两物体间的摩擦生热分析

两物体间的摩擦生热分析
两物体间的摩擦生热分析

两物体相对转动过程中的摩擦生热分析

摘要:有限元分析方法是随计算机的发展而迅速发展起来的在计算数学、计算力学和计算工程科学领域的先进计算方法。其中的热分析可以识别出系统或部件的温度分布及其他热物理参数,为系统的结构分析以及结构特性的优化设计提供依据。文章利用有限元软件对两物体相对转动过程中的摩擦生热进行了有限元热-结构耦合分析,计算了模型的温度场以及热应力场,并通过对结果的分析对零件结构进行了说明,为该结构的实际应用提供了设计依据。

关键字:有限元ANSYS 热结构耦合分析

1.有限元思想及ANSYS简介

有限元法是随着电子计算机的发展而迅速发展起来的一种现代计算方法,是20世纪50年代首先在连续力学领域—飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快就广泛地用于求解热传导、电磁场、流体力学等连续性问题。

1.1. 有限元法简介

1.1.1.有限元法的基本思想

有限元分析计算的思路和作法可归纳如下:

1. 物理离散化

将某个工程结构离散为由各种连接单元组成的计算模型,这一步称作单元剖分。离散后单元与单元之间利用单元的节点相互连接起来。单元节点的设置、性质、数目等应视问题的性质,描述变形形态要根据需要和计算精度而定。所以有限元法中分析的结构已不是原有的物体或结构物,而是同样的材料由众多单元以一定方式连接成的离散物体。一般情况,单元划分越细则描述变形情况越精确,即越接近实际变形,但计算量越大。

2. 单元特性分析

(1)选择未知量模式

在有限元法中,选择节点位移作为基本未知量时称为位移法;选择节点力作为基本未知量时称为力法;取一部分节点力和一部分节点位移作为基本未知量时称为混合法。位移法易于实现计算自动化,所以在有限单元法中位移法应用范围最广。

(2)分析单元的力学性质

根据单元的材料、形状、尺寸、节点数目、位置及其含义等,找出单元节点力和节点位移的关系式,这是单元分析中的关键一步,也是有限元法的基本步骤之一。

(3)计算等效节点力

对于实际的连续体,力是从单元的公共边界传递到另一个单元中去的。因而,这种作用在单元边界上的表面力、体积力或集中力都需要等效的移到节点上去,也就是用等效的节点力来替代所有作用在单元上的力。

3. 单元组集

利用结构力的平衡条件和边界条件把各个单元按照原来的结构重新连接起来,形成整体的有限元方程。

K q

f

4. 求解未知节点位移

求解有限元方程式(上式)得出位移。

可以看出,有限元法的基本思想是“一分一合”,分是为了进行单元分析,合则是为了对整体结构进行综合分析。

1.1.

2.有限元法的基本要素

构成有限元系统的3个基本要素是节点、单元和自由度:

节点(Node):节点是构成有限元系统的基本对象,也就是整个工程系统中的最基本点。它包含了坐标位置以及具有物理意义的自由度信息。

单元(Element):单元是由节点与节点相连而成,是构成有限元系统的基础。一个有限元系统中必须有至少一个以上的单元。单元和单元之间由各个节点相互连接。

自由度(DOF,Degree Of Freedom):包括系统自由度和节点自由度。整个系统的自由度,在分析中需要进行适当的约束,系统的每个节点都有各自的节点坐标系和对应的节点自由度,对于不同的单元上的节点,具有不同的自由度。

1.1.3.有限元法的分析步骤

有限元分析是物理现象(几何及载荷工况)的模拟,是对真实情况的数值近似。通过分析对象划分网络,求解有限个数值来近似模拟真实环境的无限个未知量。

ANSYS分析过程中包含三个主要步骤。

1.创建有限元模型

(1)创建或读入几何模型

(2)定义材料属性

(3)划分网格(节点及单元)

2.施加载荷并求解

(1)施加载荷及载荷选项、设定约束条件

(2)求解

3.查看结果

(1)查看分析结果

(2)检验结果(分析是否正确)

1.2. ANSYS软件简介

1.2.1.ANSYS软件的发展历史

ANSYS是一种融结构、热、流体、电磁和声学于一体的大型CAE通用有限元分析软件,可广泛用于核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、造船、生物医学、轻工、地矿、水利,以及日用家电等一般工业及科学研究。该软件可在大多数计算机及操作系统中运行。从PC到工作站,直至巨型计算机,ANSYS 文件在其所有的产品系列和工作平台上均兼容。ANSYS是第一个集成计算机流体动力学功能的软件,也是唯一一个包括多物理场分析功能软件。

ANSYS是Analysis SYStem的缩写,是一种广泛性的商业套装工程分析软件。它由世界上著名的有限元分析软件公司ANSYS开发,它能与大多数CAD软件结合使用,实现数据共享和交换,如AutoCAD、I-DEAS、Pro/Engineer、NASTRAN、Alogor等,是实现现代产品设计中的高级CAD工具之一。

该软件从1971年的2.0版本至现在的12.0版本,已有近40年的历史。目前已有许多国际化大公司以ANSYS作为其标准。

1.2.2.ANSYS软件的基本功能

ANSYS的基本功能有:结构静力分析、结构动力学分析、结构非线性分析、动力学分析、热分析、电磁场分析、计算流体动力学分析、声场分析、压电分析等,高级功能有多物理场耦合分析、优化设计、拓扑优化等。

热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量)等。热分析在许多工程应用中扮演着重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件、锻造、铸造等。

ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导

出其它热物理参数。ANSYS 热分析包括热传导、热对流及热辐射三种热传递方式。此外,还可以分析相变、有内热源、接触热阻等问题。

ANSYS 热分析主要分为两大类,一是稳态传热,是指系统的温度场不随时间变化;二是瞬态传热,是指系统的温度场随时间明显变化。ANSYS 中与热相关的耦合场分析主要有热—结构耦合、热—流体耦合、热—电耦合、热—磁耦合以及热—电—磁—结构耦合等。

2. 热结构耦合分析的有限元法

2.1. 热分析基本知识

2.1.1. 热传递的方式

如上文所述,热传递的方式主要有热传导、热对流和热辐射三种方式。在绝大多数情况下,我们分析的热传导问题都带有对流和/或辐射边界条件。 1、热传导

热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度

而引起的内能的交换。热传导遵循傅里叶定律:

*

nn T q K n

?=-?,其中,*

q 为热流密度

(W/m 2

),K m 为导热系数(W/m ·℃),T n

??为沿向德温度帝都,负号表示热量流向温度降低的方向。

2、热对流

热对流是指固体的表面和与它周围接触的流体之间,由于温差的存在引起的热量的交换。热对流可以分为两类:自然对流和强制对流。对流一般作为面边界条件施加。热对流用牛顿冷却方程来描述:*

()f S B q h T T =-,其中,f h 为对流换热系数(或称膜传热系数、给热系数、膜系数等),S T 为固定表面的温度,B T 为周围流体的温度。 3、热辐射

热辐射指物体发射电磁能,并被其它物体吸收转变为热的热量交换过程。物体温度越高,单位时间辐射的热量越多。热传导和热对流都需要有传热介质,而热辐射无须任何介质。实质上,在真空中的热辐射效率最高。

在工程中通常考虑两个或两个以上物体之间的辐射,系统中每个物体同时辐射并吸收热

量。它们之间的净热量传递可以用斯蒂芬—波尔兹曼方程来计算:44

11212()Q A F T T εσ=-,

其中,Q 为热流率,ε为吸射率(黑度),σ为斯蒂芬-波尔兹曼常数,约为5.67 ?10-8W/m 2·K 4,

0.119?10-10BTU/h ·in 2·K 4,ANSYS 默认为0.119?BTU/h ·in 2·K 4,A 1为辐射面1的面积,

F 12为由辐射面2的形状系数,T 1为辐射面1的绝对温度,T 2为辐射面2的绝对温度。由上式可以看出,包含热辐射的热分析是高度非线性的。在ANSYS 中将辐射按平面现象处理(体都假设为不透明的)。 2.1.2. 热力学第一定律

热力学第一定律是热分析的理论依据,也成能量守恒定律,即对于一个封闭的系统(没有质量地流入和流出):Q W U KE PE -=?+?+?,其中,Q 为热量;W 为作功;U ?为系统内能;K E ?为系统动能;P E ?为系统势能。对于大多数工程传热问题:

0K E P E ?=?=。

通常考虑没有做功:W=0,则:Q U =?;

对于稳态热分析:Q U =?=0,即流入系统的热量等于流出的热量; 对于瞬态热分析:dU q dt

=

,即流入或流出的热传递速率q 等于系统的内能的变化。

将其应用到一个微元体上,就可以得到热传导的控制微分方程。 2.1.3. 热分析的控制方程

热传导的控制微分方程为:

...

