬件提供了一个中间API,通过使用固件函数库,无需深入掌握底层硬件细节,开发者就可以轻松应用每一个外设。因此,使用固态函数库可以大大减少用户的程序编写时间,进而降低开发成本。每个外设驱动都由一组函数组成,这组函数覆盖了该外设所有功能。每个器件的开发都由一个通用API (application programming interface 应用编程界面)驱动,API对该驱动程序的结构,函数和参数名称都进行了标准化。 ST公司2007年10月发布了版本的固件库,MDK 之前的版本均支持该库。2008年6月发布了版的固件库,从2008年9月推出的MDK 版本至今均使用版本的固件库。以后的版本相对之前的版本改动较大,本书使用目前较新的版本。 使用标准外设库开发的优势 简单的说,使用标准外设库进行开发最大的优势就在于可以使开发者不用深入了解底层硬件细节就可以灵活规范的使用每一个外设。标准外设库覆盖了从GPIO到定时器,再到CAN、I2C、SPI、UART和ADC等等的所有标准外设。对应的C源代码只是用了最基本的C编程的知识,所有代码经过严格测试,易于理解和使用,并且配有完整的文档,非常方便进行二次开发和应用。 STM32F10XXX标准外设库结构与文件描述 1. 标准外设库的文件结构 在上一小节中已经介绍了使用标准外设库的开发的优势,因此对标准外设库的熟悉程度直接影响到程序的编写,下面让我们来认识一下STM32F10XXX的标准外设库。STM32F10XXX的标准外设库经历众多的更新目前已经更新到最新的版本,开发环境中自带的标准外设库为版本,本书中以比较稳定而且较新的版本为基础介绍标准外设库的结构。

有关http请求返回值的说明

2xx 成功 200 正常;请求已完成。 201 正常;紧接 POST 命令。 202 正常;已接受用于处理,但处理尚未完成。 203 正常;部分信息—返回的信息只是一部分。 204 正常;无响应—已接收请求,但不存在要回送的信息。 3xx 重定向 301 已移动—请求的数据具有新的位置且更改是永久的。 302 已找到—请求的数据临时具有不同 URI。 303 请参阅其它—可在另一 URI 下找到对请求的响应,且应使用 GET 方法检索此响应。 304 未修改—未按预期修改文档。 305 使用代理—必须通过位置字段中提供的代理来访问请求的资源。 306 未使用—不再使用;保留此代码以便将来使用。 4xx 客户机中出现的错误 400 错误请求—请求中有语法问题,或不能满足请求。 401 未授权—未授权客户机访问数据。 402 需要付款—表示计费系统已有效。 403 禁止—即使有授权也不需要访问。 404 找不到—服务器找不到给定的资源;文档不存在。 407 代理认证请求—客户机首先必须使用代理认证自身。 410 请求的网页不存在(永久); 415 介质类型不受支持—服务器拒绝服务请求,因为不支持请求实体的格式。 5xx 服务器中出现的错误 500 内部错误—因为意外情况,服务器不能完成请求。 501 未执行—服务器不支持请求的工具。 502 错误网关—服务器接收到来自上游服务器的无效响应。 503 无法获得服务—由于临时过载或维护,服务器无法处理请求。 100系列码 从100到199范围的HTTP状态码是信息报告码。基于各种原因考虑,大多数情况下我们是很少看见这些代码的。首先,如果一个浏览器尝试访问一个网站,而网站返回这些代码时,它们往往都不会显示在屏幕上。它们只是浏览器使引用的内部码。另外,这些代码不常见的另外一个原因是起初HTTP标准不允许使用这一范围的状态码。就其本身而言,它们也一直没有被广泛地使用。 200系列码 从 200到299范围的状态码是操作成功代码。同样的,在正常的Web上网中,你也很可能不曾在屏幕上看到这些代码。相反的,这些代码是在浏览器内部使用的,用以确认操作成功确认和当前请求状态。虽然这些代码通常不显示,但是有一些故障排除工具能够读到它们,就像和其它大多数的HTTP状态码一样,它们在错误诊断过程中是非常有用的。

