数学建模:投资问题

数学建模:投资问题
数学建模:投资问题

投资的收益与风险问题

摘要

对市场上的多种风险资产和一种无风险资产(存银行)进行组合投资策略的设计需要考虑两个目标:总体收益尽可能大和总体风险尽可能小,而这两个目标在一定意义上是对立的。

本文我们建立了投资收益与风险的双目标优化模型,并通过“最大化策略”,即控制风险使收益最大,将原模型简化为单目标的线性规划模型一;在保证一定收益水平下,以风险最小为目标,将原模型简化为了极小极大规划模型二;以及引入收益——风险偏好系数,将两目标加权,化原模型为单目标非线性模型模型三。然后分别使用Matlab的内部函数linprog,fminmax,fmincon对不同的风险水平,收益水平,以及偏好系数求解三个模型。

关键词:组合投资,两目标优化模型,风险偏好

2.问题重述与分析

3.市场上有种资产(如股票、债券、…)()供投资者选择,某公司有数额为的

一笔相当大的资金可用作一个时期的投资。公司财务分析人员对这种资产进行了评估,估算出在这一时期内购买的平均收益率为,并预测出购买的风险损失率为。考虑到投资越分散,总的风险越小,公司确定,当用这笔资金购买若干种资产时,总体风险可用所投资的中最大的一个风险来度量。

购买要付交易费,费率为,并且当购买额不超过给定值时,交易费按购买计算(不买当然无须付费)。另外,假定同期银行存款利率是, 且既无交易费又无风险。()

1、已知时的相关数据如下:

试给该公司设计一种投资组合方案,即用给定的资金,有选择地购买若干种资产或存银行生息,使净收益尽可能大,而总体风险尽可能小。

2、试就一般情况对以上问题进行讨论,并利用以下数据进行计算。

本题需要我们设计一种投资组合方案,使收益尽可能大,而风险尽可能小。并给出对应的盈亏数据,以及一般情况的讨论。

这是一个优化问题,要决策的是每种资产的投资额,要达到目标包括两方面的要求:净收益最大和总风险最低,即本题是一个双优化的问题,一般情况下,这两个目标是矛盾的,因为净收益越大则风险也会随着增加,反之也是一样的,所以,我们很难或者不可能提出同时满足这两个目标的决策方案,我们只能做到的是:在收益一定的情况下,使得风险最小的决策,或者在风险一定的情况下,

使得净收益最大,或者在收益和风险按确定好的偏好比例的情况下设计出最好的决策方案,这样的话,我们得到的不再是一个方案,而是一个方案的组合,简称组合方案。 设购买S i (i=0,1…….n;S 0表示存入银行,)的金额为x i ;所支付的交易费为c i (x i ),则:

000

0()01, 2, , ,()0i i i i i

i i i i

i i

x c x p u x u i n c x p x x u =??

=<<==??≥?

对S i 投资的净收益为:)()(i i i i i i x c x r x R -= (i =0,1,…,n )

对S i 投资的风险为:i i i i x q x Q =)( (i =0,1,…,n ),q 0=0 对S i 投资所需资金(即购买金额x i 与所需的手续费c i (x i ) 之和)是

)()(i i i i i x c x x f += (i =0,1,…,n )

投资方案用x =(x 0,x 1,…,x n )表示,那么, 净收益总额为:

()()n

i i i R R x ==∑x

总风险为:

)(x Q =)(min 0i i n

i x Q ≤≤

所需资金为:

)()(0

i n

i i x f x F ∑==

所以,总收益最大,总风险最小的双目标优化模型表示为:

?

??

???≥=???? ??-0,)()()(min x M x F x R x Q x

但是像这样的双目标模型用一般的方法很难求解出来的,所以经过分析把次模型转化为三种较简单

的单目标模型。

3.假设与模型

假设该公司在这一时期内是一次性投资;除交易费和投资费用外再无其他的费用开支;在这一时期市场发展基本上是稳定的;外界因素对投资的资产无较大影响;无其他的人为干预;社会政策无较大变化;公司的经济发展对投资无较大影响资产投资是在市场中进行的,市场是复杂多变的,是无法用数量或函数进行准确描述的,因此以上的假设是必要的,一般说来物价变化具有一定的周期性,社会政策也并非天天改变,公司自身的发展在稳定的情况下才会用额外的资金进行较大的风险的投资, 市场与社会的系统发展在一个时期内是良性的、稳定的,以上假设也是合理的。

3.1模型a

假设投资的风险水平是k,即要求总风险Q (x )限制在k 内,Q (x )k ≤,则模型可转化为:

max ()x R

s.t ()0,)(,≥=≤x M x F k x Q

3.2模型b

假设投资的收益水平是h ,即净收益总额)(x R 不少于h :)(x R ≥h ,则模型可转化为:

)(min x Q

s.t 0,)(,)(≥=≥x M x F h x R

3.3模型c

假设投资者对风险和收益的相对偏好参数为ρ(≥0),则模型可转化为:

)()1()(min x R x Q ρρ--

s.t.0,)(≥=x M x F

3.4 模型求解及分析

由于交易费 c i (x i )是分段函数,使得上述模型中的目标函数或约束条件相对比较复杂,是一个非线性

规划问题,难于求解. 但注意到总投资额M 相当大,一旦投资资产S i ,其投资额x i 一般都会超过u i ,于是交易费c i (x i )可简化为线性函数

i i i i x p x c =)(

从而,资金约束简化为

()()(1)n n

i i i i i i F f x p x M ====+=∑∑x

净收益总额简化为

()()[()]()n n n

i i i i i i i i i i i i R R x r x c x r p x =====-=-∑∑∑x

在实际进行计算时,可设 M =1,此时

i y =(i p +1)i x (i =0,1,…,n )

可视作投资S i 的比例.

以下的模型求解都是在上述两个简化条件下进行讨论的.

1)模型 a 的求解

模型 a 的约束条件 Q (x )≤k 即

00()max ()max()i i i i i n

i n

Q Q x q x ≤≤≤≤==x ≤k ,

所以此约束条件可转化为

k x q i i ≤ (i =0,1,…,n ).

这时模型 a 可化简为如下的线性规划问题:

max ()s.t. , =1, 2, , (1)1, 0

n

i i i

i i i n

i

i

i r p x q x k i n p x

==-≤+=≥∑∑ x

具体到n =4 的情形,按投资的收益和风险问题中题中给定的数据,模型为:

43210185.0185.019.027.005.0max x x x x x ++++ s.t k x k x k x k x ≤≤≤≤4321026.0,055.0,015.0,025.0

0,1065.1045.102.101.143210≥=++++i x x x x x x (i =0,1, (4)

利用matlab7.1 求解模型a 输出结果是

{0.177638, {x0 -> 0.158192, x1 -> 0.2, x2 -> 0.333333, x3 -> 0.0909091,x4 -> 0.192308}}

这说明投资方案为(0.158192,0.2,0.333333,0.0909091,0.192308)时,可以获得总体风险不超过 0.005 的最大收益是 0.177638M . 当 k 取不同的值(0~0.025),风险与收益的关系见图1. 输出结果列表如下:

表1 模型1的计算结果

图1 模型1中风险k 与收益的关系

结合图1,对于风险和收益没有特殊偏好的投资者来说,应该选择图中曲线的拐点(0.006,0.2019),

这时对的投资比例见表1的黑体所示。

从表1中的计算结果可以看出,对低风险水平,除了存入银行外,投资首选风险率最低的S 2,然后是S 1和S 4,总收益较低;对高风险水平,总收益较高,投资方向是选择净收益率(r i –p i )较大的S 1和S 2.这些与人们的经验是一致的,这里给出了定量的结果.