()()()xx

yy

zz

T T T dT k k k q c

x x y y z z

dt

ρ??????+

+

+=??????,其

x

y

z

dT T T T T V V V dt

t

x

y

z

????=

+++????,其中,x V ,y V ,z V 为媒介传导速率。

2.2. 热分析的有限元法

热分析一般可以分为稳态热分析、瞬态热分析与非线性热分析、热辐射分析、相变分析、CFD 分析以及与温度场有关的耦合场分析。

如果系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统的热量:q 流入+q 生成-q 流出=0,则系统处于热稳态。在稳态热分析中任一节点的温度不随时间变化。瞬态传热过程是指一个系统的加热或冷却过程。在这个过程中系统的温度、热流率、热边界条件以及系统内能随时间都有明显变化。

ANSYS 热分析的边界条件或初始条件可分为七种:温度、热流率、热流密度、对流、辐射、绝热、生热。

热分析涉及到的单元有大约40种,其中纯粹用于热分析的有14种,它们如表2所示。

表2 热分析单元列表

2.3. 热结构耦合分析的有限元法

热-结构耦合场分析是指在有限元分析的过程中考虑了温度和应力两种物理场的交叉作用和相互影响。耦合场分析主要有两种方法:序贯耦合方法和直接耦合方法。

热-结构耦合问题是结构分析中通常遇到的一类耦合分析问题。由于结构温度场的分布不均会引起结构的热应力,或者结构部件在高温环境中工作,材料受到温度的影响会发生性能的改变,这些都是进行结构分析时需要考虑的因素。为此需要先进行相应的热分析,然后再进行结构分析。因此,热-结构耦合分析是指求解温度场对结构中应力、应变和位移等物理量影响的分析类型。

对于热-结构耦合分析,在ANSYS 中通常采用顺序耦合分析方法,即先进行热分析求得结构的温度场,然后再进行结构分析,且将前面得到的温度场作为体载荷加到结构中,求解结构的应力分布。

3. 两物体相对转动过程中的摩擦生热分析实例

在ANSYS 中,两物体由于摩擦产生的总热流率由下式计算:q FHTG τυ=??,其中,FHTG 为摩擦生热的能力转化因子(默认为1);τ为等效摩擦应力;υ为两物体的相对滑动速率。接触面的热流率为:

c q FW G T FH TG τυ

=???,其中,

c

q 为接触面所得到的热

流率;FWGT 为目标面和接触面热量分配权因子(默认值为0.5)。目标面的热流率:

(1)c q FW G T FH TG τυ

=-???,其中

c

q 为目标面所得到的热流率。

3.1. 问题描述及分析

一铜块在钢环上滑动,钢环固定,其材料参数见表1,钢块和铜块间的摩擦因素为0.2,滑块的角速度分为三组,分别为0.000666rad/s 、0.00333rad/s 、0.00666rad/s ,计算时间为10s ,计算钢块和铜块由于摩擦产生的温度场,以及钢块和铜块的应力分布,初始温度为20℃,分析时,温度采用℃,其他单位采用国际单位制。

表1 铜块和钢块的材料参数表

该实例属于热结构耦合场分析,属于旋转摩擦生热问题,选用耦合场三维六面体SOLID5八节点单元进行分析,将角速度载荷转化为切向位移载荷施加在铜滑块上。

3.2. 建立几何模型

ANSYS 软件的几何建模主要有两种形式,一是利用软件本身的建模功能建立需要的模型;二是导入通过其他三维CAD 软件建好的几何模型。由于ANSYS 本身的建模功能相对较弱,其又与主流三维CAD 软件(如CA TIA 、UG 、PRO/E 等)拥有已经非常成熟的接口,因此一般均采用导入模型的方法。由于本例中的两物体结构相对简单,因此采用了软件本身的建模方法,几何模型如图1所示。

图1 几何模型

3.3. 创建有限元模型及网格划分

在对问题进行有限元分析时,首先要做的就是针对问题建立适当的有限元模型,模型要与结构系统的集合外形基本一致。建立有限元模型有两种方法,即直接法和间接法。直接法是直接根据结构的几何外形建立节点和元素,不需要再进行网格划分,适用于比较简单的结构系统。而间接法是通过点、线、面、体积,先建立有限元几何模型,再进行实体网格划分,以完成有限元模型的建立,适用于较复杂的结构。有限元模型包括节点、单元、材料属性、实常数、边界条件,以及其他用来表达这个物理系统的特征。

本实例采用的是间接法,选用了耦合场三维六面体SOLID5八节点单元进行分析,建立适当的网格密度之后,进行了网格划分,模型如图2所示。并选取钢环内圈表面和铜滑块外侧表面为两相对转动物体的接触面,建立如图3所示的接触。

图2 有限元模型—划分网格图3 有限元模型—建立接触

3.4. 加载求解

根据实际情况给模型施加适当的压力载荷、温度载荷、约束条件以及位移载荷。对于位移载荷,将转动在微小位移上看成是一个移动,因此根据不同的转速将此位移转化为0.002、0.01、002三种位移分别进行加载计算。

其中热-结构耦合分析时温度边界条件的加载过程是将前面稳态温度场得到的温度结果文件(后缀名为.Rth)读入热-结构耦合分析的网格模型中,模型中的每个节点都加载上了各自的温度值,温差的存在使节点之间产生热应力,热应力再和机械应力进行耦合,最后得到模型中节点的综合应力。三种转速情况下的温度场分布云图及其对应的应力分布云图如图4、图5、图6、图7、图8、图9所示。

图4 滑块位移为0.002时的温度场分布云图 图5 滑块位移为0.002时的应力分布云图

图6 滑块位移为0.01时的温度场分布云图 图7 滑块位移为0.01时的应力分布云图

图8 滑块位移为0.02时的温度场分布云图 图9 滑块位移为0.02时的应力分布云图

3.5. 结果分析

通过ANSYS 热结构耦合分析的方法,得出了两物体相对转动时摩擦生热后的温度场分布情况以及相应的应力分布情况,并对不同转速时的温度场及应力分布情况进行了对比说明,为了避免产生因摩擦生热影响机械结构的可靠性,可采取如下措施:

(1)选择适当的转速。由上文图表所示,转速越高,其温度场的最高温度就越高,且

高温集中现象越明显,相应的应力分布基值就越大,那么该结构的可靠性就越差。

(2)注意磨损。本模型的摩擦实质上属于滑动摩擦,可以认为是一个滑动摩擦副。工程中,对于长时间处于高压、高速运动状态的相互接触的滑动摩擦副来说,接触区的温度升高会导致粘着磨损现象的发生,严重影响着摩擦副的正常运动。在摩擦过程中,因表层材料的变形或破裂而耗掉的能量大部分转变成热,从而引起表面温度的升高。在载荷作用下,摩擦副表面间因有相对滑动而产生摩擦,摩擦生热致使局部产生很高的温升,有可能形成瞬时过热,一个瞬时高温的热点会导致表面上相应节点材料状态的改变,造成摩擦表面的焊联作用。随后在分离的瞬时,连结点被撕裂。这样,摩擦副表面将产生局部的初期粘着损伤,随着多次损伤的积累,将引发明显的粘着磨损。因此必须注意摩擦磨损现象。

