岩石锚杆基础计算书

岩石锚杆基础计算书
岩石锚杆基础计算书

北大门岩石锚杆基础设计

一、 原始数据

1. 本基础为北大门岩石锚杆基础,起控制作用内力(设计值)为:N F =-16

2.72kN x V =-132.902kN,y V =-224.63kN (分解后)。由地质勘察院

提供的拟建场地土层分布为:○

1 杂填土1.94m;○2中风化花岗岩深度未揭穿;岩石与砂浆的粘结强度特征值f=0.4Mpa。锚杆筋体采用热轧带肋三级钢筋,直径为32mm,水泥砂浆强度为30Mpa,细石混凝土强度等级为C30。基础混凝土强度等级为C30。锚杆的平面布置图及基础断面尺寸如下图所示:

锚杆平面布置图

A—A剖面图

2.构造要求

由《建筑地基基础设计规范》第8.6.1条及《高耸结构设计规范》第7.3.17条可得:

1)锚杆孔直径宜取锚杆筋体直径的3~4倍,即96~128mm,且不得

小于一倍锚杆直径加50mm,即不得小于82mm,本基础取

100mm,满足要求。

2) 锚杆中心间距不小于6倍的锚杆孔直径,即600mm,本基础取700mm,满足要求。

3) 锚杆筋体锚入岩石的深度应大于40d=40x32=1280mm,本基础为3000mm,满足要求。

4) 锚杆到基础边距不应小于150mm,本基础为200mm,满足要求。

5) 锚杆筋体插入上部的锚固长度应符合钢筋的锚固长度要求要求:

/a y t l f d f α==0.14x360xd/1.43=35.3d 按一级抗震考虑需要乘以1.15的系数,且钢筋直径大于25mm 需要乘以1.1的修正系度,即: 1.051.1a E a l l =×=1.05x1.1x35.3d=45d 所以 a E l =45x32=1440mm 本基础为1500mm 满足要求。

二、 承载力计算

1.作用于基础底面形心处的内力为:

x M =224.63x3.25=730kN m ?,y M =132.902x3.25=431.9kN m ?。

N F =-162.72kN,x V =-132.902kN,y V =-224.63kN。

2.基础自重及其上土重标准值为:

k G =2x2x2x20=160kN 3.锚杆基础中单根锚杆所受最大拔力计算:

22yk i k k xk i ti i i

M x F G M y N n y x ?+?=??∑∑ ,max t t N R ≤

,max t N 22

162.721607300.75431.90.75860.7560.75?+××=??××=-258.54kN(拉) 由锚杆砂浆与岩石的粘结确定的t R 为

10.8 3.14t R d lf =×=0.8x3.14x0.1x3x400=301.44kN

由锚杆筋体与砂浆的粘结确定的t R 为

223.140.0163601000t y R r f π=?=×××=289.4 kN

即:,max t t N R ≤ 满足要求。

三、 基础配筋计算

1.由《混凝土结构设计规范》第8.5.2条可得底部钢筋最小配筋面积为:

,min min s A bh ρ==0.15%x1500x2000=45002mm

选用三级钢HRB400 18@110,,min s A =46262mm ,满足要求。

2.由《高耸结构设计规范》第7.

3.20条可得基础顶部配筋为:

1.35c t M Q C ==1.35x3x258.54x0.25=261.8kN m ?

所以

0x h =?

1450=1 1.014.32000 6.33360

c s y f bx

A f α×××===5032mm 选用三级钢HRB400 12@200,,min s A =11302mm ,满足要求。

四、 短柱配筋计算

1.作用于短柱底面形心处的内力为

x M =224.63x1.75=393.11kN m ?,

y M =132.902x1.75=232.58kN m ?。

N F =-162.72kN,x V =-132.902kN,y V =-224.63kN。

2.斜截面受剪承载力计算

按偏心拉构件计算:

001.750.21.0

sv u t yv A V f bh f h N s λ=+?+ 0393.11224.630.96

M Vh =×=1.823 301.75 1.75 1.431010.961.0 1.823 1.0

t f bh λ=×××++=851kN 箍筋加密配置按间距100mm 计算 30(0.2)(224.630.2162.72)0.1270100.96u sv sv V N s A A h ++××==××=3.562mm 选用 双肢箍 φ10@100,sv A =2x78.5=1572mm 满足。 箍筋配筋率

1278.50.157%1000100sv sv n A bs

ρ?×===×,min 0.24t sv yv f f ρ≥= 1.430.24

0.127%270==,满足。 3.正截面配筋计算

3o M 393.1110===2415.87mm N 162.72

e ×为大偏心受压 取/

s s a =a =35mm

o s e=+a 2

h e ?=1950.87mm 假定0.518499.87b o x x h mm ===来计算/

s A 值。

1/

/

/s ()20(a )b u c b o s s o x N e f bx h A f h α??=

取/

/

2min 0.002100010002000s A bh mm ρ==××= 选用6根直径为25mm 的三级钢(22945s A mm =)。 由2

1102c c o f bx f bh x Ne αα?+=得

32.30x mm =

1c s y

N f bx A f α+==17352mm 选用6根直径为25mm 的三级钢(22945s A mm =)。

第六章 岩石锚杆基础

第六章岩石锚杆基础 岩石锚杆基础应根据《建筑地基基础设计规范》(GB 50007—2002)第8.6.1条至第8.6.3条的要求和规定进行设计。 岩石锚杆基础可用于直接建造在基岩上的柱基以及承受拉力或水平力较大的建筑物基础。锚杆基座应与基岩连成整体,并应符合下列要求: 1.锚杆孔直径,宜取三倍锚杆直径,但不应小于一倍锚杆直径加50mm。锚杆基础的构造要求,可按图6-1采用。 2.锚杆插入上部结构的长度,必须符合钢筋锚固长度的要求。 3.锚杆宜采用热轧带肋钢筋,水泥砂浆(或细石混凝土)强度等级不宜低于M30(或C30),灌浆前应将锚杆孔清理干净。 锚杆基础中单根锚杆所承受的拔力设计值,应按下列公式验算: 式中Nti——单根锚杆所承受的拔力设计值; Rt——单根锚杆的抗拔力特征值。 对甲级建筑物,单根锚杆抗拔力应通过现场试验确定。对于其他建筑物,可按下列公式计算: R,≤0,8πdlf(6—3) 式中f—一砂浆与岩石间的粘结强度特征值(MPa),水泥砂浆可取M30,f值可按表6—1选用; l——锚杆的有效锚固长度; k1——锚杆孔的直径。

[例6-1] 已知某工程有800mmx800mm的偏心受压柱,柱基坐落在较软地基上,该柱承受风载等作用产生的拔力168kN,试设计锚杆基础所需的锚杆根数。锚杆直径d,锚杆孔径 第209页 k1,锚杆有效锚固长度l,锚杆间的距离C1,并绘出锚杆基础的平、剖面图。 [解] 选定锚杆直径d=20mm(HPB335),Rt=0.87πd,lf=0。8x 3.141 6x70x800X0.3=42 223N=42.22kN 查表6—3得:Rt=42.22kN。 锚杆根数n=168-42.22-3.98根,取4根 根据锚杆直径d=20mm,查表6-2得:锚杆孔径d1=70mm 锚杆有效锚固长度l=800nan,锚杆间的距离C1=420mm,锚杆与柱预留连接长度l1=700mm。.