2)模型 b 的求解

模型 b 本来是极小极大规划:

0min max()i i i n

q x ≤≤

s.t.

()n

i

i

i

i r p x

=-∑≥h

(1

)1

n

i

i i p x =+=∑ x ≥0 但是,可以引进变量x n +1=0max()i i i n

q x ≤≤,将它改写为如下的线性规划:

1min()n x +

00.0050.01

0.0150.020.025

风险 a

收益

s.t 1+≤n i i x x q ,i =0,1,2,…,n ,

()n

i

i

i

i r p x

=-∑≥h ,

(1)1n

i

i

i p x

=+=∑, x ≥0

具体到n =4 的情形,按投资的收益和风险问题中题中给定的数据,模型为:

min x 5

s.t 54535251026.0,055.0,015.0,025.0x x x x x x x x ≤≤≤≤

,185.0185.019.027.005.043210h x x x x x ≥++++

,0,1065.1045.102.101.143210≥=++++i x x x x x x (i =0,1, (5)

利用 matlab7.1 求解模型 b ,当 h 取不同的值(0.1~0.25),我们计算最小风险和最优决策,收益水平h 取,结果如表2所示,风险和收益的关系见图2. 从表2看出,对低收益水平,除了存入银行外,投资首选风险率最低的资产,然后是和,总收益当然较低。对高收益水平,总风险自然也高,应首选净收益率()最大的和。这些与人们的经验是一致的。

表2 模型2的计算结果

图2 模型2中风险与收益h 的关系

结合图2,对于风险和收益没有特殊偏好的投资者来说,应该选择图中曲线的拐点(0.059,0.2),

这时对的投资比例见表2的黑体所示。

3)模型 c 的求解

类似模型 b 的求解,我们同样引进变量x n +1=0max()i i i n

q x ≤≤,将它改写为如下的线性规划:

min ρx n +1–(1–ρ)

()n

i

i

i

i r p x

=-∑

s.t 1+≤n i i x x q ,i =0,1,2,…,n

(1

)1

n

i

i i p x =+=∑ x ≥0 具体到n =4 的情形,按投资的收益和风险问题题中给定的数据,模型为:

)185.0185.019.027.005.0)(1(min 432105x x x x x x ++++--ρρ

s.t 54,535251026.0055.0,015.0,025.0x x x x x x x x ≤≤≤≤

0,1065.1045.102.101.143210≥=++++i x x x x x x (i =0,1, (5)

利用 matlab7.1 求解模型 c ,当ρ 取不同的值(0.75~0.95),我们计算最小风险和最优决策

输出结果列表如下:

表3 模型3的计算结果

0.002

0.0040.0060.008

0.010.0120.0140.0160.0180.02

风险

收益

从图5可以看出,模型3的风险与收益关系与模型1和模型2的结果几乎完全一致。

图3 模型3中风险与收益的关系

0.005

0.01

0.015

0.02

0.025

风险

收益

图4模型3中风险与偏好系数的关系

图5 模型3中收益与偏好系数的关系

四 模型评价与推广

本文我们建立了投资收益与风险的双目标优化模型,通过控制风险使收益最大,保证收益使风险最

小,以及引入收益——风险偏好系数,将两目标模型化为了单目标模型,并使用matlab7.1求解,所得结果具有一定的指导意义。

但是,本文没有讨论收益和风险的评估方法,在实际应用中还存在资产相关的情形,此时,用最大风险代表组合投资的风险未必合理,因此,对不同风险度量下的最优投资组合进行比较研究是进一步的改进方向。

0.75

0.8

0.850.9

0.951

偏好系数

风险

0.75

0.8

0.850.9

0.95

1

偏好系数

收益

五总结

历经两周的时间终于完成了这次课设,在这次实践课程中,我真的遇到了不少的问题,在同学,老师的帮助以及在图书馆和网站搜集资料,解决了所有遇到的问题。尤其在问题分析的过程中,是难度最大也是问题最多的环节,感觉总是把问题分析的不够全面透彻,经常顾及这个方面而忽视了另一方面,最后我请教了同学,终于完成了问题分析并且建立了模型。在完成这一环节后,接下来的任务都是我独立完成,也遇到了不少的困难,但都是较易解决的。通过这次实践,我确实学到了不少,学会了使用MATLAB,也知道了分析问题的方法。

六参考文献

[1]MATLAB程序设计与实例应用。张铮等。北京:中国铁道出版社,2003.10

[2]运筹学—方法与应用。吴风平。南京:河海大学出版社,2000.12

[3]《数学模型及方法》。李火林主编。江西高校出版社,1997.10

[4]数学建模教育及竞赛。甘筱青主编。南昌:江西高校出版社。2004.6

[5] 萧树铁,面向21世纪课程教材:大学数学数学实验,北京:高等教育出版社,1999.7.

[6]赫孝良,戴永红等编著,数学建模竞赛:赛题简析与论文点评,西安:西安交通大学出版社,2002.6.

[7]陈叔平,谭永基,一类投资组合问题的建模与分析,数学的实践与认识,(29)7:45-49,1999.

七附录

function result=qiujie()

%data为表格数据

data=[28 2.5 1 103

21 1.5 2 198

23 5.5 4.5 52

25 2.6 6.5 40];

data1=[9.6 42 2.1 181

18.5 54 3.2407

49.4 60 6.0 428

23.9 42 1.5 549

8.1 1.2 7.6270

14 39 3.4 397

40.7 68 5.6178

31.2 33.4 3.1 220

33.6 53.3 2.7 475

36.8 40 2.9 248

11.8 31 5.1 195

9 5.5 5.7 320

35 46 2.7267

9.4 5.3 4.5 328

15 23 7.6 131];

data=[[5 0 0 0];data]./100;%增加存银行

r=data(:,1);

q=data(:,2);

p=data(:,3);

% %模型一求解

% result=[];

% for a=0:0.01:0.5

% result=[result;moxing1(r,q,p,a)]; % end

% result=round(result.*10000)./10000; % plot(result(:,1),result(:,2))

% grid on

% xlabel('风险)

% ylabel('收益')

% %模型二求解

% result=[];

% for k=0.1:0.01:0.4

% result=[result;moxing2(r,q,p,k)]; % end

% result=round(result.*10000)./10000; % plot(result(:,1),result(:,2))