(3)加强关键部位结构强度。由上文图表所示,该模型的最高应力集中在钢环两端支脚外端以及铜块外侧面,因此在进行结构设计时应该加强这两部位的结构强度,以免发生失效。

4.总结

本文对有限元思想进行了简要介绍,说明了ANSYS软件在做热分析,特别是热结构耦合分析方面的方法。

通过实例的操作,熟悉了ANSYS软件常用功能的操作使用,并对热结构耦合方面的知识有了较为深入的了解,掌握了降低运用ANASYS进行热结构耦合的一般方法。

5.收获及感想

虽然已经不是第一次接触ANSYS了,但是对于热分析却是第一次接触。选择这个题目是出于好奇,因为摩擦生热是一个太熟悉的名词了,但是从未考虑过其温度场的分布问题,因此就借此机会全面了解了一下热分析的相关知识,特别是对于热-结构耦合的问题有了深刻的认识。抛开具体的问题,我学到的不仅仅是如何用ANSYS解决问题的知识,更是学到了解决各个领域问题的思路。从摩擦生热的例子中得到的启示是,不管是什么问题,必须先弄清楚问题的本质才可能找到最正确的解。就像本文的例子一样,摩擦生热问题的本质是温度场和结构场的耦合问题,温度场的来源是两物体间的摩擦,因此热源来自两物体间的相对运动,那么物体材料与相互间的转速就是引起热源变化的根源,只有了解了这个本质,才能更好地建立该模型,为实际工程提供参考。对于其他的问题也同样如此。

总之,通过这次作业,学到了很多知识,以及知识之外的很多很多。

参考文献:

[1]王泽鹏,张秀辉,胡仁喜等. ANSYS 12.0热力学有限元分析从热门到精通[M]. 机械工业出版社,2010.

[2]刘伟,高维成,于广滨等. ANSYS12.0宝典[M]. 电子工业出版社,2010.

[3]徐建生,王仕仙,卢霞,王馨. 滑动摩擦热_结构耦合的有限元分析[J]. 润滑与密封,2009,34(3):24-31.

[4]朱学明,刘正林,朱汉华,胡社来. 机械密封环热-结构耦合分析研究[J]. 武汉理工大学学报,2005,29(2):198-201.

[5]周密,杨田,谢俊,黄卫星,李晓钟. 基于热-结构耦合效应的阀体可靠性分析[J]. 四川大学学报,2009,41(5):187-192.

热分析技术在金属材料研究中的应用

研究生课程论文 (2014 -2015 学年第一学期) 热分析技术在金属材料研究中的应用 提交日期:2014年12月 1 日研究生签名: 学号学院材料科学与工程学院 课程编号课程名称材料的物性及其测试技术 学位类别硕士任课教师 教师评语: 成绩评定:分任课教师签名:年月日

热分析技术在金属材料研究中的应用 摘要:介绍了热分析技术的一些常用的热分析方法,如热重分析、差热分析、差示扫描量热分析、热膨胀等;同时阐述了热分析技术在金属材料中的应用,如测定金属材料的相变的临界温度以及对磁性材料居里温度的测量,及相变的热效应等。 关键词:热分析技术金属材料研究应用 Application of thermal analysis technique in the research of metallic materials Jing Deng School of Materials Science and Engineering, South China University of Technology Abstract: The application of the thermal analysis technique and some commonly methods were introduced, such as thermogravimetry analysis (TGA), differential thermal analysis (DTA), differential scanning calorimetry (DSC), thermodilatometry and so on. The application of the thermal analysis technology in metallic materials was introduced, for example, to measure phase transition critical temperature of the metallic materials and the Curie temperature of the magnetic material and the thermal effect of the phase transition. Keywords: thermal analysis technique; metallic materials; research; application 1、前言 热分析是在程序控制温度下测量物质的物理性质与温度之间对应关系的一项技术。主要包括如下三个方面的内容:一是物质要承受程序控温的作用,即以一定的速率等速升温或降温;二是要选择一观测的物理量P,该物理量可以是热学、磁学、力学、电学、声学和光学的等;三是测量物理量P随温度T的变化,往往不能直接给出两者之间的函数关系[1]。 热分析主要用于研究物理变化(晶型转变、熔融、升华和吸附等)和化学变化(脱水、分解、氧化和还原等)。热分析不仅提供热力学参数,而且还能给出有参考价值的动力学数据。因此,热分析在材料研究和选择上,在热力学和动力学的理论研究上都是很重要的分析手段[2]。 按照测量的物理性质,国际热分析协会(ICTA)将现有的热分析技术分类[3-4],具体见表1。热分析技术种类繁多,应用甚广,本文将介绍主要的热分析技术及其在金属材料研究中的主要应用。 表1 ICTA关于热分析技术的分类 测试性质方法名称英文全称缩名称质量热重法Thermogravimetry Analysis TGA 等压质量变化测定Isobaric Mass-change Determination 逸出气检测Evolved Gas Detection EGD 逸出气分析Evolved Gas Analysis EGA 放射热分析Emanation Thermal Analysis TEA

热分析动力学

热分析动力学 一、 基本方程 对于常见的固相反应来说,其反应方程可以表示为 )(C )(B )(A g s s +→ (1) 其反应速度可以用两种不同形式的方程表示: 微分形式 )(d d αα f k t = (2) 和 积分形式 t k G =)(α (3) 式中:α――t 时物质A 已反应的分数; t ――时间; k ――反应速率常数; f (α)—反应机理函数的微分形式; G(α)――反应机理函数的积分形式。 由于f (α)和G (α)分别为机理函数的微分形式和积分形式,它们之间的关系为: α αααd /)]([d 1 )('1)(G G f = = (4) k 与反应温度T (绝对温度)之间的关系可用著名的Arrhenius 方程表示: )/exp(RT E A k -= (5)

式中:A ――表观指前因子; E ――表观活化能; R ――通用气体常数。 方程(2)~(5)是在等温条件下出来的,将这些方程应用于非等温条件时,有如下关系式: t T T β0 += (6) 即: β/=t d dT 式中:T 0――DSC 曲线偏离基线的始点温度(K ); β――加热速率(K ·min -1)。 于是可以分别得到: 非均相体系在等温与非等温条件下的两个常用动力学方程式: )E/RT)f(A t d d αexp(/-=α (等温) (7) )/exp()(β d d RT E f A T -=αα (非等温) (8) 动力学研究的目的就在于求解出能描述某反应的上述方程中的“动力学三因子” E 、A 和f(α)

对于反应过程的DSC 曲线如图所示。在DSC 分析中,α值等于H t /H 0,这里H t 为物质A ′在某时刻的反应热,相当于DSC 曲线下的部分面积,H 0为反应完成后物质A ′的总放热量,相当于DSC 曲线下的总面积。 二、 微分法 2.1 Achar 、Brindley 和Sharp 法: 对方程 )/exp()(β d d RT E f A T -=αα进行变换得方程: )/exp(d d )(βRT E A T f -=α α (9) 对该两边直接取对数有: RT E A T f - =ln d d )(βln αα (10) 由式(11)可以看出,方程两边成线性关系。 通过试探不同的反应机理函数、不同温度T 时的分解百分数,进行线性回归分析,就可以试解出相应的反应活化能E 、指前因子A 和机理函数f(α). 2.2 Kissinger 法