岩石锚杆基础施工方案模板

岩石锚杆基础施工 方案 目录 一、编制依据 (2)

二、工程概况 (4) 三、工程设计技术要求 (5) 四、岩石锚杆基础施工 (8) 1、工艺流程 (8) 2、施工准备 (10) 3、锚杆基础施工 (13) 五、人员组织 (23) 六、材料与设备 (23) 七、工艺质量要求及标准 (24) 八、安全及环保措施 (26) 九、应急救援措施 (37) 十、进度安排 (40) 十一、标准工艺应用 (41)

一、编制依据 1、榆横?潍坊1000千伏特高压交流输变电工程线路工程(06标)锚杆基础施工图、施工图会审纪要及设计交底有关要求; 2、《建筑地基处理技术规范》( JGJ79- ) ; 3、《锚杆喷射混凝土支护技术规范》( GBJ50086- ) ; 4、《岩土锚杆( 索) 技术规程》( CECS22- ) ; 5、《混凝土结构工程施工质量验收规范》( GB50204- ) ( ) ; 6、《混凝土强度检验评定标准》( GBT50107- ) ; 7、《电力建设安全工作规程第2部分: 电力线路》( DL5009.2- ) ; 8、《1000kV架空输电线路施工及验收规范》(Q/GDW1153-); 9 、《1000kV 架空输电线路施工质量检验及评定规 程》 ( Q/GDW1163- ) ; 10、《国家电网公司施工项目部标准化管理手册》( ) ; 11、《国家电网公司输变电工程标准工艺管理办法》国网( 基建/3) 186- ; 12、《国家电网公司基建安全管理规定》国网( 基建/2) 173- ; 13 、《国家电网公司基建技术管理规定》国网( 基建/2) 174- ; 14、《国家电网公司基建质量管理规定》国网( 基建/2) 112- ; 15、《国家电网公司输变电工程施工安全风险识别评估及预控措施管理办法》国网( 基建/3) 176- ; 16、《输变电工程建设标准强制性条文实施管理规程》(Q/GDW248-

岩石锚杆基础施工方案模板

岩石锚杆基础施工 方案

目录 一、编制依据 (2) 二、工程概况 (4) 三、工程设计技术要求 (5) 四、岩石锚杆基础施工 (8) 1、工艺流程 (8) 2、施工准备 (10) 3、锚杆基础施工 (13) 五、人员组织 (23) 六、材料与设备 (23) 七、工艺质量要求及标准 (24) 八、安全及环保措施 (26) 九、应急救援措施 (37) 十、进度安排 (40) 十一、标准工艺应用 (41)

一、编制依据 1、榆横~潍坊1000千伏特高压交流输变电工程线路工程( 06标) 锚杆基础施工图、施工图会审纪要及设计交底有关要求; 2、《建筑地基处理技术规范》( JGJ79- ) ; 3、《锚杆喷射混凝土支护技术规范》( GBJ50086- ) ; 4、《岩土锚杆( 索) 技术规程》( CECS22- ) ; 5、《混凝土结构工程施工质量验收规范》( GB50204- ) ( ) ; 6、《混凝土强度检验评定标准》( GBT50107- ) ; 7、《电力建设安全工作规程第2部分: 电力线路》( DL5009.2- ) ; 8、《1000kV架空输电线路施工及验收规范》( Q/GDW1153- ) ; 9、《1000kV架空输电线路施工质量检验及评定规程》( Q/GDW1163- ) ; 10、《国家电网公司施工项目部标准化管理手册》( ) ; 11、《国家电网公司输变电工程标准工艺管理办法》国网( 基建/3) 186- ; 12、《国家电网公司基建安全管理规定》国网( 基建/2) 173- ; 13、《国家电网公司基建技术管理规定》国网( 基建/2) 174- ; 14、《国家电网公司基建质量管理规定》国网( 基建/2) 112- ; 15、《国家电网公司输变电工程施工安全风险识别评估及预控措施管理办法》国网( 基建/3) 176- ; 16、《输变电工程建设标准强制性条文实施管理规程》(Q/GDW248- ); 17、《国家电网公司输变电工程标准工艺( 四) ——典型施工工

某边坡锚杆挡墙计算书

设 计计算 书

地质资料主要参数: 岩体等效内摩擦角:29.35 C=50KPa 考虑硬性结构面并且采用暴雨工况 饱和重度:24.5KN/m3 墙背直立:α=90 岩石内摩擦角:ψ=29.35 岩石等效内摩擦角: ψ=51 外倾角: θ=51 岩石破裂角取外倾角: θ=51 锚固体与岩体粘接强度:300KPa 墙背荷载标准值:q=20KN/m 2 钢筋与砂浆的粘结强度:2.4MPa (按规范7.2.4并考虑0.7折减系数) 主动土压力系数 1.按规范6.3.4条,直接按等效内摩擦角为51°进行主动土压力计算,Kai 按6. 2.4条:Kai=tg 2(45-ψ/2)==0.13 2.按规范6. 3.2条,对于有硬性外倾结构面滑动的边坡,按下式进行计算: ψηψθθβθψθδcos sin )sin()sin([) sin()sin(sin sin ) sin(a a Kq a a a b a Ka --+?--+++= a=90 β=0 δ=18 ψ=18 cs=50KPa 按地勘,破裂角及外倾角均取θ=51 Ka=0.18 3.考虑挡墙开挖后,墙后可能存在有限填土;且施工期间放坡未定; 因此,取按土质回填时,主动土压力系数Ka=0.3 边坡安全等级: 一级;取r0=1.1