% grid on

% xlabel('风险')

% ylabel('收益')

%模型三求解

result=[];

for s=0.76:0.01:0.97

result=[result;moxing3(r,q,p,s)]; end

result=round(result.*10000)./10000; figure(1)

plot(result(:,2),result(:,3))

grid on

xlabel('风险')

ylabel('收益')

pause

figure(2)

plot(result(:,1),result(:,2))

grid on

xlabel('偏好系数')

ylabel('风险')

pause

figure(3)

plot(result(:,1),result(:,3))

grid on

xlabel('偏好系数')

ylabel('收益')

function result1=moxing1(r,q,p,a)

%线性规划模型

%r收益率,为列向量

%p交易费率,为列向量

%q风险率,为列向量

%a风险水平

f=(p-r)';%转为求极小

n=length(q);

I=eye(n);

for i=2:n

A(i-1,:)=q(i)*I(i,:);

end

b=a*ones(n-1,1);

Aeq=(1+p');

beq=1;

lb=zeros(n,1);

ub=[];

[x,fval,exitflag,output]=linprog(f,A,b,Aeq,beq,lb,ub);

result1=[a,-fval,x'];

end

function result2=moxing2(r,q,p,k)

%极小极大模型

%r收益率,为列向量

%p交易费率,为列向量

%q风险率,为列向量

%k收益水平

n=length(q);

f=@(x)q.*x(1:n);

A=(p-r)';

b=-k;

Aeq=1+p';

beq=1;

lb=zeros(n,1);

ub=[];

x0=rand(n,1);

[x,fval,maxfval,exitflag]=fminimax (f,x0,A,b,Aeq,beq,lb,ub);

result2=[max(q.*x),k,x'];

end

function result3=moxing3(r,q,p,s)

%极小极大模型

%r收益率,为列向量

%p交易费率,为列向量

%q风险率,为列向量

%s投资偏好系数

n=length(q);

f=@(x)(s*max(q.*x)-(1-s)*sum((r-p).*x));

A=[];b=[];

Aeq=1+p';

beq=1;

lb=zeros(n,1);

ub=[];

x0=rand(n,1);

[x,fval,exitflag,output] = fmincon(f,x0,A,b,Aeq,beq,lb,ub); result3=[s,max(q.*x),sum((r-p).*x),x'];

end

end

开放式基金的投资问题数学建模论文

开放式基金的投资问题 数学建模论文 Last revised by LE LE in 2021

2012高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网 上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的 资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规 则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): C 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):广西教院 参赛队员 (打印并签名) :1. 李开玲 2. 黄敏英 3. 米检辉 指导教师或指导教师组负责人 (打印并签名): 日期: 2012 年 9 月 2 日 赛区评阅编号(由赛区组委会评阅前进行编号):

2012高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国评阅编号(由全国组委会评阅前进行编号):

开放式基金的投资问题 摘要 随着社会经济的发展,项目投资是商业的热点话题。本题要我们给出最佳投资方案,总资金18亿,对八个项目进行投资,,通过运用lingo 、matlab 软件得出结果,求得最大的利润和相应投资方案。 问题一:我们建立了线性规划模型Max=i i i x a ∑=8 1(a i 表示i 个项目的年利润 x i 表示对项目投资的次数),应用lingo 软件得如下方案及获得的总利润: 资总额都有上限,会出现项目之间的相互利润影响。在问题一的基础上,建立 划模型,max L ,Min i i i x b q W min =,为简化问题,固定投资风险,求总利润,把双目标转化为单目标: max L=p1x1+p2x2+p3x3+p4x4+p5x5+p6x6+p7x7+p8x8。引入风险度,运用matlab 软 一、问题重述 某开放式基金现有总额为18 亿元的资金可用于对8个项目进行选择性的投资。每个项目可以重复投资(即同时投资几份),据专家经验,对每个项目投资总额不能太高(有上限)。这些项目的投资额以及专家对投资一年后各项目所得 的利润估算,见表(一)如下所示。

数学建模竞赛简介

数学建模竞赛简介 数学建模就是建立、求解数学模型的过程和方法,首先要通过分析主要矛盾,对各种实际问题进行抽象简化,并按照有关规律建立起变量,参数间的明确关系,即明确的数学模型,然后求出该数学问题的解,并通过一定的手段来验证解的正确性。 数学建模竞赛于1985年起源于美国,起初竞赛题目通常由工业部门、军事部门提出,然后由数学工作者简化或修正。1989年我国大学生开始参加美国大学生数学建模竞赛,1990年我国开始创办我国自己的大学生数学建模竞赛。1993年国家教委(现教育部)高教司正式发文,要求在全国普通高等学校中开展数学建模竞赛。从1994年开始,大学生数学建模竞赛成为教育部高教司和中国工业的应用数学学会共同主办,每年一届的,面向全国高等院校全体大学生的一项课外科技竞赛活动。2010年全国共有30省(市、自治区)九百多所院校一万多个队三万多名大学生参赛,成为目前全国高等学校中规模最大的课外科技活动。数学建模竞赛是教育主管部门主办的大学生三大竞赛之一。 现在的竞赛题目来源于更广泛的领域,都是各行各业的实际问题经过适当简化,提炼出来的极富挑战性的问题,每次两道题,学生任选一题,可以使用计算机、软件包,可以参阅任何资料(含上网参阅任何资料)。竞赛以三人组成的队为单位,三人之间通力合作,在三天三夜内完成一篇论文。不给论文评分,而是按论文的水平为四档:全国一等奖、全国二等奖、赛区一等奖,赛区二等奖,成功参赛奖。我校于2001年开始参加这项竞赛活动。多次获全国一等奖、二等奖、湖北赛区一等奖、二等奖。 数学建模竞赛活动培养了学生的创造力、应变能力、团队精神和拼搏精神,适应了21世纪经济发展和人才培养的挑战。不少参加过全国大学生数学建模竞赛的同学都深有感触,他们说:“参加这次活动是我们大学四年中最值得庆幸的一件事,我们真正体会这几年内学到了什么,自己能干什么。”“那不寻常的三天在我们记忆中留下了永恒的一瞬,真是一次参赛,终身受益。”团队精神贯穿在数学建模竞赛的全过程,它往往是成败的关键。有些参赛队员说:“竞赛使我们三个人认识到协作的重要性,也学会了如何协作,在建模的三天中,我们真正做到了心往一处想,劲往一处使,每个人心中想的就是如何充分发挥自己的才华,在短暂的时间内做出一份尽量完善的答卷。三天中计算机没停过,我们轮流睡觉、轮流工作、轮流吃饭,可以说是抓住了每一滴可以抓住的时间。”“在这不眠的三天中,我们真正明白了团结就是力量这个人生真谛,而这些收获,将会伴随我们一生,对我们今后的学习,工作产生巨大的影响。”