差热分析__实验报告

差热分析 一、实验目的 1. 用差热仪绘制CuSO4·5H2O等样品的差热图。 2. 了解差热分析仪的工作原理及使用方法。 3. 了解热电偶的测温原理和如何利用热电偶绘制差热图。 二、实验原理 物质在受热或冷却过程中,当达到某一温度时,往往会发生熔化、凝固、晶型转变、分解、化合、吸附、脱附等物理或化学变化,并伴随着有焓的改变,因而产生热效应,其表现为物质与环境(样品与参比物)之间有温度差。差热分析就是通过温差测量来确定物质的物理化学性质的一种热分析方法。 差热分析仪的结构如下图所示。它包括带有控温装置的加热炉、放置样品和参比物的坩埚、用以盛放坩埚并使其温度均匀的保持器、测温热电偶、差热信号放大器和信号接收系统(记录仪或微机)。差热图的绘制是通过两支型号相同的热电偶,分别插入样品和参比物中,并将其相同端连接在一起(即并联,见图5-1)。A 两支笔记录的时间—温度(温差)图就称为差热图,或称为热谱图。 图5-1 差热分析原理图 图5-1 典型的差热图从差热图上可清晰地看到差热峰的数目、位置、方向、宽度、高度、对称性以及峰面积等。峰的数目表示物质发生物理化学变化的次数;峰的位置表示物质发生变化的转化温度(如图5-2中T B);峰的方向表明体系发生热效应的正负性;峰面积说明热效应的大小。相同条件下,峰面积大的表示热效应也大。在相同的测

定条件下,许多物质的热谱图具有特征性:即一定的物质就有一定的差热峰的数目、位置、方向、峰温等,因此,可通过与已知的热谱图的比较来鉴别样品的种类、相变温度、热效应等物理化学性质。因此,差热分析广泛应用于化学、化工、冶金、陶瓷、地质和金属材料等领域的科研和生产部门。理论上讲,可通过峰面积的测量对物质进行定量分析。 本实验采用CuSO 4·5H 2O ,CuSO 4·5H 2O 是一种蓝色斜方晶系,在不同温度下,可以逐步失水: CuSO 4·5H 2O CuSO 4·3H 2O CuSO 4·H 2O CuSO 4 (s ) 从反应式看,失去最后一个水分子显得特别困难,说明各水分子之间的结合能力不一样。 四个水分子与铜离子的以配位键结合,第五个水分子以氢键与两个配位水分子和SO 4 2-离子结合。 加热失水时,先失去Cu 2+ 左边的两个非氢键原子,再失去Cu 2+ 右边的两个水分子,最后失去以氢键连接在SO 4 2- 上的水分子。 三、仪器试剂 差热分析仪1套;分析物CuSO 4·5H 2O ;参比物α-Al 2O 3。 四、实验步骤 1、 开启仪器电源开关,将各控制箱开关打开,仪器预热。开启计算机开关。 2、参比物(α-Al 2O 3)可多次重复利用,取干净的坩埚,装入CuSO 4·5H 2O 样品、装满,再次加入CuSO 4·5H 2O 将坩埚填满,备用。 3、抬升炉盖,将上步装好的CuSO 4·5H 2O 样品放入炉中,盖好炉盖。 4、打开计算机软件进行参数设定,横坐标2400S 、纵坐标300℃、升温速率

基因敲除技术研究新进展2011

基因敲除技术研究新进展 黄薇,严放北京大学医学部心血管研究所 gene knockout)技术是20世纪80年代发展起来的一门新技术。应用DNA同源重组技术将灭活的基因导入小鼠胚em cells,ES cells)以取代目的基因,再筛选出已靶向灭活的细胞,微注射入小鼠囊胚。该细胞参与胚胎发育形成可得到纯合基因敲除小鼠。基因敲除小鼠模型的建立使许多与人类疾病相关的新基因的功能得到阐明,使现代生物学进展。基于基因敲除技术对医学生物学研究做出的重大贡献,在该领域取得重大进展的三位科学家,70岁的美国人chi)、82岁的美国人奥利弗?史密西斯(Oliver Smithies)和66岁的英国人马丁?埃文斯(Martin Evans)分享了2 80年代末期的基因敲除技术为第一代技术,属完全性基因敲除,不具备时间和区域特异性。关于第二代区域和组织于1993年。Tsien等[1]于1996年在《Cell》首先报道了第一个脑区特异性的基因敲除动物,被誉为条件性基因敲除oxP系统为基础,Cre在哪种组织细胞中表达,基因敲除就发生在哪种组织细胞中。 imizu等[2]于《Science》报道了以时间可调性和区域特异性为标志的第三代基因敲除技术,其同样以Cre/LoxP系统re的表达。该技术使目的基因的敲除在时间上可人为控制,避免了死胎或动物出生后不久即死亡等现象的出现。 实验室Cui[3]等又报道了第四代基因工程技术,即可诱导的区域性蛋白质敲除技术,用这一技术构建的模式动物可在定蛋白质的功能,从根本上改变了前三代基因敲除技术对蛋白质代谢速度的内在依赖性,达到空前的时间精度,成组研究最先进的工具之一。 以来上述基因敲除技术只能在小鼠上完成,因为只有小鼠的ES细胞能在体外培养中无限增殖并同时保持多分化潜能以及猴等大动物模型在疾病研究中更接近于人类,大动物更有益于某些繁琐的手术操作,同时血浆及组织样本量较大家介绍近两年来基因敲除技术在大动物模型上的突破及进展。 一、大鼠ES细胞基因打靶技术 ,大鼠的生理和药理特性与人类更相近,是研究人类疾病的一种重要动物模型,在心血管疾病和糖尿病等领域的作S细胞在体外难以长期维持自我更新,用传统培养方法无法获得具有生殖传代能力的大鼠ES细胞[5]。因此在过去二物模型远不及小鼠发展迅速。2010年Tong等[6]于《Nature》报道了p53基因敲除大鼠,这在基因敲除技术上又是

热分析应用

武汉理工大学 热分析技术应用综述 课程名称:材料热分析技术 学院:材料学院 班级:建材院委培生 学号: 姓名:吴帅 摘要对热分析技术进行了介绍,并综述了近年来热分析技术在工业方面、食品分析、高分子及复合材料检测等领域的应用情况。

关键词热分析技术;工业方面;食品分析;高分子及复合材料检测 1 热分析技术概述 热分析技术作为一种科学的实验方法,在无机、有机、化工、冶金、医药、食品、塑料、橡胶、能源、建筑、生物及空间技术等领域被广泛应用。它的核心就是研究物质在受热或冷却时产生的物理和化学的变迁速率和温度以及所涉及的能量和质量变化。国际热分析协会(ICTA)对热分析技术作了如下定义:热分析是在程序温度控制下,测量物质的物理性质与温度之间关系的一类技术。这里所说的“程序控制温度”一般指线性升温或线性降温,也包括恒温、循环或非线性升温、降温。这里的“物质”指试样本身和(或)试样的反应产物,包括中间产物。上述物理性质主要包括质量、温度、能量、尺寸、力学、声、光、热、电等。根据物理性质的不同,建立了相对应的热分析技术,ICTA 命名委员会对热分析技术进行了分类,具体见表1-1。 表1-1 热分析技术分类 热分析技术的优点主要有下列几方面:(1)可在宽广的温度范围内对样品进行研究:(2)可使用各种温度程序(不同的升降温速率);(3)对样品的物理状态无特