一.侧向土压力计算 根据规范8.2.3条,本工程土压力分布采用半梯形 墙背直立,取E hk =E ak KN K H r E a hk 7203.014145.245.02 1 2=????=???= 根据规范8.2.5 KN H Ehk e hk 5714/9.0/7209.0/=== 间距s=2.5m qk=57×2.5=142KN/m 二.立柱(排桩)计算 取分项系数为1.35;视为支撑于锚杆的弹性连续梁计算,得 Mmax=107KN.m Qmax=286KN 配筋: 当采用柱肋式时,按300X600;正筋,负筋均配4Φ22;箍筋φ8@100 当采用排桩式时,排桩按施工期间抗滑配筋 三.立柱嵌入深度计算 本工程锚杆水平力与挡墙侧压力平衡,不计算嵌入深度,按构造设置 四.锚杆计算 分项系数取1.30 qk=142;Nak=142x2.5/cos15=368KN Na=1.3×142×2.5/cos(15)=478KN 锚杆面积计算,采用HRB400级钢,根据规范7.2.2: y a f N r As ζ0= As=1.1*478*1000/0.69/360=2116mm2 取3Φ32 五.锚固长度计算 锚固体:rb ak a Df N l ζπ= 锚筋:rb a df n Na r l πζ30= 粘结强度按2.4MPa 并考虑0.7系数 锚固体:La=368/1/3.14/0.13/300=3m 锚筋:la=1.1*478/0.6/3.14/(3*0.032)/(2400*0.7)=1.73m

(完整版)抗浮锚杆计算书

7#地下室整体抗浮计算 1、根据建筑施工图及基础施工图,本工程地下室底板面的绝对标 高为350.000米,根据地勘报告提供的本工程的抗浮设计水位为绝 对标高356米。 2、设计抗浮水头为356-351=6m。 3、结构自重计算一(覆土部分): 1):600mm厚地下室顶板覆土:18X0.6=10.8KN/m2 2):地下室顶板160mm厚:0.16X25=4KN/m2 3):防水板500mm厚:0.5X25=12.5KN/m2 4):梁柱折算荷载:4KN/m2 以上1~4项合计:31.3KN/m2,即抗力R=31.3KN/m2 4、结构自重计算: 1):地面上5层120mm结构楼、屋面:5X25X0.12 =15KN/m2 2):地下室顶板160mm厚:0.16X25=4KN/m2 3):防水板500mm厚:0.5X25=12.5KN/m2 4):梁柱折算荷载:4KN/m2 以上1~4项合计:35.5KN/m2,即抗力R=35.5 KN/m2 5、抗浮计算: 荷载效应:S=1.05x6X10=63 KN/m2 根据以上计算知:R小于S 整体不满足抗浮满足要求,无需另外配重或增加锚杆抗浮。

7#抗浮锚杆深化设计计算书 一、工程质地情况: 地下水位标高0.5 m 地下室底板底标高-5.5m 浮力60 kN/m2 二、抗浮验算特征点受力分析: 一)车道入口 A)一层顶板: 顶板自重0.16X25=4.0 kN/m2 B)底板 底板自重0.5X25=12.5kN/m2 C)梁自重 4.07+2.1+3.4=9.5 kN/m2 总计26kN/m2 抗浮验算60-26x0.9=36.6kN/m2 二)有0.6m覆土的一层地下室 A)一层顶板: 覆土层0.6X18=10.8 kN/m2 顶板自重0.16X25=4.0 kN/m2 B)底板

岩石锚杆基础工程施工设计方案

目录 一、编制依据 (1) 二、工程概况 (2) 三、工程设计技术要求 (4) 四、岩石锚杆基础施工 (7) 1、工艺流程 (7) 2、施工准备 (9) 3、锚杆基础施工 (11) 五、人员组织 (21) 六、材料与设备 (21) 七、工艺质量要求及标准 (22) 八、安全及环保措施 (23) 九、应急救援措施 (33) 十、进度安排 (36) 十一、标准工艺应用 (38)

一、编制依据 1、榆横~潍坊1000千伏特高压交流输变电工程线路工程(06标)锚杆基础施工图、施工图会审纪要及设计交底有关要求; 2、《建筑地基处理技术规》(JGJ79-2012); 3、《锚杆喷射混凝土支护技术规》(GBJ50086-2001); 4、《岩土锚杆(索)技术规程》(CECS22-2005); 5、《混凝土结构工程施工质量验收规》(GB50204-2002)(2011年版); 6、《混凝土强度检验评定标准》(GBT50107-2010); 7、《电力建设安全工作规程第2部分:电力线路》(DL5009.2-2013); 8、《1000kV架空输电线路施工及验收规》(Q/GDW1153-2012); 9、《1000kV架空输电线路施工质量检验及评定规程》(Q/GDW1163-2012); 10、《国家电网公司施工项目部标准化管理手册》(2014年版); 11、《国家电网公司输变电工程标准工艺管理办法》国网(基建/3)186-2015; 12、《国家电网公司基建安全管理规定》国网(基建/2)173-2015; 13、《国家电网公司基建技术管理规定》国网(基建/2)174-2015; 14、《国家电网公司基建质量管理规定》国网(基建/2)112-2015; 15、《国家电网公司输变电工程施工安全风险识别评估及预控措施管理办法》国网(基建/3)176-2015; 16、《输变电工程建设标准强制性条文实施管理规程》(Q/GDW248-2008); 17、《国家电网公司输变电工程标准工艺(四)——典型施工工法》。 二、工程概况 榆横~潍坊1000千伏特高压交流输变电工程线路工程(6标)起于吕梁市中阳县暖泉镇中庄村附近,止于孝义市七里坡附近,起止杆塔号为:3L070~3L149(不含),3R071~

锚杆设计要求

锚杆设计要求 锚杆概述: 土锚杆根据滑动面分为锚固段和非锚固段。其承载能力受拉杆强度、拉杆与锚固体之间的握裹力、锚固体和孔壁之间的摩阻力等因素的影响。 土层锚杆是一种承拉杆件它的一端和挡土桩、挡土墙或工程构筑物联结,另一端锚固在土层中,用以维持构筑物及所支护的土层的稳定。土层锚杆能简化基础结构,使结构轻巧、受力合理,并有少占场地、缩短工期、降低造价等优点。可以用作深挖基坑坑壁的临时支护,也可以作为工程构筑物的永久性基础。在房屋基坑的挡土结构上使用,可以有效地阻止周围土层坍塌、位移和沉降。在基坑坑壁无法采用横向支护情况下,土层锚杆技术更为有效。 土层锚杆一般由锚头、自由段和锚固段三部分组成,其中锚固段用水泥浆或水泥砂浆将杆体(预应力筋)与土体粘结在一起形成锚杆的锚固体。 根据土体类型、工程特性与使用要求,土层锚杆锚固体结构可设计为圆柱型、端部扩大头型或连续球体型三类。锚固于砂质土、硬粘土层并要求较高承载力的锚杆,宜采用端部扩大头型锚固体;锚固于淤泥、淤泥质土层并要求较高承载力的锚杆,宜采用连续球体型锚固体。 土层锚杆的布置应遵守以下规定:

一、锚杆上下排间距不宜小于2.5m;锚杆水平方向间距不宜小于2.0m。 二、锚杆锚固体上覆土层厚度不应小于4.0m,锚杆锚固段长度不应小于4.0m。 适用的规范: 抗浮锚杆的设计并无相应的规范条文,《建筑地基基础设计规范 GB50007---2002》中“岩石锚杆基础”部分以及《建筑边坡工程技术规范 GB 50330-2002》有关锚杆的部分可以参考使用,不过最好只用于估算,锚杆抗拔承载力特征值应通过现场试验确定,有一些锚杆构造做法可以参考。对于锚杆估算,推荐使用《建筑边坡工程技术规范 GB 50330-2002》,对于岩土的分类较细,能查到一些必要的参数。 锚杆需要验算的内容: 1)锚杆钢筋截面面积; 2)锚杆锚固体与土层的锚固长度; 3)锚杆钢筋与锚固砂浆间的锚固长度; 4)土体或者岩体的强度验算; 锚杆的布置方式与优缺点:

抗浮锚杆设计计算书

四川油气田江油基地灾后异地重建项目抗浮锚杆专项设计计算书 工程编号B2010-002 总经理赵翔 总工程师康景文 审定林振湖 审核晏宾 设计赵国永 刘德林 中国建筑西南勘察设计研究院有限公司 2010年01月26日四川油气田江油基地灾后异地重建项目抗浮锚杆专项设计计算书 工程编号B2010-002 审定 审核 设计 中国建筑西南勘察设计研究院有限公司 2010年01月26日

目录 一.编制说明 二.计算书 三.结论与建议

一、编制说明 1、设计计算依据: 《注浆技术规程》 (YSJ211-1992) 《建筑地基处理技术规范》 (JGJ79-2002 J220-2002) 《岩土锚杆(索)技术规程》(CECS 22:2005) 《建筑结构荷载规范》(GB50009-2001) 《四川油气田江油生活基地建设项目岩土工程勘察报告》(中国建筑西南勘察设计研究院有限公司2009.9)。 《基础说明及大样》(2#地块)(成都市建筑设计研究院) 《基础平面布置图》(2#地块)(成都市建筑设计研究院); 《地下室基础说明及大样》(3#地块)(成都市建筑设计研究院) 《基础平面布置图》(3#地块)(成都市建筑设计研究院); 《基础说明及大样》(4#地块)(成都市建筑设计研究院) 《基础平面布置图》(4#地块)(成都市建筑设计研究院); 2、正常使用条件下,本抗浮锚杆工程设计使用年限为50年。 二、计算书 1、设计要求 根据设计单位提出的要求,本工程地下室分区抗浮力的要求为: 各地块抗浮锚杆提供抗浮力标准值表1 2、抗浮锚杆抗拔力设计值 根据地勘报告,本工程单根锚杆的抗拔力设计值为:2#地块为145kN;3#地块为270kN;4#地块为270kN。 3、杆体截面及锚固体截面积计算 锚杆钢筋的截面面积按下式确定: yk t t s f N K A ? =(7.4.1) 上面式中:K t —锚杆的杆体抗拉安全系数,取2; N t ——锚杆的轴向拉力设计值,2#地块为145kN;3#地块为270kN;4#地块为270kN; f yk ——钢筋抗拉强度标准值,采用HRB400钢筋,抗拉强度标准值为0.4kN/mm2。 根据计算得:2#地块为As=725mm2;3#地块为As=1350mm2;4#地块为As=1350mm2 所以2#地块孔内应设置二根Φ22的HRB400钢筋;3#地块孔内应设置三根Φ25的HRB400钢筋;4#地块孔内应设置三根Φ25的HRB400钢筋。 4、锚固段长度计算 根据《岩土锚杆(索)技术规程》(CECS22-2005),锚杆锚固段长度由下两式中较大值确定: ψ π mg t a Df N K L ? > (7.5.1-1) ψ ξ π ms t a f d n N K L ? > (7.5.1-2) 上面式中:L a ——锚杆锚固段的长度(m); K——锚杆锚固体的抗拔安全系数,取2.2; N t ——锚杆的轴向拉力设计值(kN); D——锚固体的钻孔直径,按0.12m d——钢筋的直径(m); f mg ——锚固体与地层间的粘结强度标准值,2#地块按勘察报告中第59号钻孔取锚杆周围地层加权平均值130kPa。3#地块按勘察报告中第51号钻孔取锚杆周围地层加权平均值100kPa,4#地块按勘察报告中第172号钻孔取锚杆周围地层加权平均值104kPa。 f ms ——锚固体与钢筋间的粘结强度标准值,取2000kPa; ξ——界面粘结强度降低系数,取0.6; ψ——锚固长度对粘结强度的影响系数,2#地块取1.4;3#、4#地块取1.15 n ——钢筋根数 由计算公式算得2#地块:L a 〉3.72m,设计按照锚固段长度为5.10m。 由计算公式算得3#地块:L a 〉7.18m,设计按照锚固段长度为8.00m。

锚杆计算书

从几种规范来探讨全长粘结岩石锚杆承载力的计算 关键词:全长粘结岩石锚杆;承载力;计算 摘要:全长粘结岩石锚杆是岩土工程中常采用的工程措施。各行业的设计规范对全长粘结岩石锚杆的设计计算均有相关规定。由于出发点的差异,各种规范对全长粘结岩石锚杆计算的内容和要求也不尽相同。本文试从现行各规范对全长粘结岩石锚杆计算的规定出发,对比分析各行业对全长粘结岩石锚杆承载力验算的一般要求,总结和探讨全长粘结岩石锚杆承载力验算的一般方法。 1、引言 锚杆是岩土工程中常见的工程处理措施,在建筑、水利、公路、铁道、港口等岩土工程中经常使用,其中全长粘结岩石锚杆是常见的一种锚杆形式。为规范锚杆工程的设计,建筑、公路、铁道、水利等行业的设计规范对锚杆的设计计算作了相关的规定。但由于各规范的出发点不同,对锚杆计算的内容和要求也不尽相同。本文试从现行各规范对全长粘结岩石锚杆计算的规定出发,对比分析各行业对全长粘结岩石锚杆承载力验算的要求,总结全长粘结岩石锚杆承载力验算的一般规定,并进一步探讨全长粘结岩石锚杆承载力验算的一般方法。 2、各种规范对全长粘结岩石锚杆承载力计算的规定: 对全长粘结岩石锚杆承载力计算在很多规范中均有规定,笔者摘录如下: (1)、《建筑地基基础设计规范》(GB50007—2002)8.6.3条: 对设计等级为甲级的建筑物,单根锚筋承载力特征值t R 应通过现场实验确定;对于其它建筑物可按下式计算: lf d R t 18.0π≤……………(8.6.3) 式中: f —砂浆与岩石间的粘结强度特征值; 1d —锚杆孔直径; l —锚杆的有效锚固长度; (2)、《建筑边坡工程技术规范》(GB50330—2002)7.2.2条~7.2.3条: 锚杆钢筋截面面积应满足下式的要求: y a s f N A 20ξγ≥ ……………(7.2.2)