数学建模 简单的投资问题

数学建模简单的投资问题 建模论文—— 2011114114 覃婧 资金投资问题 摘要: 投资公司对现有资金进行投资,采取在无风险情况下,周期投资规律以及周期回收的资金的情况下,求取在一定时期内所掌握的的最大资金,建立相关线性规划公式,运用matlab或者lingo软件进行相关求解,得出最好的投资方式以盈利最大。此类问题适用于金融投资、证券投资等相关行业。关键词: matlab 目标函数设计变量目标变量新投资最大值 正文 一、问题重述: 某投资公司有资金200万元,现想投资一个项目,每年的投资方案如下“假设第一年投入一笔资金,第二年又继续投入此资金的50%,那么第三年就可回收第一年投入资金的一倍的金额。”请给该公司决定最优的投资策略使第六年所掌握的资金最多。 二、问题分析: 该问题作为线性规划问题,题目中给定的投资方案可以理解为每年投资金额,两年作为一个投资周期,三年作为一个资金回收周期,即第三年回收资金,每一个投资周期中偶数年的投资额与前一年是有关的,而且从第三年开始,每一年的回收金额是前两年投资金额的两倍,故以此类推,我们可以得到每年所掌握的资金,以求得第n年所掌握的最大金额。 所以该模型的目标变量为每年所掌握的资金,而设计变量为每年所进行的新投资。 设表示第i年所进行新投资的的资金,表示第i年所掌握的资金,xyii

(i=1,2,3,...n)则有: y,200,x第一年 11 3xx11200200y,,x,,x,,,x第二年: 212222 xx312y,200,,x,,x,2x第三年: 323122 xx3112y,200,,,x,x,x,2x第四年: 43342222 xx3112y,200,,,x,x,x,2x,x 第五年: 5344352222 13xxx1252002y,,,,x,x,x,,x 第六年: 6344622222 以此类推: xxx3n12,4y,200,,,...,,x,2x第n-1年: n,1n,3n,32222 xxx3n12,3y,200,,,...,,x,2x第n年: nn,2n,22222三、模型假设: 1(该投资模型实在稳定的经济条件下进行,没有任何风险; 2(每年的投资项目固定不变,不会有资金的额外转移; 3(每年所回收的资金都是依据题目条件固定的纯收益; 4. 每年的资金投资是连续的,是可以进行零投资的; 5. 新的投资不影响旧的投资。 四、符号定义与说明: 1. 表示第i年所进行新投资的的资金, xi 2.表示第i年所掌握的资金,(i=1,2,3,...n); yi 3. 表示最初手头上的资金。 y0 五、模型求解: 根据线性模型中目标变量与设计变量的线性关系我们可以得出该模型的线性公式为: xxx3n12,3max(200,,,...,,x,2x) n,2n,22222 x,200 1 x1,x,200,x 212

13077-数学建模-投资的收益和风险问题

投资的收益和风险问题 某公司现有数额为20亿的一笔资金可作为未来5年内的投资资金,市场上有8个投资项目(如股票、债券、房地产、…)可供公司作投资选择。其中项目1、项目2每年初投资,当年年末回收本利(本金和利润);项目3、项目4每年初投资,要到第二年末才可回收本利;项目5、项目6每年初投资,要到第三年末才可回收本利;项目7只能在第二年年初投资,到第五年末回收本利;项目8 只能在第三年年初投资,到第五年末回收本利。 一、公司财务分析人员给出一组实验数据,见表1。 试根据实验数据确定5年内如何安排投资?使得第五年末所得利润最大? 二、公司财务分析人员收集了8个项目近20年的投资额与到期利润数据,发现:在具体对这些项目投资时,实际还会出现项目之间相互影响等情况。 8个项目独立投资的往年数据见表2。同时对项目3和项目4投资的往年数据;同时对项目5和项目6投资的往年数据;同时对项目5、项目6和项目8投资的往年数据见表3。(注:同时投资项目是指某年年初投资时同时投资的项目) 试根据往年数据,预测今后五年各项目独立投资及项目之间相互影响下的投资的到期利润率、风险损失率。 三、未来5年的投资计划中,还包含一些其他情况。 对投资项目1,公司管理层争取到一笔资金捐赠,若在项目1中投资超过20000万,则同时可获得该笔投资金额的1%的捐赠,用于当年对各项目的投资。 项目5的投资额固定,为500万,可重复投资。 各投资项目的投资上限见表4。 在此情况下,根据问题二预测结果,确定5年内如何安排20亿的投资?使得第五年末所得利润最大? 四、考虑到投资越分散,总的风险越小,公司确定,当用这笔资金投资若干种项目时,总体风险可用所投资的项目中最大的一个风险来度量。 如果考虑投资风险,问题三的投资问题又应该如何决策? 五、为了降低投资风险,公司可拿一部分资金存银行,为了获得更高的收益,公司可在银行贷款进行投资,在此情况下,公司又应该如何对5年的投资进行决策?

数学建模常见评价模型简介

常见评价模型简介 评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。 层次分析模型 层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。 运用层次分析法进行决策,可以分为以下四个步骤: 步骤1 建立层次分析结构模型 深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。 步骤2构造成对比较阵 对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵; 步骤3计算权向量并作一致性检验 由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。

步骤4计算组合权向量(作组合一致性检验) 组合权向量可作为决策的定量依据 通过一个具体的例子介绍层次分析模型的应用。 例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。 步骤1 建立系统的递阶层次结构 将决策问题分为3个层次:目标层O,准则层C,方案层P;每层有若干元素,各层元素间的关系用相连的直线表示。

数学建模:投资问题

投资的收益与风险问题 摘要 对市场上的多种风险资产和一种无风险资产(存银行)进行组合投资策略的设计需要考虑两个目标:总体收益尽可能大和总体风险尽可能小,而这两个目标在一定意义上是对立的。 本文我们建立了投资收益与风险的双目标优化模型,并通过“最大化策略” ,即控制风险使收益最大,将原模型简化为单目标的线性规划模型一;在保证一定收益水平下,以风险最小为目标,将原模型简化为了极小极大规划模型二;以及引入收益——风险偏好系数,将两目标加权,化原模型为单目标非线性模型模型三。然后分别使用Matlab 的内部函数linprog ,fminmax ,fmincon 对不同的风险水平,收益水平,以及偏好系数求解三个模型。 关键词:组合投资,两目标优化模型,风险偏好