HTTP工作过程

由于HTTP协议是基于请求/响应范式的(相当于客户机/服务器)。一个客户机与服务器建 立连接后,发送一个请求给服务器,请求方式的格式为:统一资源标识符(URL)、协议版 本号,后边是MIME信息包括请求修饰符、客户机信息和可能的内容。服务器接到请求后,给予相应的响应信息,其格式为一个状态行,包括信息的协议版本号、一个成功或错误的 代码,后边是MIME信息包括服务器信息、实体信息和可能的内容。 许多HTTP通讯是由一个用户代理初始化的并且包括一个申请在源服务器上资源的请求。最简单的情况可能是在用户代理和服务器之间通过一个单独的连接来完成。在Internet上,HTTP通讯通常发生在TCP/IP连接之上。缺省端口是TCP80,但其它的端口也是可用的。但这并不预示着HTTP协议在Internet或其它网络的其它协议之上才能 完成。HTTP只预示着一个可靠的传输。 这个过程就好像我们打电话订货一样,我们可以打电话给商家,告诉他我们需要什么 规格的商品,然后商家再告诉我们什么商品有货,什么商品缺货。这些,我们是通过电话 线用电话联系(HTTP是通过TCP/IP),当然我们也可以通过传真,只要商家那边也有传真。 以上简要介绍了HTTP协议的宏观运作方式,下面介绍一下HTTP协议的内部操作过程。 在WWW中,“客户”与“服务器”是一个相对的概念,只存在于一个特定的连接期间,即在某个连接中的客户在另一个连接中可能作为服务器。基于HTTP协议的客户/服务器模式的信息交换过程,它分四个过程:建立连接、发送请求信息、发送响应信息、关闭连接。这就好像上面的例子,我们电话订货的全过程。 其实简单说就是任何服务器除了包括HTML文件以外,还有一个HTTP驻留程序,用于响应用户请求。你的浏览器是HTTP客户,向服务器发送请求,当浏览器中输入了一个开始文件或点击了一个超级链接时,浏览器就向服务器发送了HTTP请求,此请求被送往由IP地址指定的URL。驻留程序接收到请求,在进行必要的操作后回送所要求的文件。 在这一过程中,在网络上发送和接收的数据已经被分成一个或多个数据包(packet),每个数据包包括:要传送的数据;控制信息,即告诉网络怎样处理数据包。TCP/IP决定了每 个数据包的格式。如果事先不告诉你,你可能不会知道信息被分成用于传输和再重新组合 起来的许多小块。 也就是说商家除了拥有商品之外,它也有一个职员在接听你的电话,当你打电话的时候,你的声音转换成各种复杂的数据,通过电话线传输到对方的电话机,对方的电话机又 把各种复杂的数据转换成声音,使得对方商家的职员能够明白你的请求。这个过程你不需 要明白声音是怎么转换成复杂的数据的。

基于STM32的图像显示系统

摘要 本文介绍了基于STM32的图片显示系统设计。现如今LCD显示屏的技术和产业都取得了长足的发展,作为重要的现代信息发布媒体之一,LCD显示屏在证券交易、金融、交通、体育、广告等领域被广泛的应用。基于STM32的LCD显示可以更好的满足各种需求,也更便于操作和实现。通电后,复位到初始化状态可显示本次课程设计题目及成员等基本信息,可人为操作对显示信息的汉字进行自定义大小颜色及字体等等;把要显示的图片考入内存卡里,更新内存卡,即图片可进行变换;自定义定时跳转下一幅图片,也可以通过按键快速跳到下一幅图片,或返回上一张图片。利用TFT-LCD液晶显示屏显示的图片清晰、分辨率高,显示图片的效果极好。 关键词: STM32; LCD显示屏; 图片显示

目录 1 引言 .................................................................................................... 错误!未定义书签。 2 总体设计 ............................................................................................ 错误!未定义书签。 2.1 图片显示的基本原理 (2) 2.2 图片显示设计分析 (2) 2.3 系统的结构框图 (3) 3 详细设计 ............................................................................................ 错误!未定义书签。 3.1 硬件设计 .................................................................................... 错误!未定义书签。 3.1.1 ALIENTEK MiniSTM32开发板简介 .................................. 错误!未定义书签。 3.1.2 功能简介 .......................................................................... 错误!未定义书签。 3.2 软件设计 (7) 3.2.1 主函数部分 (8) 3.2.2 硬件部分程序 (9) 3.2.3 识别图片 (11) 3.2.4 FAT系统 (14) 3.2.5 程序流程图 (15) 4 实验结果及分析 (16) 4.1 硬件实验结果 (16) 4.2 结果分析 .................................................................................. 错误!未定义书签。 5 结论 (17) 参考文献 (18)

相关文档
最新文档