殊要求;(4)所需样品量可以很少(0.1μg~10mg);(5)仪器灵敏度高(质量变化的精确度达10-5);(6)可与其他技术联用;(7)可获取多种信息。 2 热分析技术在工业领域的应用 2.1 热分析在炸药研制过程中的应用 炸药是一种相对稳定的平衡体系,在一定外界条件作用下能够发生高速化学反应,释放出巨大的热能,产生大量的气体,其整个反应是一个复杂的、伴随着吸热和放热过程的物理化学变化。热分析是测量炸药物性参数对温度依赖性的有关技术的总称。在炸药热分析中,除了测定其在热作用下的热行为外,更重要的是利用热分析方法来对其反应动力学进行研究,并根据动力学参数以及炸药在各种温度下的热行为,探讨和确定炸药在研制、生产和使用中的最佳条件(工艺条件和环境条件),以为确保这些过程的安全性、可靠性提供重要的实验和理论依据。因此,炸药的热分析在炸药研制过程中具有重要的意义和关键性的作用。 2.2 热分析在遥感卫星设计上的应用 作为卫星热设计的重要步骤,热分析主要用于检验热设计是否将卫星温度控制在所要求的范围内。卫星热分析主要包括热网络模型建立、外热流计算、温度场分析和热分析模型修正等内容。选取合理的建模方法,通过简化,精确地反映卫星各部件与环境的热交换是热分析建模的基本原则。近年来,我国的卫星热分析技术取得了快速进展,其主要标志是:配备并完善了热分析软件;热分析计算贯穿热设计的全过程[1]。卫星热分析与热试验温度偏差一般可控制在5~10 ℃,已基本满足卫星工程设计的需求。目前,进一步提高热分析模型精度的主要方法是利用热平衡试验数据进行热分析模型修正[2]。实践表明:由于热分析模型针对的飞行状态与热平衡试验状态并不一致,直接利用热试验结果修正热模型往往无法获得预期效果。因此,有必要分析卫星热平衡试验与在热分析结果存在差异的主要原因,并寻求合适的途径以实现热模型的有效修正。 2.3 热分析在铸造领域的应用 热分析方法开始应用于铸造领域时用于分析铸铁的化学成分[3]。但是现在已经广泛应用于工业界的是利用其来分析铝合金的晶粒细化和Al-Si合金中的Si 变质程度[4]。热分析方法还是常用于评价铁合金、铝合金等的凝固过程及凝固过

热分析实验报告

热分析实验报告 一、实验目的 1、了解STA449C综合热分析仪的原理及仪器装置; 2、学习使用TG-DSC综合热分析方法。

二、实验内容 1、对照仪器了解各步具体的操作及其目的。 2、测定纯Al-TiO2升温过程中的DSC、TG曲线,分析其热效应及其反应机理。 3、运用分析工具标定热分析曲线上的反应起始温度、热焓值等数据。 三、实验设备和材料 STA449C综合热分析仪 四、实验原理 热分析(Thermal Analysis TA)技术是指在程序控温和一定气氛下,测量试样的物理性质随温度或时间变化的一种技术。根据被测量物质的物理性质不同,常见的热分析方法有热重分析(Thermogravimetry TG)、差热分析(Difference Thermal Analysis,DTA)、差示扫描量热分析(Difference Scanning Claorimetry,DSC)等。其内涵有三个方面:①试样要承受程序温控的作用,即以一定的速率等速升(降)温,该试样物质包括原始试样和在测量过程中因化学变化产生的中间产物和最终产物;②选择一种可观测的物理量,如热学的,或光学、力学、电学及磁学等;③观测的物理量随温度而变化。

热分析技术主要用于测量和分析试样物质在温度变化过程中的一些物理变化(如晶型转变、相态转变及吸附等)、化学变化(分解、氧化、还原、脱水反应等)及其力学特性的变化,通过这些变化的研究,可以认识试样物质的内部结构,获得相关的热力学和动力学数据,为材料的进一步研究提供理论依据。 综合热分析,就是在相同的热条件下利用由多个单一的热分析仪组合在一起形成综合热分析仪,见图1,对同一试样同时进行多种热分析的方法。 图1 综合热分析仪器(STA449C) (1)、热重分析( TG)原理 热重法(TG)就是在程序控温下,测量物质的质量随温度变化的关系。采用仪器为日本人本多光太郎于1915年制作了零位型热天平(见图2)。其工作原理如下:在加热过程中如果试样无质量变化,热天平将保持初始的平衡状态,一旦样品中有质量变化时,

基因敲除技术研究进展

兰州交通大学化学与生物工程学院综合能力训练Ⅰ——文献综述 题目:基因敲除技术研究进展 作者:王振宇 学号:201207744 指导教师:谢放 完成日期:2014-7-16

基因敲除技术研究进展 摘要基因敲除是自20世纪80年代末以来发展起来的一种新型分子生物学技术,是通过一定的途径使机体特定的基因失活或缺失的技术。在总结已有研究成果的基础上,本文对基因敲除技术的概况、原理方法应用以及近年来基因敲除技术的研究进展作一个简单的综述。 关键词基因敲除 RNA i生物模型基因置换基因打靶同源重组1. 基因敲除技术简介 基因敲除(Gene knockout)是指一种遗传工程技术,针对某个序列已知但功能未知的序列,改变生物的遗传基因,令特定的基因功能丧失作用,从而使部分功能被屏障,并可进一步对生物体造成影响,进而推测出该基因的生物学功能。 它克服了随机整合的盲目性和偶然性,是一种理想的修饰、改造生物遗传物质的方法。基因敲除借助分子生物学、细胞生物学和动物胚胎学的方法,通过胚胎干细胞这一特殊的中间环节将小鼠的正常功能基因的编码区破坏,使特定基因失活,以研究该基因的功能;或者通过外源基因来替换宿主基因组中相应部分,以便测定它们是否具有相同的功能,或将正常基因引入宿主基因组中置换突变基因以达到靶向基因治疗的目的。基因敲除是揭示基因功能最直接的手段之一。通常意义上的基因敲除主要是应用DNA同源重组原理,用设计的同源片段替代靶基因片段(即基因打靶),从而达到基因敲除的目的。随着基因敲除技术的发展,除了基因打靶技术外,近年来新的原理和技术也逐渐被应用,比较成功的有RNA干扰技术,同样也可以达到基因敲除的目的。简单的说基因敲除是指将目标基因从基因组中删除。基因敲除技术主要应用于动物模型的建立,而最成熟的实验动物是小鼠,对于大型哺乳动物的基因敲除模型还处于探索阶段。这项技术的诞生可以说是分子生物学技术上继转基因技术后的又一革命。尤其是条件性、诱导性基因打靶系统的建立,使得对基因靶位时间和空间上的操作更加明确、效果更加精确、