2?问题重述与分析 3.市场上有”种资产(如股票、债券、,).:0 丨.小供投资者选择,某公司有数额为匸的 一笔相当大的资金可用作一个时期的投资。公司财务分析人员对这种资产进行了评估,估算出在 这一时期内购买?「的平均收益率为c,并预测出购买T的风险损失率为%。考虑到投资越分散,总的风险越小,公司确定,当用这笔资金购买若干种资产时,总体风险可用所投资的:中最大的一个风 险来度量。 购买」要付交易费,费率为;■.,并且当购买额不超过给定值?;..时,交易费按购买■;.计算(不买当然无须付费)。另外,假定同期银行存款利率是:,且既无交易费又无风险。(? 1、已知" ;时的相关数据如下: 试给该公司设计一种投资组合方案,即用给定的资金有选择地购买若干种资产或存银行生息, 使净收益尽可能大,而总体风险尽可能小。 2、试就一般情况对以上问题进行讨论,并利用以下数据进行计算。 本题需要我们设计一种投资组合方案,使收益尽可能大,而风险尽可能小。并给出对应的盈亏数 据,以及一般情况的讨论。 这是一个优化问题,要决策的是每种资产的投资额,要达到目标包括两方面的要求:净收益最大和总 风险最低,即本题是一个双优化的问题,一般情况下,这两个目标是矛盾的,因为净收益越大则风险也会随着增加,反之也是一样的,所以,我们很难或者不可能提出同时满足这两个目标的决策方案,我们只能做到的是:在收益一定的情况下,使得风险最小的决策,或者在风险一定的情况下,使得净收益最大,或者在收益和风险按确定好的偏好比例的情

数学建模简介

数学建模简介 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述,也就是建立数学模型,然后用通过计算得到的结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。 数学建模的广泛应用 数学建模的应用逐渐变的广泛,数学建模大量用于一般工程技术领域,用于代替传统工程设计中的现场实验、物理模拟等手段;在高新科技领域,成为必不可少的工具,无论是在通信、航天、微电子、自动化都是创新工艺、开发新 产品的必要手段;在新的科研领域在用数学方法研究 其中的定量关系时,数学建模就成为首要的、关键的 步骤和这些学科发展和应用的基础。 将计算机技术和数学建模进行紧密结合,使得原 本抽象的数学模型生动具体的呈现在研究者面前,使 得问题得到更好的解决。 数学建模的分支——数据挖掘 数据挖掘(Data Mining,DM)是目前人工智能和数 据库领域研究的热点问题,所谓数据挖掘是指从数据库 的大量数据中揭示出隐含的、先前未知的并有潜在价值 的信息的非平凡过程。数据挖掘是一种决策支持过程, 它主要基于人工智能、机器学习、模式识别、统计学、 数据库、可视化技术等,高度自动化地分析企业的数据, 做出归纳性的推理,从中挖掘出潜在的模式,帮助决策 者调整市场策略,减少风险,做出正确的决策。 数据挖掘是通过分析每个数据,从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示3个步骤。数据准备是从相关的数据源中选取所需的数据并整合成用于数据挖掘的数据集;规律寻找是用某种方法将数据集所含的规律找出来;规律表示是尽可能以用户可理解的方式(如可视化)将找出的规律表示出来。 数据挖掘的任务有关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析,等等。

数学建模投资问题

某银行经理计划用一笔资金进行有价证劵的投资,可供购进的证劵以及其信用等级、到期年限、收益如下表所示。按照规定,市政证劵的收益可以免税,其他证劵的收益需按照50%的税率纳税。此外还有以下限制: (1)政府及代办机构的证劵总共至少要购进400万元; (2)所购证劵的平均信用等级不超过1.4(信用等级数字越小,信用程度越高); (2)如果能够以2.75%的利率借到不超过100万元资金,该经理应如何操作? (3)在1000万元资金情况下,若证劵A的税前收益增加为4.5%,投资应否改变?若证劵C的税前收益减少为4.8%,投资应否改变? 2.模型的假设 (1)假设该投资为连续性投资,即该经理投资不会受到年限过长而导致资金周转困难的 影响; (2)假设证劵税收政策稳定不变而且该经理优先考虑可以免税的市政证劵的情况下再考 虑其他证劵种类以节约成本; (3)假设各证劵之间相互独立而且各自的风险损失率为零。 (4)假设在经理投资之后,各证劵的信用等级、到期年限都没有发生改变; (5)假设投资不需要任何交易费或者交易费远远少于投资金额和所获得的收益,可以忽 略不计; (6)假设所借贷资金所要支付的利息不会随时间增长,直接等于所给的利率乘上借贷资 金。 3.符号说明 X1:投资证劵A的金额(百万元); X2:投资证劵A的金额(百万元); X3:投资证劵A的金额(百万元); X4:投资证劵A的金额(百万元); X5:投资证劵A的金额(百万元); Y:投资之后所获得的总收益(百万元);

对于该经理根据现有投资趋势,为解决投资方案问题,运用连续性投资模型,根据所给的客观的条件,来确定各种投资方案,并利用线性规划模型进行选择方案,以获得最大的收益。 问题一,该经理优先考虑可以免税的市政证劵的情况下再考虑其他证劵种类以节约成本,我们可以在所提出的假设都成立的前提下(尤其是假设所借贷资金所要支付的利息不会随时间增长,直接等于所给的利率乘上借贷资金)以及综合考虑约束资金和限制条件,将1000万元的资金按照一定的比例分别投资个各种证劵。而该如何分配呢?怎样地分配才是最合理的呢?我们通过建立一个线性规划模型来解决这个问题。由所给的表格知证劵A(市政),B(代办机构),C(政府),D(政府),E(市政)的信用等级分别为2,2,1,1,5,到期年限分别为9,15,4,3,2,1,到期税前收益(%)分别为4.3,5.4,5.0,4.4,4.5(市政证劵的收益可以免税,其他的收益按50%的税率纳税)以及政府及代办机构的证券总共至少要购进400万元,所购证券的平均信用等级不超过1.4(信用等级数字越小,信用程度越高),所购证券的平均到期年限不超过5年这三个约束条件,不妨设投资证劵A,B,C,D,E的金额分别为x1,x2,x3,x4,x5,建立线性规划模型,用lingo或者lindo软件求解即可得出最优投资方案和最大利润。 问题二中的解决方法和问题一中的解决方法是一样的,只不过在求解时需要进行灵敏度分析利用问题一的模型,把借贷的1百万元在投资后所获得的收益与借贷所要付出的利息作比较,即与2.75%的利率借到的1百万元资金的利息比较,若大于,则应借贷;反之,则不借贷。若借贷,投资方案需将问题一模型的第二个约束条件右端10改为11,用lingo软件求解即可得出最优方案以及最大收益。 而对问题三,是否该改变要看最优解是否改变,如果各证劵所对应的字数在最优解不变的条件下目标函数允许的变化范围内,则不应该改变投资方案,反之则改变投资方案。即证劵A所对应的系数只取决于到期税前收益,而证劵C所对应的系数取决于到期税前收益和其收益所需的税额。同样的通过在问题一的灵敏度分析结果中可以知道最优解不变的条件下目标函数系数所允许的变化范围,根据题中证劵A和证劵C所对应的系数系数改变即可决定投资方案是否应改变。 5.模型的建立与求解 问题一的求解: 在提出的假设条件成立的前提下,根据题目给出的限制条件以及各种证劵的信息(政府及代办机构的证劵总共至少要购进4百万元;所购证劵的平均信用等级不超过1.4;所购证劵的平均到期年限不超过5年),设投资证劵A、证劵B、证劵C、证劵D、证劵E 的金额分别为:X1、X2、X3、X4、X5(百万元),投资之后获得的总收益为Y百万元。对于平均信用等级和平均到期年限的求解,我们可以用加权算术平均值的算法求得,即用各个信用等级(平均到期年限)乘以相应的权,然后相加,所得之和再除以所有的权之和。在1000万元的资金约束条件下,另外考虑到证劵B、C、D的收益都需按照50%的税率纳税,我们可以建立如下的线性规划模型: Max Y=0.043X1+(0.054*0.5)X2+(0.05*0.5)X3+(0.044*0.5)X4+0.045X5 S.t. X2+X3+X4>=4 X1+X2+X3+X4+X5<=10