抗浮锚杆计算书

四川理工技师学院学府校区扩建项目地下室抗浮锚杆设计计算书 四川省川建勘察设计院 二〇一九年八月

四川理工技师学院学府校区扩建项目地下室抗浮锚杆设计计算书 工程编号:2018-YT-237 法定代表人:黄荣 总工程师:刘晓东 审定人:黄香春 审核人:郑星 项目负责人:赵兵 设计人:杜祥波 中华人民共和国住房和城乡建设部工程勘察证书 证书等级:综合类甲级 编号:B151025097 四川省川建勘察设计院 二〇一九年八月

目录 1 工程概况 (1) 2 设计依据 (1) 3 设计单位提供的技术要求 (2) 4 地层及水文地质条件 (2) 4.1地层 (2) 4.2地下水 (3) 5 抗浮锚杆间距及布置方法 (4) 6 抗浮锚杆设计 (4) 6.1锚杆锚固体长度计算 (4) 6.2锚杆杆体截面积 (4) 6.3锚杆钢筋与锚固砂浆间的锚固长度计算 (5) 6.4锚杆构造设计 (7) 6.5钢筋锚入底板长度的确定 (7) 6.6锚杆布置及根数验算 (8) 6.7锚固体整体稳定性验算 (9) 7 各区域抗浮锚杆设计参数汇总 (10) 8 抗浮锚杆施工 (11) 8.1抗浮锚杆材料及防腐防水 (11) 8.2锚杆施工注意事项 (11) 9其他 (12)

1 工程概况 四川理工技师学院学府校区扩建项目场地位于成都市温江区南熏大道4段355号,行政区划属温江区柳城街道,交通十分方便。规划建设净用地面积4448.61m2,规划总建筑面积76821.08m2,其中地上建筑面积62373.4m2,地下建筑面积13316.08m2。根据土建设计总平面图及抗浮锚杆分布范围及抗浮力标准值示意图,拟建项目中1号实训楼、2号实训楼、3号中心教学楼区域设1层地下室,抗浮区域根据土建设计文件,建筑室内标高±0.00相当于绝对标高541.95m,室外地坪标高541.50m,设一层地下室,拟建采用独立基础+抗水板形式,抗水板厚度400mm。由四川省建筑设计研究院有限公司设计,四川省川建勘察设计院进行岩土工程勘察。受业主委托,我院对本工程抗浮锚杆进行设计。 2 设计依据 (1)《四川理工技师学院学府校区扩建项目场地进行详细勘察阶段岩土工程勘察报告》(四川省川建勘察设计院,2019年7月); (2)《四川理工技师学院学府校区扩建项目总平面布置图》、《地下室基础说明及大样图》及设计技术要求(四川省建筑设计研究院有限公司,2019年8月); (3)《建筑地基基础设计规范》(GB50007-2011); (4)《岩土锚杆与喷射混凝土支护工程技术规范》(GB50086-2015); (5)《建筑边坡工程技术规范》(GB50330-2013); (6)《岩土工程勘察规范》(GB50021-2001,2009年版); (7)《混凝土结构设计规范》(GB50010-2010,2015版); (8)《成都地区建筑地基基础设计规范》(DB51/T5026-2001); (9)《四川省建筑地基基础检测技术规程》(DBJ51/T014-2013); (10)《抗浮锚杆技术规程》(YB/T4659-2018) (11)《四川省建筑地下结构抗浮锚杆技术标准》DBJ51/T102-2018; (11)《成都市建筑工程抗浮锚杆质量管理规程》(成建委[2018]573号)等。

抗浮锚杆概述

抗浮锚杆概述 .抗浮锚杆,也叫抗浮桩,是建筑工程地下结构抗浮措施的一种。抗浮锚杆不同于一般的基础桩,有其自身的独特性能,与一般基础桩的最大区别在于:基础桩通常为抗压桩,桩体承受建筑荷载压力,受力自桩顶向桩底传递,桩体受力大小随着建筑荷载的变化而变化;而抗浮桩则为抗拔桩体承受拉力,普通抗浮桩受力也是自桩顶向桩底传递,桩体受力大小随着地下水位的变化而变化,但两者受力机制恰好相反。 抗浮锚杆是指抵抗建筑物向上位移的各种桩型的总称,抗浮锚杆不同于一般的基础桩, 有其自身的独特性能,抗浮桩为抗拔桩。 适用规范 抗浮锚杆的设计并无相应的规范条文,《建筑地基基础设计规范》GB50007---2002中“岩石锚杆基础”部分以及《建筑边坡工程技术规范》GB50330-2002有关锚杆的部分可以参考使用,不过最好只用于估算,锚杆抗拔承载力特征值应通过现场试验确定,有一些锚杆构造做法可以参考。对于锚杆估算,推荐使用《建筑边坡工程技术规范》GB 50330-2002,对于岩土的分类较细,能查到一些必要的参数。 验算内容 1)锚杆钢筋截面面积; 2)锚杆锚固体与土层的锚固长度; 3)锚杆钢筋与锚固砂浆间的锚固长度; 4)土体或者岩体的强度验算; 注意事项 1) 集中点状布置,抗浮锚杆与岩石锚杆基础结合为优,需注意柱底弯矩对锚杆拉力的影响,特别是柱底弯矩较大的时候; 2) 参考《建筑边坡工程技术规范GB 50330-2002》,应选用永久性锚杆部分内容; 3) 岩石情况(坚硬岩、较硬岩、较软岩、软岩、极软岩)应准确区分,可参考《建筑边坡工程技术规范GB 50330-2002》表7.2.3-1注4; 4) 锚杆抗拔承载力特征值应通过现场试验确定,可参考《建筑边坡工程技术规范》GB 50330-2002附录C; 5) 抗浮设计水位的确定应合理可靠,一般应由地质勘测单位提供,比较可靠和有说服力,应设置水位观测井,对于超出抗浮设计水位的情况应有应对措施;