基因敲除技术

第23卷武 夷 科 学V o.l23 2007年12月WUY I SCIENCE J OURNA L D ec.2007 文章编号:1001 4276 (2007)01 0187 04 几种常用的基因敲除技术 李今煜,陈健铭,彭振坤 (福建农林大学生命科学学院,福建福州350002) 摘要: 摘要:随着功能基因组学研究的深入发展,基因敲除技术逐渐成为基因功能研究的重要手段,本文就常用的三种基因敲除技术,即同源重组、插入突变、RNA干扰各自的原理、适用的范围和优缺点作简要介绍。关键词: 基因敲除;同源重组;插入突变;RNA干扰 中图分类号: Q343.1 文献标识码: A 随着越来越多生物的全基因组被测序,功能基因组学成为时下研究的热点。研究基因功能的方法主要有两种思路,一是通过增强其表达,取得表达产物进行研究,二是减弱或者终止其表达,观察整体功能的变化,进而推测相应的基因功能。前者因为不能反映基因产物的真实表达情况,而逐渐被抛弃。后者将基因与生物的整体功能联系起来考察,并能为基因的功能提供直接证据,因而其技术不断得到发展和完善,其中最常用的就是基因敲除(gene knockou t)技术。 基因敲除技术除最早的同源重组技术外,新的原理和技术也逐渐被应用,比较成功的有基因的插入突变和RNA,i它们同样可以达到基因敲除的目的。下面就这几种基因敲除技术简要进行介绍。 1 利用同源重组进行基因敲除 基因敲除是在同源重组技术及胚胎干细胞(e mbryon i c ste m cel,l ES细胞)技术的基础上逐步完善发展起来,主要是利用DNA转化技术,将含有目的基因和靶基因同源片段的重组载体导入靶细胞,通过载体与靶细胞染色体上同源序列间的重组,将外源基因整合入内源基因组内,使外源基因得以表达。通过研究靶细胞或者个体在目的基因插入前后遗传特性的改变,达到研究基因功能的目的[1]。 基因敲除技术已从最初简单的完全敲除发展到条件敲除阶段,现正朝着特定组织基因敲除、特定时间基因敲除的可调控敲除方向发展。完全基因敲除是通过同源重组直接将靶基因在细胞或者动物个体中的活性完全消除;而条件基因敲除则是将某个基因的修饰限制于特定类型的细胞或个体发育特定的阶段,即通过位点特异的重组系统实现特定基因敲除[2],现阶段以噬菌体的C re/Loxp系统和酿酒质粒的FLP/FRT系统应用得最为广泛[3]。 虽然基因敲除技术的广泛使用使其成为研究基因功能重要的技术手段,但目前仍然存在 收稿日期:2007-09-26 基金项目:福建省自然科学基金计划资助项目(项目编号:2006J0052)。 作者简介:李金煜(1976-),女,硕士,研究方向:主要从事生物化学与分子生物学领域的研究。

差热分析_实验报告

学生实验报告 实验名称差热分析 姓名:学号:实验时间: 2011/5/20 一、实验目的 1、掌握差热分析原理和定性解释差热谱图。 2、用差热仪测定和绘制CuSO4·5H2O等样品的差热图。 二、实验原理 1、差热分析原理 差热分析是测定试样在受热(或冷却)过程中,由于物理变化或化学变化所产生的热效应来研究物质转化及花絮而反应的一种分析方法,简称DTA(Differential Thermal Analysis)。 物质在受热或者冷却过程中个,当达到某一温度时,往往会发生熔化、凝固、晶型转变、分解、化合、吸收、脱附等物理或化学变化,因而产生热效应,其表现为体系与环境(样品与参比物之间)有温度差;另有一些物理变化如玻璃化转变,虽无热效应发生但比热同等某些物理性质也会发生改变,此时物质的质量不一定改变,但温度必定会变化。差热分析就是在物质这类性质基础上,基于程序控温下测量样品与参比物的温度差与温度(或时间)相互关系的一种技术。 DTA的工作原理(图1 仪器简易图)是在程序温度控制下恒速升温(或降温)时,通过热偶点极连续测定试样同参比物间的温度差ΔT,从而以ΔT对T 作图得到热谱图曲线(图2 差热曲线示意图),进而通过对其分析处理获取所需信息。 图1 仪器简易图

实验仪器实物图 图2 差热曲线示意图 在进行DTA测试是,试样和参比物分别放在两个样品池内(如简易图所示),加热炉以一定速率升温,若试样没有热反应,则它的温度和参比物温度间温差ΔT=0,差热曲线为一条直线,称为基线;若试样在某温度范围内有吸热(放热)反应,则试样温度将停止(或加快)上升,试样和参比物之间产生温差ΔT,将该信号放大,有计算机进行数据采集处理后形成DTA峰形曲线,根据出峰的温度 及其面积的大小与形状可以进行分析。 差热峰的面积与过程的热效应成正比,即 ΔH。式中,m为样品质量;b、d分别为峰的 起始、终止时刻;ΔT为时间τ内样品与参比物的温差;

abaqus热分析

Abaqus: ABAQUS 是一套功能强大的工程模拟的有限元软件,其解决问题的范围从相对简单的线性分析到许多复杂的非线性问题。ABAQUS 包括一个丰富的、可模拟任意几何形状的单元库。并拥有各种类型的材料模型库,可以模拟典型工程材料的性能,其中包括金属、橡胶、高分子材料、复合材料、钢筋混凝土、可压缩超弹性泡沫材料以及土壤和岩石等地质材料,作为通用的模拟工具。 模块: ABAQUS/?ba:kjus/有两个主求解器模块— ABAQUS/Standard 和ABAQUS/Explicit。ABAQUS 还包含一个全面支持求解器的图形用户界面,即人机交互前后处理模块—ABAQUS/CAE。 ABAQUS 对某些特殊问题还提供了专用模块来加以解决。ABAQUS 被广泛地认为是功能最强的有限元软件,可以分析复杂的固体力学结构力学系统,特别是能够驾驭非常庞大复杂的问题和模拟高度非线性问题。ABAQUS 不但可以做单一零件的力学和多物理场的分析,同时还可以做系统级的分析和研究。ABAQUS 的系统级分析的特点相对于其他的分析软件来说是独一无二的。由于ABAQUS 优秀的分析能力和模拟复杂系统的可靠性使得ABAQUS 被各国的工业和研究中所广泛的采用。ABAQUS 产品在大量的高科技产品研究中都发挥着巨大的作用。 功能:

静态应力/位移分析:包括线性,材料和几何非线性,以及结构断裂分析等 动态分析粘弹性/粘塑性响应分析:粘塑性材料结构的响应分析热传导分析:传导,辐射和对流的瞬态或稳态分析 质量扩散分析:静水压力造成的质量扩散和渗流分析等 耦合分析:热/力耦合,热/电耦合,压/电耦合,流/力耦合,声/力耦合等 非线性动态应力/位移分析:可以模拟各种随时间变化的大位移、接触分析等 瞬态温度/位移耦合分析:解决力学和热响应及其耦合问题 准静态分析:应用显式积分方法求解静态和冲压等准静态问题 退火成型过程分析:可以对材料退火热处理过程进行模拟 海洋工程结构分析: 对海洋工程的特殊载荷如流载荷、浮力、惯性力等进行模拟 对海洋工程的特殊结构如锚链、管道、电缆等进行模拟 对海洋工程的特殊的连接,如土壤/管柱连接、锚链/海床摩擦、管道/管道相对滑动等进行模拟 水下冲击分析: 对冲击载荷作用下的水下结构进行分析 柔体多体动力学分析:对机构的运动情况进行分析,并和有限元功能结合进行结构和机械的耦合分析,并可以考虑机构运动中的接触和摩擦

基因敲除技术的原理、方法和应用

基因敲除技术的原理、方法和应用 2010-01-24 17:03:43 来源:易生物实验浏览次数:6302 网友评论 0 条 1.基因敲除概述 2.实现基因敲除的多种原理和方法: 2.1.利用基因同源重组进行基因敲除 2.2利用随机插入突变进行基因敲 除。 2.3.RNAi引起的基因敲除。 3.基因敲除技术的应用及前景 4.基因敲除技术的缺陷 关键词:基因敲除 1.基因敲除概述: 基因敲除是自80年代末以来发展起来的一种新型分子生物学技术,是通过一定的途径使机体特定的基因失活或缺失的技术。通常意义上的基因敲除主要是应用DNA同源重组原理,用设计的同源片段替代靶基因片段,从而达到基因敲除的目的。随着基因敲除技术的发展,除了同源重组外,新的原理和技术也逐渐被应用,比较成功的有基因的插入突变和iRNA,它们同样可以达到基因敲除的目的。 2.实现基因敲除的多种原理和方法: 2.1.利用基因同源重组进行基因敲除 基因敲除是80年代后半期应用DNA同源重组原理发展起来的。80年代初,胚胎干细胞(ES细胞)分离和体外培养的成功奠定了基因敲除的技术基础。1985 年,首次证实的哺乳动物细胞中同源重组的存在奠定了基因敲除的理论基础。到1987年,Thompsson首次建立了完整的ES细胞基因敲除的小鼠模型 [1]。直到现在,运用基因同源重组进行基因敲除依然是构建基因敲除动物模型中最普遍的使用方法。 2.1.1利用同源重组构建基因敲除动物模型的基本步骤(图1): a.基因载体的构建:把目的基因和与细胞内靶基因特异片段同源的DNA 分子都重组到带有标记基因(如neo 基因,TK 基因等)的载体上,成为重组载体。基因敲除是为了使某一基因失去其生理功能,所以一般设计为替换型载体。