数学建模的介绍

一、数学建模的意义 数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。 数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。 我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。 数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。 应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的个重要方面,现在许多院校正在将数学建模与教学改革相结

公司的投资问题数学建模

公司的投资问题模型 摘要 本问题是在资金总额固定的情况下对一批项目进行投资,以获得最大经济效益,是一类投资组合的决策问题,属于优化问题。 对问题一:我们采用线性规划的方法求解。设X项目第i年初的投资额为,每年末收回所有可收回的本利,第二年初再对所有能够投资的项目进行考察,X i 约束条件为资金总额和各项目的投资限制。目标是五年末的总利润最大。以此建 对问题二:我们用EXCLE对8个项目近20年的单独和同时两种情况投资额与到期利润数据进行处理,得到8个项目在不同情况下利润率的时间序列。用DPS软件对每个项目不同情况的利润率时间序列进行时间序列分析,对单独投资的情况建立MA(1)模型进行预测,结果见附录。对同时投资的情况建立ARMA(3,1)模型预测,结果见模型求解。并对两种情况的预测进行了预测优度分析。 对问题三:我们用线性规划的模型求解。对问题中出现的是否有捐赠,是否为同时投资的情况建立4个(0,1)规划模型考虑所有的可能情形。设第i年初 ,年末收回所有可收回的本利,年初对所有可投资的项目考对项目X的投资为X i 察,以投资额和投资上限为限制建立约束条件,目标为五年末的总利润最大。建 风险和最大利润两个优化目标,由于两个目标相矛盾,于是转化为单目标优化模型,在不同的风险下求最大利润,及对应的5年投资方案,绘制出风险与最大利润的曲线图,以供不同风险偏好的投资者决策。结果见模型求解。 对问题五:我们将投资额在10亿和30亿之间进行变动,计算在不同投资总额情况下的最大利润及对应的风险大小。发现将资金存银行风险小利润也很小,而从银行贷款利润增幅很大但风险并没有明显增加,我们鼓励公司从银行贷款,并计算出最佳贷款额,在此最佳贷款额下我们又计算出不同风险下的最大利润及5年投资方案,绘制出风险与最大利润曲线图以供不同风险偏好者选择。 关键词:线性规划、时间序列、预测优度、01规划、多目标优化、风险偏好。

数学建模进行投资最优化

. . 资产最优组合 摘要 本文在充分分析数据的基础上,运用了模糊评价评估产品近期表现的优劣性,利用线性规划模型对多种金融产品进行组合,得到最优解,最后对模型进行评价。 问题一:基于模糊评价模型。本文使用累计收益率、本月平均涨幅、β系数(风险指标)3个指标,建立评估模型,来评估金融产品近期的优劣性表现。首先用层次分析法给出各项评估指标的权重并进行对指标一致性检验,再用熵权法对权重值进行修正;然后建立评估模型,利用模糊评价法得出景顺长城需增长、中邮战略新兴产业、华夏现金增利货币、工银货币、华能国际(稳健型)、万向钱潮(波动型)、*ST 中华A (ST 型)、国债⑺、万业债的模糊评估指标分别为 [] 0.00971 0.00484 0.00072 0.00090 0.34040 0.45785 0.17205 0.00332 0.01022通过以上数据比较可知,股票的表现明显优于债券和基金。 问题二:首先构建线性规划模型,通过收益最大目标函数和约束条件,求解出最优产品组合。其次求解收益对应的β系数,绘出收益和风险的折线图。根据图示,找到风险变化一单位得到最大收益处的值,得到最优解:选择华能国际(稳健型)、万向钱潮(波动型)、国债⑺、万业债、中邮战略新兴产业、华夏现金增利货币的投资量为:3716.556、3752.874、3819.063、52.10025、109.8907、541.8917、41.32636 问题三:本文在对选取的指标运用层次分析法赋予权重后,用熵权法对权值进行修正,使权值更为准确。同时,利用综合评价得出产品的近期优劣性表现。但是,本文β系数求解考虑较为单一,β系数的计算公式可以根据产品公司进行修改。 本文运用EXCEL 统计了大量数据,利用SPSS 软件进行数据分析,使用MATLAB 进行模型求解,使得模型更具合理性,可行性和科学性。 关键词:层次分析,一致性检验,熵值取权,模糊评价, 线性规划

数学建模课程简介

《数学建模》课程简介 20053025 数学建模 4.5 Mathematical Modeling 4-1 预修要求:微积分、线性代数 面向对象:竺可桢学院工程高级班 内容简介: 本课程以物理、生态、环境、医学、管理、经济、信息技术等领域的一些典型实例为背景,阐述如何通过建立数学模型的方法来研究、解决实际问题的基本方法和技能。开设本课程的目的是,在传授知识的同时,通过典型建模实例的分析和参加建模实践活动,培养和增强学生自学能力、创新素质。参加数学建模课的学习,应自己动手解决一、二个实际问题,以求在实际参与中获取真知。 本课程包括一定学时的讨论班,学生可利用课外时间自己参与建模实践活动并自愿参加由指导教师组织的讨论班活动。选修本课程的本科生经双向选择还有机会参加全国大学生数学建模竞赛(每年约90人)和美国大学生数学建模竞赛(每年为21人)。 推荐教材或参考书: “数学建模”,杨启帆、谈之奕、何勇编著,浙江大学出版社出版,2006年7月 《数学建模》教学大纲 20053025 数学建模 4.5 Mathematical Modeling 4-1 预修要求:微积分、线性代数 面向对象:竺可桢学院工程高级班 一、教学目的与基本要求: 通过典型数学模型分析和课外建模实践,使学生基本掌握运用数学知识建立数学模型来研究科研问题或实际课题的基本技能与基本技巧,本课程教学除传授知识外还要求学生在实际建模中注意培养和提高自身的能力,以便提高自己的综合素质与实际本领。 二、主要内容及学时分配: 1.数学建模概论,3学时 2.初等模型,8学时:舰艇的汇合,双层玻璃的功效,崖高的估算,经验模型,参数 识别,量纲分析法建模,方桌问题、最短路径与最速方案等 3.微分方程建模,14学时:马尔萨斯模型和罗杰斯蒂克模型,为什么要用三级火箭发 射人造卫星,药物在体内的分布,传染病模型,捕食系统的P-P模型,双种群生态 系统研究等