岩石锚喷支护设计计算书

岩石锚喷支护设计计算书 Prepared on 22 November 2020

岩石锚喷支护设计计算书 计算依据: 1、《建筑基坑支护技术规程》JGJ120-2012 2、《建筑边坡工程技术规范》GB50330-2013 3、《建筑施工计算手册》江正荣编着 一、设计简图 二、基本计算参数 三、锚杆设计参数 岩质边坡采用锚喷支护时,整体稳定性计算及锚杆计算应符合以下规定:第1层锚杆的计算:

1、岩石压力水平分力标准值和锚杆所受水平拉力标准值可按下式计算: e hk=E hk/H==m2 H tk=e hk×s xj×s yj=××= 2、锚喷支护边坡时,锚杆的轴向拉力承载力标准值和设计值可按下式计算: N ak=H tk/cosα=cos15= N a=r Q×N ak=×= 3、锚杆的杆体计算: A s≥r0×N a/(ζ2×f y)=×××1000000= 所需钢筋根数n≥A s/×d×d/4)=××4)= 取n=2 【所需钢筋根数为2根】 4、锚杆锚固段长度计算: a.锚杆锚固体与地层的锚固长度l a1应满足下式 l a1≥N ak/(ζ1×π×D×f rb)=×××= b.锚杆钢筋与锚固砂浆间的锚固长度l a2应满足下式要求: l a2≥r o×N a/(ζ3×n×π×d×f b)=××2××1000××1000)= 计算出的锚固段长度L m=max(l a1,l a2)=. 【按照《建筑边坡工程技术规范》GB50330-20133m时,取.】 五、岩石锚喷支护构造要求 1.岩面护层可采用喷射混凝土层、现浇混凝土板或格构梁等型式。 2.系统锚杆的设置应满足下列要求: a.锚杆倾角宜为10°~20°; b.锚杆布置宜采用菱形排列,也可采用行列式排列; c.锚杆间距宜为~3m,且不应大于锚杆长度的一半;对Ⅰ、Ⅱ类岩体边坡最大间距不得大于3m,对Ⅲ类岩体边坡最大间距不得大于2m; d.应采用全粘结锚杆。 3.局部锚杆的布置应满足下列要求:

抗浮锚杆设计计算书

二、计算书 1、设计要求 本工程水池底板抗浮力的要求为: 表1 2、抗浮锚杆抗拔力设计值 根据技术要求,本工程单根锚杆的抗拔力标准值为87.5kN ,设计锚杆间距2.7x2.7m. 3、杆体截面及锚固体截面积计算 锚杆钢筋的截面面积按下式确定: yk t t s f N K A ?= (7.4.1) 上面式中:K t — 锚杆的杆体抗拉安全系数,取2; N t —— 锚杆的轴向拉力设计值,取113.8KN. f yk —— 钢筋抗拉强度标准值,采用HRB400钢筋,抗拉强度标准值为0.4kN/mm 2 。 根据计算得:As=569mm 2 所以孔内应设置二根Φ20的HRB400钢筋. 4、锚固段长度计算. 根据《岩土锚杆(索)技术规程》(CECS22-2005),锚杆锚固段长度由下两式中较大值确定: ψ πmg t a Df N K L ?> (7.5.1-1) ψ ξπms t a f d n N K L ?> (7.5.1-2) 上面式中:L a —— 锚杆锚固段的长度(m ); K —— 锚杆锚固体的抗拔安全系数,取2.2; N t —— 锚杆的轴向拉力设计值(kN); D —— 锚固体的钻孔直径,按0.12m d —— 钢筋的直径(m ); f m g ——锚固体与地层间的粘结强度标准值,2#地块按勘察报告中第59号钻孔取 锚杆周围地层加权平均值130kPa 。3#地块按勘察报告中第51号钻孔取锚杆周围地层加权平均值100kPa ,4#地块按勘察报告中第172号钻孔取锚杆周围地层加权平均值104kPa 。 f ms ——锚固体与钢筋间的粘结强度标准值,取2000kPa ; ξ ——界面粘结强度降低系数,取0.6; ψ —— 锚固长度对粘结强度的影响系数,2#地块取1.4;3#、4#地块取1.15 n —— 钢筋根数 由计算公式算得2#地块:L a 〉3.72m ,设计按照锚固段长度为5.10m 。 由计算公式算得3#地块:L a 〉7.18m ,设计按照锚固段长度为8.00m 。 由计算公式算得4#地块:L a 〉6.92m ,施工设计按照锚固段长度为8.00m 设计。 5、锚杆锚入基础的长度 根据规范要求,钢筋须插入基础内不少于35d ,本工程2#地块,采用Φ22螺纹钢筋,长度为35*22=770mm ,设计时取800mm 。本工程3#、4#地块采用Φ25螺纹钢筋,长度为35*25=875mm ,设计时取900mm 。 6、锚杆间距 本工程基础为筏板基础,考虑结构受力特点,本着减小底板弯曲应力的原则,本工程采用小吨位的锚杆。杭浮锚杆在整个底板上小间距均匀布置,局部地方(独立柱基位置)适当调整。该布置可降低底板的加筋费用,又可以减小因个别锚杆失效而造成的局部破坏。锚杆 大体成正方形布置,根据地下室抗浮区域、抗浮力要求的不同,锚杆间距为: 锚杆间距一览表 表6 7、设计实物工程量 根据计算,本工程抗浮锚杆设计实物工程量为:2号地块设置锚杆1107根,单根锚杆长度5.1m ,3#地块设置锚杆1927根,单根锚杆长度8m ,4#地块设置锚杆2707根,单根锚杆长度8m ,总计锚杆进尺43181.1m(含防水0.1m/根)。 8、锚固体强度及水泥浆配比 为增大锚固体的强度,锚固体采用豆石与砂浆结合体,填筑的豆石强度应无风化现象,

岩石锚杆基础的施工说明

岩石锚杆基础施工说明 岩石锚杆基础可充分利用地形,减少基面开挖,有利环保。锚杆基础在汗海-沽源-平安城500kV线路工程的大量采用,无疑是对塞外脆弱的植被起到了保护作用,但也给设计、施工、监理提出了新的课题,为了搞好岩石锚杆基础的施工,并为今后的安全运行奠定良好的基础,我设计院针对岩石锚杆基础制定了岩石锚杆基础施工说明。 1 概述 1.1 基础施工应严格按照《110-500kV架空送电线路施工及验收规范》(GB50233-2005)和《混凝土结构工程施工质量验收规范》(GB50204-2002)执行。 1.2 本说明适用的范围是岩石锚杆基础施工。 1.3 本说明主要针对的是岩石锚杆基础施工中的各个主要环节。 包括锚杆基础施工前准备工作、基面清理、钻孔、清孔、锚杆插入、承台支模、混凝土浇注、拆模、养护、成品保护等工序。 1.4 岩石锚杆基础施工工作流程见“岩石锚杆基础施工流程图”。 2 施工前准备 2.1 熟悉图纸及设计文件、学习相关规程规范。 2.2 核实现场定位时的塔位桩,确认无误后,再根据现场地形地貌及设计提供的降基面高度校核高低腿配置,如有不符,应立即通知设计单位。 2.3 核对地脚螺栓尺寸、小根开是否和塔图一致。