(整理)热分析技术在LC、LCP及LCD中的应用

热分析技术在LC 、LCP 及LCD 中的应用 液晶(LC)和液晶高分子(LCP)通常是指在一定温度范围内呈现介于固相和液相之间的中间相的有机化合物。在这中间相,它既具有液体又具有晶体的特性;其颜色和透明度可随外界条件(如温度,电场,磁场,吸附气体等)变化而变化。LC 和LCP 这些不寻常的性质已经在液晶显示材料(LCD)中得到了广泛的实际应用,是近十几年来高分子材料研究的热点。而热分析技术是通过测试材料随温度或时间而变化的物理和化学性能来对其进行表征的一系列技术。由此可见热分析技术是进行LC、LCP 和LCD 研究和质量控制必不可缺的基本手段之一,其应用也愈来愈广泛和深入。 DSC 的应用 DSC 是在程序控制温度下,测量输入到物质和参比物的热流差与温度(时间)关系的一种技术。由于DSC 不仅能准确测定LC、LCP 和LCD 的相变温度、结晶温度、熔融温度和玻璃化转变温度;而且能定量地量热,测定各种热力学参数(如热焓熵和比热)和动力学参数,灵敏度高和工作温度可以很低,因此DSC 在LC、LCP、LCD 中的研制和生产中的应用是最宽的。 1. 液晶的相变 由于LC、LCP、LCD 具有复杂的中间相,其相变过程也很复杂,并且有些相变过程的热效应也很小,属于微弱的一级相变,因此对DSC 的灵敏度和量热的准确性提出了很高的要求。否则有些相变过程就会因测量不到而被忽略。METTLER-TOLEDO 公司的DSC822e 结合了静态量热计量热准确和DSC 技术少量快速的优点,采用独特的卡尔文热电堆热流传感器,具有比同类产品高得多的检测灵敏度和准确性(见图1),图中的液晶样品在冷却曲线上中间相的焓变和温度范围都很小,但经信号放大后能清晰可见),信号时间常数短,分峰能力强,噪声低。并且配合该公司的FP84 热台偏光显微镜的使用是表征LC、LCP、LCD相变的最简单有效的方法。图1

热重分析实验报告

南昌大学实验报告 学生姓名:_______ 学号:_______专业班级:__________ 实验类型:□演示□验证□综合□设计□创新实验日期:2013-04-09实验成绩: 热重分析 一、实验目的 1.了解热重分析法的基本原理和差热分析仪的基本构造; 2.掌握热重分析仪的使用方法; 3.测定硫酸铜晶体试样的差热谱图,并根据所得到的差热谱图,分析样品在加热过程中发生的化学变化。 二、实验原理 热重法(TG)是在程序控制温度的条件下测量物质的质量与温度关系的一种技术。热重分析仪主要由天平、炉子、程序控温系统、记录系统等几个部分构成。最常用的测量的原理有两种,即变位法和零位法。所谓变位法,是根据天平梁倾斜度与质量变化成比例的关系,用差动变压器等检知倾斜度,并自动记录。零位法是采用差动变压器法、光学法测定天平梁的倾斜度,然后去调整安装在天平系统和磁场中线圈的电流,使线圈转动恢复天平梁的倾斜,即所谓零位法。由于线圈转动所施加的力与质量变化成比例,这个力又与线圈中的电流成比例,因此只需测量并记录电流的变化,便可得到质量变化的曲线。 热重实验仪器主要由记录天平、炉子、程序控温装置、记录仪器和支撑器等几个部分组成,其中最主要的组成部分是记录天平,它基本上与一台优质的分析天平相同,如准确度、重现性、抗震性能、反应性、结构坚固程度以及适应环境温度变化的能力等都有较高的要求。记录天平根据动作方式可以分为两大类:偏转型和指零型,无论哪种方式都是将测量到的重量变化用适当的转换器变成与重量变化成比例的电信号,并可以将得到的连续记录转换成其他方式,如原始数据的微分、积分、对数或者其他函数等,用来对实验的多方面热分析。在上述方法中又以指零型天平中的电化学法适应性更强。发生重量变化时,天平梁发生偏转,梁中心的纽带同时被拉紧,光电检测元件的偏转输出变大,导致吸引线圈中电流的改变。在天平一端悬挂着一根位于吸引线圈中的磁棒,能通过自动调节线圈电流时天平梁保持平衡态,吸引线圈中的电流变化与样品的重量变化成正比,由计算机自动采集数据得到 TG 曲线。燃烧失重速率曲线 DTG 可以通过对曲线的数学分析得到。 热重分析原理如下图所示:

基因敲除技术现状及应用

医学分子生物学杂志,2007,4(1):862 90 J Med Mol B i ol,2007,4(1):86290 通讯作者:汤华(电话:022*********,E 2mail:htang2002@yahoo 1 co m ) Corres ponding author:T ANG Hua (Tel:86222223542603, E 2mail: htang2002@yahoo 1co m ) 基因敲除技术现状及应用 万海英 综述 汤华 审阅 天津医科大学天津市生命科学中心实验室 天津市,300070 【摘要】 功能基因组学的研究进展使基因敲除技术显得尤为重要。基因敲除技术从载体构建到细胞的筛选到动物模型的建立各方面都得到了发展。其中C re 2LoxP 系统可以有效的控制打靶的发育阶段和组织类型,实现特定基因在特定时间和(或)空间的功能研究;转座子系统易于操作,所需时间短,具有高通量的特点,可以携带多种抗性标记,方便了同时进行多基因功能研究;基因捕获技术提供了获得基因敲除小鼠的高效方法,方便了进行小鼠基因组文库的研究。此外,进退策略、双置换法、标记和交换法、重组酶介导的盒子交换法也从不同方向发展了基因敲除技术。 【关键词】 基因敲除;C re 2LoxP 系统;转座子;基因捕获【中图分类号】 R34918 St a tus Quo and Appli ca ti on of Gene Knockout WAN Haiying,T ANG Hua Tianjin M edical U niversity,Tianjin L ife Science Center ,Tianjin,300070,China 【Abstract 】 Gene knockout is i m portant f or functi onal genom ics 1Great p r ogress has been made in the vect or constructi on of gene knockout,screening of ai m ed cells and ani m al models and the devel op 2ments in these fields hel p t o s olve the p r oble m s in the study of genom ic functi ons 1Cre 2LoxP syste m can effectively contr ol the devel opment stage and hist ol ogy of gene knockout,thereby making it possi 2ble t o study gene functi on in a given ti m e and /or s pace 1Trans pos on syste m is easy t o mani pulate,quick and can achieve high thr oughput,carry multi p le resistance marker gene,which makes si m ulta 2neous study of multi p le genes possible 1Gene trapp ing p r ovides a highly efficient method of obtain knockout m ice and can facilitate the research of m ice geno m ic library 1I n additi on,the techniques such as “hit and run ”,“double rep lace ment ”,“tag and exchange ”and “recombinase 2mediated cas 2sette exchange ”all contribute t o the devel opment of gene knockout technol ogy 1【Key words 】 gene knockout,Cre 2LoxP syste m,trans pos on;gene trapp ing 基因敲除又称为基因打靶,是指从分子水平上将一个基因去除或替代,然后从整体观察实验动物,推测相应基因功能的实验方法。基因敲除技术是功能基因组学研究的重要研究工具。 基因敲除技术是在20世纪80年代后半期应用DNA 同源重组原理发展起来的。胚胎干细胞(e m 2bry onic ste m cell ,ES 细胞)分离和体外培养的成功及哺乳动物细胞中同源重组的存在奠定了基因敲除 的技术基础和理论基础[1] 。基因敲除主要包括下列技术:①构建重组载体;②重组DNA 转入受体细 胞核内;③筛选目的细胞;④转基因动物。 基因敲除传统的重组载体主要有插入性载体系统和替换性载体系统。插入性载体系统构建载体时主要包括要插入的基因片段(目的基因)、同源序列片段、标志基因片段等成分,替换性载体系统主要包括同源序列片段、替换基因的启动子、报道基因等成分。基于正负双向筛选(positive and negative selecti on,P NS )策略的传统方法的基因敲除需要满足:对基因组提取处理用于构建载体;需要位于打靶区两翼的具有特异性和足够长度的同源片段,并便于用其作为探针用Southern 印迹证实;neo 基因(新霉素磷酸转移酶基因)的整合;同源重组区域外侧tk 基因(胸苷激酶基因)在随机重组时的活性;打靶结构外特异的基因探针;合适的酶切位点,