线性规划与数学建模简介

第十三章线性规划与数学建模简介 【授课对象】理工类专业学生 【授课时数】6学时 【授课方法】课堂讲授与提问相结合 【基本要求】1、了解数学模型的基本概念、方法、步骤; 2、了解线性规划问题及其数学模型; 3、了解线性规划问题解的性质及图解法. 【本章重点】线性规划问题. 【本章难点】线性规划问题、线性规划问题解的性质、图解法. 【授课内容】 本章简要介绍数学建模的基本概念、方法、步骤,并以几个典型线性规划问题为例,介绍构建数学模型的方法及其解的性质。 §1 数学建模概述 一、数学建模 数学建模是构造刻划客观事物原型的数学模型并用以分析、研究和解决实际问题的一种科学方法。运用这种科学方法,必须从实际问题出发,遵循从实践到认识再实践的认识规律,围绕建模的目的,运用观察力、想象力的抽象概括能力,对实际问题进行抽象、简化,反复探索,逐步完善,直到构造出一个能够用于分析、研究和解决实际问题的数学模型。因此,数学建模是一种定量解决实际问题的创新过程。 二、数学模型的概念

模型是人们对所研究的客观事物有关属性的模拟。例如在力学中描述力、 量和加速度之间关系的牛顿第二定律F=ma就是一个典型的(数学)模型。一般地,可以给数学模型下这样的定义:数学模型是磁于以部分现实世界为一定目的而做的抽象、简化的数学结构。 通俗而言,数学模型是为了一定目的对原型所作的一种抽象模拟,它用数学式子,数学符号以及程序、图表等描述客观事物的本质特征与内在联系。 三建立数学模型的方法和步骤 建立数学模型没有固定模式。下面介绍一下建立模型的大体过程: 1.建模准备 建模准备是确立建模课题的过程。这类课题是人们在生产和科研中为了使 认识和实践过一步发展必须解决的问题。因此,我们首先要发现这类需要解决的实际问题。其次要弄清所解决问题的目的要求并着手收集数据。进行建模筹划,组织必要的人力、物力等,确立建模课题。 2.模型假设 作为建模课题的实际问题都是错综复杂的、具体的。如果不对这些实际问题进行抽象简化,人们就无法准确把握它的本质属性,而模型假设就是根据建模的目的对原型进行抽象、简化,抓住反映问题本质属性的主要因素,简化掉那些非本质的次要因素。有了这些假设,就可以在相对简单的条件下,弄清各因素之间的关系,建立相应的模型。 合理的假设是建立理想模型的必要条件和基本保证。如果假设是合理的,则模型切合实际,能解决实际问题;如果假设不合理中或过于简化,则模型与实际情况不符或部分相符,就解决不了问题,就要修改假设,修改模型。 3.构造模型

数学建模:投资问题培训资料

数学建模:投资问题

投资的收益与风险问题 摘要 对市场上的多种风险资产和一种无风险资产(存银行)进行组合投资策略的设计需要考虑两个目标:总体收益尽可能大和总体风险尽可能小,而这两个目标在一定意义上是对立的。 本文我们建立了投资收益与风险的双目标优化模型,并通过“最大化策略”,即控制风险使收益最大,将原模型简化为单目标的线性规划模型一;在保证一定收益水平下,以风险最小为目标,将原模型简化为了极小极大规划模型二;以及引入收益——风险偏好系数,将两目标加权,化原模型为单目标非线性模型模型三。然后分别使用Matlab的内部函数linprog,fminmax,fmincon对不同的风险水平,收益水平,以及偏好系数求解三个模型。 关键词:组合投资,两目标优化模型,风险偏好

2.问题重述与分析 3.市场上有种资产(如股票、债券、…)(供投资者选择,某公司有数 额为的一笔相当大的资金可用作一个时期的投资。公司财务分析人员对这种资产进行了评估,估算出在这一时期内购买的平均收益率为,并预测出购买的风险损失率为。考虑到投资越分散,总的风险越小,公司确定,当用这笔资金购买若干种资产时,总体风险可用所投资的中最大的一个风险来度量。 购买要付交易费,费率为,并且当购买额不超过给定值时,交易费按购买计算(不买当然无须付费)。另外,假定同期银行存款利率是, 且既无交易费又无风险。() 1、已知时的相关数据如下: 试给该公司设计一种投资组合方案,即用给定的资金,有选择地购买若干种资产或存银行生息,使净收益尽可能大,而总体风险尽可能小。 2、试就一般情况对以上问题进行讨论,并利用以下数据进行计算。

大学基金投资的数学建模

大学基金投资的数学建模 摘要: 在如今高速发展的社会下,数学应用对于企业的生产、投资和规划有着不可缺少的作用。本文是关于学校基金最优化的建模——在一段时期内,如何合理地投资基金使得每年的收益最多,从而达到每年的奖金最多。 在建模的问题分析中,关于基金的最优使用方案可以转化为求n年如何把基金投入不同期限的投资项目,所得利息最大的分配问题。在满足每年能发下相同奖学金的前提下,应尽可能的投入期限长的投资最大化收益,同时在多种不同的投资组合中分析计算出1到10年的最佳组合。 对于本文的问题,可以做成简单的数学模型。对于基金M使用n年的情况, 可以把M分成n分,其中把第i(i=1,2,3,…,10)份基金 M投资期限为i年,那么 i 只有当 M按最佳投资策略投资i年后的本金与收益金的和作为该年的奖金,且把i 基金Mn按照最佳的方案投资n年后的本金与收益的和等于当年的奖金与原基金M之和时,每年的发放奖金数达到最大。 问题1:如果仅考虑把全部的基金都投入科研。可以选择出n=10内的基金投资组合的最佳分配,利用上述原理得到一个多元方程组,问题也转为解多元方程的问题,用Lingo软件求解。 问题2:如果仅考虑将全部经费投入到科研也可投入教学,类似问题1,只是多了三种投资期限,同理也可选择出N年内的最佳组合,列出方程组,用Lingo 软件解出最优解。 问题3:如果将全部的基金的一部分投入科研,另一部分投入教学,并要求第14年末的奖学金比其他年度多30%,同样也是选择最佳的投资组合,列出方程,用Lingo软件解出。 关键字: 基金数学模型科研教学 一、问题重述 某大学获得了一笔数额为M元的经费,打算将其投入到学校教学或科研中。经行家分析,投入到科研上,这笔经费给学校带来的年平均收益情况见下表1(譬如某人或学科组申请到此基金的一部分作为科研经费,申请时间3个月,3个月期满必须归还校基金会)。 表1:科研基金年平均收益率(%)