岩石锚杆基础施工流程图 3 施工基面清理 3.1按“基础施工说明”(见各标段基础施工图)的要求清理施工基面,若有与上部铁塔结构相碰的山体应局部清理,施工单位不能随

意加大开方面,严禁破坏施工基面以下岩体的整体性。 3.2 施工基面开挖前应预留出场地,对钻孔、注浆及冲洗注浆设备和管路排出的污水进行适当处理,以防止污染环境。 3.3 施工基面清理完毕后,检查基面标高。 4基础放线和钻机定位 基面开挖完成后,应用白灰划出基础位置,并用定位桩标志出钻孔的位置。控制桩应采取保护措施,防止受到破坏。基础定位的精度宜根据锚杆施工规范控制。 应当使用适当的钻机型号和钻孔方法,钻具的重量和刚度要匹配,以防影响钻孔速度和排碴,充分发挥钻具的效率,以获得高精度钻孔。 5 钻孔和清孔 锚杆基础的钻孔应满足设计图纸要求的孔径、长度,采用适宜的钻孔方法确保精度,要使其后续的锚杆插入和注浆作业能顺利进行。 钻孔过程中要对岩土地层情况进行验证,如果实际地层与设计地层有较大差异时,应及时报告设计人员,以便采取措施进行加固或者变更钻孔位置。 不同的岩土层宜采用合适的钻具和钻孔方法,以保证锚杆在插入的注浆过程中孔壁不致塌陷,钻孔直径应符合设计要求,不致对孔壁产生过大的挠动。 钻孔用水宜采用清水,泥浆或其它悬浊液会减弱锚杆的锚固力,应避免使用。当钻孔用水对地基有不良影响时,宜采用无水钻孔法。

岩石锚杆基础技术标准

岩石锚杆基础技术标准 一.施工设备准备 1、施工采用的主要施工设备:长螺旋桩机、注浆设备等。 2、施工设备进场施工作业前,必须进行全面检查,其中重点包括:安全防护设施检查、设备控制系统检查、维修保养记录检查、需要年检年审的设备须检查年检年审记录,确认合格后由项目部统一安排。 3、施工设备从土方坡道吊放至施工场地,抗浮锚杆施工结束后,由于土方坡道已开挖完,因此设备只能拆卸后用吊车吊运出基坑。 二、施工工艺及技术流程 1.测量定位→钻机成孔→验孔深→安放锚杆→边注浆边提升注浆管→结束至下一孔→返回二次注浆。 2.成孔:按设计要求测放土钉轴线及点位,钻孔直径150mm。 3.锚杆制作:锚杆制作采用HRB400¢28螺纹钢加工,从锚头开始每隔1.5m 焊制定位器。锚入基础沉台弯头用钢筋弯曲机制作。 4.抗浮锚杆注浆:锚杆注浆采用压力注浆工艺。第一次注浆压力在0.3-0.5Mpa左右,注到浆液从孔中溢出。第二次注浆在第一次初凝前达到注浆压力1-2分钟后即可结束注浆,注浆完成后周围的空隙用水泥袋或毛巾塞牢以防止漏水。注浆采用1:2微胀水泥浆液。 5.抗浮锚杆施工主要方法: 5.1机具设备:长螺旋钻机,HY50-50型注浆泵,灰浆搅拌机,灌浆管、阀门、压力表等。 5.2成孔:施工时长螺旋钻杆直接钻出土,这种方法把成孔过程中的钻进、出渣、清孔等工序一次完成。钻孔取出的土用挖机装运 6.锚杆安设:锚杆按施工图纸结构构造,由专人制作完成,锚杆一根螺纹钢筋(HRB400φ28)焊接而成,另外每隔1.5m焊置一个定位器(由φ6.5钢筋制成)。锚拉杆要求顺直。孔钻完后尽快地安设锚杆,放至距孔底保持50cm,插入时将锚杆有定位器支架的一面向下方。立即接上压浆管,即可进行注浆。 7.灌浆:灌浆材料为纯水泥浆。水泥采用32.5级水泥,水灰比为0.4-0.5,充盈系数不小于1.15。灌浆应持续至孔口流出水泥浆为止。第一次注浆压力为0.5~0.8MPa;在第一次注浆体强度达15 MPa时,进行第二次注浆,注浆压力为0.3MPa。锚杆注浆管边灌边浮,一次注浆量按理论计算值的

边坡预应力锚索张拉计算书.doc

YK48+045-115 及YK47+885-980 边坡预应力锚 索张拉计算书 一、预应力锚索的主要设计参数和要求 1.预应力锚索采用6¢s15.2 高强度低松弛钢绞线,强度级别为 2 2 1860Mpa,公称直径15.24mm,公称面积140mm,弹性模量为195000N/mm 。 2.预应力钢绞线的设计吨位650KN,控制张拉力бcon 为715KN。 3. 预应力钢绞线的锚固段长均为8m,自由段为长度为20m,千斤顶 工作长度为0.35m。 4. 张拉设备校准方程P=51.4500F+0.55 P —压力指示器示值(MPa) F —标准力值(MN) 二、预应力钢绞线的张拉程序 张拉预应力钢绞线的主要机具有油泵、千斤顶和油表,千斤顶和油表 必须经过配套标定之后才允许使用,标定单位必须通过国家有关单位认 可。一般标定的有效期限为 6 个月或使用200 次或发现有不正常情况也须 重新标定。 张拉采用液压千斤顶100t 级进行张拉,张拉前先对钢绞线预调。单 根预调的目的是使一孔内的钢绞线达到顺直、受力均匀并具有一定的拉应 力状态,消除钢绞线的非弹性变形,以便更好地控制张拉。 钢绞线张拉的简明工艺: 预应力筋的张拉顺序:0→15%*бcon(初张拉)→210KN→430KN→715KN (锚固) 第 1 页共 3 页