南京大学-差热分析实验报告

差热分析 近代物理实验 一.实验目的 1?掌握差热分析的基本原理及测量方法。 2?学会差热分析仪的操作,并绘制CuSO4 5H2O等样品的差热图。 3?掌握差热曲线的处理方法,对实验结果进行分析。 二.实验原理 1、差热分析基本原理 物质在加热或冷却过程中,当达到特定温度时,会产生物理或化学变化,同时产生吸热和放热 的现象,反映了物质系统的焓发生了变化。在升温或降温时发生的相变过程,是一种物理变化,一般来说由固相转变为液相或气相的过程是吸热过程,而其相反的相变过程则为放热过程。在各种化学变化中,失水、还原、分解等反应一般为吸热过程,而水化、氧化和化合等反应则为放热过程。差热分析利用这一特点,通过对温差和相应的特征温度进行分析,可以鉴别物质或研究有关的转化温度、热效应等物理化学性质,由差热图谱的特征还可以用以鉴别样品的种类,计算某些反应的活化能和反应级数等。 在差热分析中,为反映微小的温差变化,用的是温差热电偶。在作差热鉴定时,是将与参比物 等量、等粒级的粉末状样品,分放在两个坩埚内,坩埚的底部各与温差热电偶的两个焊接点接触,与两坩埚的等距离等高处,装有测量加热炉温度的测温热电偶,它们的各自两端都分别接人记录仪的回路中在等速升温过程中,温度和时间是线性关系,即升温的速度变化比较稳定,便于准确地确定样品反应变化时的温度。样品在某一升温区没有任何变化,即也不吸热、也不放热,在温差热电偶的两个焊接点上不产生温差,在差热记录图谱上是一条直线,已叫基线。如果在某一温度区间样 品产生热效应,在温差热电偶的两个焊接点上就产生了温差,从而在温差热电偶两端就产生热电势差,经过信号放大进入记录仪中推动记录装置偏离基线而移动,反应完了又回到基线。吸热和放热效应所产生的热电势的方向是相反的,所以反映在差热曲线图谱上分别在基线的两侧,这个热电势的大小,除了正比于样品的数量外,还与物质本身的性质有关。 将在实验温区内呈热稳定的已知物质与试样一起放入一个加热系统中,并以线性程序温度对它们加热。如以AI2O3为参比物,它在整个试验温度内不发生任何物理化学变化,因而不产生任何热

微生物基因敲除技术分析

微生物基因敲除技术分析 牟福朋 20071401105 山东大学生命科学学院 摘要:基因敲除技术是上个世纪80年代出现的新型分子生物学实验技术。到现在经过近30年的发展,已经出现了很多前沿技术。微生物由于它本身特有的性质一直成为基因敲除的热点。本文主要考察基因敲除技术的现状及其发展方向,并对基因敲除的应用提出自己的观点。关键词:基因敲除微生物前沿进展 一常规基因敲除 1 常规基因敲除的步骤 基因敲除的一般流程见图1。用引物扩增目的基因之后,使用内切酶切开基因,连入有相同粘性末端的抗生素基因如四环素抗性基因或者报告基因例如lacZ等;将载体转化入目的菌内,通过筛选,筛选出含有标记基因的菌株,然后要通过PCR等进行复证。 使用双标记法可以判断发生交换的次数。如果只发生第一次重组,则两个标记都会被插入宿主DNA中;而若发生了两次重组,则阴性标记会被丢失,细菌要么是野生型的,要么能检测到阳性标记。 图1 常规基因敲除的主要流程和机理 2 常规基因敲除的成功率分析 首先,DNA的同源重组频率不是很高。况且,此处要求发生两次同源重组,这使得重组概率大大下降。加长两端的同源序列有助于重组,但这样一来内切酶效率就得不到保证。这一问题解决的方法,主要是进行大量的培养,实验中,往往可以得到较多的敲除子。 第二,图中可以看出,在第一次重组和第二次重组之间,由于敲出基因载体的整个插入,基因仍然有一部分是完好的(载体的一段和宿主的另一端融合而成)。解决这一问题的方法已如前述:即引入两个标记。 3 常规基因敲除的主要缺点 ①速度慢,效率低。基因敲除需要一般的基因工程方法来进行转化和表达,周期较长,在这个过程中载体是关键;

热分析技术的表征应用

目录 摘要 (2) 关键词 (2) 前言 (2) 1 热分析技术综述 (2) 1.1 差示扫描量热法(DSC) (3) 1.2 差示热分析法(DTA) (3) 1.3 热重法(TGA) (3) 1.4 热机械法(DMA) (3) 2热分析技术的表征应用综述 (4) 2.1热分析技术在化合物表征中的应用 (4) 2.2 热分析技术在食品分析研究中的应用 (4) 2.2.1 食品的水含量及玻璃态转变温度Tg的测定 (4) 2.2.2 蛋白质、淀粉、脂类的研究 (5) 2.3 热分析技术在药品检验中的应用 (5) 2.3.1 药品的纯度、熔点测定 (6) 2.3.2 药品溶剂化物及水成分的确定 (6) 2.3.3 药品的相容性和稳定性测定 (6) 2.3.4 药物多晶型及差向异构体的分析 (7) 2.3.5 制剂辅料相容性考察 (7) 2.4 热分析技术在催化研究中的应用 (7) 2.4.1 金属和金属氧化物催化剂中的应用 (7) 2.4.1.1 催化剂失活研究 (7) 2.4.1.2 非晶态合金催化剂热稳定性研究 (7) 2.4.2 沸石分子筛与多孔材料研究中的应用 (8) 2.4.2.1 沸石分子筛催化剂的积炭行为研究 (8) 2.4.2.2 沸石分子筛吸附性能的研究 (8) 2.5 热分析技术高分子材料研究中的应用 (8) 2.5.1 TG在高分子材料方面的应用 (8) 2.5.1.1 高分子材料的组分测定 (8) 2.5.1.2 高分子材料中挥发性物质的测定 (9) 2.5.1.3 高分子材料的热稳定性研究 (9) 2.5.2 DTA在高分子材料方面的应用 (9) 2.5.3 DSC在高分子材料方面的应用 (9) 2.5.4 DMA在高分子材料方面的应用 (9) 2.5.4.1 高分子共混材料相容性的表征 (9) 2.5.4.2 表征高聚物材料阻尼特性 (10) 3 结语 (10) 参考文献: (10)

相关文档
最新文档