数学建模简介及数学建模常用方法

数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。 随着社会的发展,生物、医学、社会、经济……各学科、各行业都涌现现出大量的实际课题,亟待 人们去研究、去解决。但 是,社会对数学的需求并 不只是需要数学家和专门 从事数学研究的人才,而 更大量的是需要在各部门 中从事实际工作 的人善于运用数 学知识及数学的 思维方法来解决 他们每天面临的 大量的实际问题, 取得经济效益和社会效 益。他们不是为了应用数 学知识而寻找实际问题 (就像在学校里做数学应 用题),而是为了解决实 际问题而需要用到数学。 而且不止是要用到数学, 很可能还要用到别的学 科、领域的知识,要用到 工作经验和常识。特别是 在现代社会,要真正解决 一个实际问题几乎都离不 开计算机。可以这样说, 在实际工作中 遇到的问题, 完全纯粹的只 用现成的数学 知识就能解决 的问题几乎是 没有的。你所能遇到的都 是数学和其他东西混杂在 一起的问题,不是“干净 的”数学,而是“脏”的 数学。其中的数学奥妙不 是明摆在那里等着你去解 决,而是暗藏在深处等着

你去发现。也就是说,你 要对复杂的实际问题进行 分析,发现其中的可以用 数学语言来描述的关系或 规律,把这个实际问题化 成一个数学问题,这就称 为数学模型。 数学模型具有下列特 征:数学模型的一个重要 特征是高度的抽象性。通 过数学模型能够将形象思 维转化为抽象思维,从而 可以突破实际系统的约 束,运用已有的数学研究 成果对研究对象进行深入 的研究。数学模型的另一 个特征是经济性。用数学 模型研究不需要过多的专 用设备和工具,可以节省 大量的设备运行和维护费 用,用数学模型可以大大 加快研究工作的进度,缩 短研究周期,特别是在电 子计算机得到广泛应用的 今天,这个优越性就更为 突出。但是,数学模型具 有局限性,在简化和抽象 过程中必然造成某些失 真。所谓“模型就是模型” (而不是原型),即是该性 质。 数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。简而言之,建立数学模型的这个过程就称为数学建模。 模型是客观实体有关属性的模拟。陈列 在橱窗中的飞机模型外形应当像真正的飞 机,至于它是否真的能飞则无关紧要;然而 参加航模比赛的飞机模型则全然不同,如果 飞行性能不佳,外形再 像飞机,也不能算是一 个好的模型。模型不一 定是对实体的一种仿照,也可以是对实体的 某些基本属性的抽象,例如,一张地质图并 不需要用实物来模拟,它可以用抽象的符 号、文字和数字来反映出该地区的地质结 构。数学模型也是一种模拟,是用数 学符号、数学式子、程序、图形等对 实际课题本质属性的抽象而又简洁

数学建模投资收益和风险的模型

数学建模投资收益和风险 的模型 Modified by JEEP on December 26th, 2020.

投 资收益和风险的模型 摘要 在现代商业、金融的投资中,任何理性的投资者总是希望收益能够取得最大化,但是他也面临着不确定性和不确定性所引致的风险。而且,大的收益总是伴随着高的风险。在有很多种资产可供选择,又有很多投资方案的情况下,投资越分散,总的风险就越小。为了同时兼顾收益和风险,追求大的收益和小的风险构成一个两目标决策问题,依据决策者对收益和风险的理解和偏好将其转化为一个单目标最优化问题求解。随着投资者对收益和风险的日益关注,如何选择较好的投资组合方案是提高投资效益的根本保证。传统的投资组合遵循“不要将所有的鸡蛋放在一个蓝子里”的原则, 将投资分散化。 一 问题的提出 某公司有数额为M (较大)的资金,可用作一个时期的投资,市场上现有5种资产(i S )(如债券、股票等)可以作为被选的投资项目,投资者对这五种资产进行评估,估算出在这一段时期内购买i S 的期望收益率(i r )、交易费率(i p )、风险损失率(i q )以及同期银行存款利率0r (0r =3%)在投资的这一时期内为定值如表1,不受意外因素影响,而净收益和总体风险只受i r ,i p ,i q 影响,不受其他因素干扰 。现要设计出一种投资组合方案, 使净收益尽可能大, 风险尽可能小. 表1 i i i i 存银行0S 3 0 0 27 1 22 2 25 23

21 2 其中0,1,2,3,4,5.i = 二 问题假设及符号说明 问题假设 (1)总体风险可用投资的这五种中最大的一个风险来度量; (2)在投资中,不考虑通货膨胀因素, 因此所给的i S 的期望收益率i r 为实际的平均收益 率; (3)不考虑系统风险, 即整个资本市场整体性风险, 它依赖于整个经济的运行情况, 投 资者无法分散这种风险, 而只考虑非系统风险, 即投资者通过投资种类的选择使风险有所分散; (4)不考虑投资者对于风险的心理承受能力。 符号说明 i x :购买第i 种资产的资金数额占资金总额的百分比; i Mx :购买第i 种资产的资金数额; 0Mx :存银行的金额; ()i f x :交易费用; R :净收益; Q :总体风险; i ρ:第i 种投资的净收益率。 三 模型的分析与建立 令交易费用 则净收益为 总体风险为 约束条件为 可以简化约束条件为

数学建模简单的投资问题

建模论文——2011114114 覃婧 资金投资问题 摘要:投资公司对现有资金进行投资,采取在无风险情况下,周期投资规律以及周期回收的资金的情况下,求取在一定时期内所掌握的的最大资金,建立相关线性规划公式,运用matlab或者lingo软件进行相关求解,得出最好的投资方式以盈利最大。此类问题适用于金融投资、证券投资等相关行业。 关键词:matlab 目标函数设计变量目标变量新投资最大值

正文 一、 问题重述: 某投资公司有资金200万元,现想投资一个项目,每年的投资方案如下“假设第一年投入一笔资金,第二年又继续投入此资金的50%,那么第三年就可回收第一年投入资金的一倍的金额。”请给该公司决定最优的投资策略使第六年所掌握的资金最多。 二、 问题分析: 该问题作为线性规划问题,题目中给定的投资方案可以理解为每年投资金额,两年作为一个投资周期,三年作为一个资金回收周期,即第三年回收资金,每一个投资周期中偶数年的投资额与前一年是有关的,而且从第三年开始,每一年的回收金额是前两年投资金额的两倍,故以此类推,我们可以得到每年所掌握的资金,以求得第n 年所掌握的最大金额。 所以该模型的目标变量为每年所掌握的资金,而设计变量为每年所进行的新投资。 设x i 表示第i 年所进行新投资的的资金,y i 表示第i 年所掌握的资金, (i=1,2,3,...n )则有: 第一年 11200x y -= 第二年:21 21 122 32002 200x x x x x y -- =---= 第三年:13221322 23200x x x x x y +----= 第四年:243321 422 1 232 200x x x x x x y +---- += 第五年:534432 1 522 1 2322200x x x x x x x y -+--- + += 第六年:654432 1 62 223 2122 200x x x x x x x y --+-+ + + = 以此类推: 第n-1年:334 2 1 122 3 2 ...2 2 200----+- + ++ + =n n n n x x x x x y

相关文档
最新文档