三、钢绞线张理论拉伸长值及压力表读数计算 1.计算公式 △L=PL/AE 式中: P 预应力钢绞线的平均张拉力(KN), L 预应力钢绞线的长度(mm) 2 A 预应力钢绞线的公称面积,取140mm 2 E 预应力钢绞线的弹性模量,取195000N/mm 2.理论伸长值及油表读数值计算 (1)当б=бcon*15%(初张拉)时 张拉力:F=715*0.15KN=107.25KN=0.10725MN 理论伸长:△L=715000*0.15*(20000+350)/(6*140*195000)=13.32mm 压力表读数:P=51.4500F+0.55=6.07 MPa (2)当б=210KN时 张拉力:F=210KN==0.21MN 理论伸长:△L=210000*(20000+350)/(6*140*195000)=26.09mm 压力表读数:P=51.4500F+0.55=11.35 MPa (3)当б=430KN时 张拉力:F=430KN=0.43MN 理论伸长:△L=430000*(20000+350)/(6*140*195000)=53.42mm 压力表读数:P=51.4500F+0.55=22.67 MPa (4)当б=бcon =715KN时 张拉力:F=715KN=0.715MN 第 2 页共 3 页

岩石锚杆风电机组基础设计及应用

龙源期刊网 https://www.360docs.net/doc/9518611386.html, 岩石锚杆风电机组基础设计及应用 作者:霍宏斌高建辉张文东 来源:《风能》2015年第03期 风能是最具开发前景的清洁可再生能源,同时也是具有巨大市场前景的能源。风电行业中风电机组整机销售价格逐年下降,风电场建造过程中风电机组本身造价几乎没有可减低空问。随着我国风电装机容量的快速增长,风电机组大型化趋势加快,风电机组基础安全问题频出。因此,在风电场的建设过程中,风电机组基础的安全性、风电场建设的造价成本、风电场建设周期等已经严重地影响了风电场的经济性,昂贵的传统风电机组基础形式已经严重地制约了风电场的健康发展。 因此,新型的风电机组基础研发是风电行业发展的必然趋势。风电机组基础能使风电场建设过程更加节省成本造价,在减低建设成本的同时又要保证更高的安全系数,保证了风电机组在趋于大型化的过程中风电机组基础更安全,保证风电场建设周期更快,提前建成投产,减少风电机组建设征地面积,更有效达到环评要求。同时,将基础形式衍生到其他大型高速设备基础结构中,使其各种大型设备基础结构更具有经济性。 岩石锚杆基础理论 一、基础分类 传统重力式基础主要是由大直径钢筋混凝土承台作为一个主要的结构体。从受力角度来看,传统基础的受力形式主要是用基础自身的重力来消化风电机组上部的巨大弯矩,风电机组与基础连接部位采用了基础环连接方式。 风电机组基础主要分为两种基础形式,分别为无张力灌注桩基础和岩石锚杆基础。无张力灌注桩基础适用于软土地区,例如砂土、粉土、粘土、湿陷性黄土、膨润土等。岩石锚杆基础适用于岩石、山地地区。 本文主要对锚杆基础进行说明,岩石锚杆风电机组基础是一种后张法无粘结预应力,岩石锚杆基础支持单筒式风电机组和塔筒。 二、基础组成 岩石锚杆主要由外圈锚杆系统、承台系统、内罔螺杆笼组成。锚杆系统由高强锚朴、螺母、高强灌浆料组成。螺杆笼由高强螺杆、底环、高强灌浆料组成。承台系统由高标号混凝土及钢筋组成。 外圈高强锚杆上部为2.5m-3.5m,使用PE套管形成自由端无粘结,高强锚杆下部与高强 灌浆料粘结,灌浆料与岩石产生粘结。承台使用C40混凝土将高强锚杆和高强螺杆连接为整

边坡锚杆设计计算书

------------------------------------------------------------------------ 计算项目:2#工况整体稳定 ------------------------------------------------------------------------ [计算简图] [控制参数]: 采用规范: 通用方法 计算目标: 安全系数计算 滑裂面形状: 圆弧滑动法 不考虑地震 [坡面信息] 坡面线段数4 坡面线号水平投影(m) 竖直投影(m) 超载数 1 1.200 8.300 0 2 1.500 0.000 0 3 7.300 9.200 0 4 20.000 0.000 1 超载1 距离8.000(m) 宽12.000(m) 荷载(20.00--20.00kPa) 270.00(度) [土层信息] 上部土层数2 层号定位高重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十字板强度增十字板羲强度增长系层底线倾全孔压 度(m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值角(度) 系数 1 7.543 18.000 --- 47.400 23.300 --- --- --- --- --- --- -7.000 --- 2 17.500 18.000 --- 10.000 17.500 --- --- --- --- --- --- 0.000 --- 下部土层数2 层号定位深重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十字板强度增十字板羲强度增长系层顶线倾全孔压 度(m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值角(度) 系数 1 1.069 18.000 --- 47.400 23.300 --- --- --- --- --- --- -11.000 --- 2 8.636 18.200 --- 35.200 24.600 --- --- --- --- --- --- 0.000 --- 不考虑水的作用 [计算条件] 圆弧稳定分析方法: 瑞典条分法 土条重切向分力与滑动方向反向时: 当下滑力对待 稳定计算目标: 自动搜索最危险滑裂面 条分法的土条宽度: 1.000(m) 搜索时的圆心步长: 1.000(m) 搜索时的半径步长: 0.500(m) ------------------------------------------------------------------------ 计算结果: ------------------------------------------------------------------------ 最不利滑动面: 滑动圆心= (1.320,20.340)(m) 滑动半径= 12.038(m) 滑动安全系数= 0.807 起始x 终止x li Ci 謎条实重浮力地震力渗透力附加力X 附加力Y 下滑力抗滑力 (m) (m) (度) (m) (kPa) (度) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) -------------------------------------------------------------------------------------------------------------------- 2.771 3.675 9.104 0.92 10.00 17.50 8.08 0.00 0.00 0.00 0.00 0.00 1.28 11.67 3.675 4.579 13.494 0.93 10.00 17.50 23.66 0.00 0.00 0.00 0.00 0.00 5.52 1 6.55 4.579 5.482 17.967 0.95 10.00 17.50 38.04 0.00 0.00 0.00 0.00 0.00 11.73 20.91 5.482 6.386 22.557 0.98 10.00 1 7.50 51.12 0.00 0.00 0.00 0.00 0.00 19.61 24.67 6.386 7.289 27.307 1.02 10.00 17.50 62.80 0.00 0.00 0.00 0.00 0.00 2 8.81 27.77 7.289 8.193 32.272 1.07 10.00 17.50 72.89 0.00 0.00 0.00 0.00 0.00 38.92 30.12 8.193 9.096 37.528 1.14 10.00 17.50 81.12 0.00 0.00 0.00 0.00 0.00 49.42 31.68 9.096 10.000 43.192 1.24 10.00 17.50 87.10 0.00 0.00 0.00 0.00 0.00 59.62 32.42 10.000 10.754 48.873 1.15 10.00 17.50 68.84 0.00 0.00 0.00 0.00 0.00 51.85 25.75

相关文档
最新文档