避雷器选型

避雷器选型
避雷器选型

氧化锌避雷器的选型刍议

王文明

胜利工程设计咨询公司山东省东营市 257026

摘要:本文对氧化锌避雷器的分类进行简要的介绍,着重介绍了氧化锌避雷器在工程设计中的选择与计算。

关键词:氧化锌避雷器选型应用

1、概述

避雷器是一种能吸收过电压能量、限制过电压幅值的保护设备。使用时将避雷器安装在被保护设备附近,与被保护设备并联。在正常情况避雷器不动作(仅流过微安级的泄漏电流);当作用在避雷器上的电压达到避雷器的动作电压时,避雷器导通,通过大电流,吸收过电压能量,并将过电压限制在一定水平,以保护设备的绝缘。在释放过电压能量后,避雷器会自动恢复到不导通的正常工作状态。

避雷器的选择应根据系统运行方式不同、避雷器安装地点不同(保护对象不同)、避雷器型式不同而有所区别,但由于部分设计人员对系统的情况了解的不清楚、不准确,对避雷器的特性不了解,因此选择避雷器时具有一定的盲目性。

避雷器选型问题的主要难点是确定暂时过电压的范围问题,既要保证在较高的操作过电压及大气过电压下安全、可靠地动作,又要保证在暂时过电压下阀片不动作。由于我国使用氧化锌避雷器初期,其额定电压是以SiC避雷器的灭弧电压为参考作设计的,在选型时只考虑操作过电压和雷电过电压水平,如:10kV 及以下SiC避雷器的灭弧电压设计是定在系统最高运行电压的1.1倍;35kV Si

C避雷器的灭弧电压等于系统最高电压;110kV及以上SiC避雷器的灭弧电压为系统最高电压的80%。对应以上的倍数分别有110%避雷器、100%避雷器和80%避雷器。早期的6kV、10kV和35kV避雷器均遵守上述原则,而最大长期工频工作电压为系统最高相电压。在氧化锌避雷器的设计中如仍按以上原则选型,则可能导致氧化锌避雷器出现热崩溃甚至严重的爆炸事故。

本文结合实际工程,介绍避雷器的分类及选型应用。

2、金属氧化物避雷器的分类

避雷器分为有间隙和无间隙两种。有间隙避雷器的基本元件是火花间隙和氧化锌非线性电阻片。这些元件串联叠装在密封的绝缘材料外套内。无间隙避雷器的基本元件则只有阀片,它的材料主要是氧化锌和其他金属氧化物。

以下结合我国生产的金属氧化物避雷器系列产品, 根据其不同的技术指标

进行分类。

2.1 按电压等级分类

金属氧化物避雷器按额定电压值来分类, 可分为高压类,指66kV 以上等级的金属氧化物避雷器系列产品;中压类,指3kV~ 66kV ( 不包括66kV 系列的产品) 的金属氧化物避雷器系列产品;低压类,指3kV 以下(不包括3kV 系列的产品) 的金属氧化物避雷器系列产品。

2.2 按标称放电电流分类

金属氧化物避雷器按标称放电电流可划分为20、10、5、2.5、1.5kA 五类。

2.3 按用途分类

金属氧化物避雷器按用途可划分为系统用线路型、系统用电站型、系统用配电型、并联补偿电容器组保护型、电气化铁道型、电动机及电动机中性点型、变压器中性点型七类。

2.4 按外套材料分类

金属氧化物避雷器按结构可划分为:瓷外套型、复合外套型

2.5 按结构性能分类

金属氧化物避雷器按结构性能可分为无间隙(W )、带串联间隙(C)、带并联间隙(B) 三类。

无间隙避雷器主要有以下特点:

a)结构简单

b)保护性能好,电阻片有良好的非线性伏安特性,正常工作电压下通过避雷器的电流小,无需串联间隙,消除了因间隙击穿特性变化所造成的影响,保护特性仅由残压所决定。

c)保护效果好,只要过电压超过避雷器额定电压,保护作用就开始,这对降低频繁作用在被保护设备上的过电压,减少异常绝缘击穿,对延长设备的寿命有积极作用。

d)运行检测方便,能通过带电试验检测避雷器特性的变化。

e)吸收能量大,非线性金属氧化物电阻片单位体积吸收能量较碳化硅非线性电阻片大5~10倍,同时,电阻片或避雷器均可并联使用,使吸收能力成倍提高。

f)由于没有串联间隙,电阻片不仅要承受雷电和操作过电压左右,还要承受正常持续运行电压和暂时过电压,因而存在着这些电压作用下的劣化和热稳定问题。

有间隙避雷器主要有以下特点:

a)有串联间隙的避雷器与无间隙避雷器相比,增加了串联间隙,使电阻片与带电导线隔离,可避免系统单相接地引起的暂时过电压和弧光接地或谐振过电压对电阻片的直接作用。但使用串联间隙后,也就不再具备无间隙避雷器的优点。

b)有并联间隙的避雷器:在一部分电阻片上并联间隙,在雷电流达到一定幅值时,这部分电阻片上的残压使间隙放电而短路。在雷电流幅值等于标称放电电流时,避雷器的残压值可以低于无间隙避雷器的残压,在保护雷电冲击绝缘水平较低的设备,如发电机等,有一定的优越性,但结构复杂。

c)与普通碳化硅阀式避雷器相比,具有相近保护特性时,避雷器可以没有续流或续流很小。如果保持续流相近,则残压值可比碳化硅阀式避雷器低,在中性点非直接接地系统中,残压值还可以比无间隙避雷器的残压低。

d)有串联间隙避雷器:由于放电电压与电阻片的残压相近,给工频放电电压试验带来一定的困难,放电电压较难检测。

e)有间隙避雷器一般用于线路或3kV~66kV中性点非直接接地系统中的保护。

由于有间隙产品存在天生的缺陷,例如放电的分散性、放电电压受内部气压与外部污秽影响等,因此目前有间隙产品主要应用于66kV及以下的配电系统中。

与之相比,无间隙避雷器更具有保护范围宽、能量吸收能力强、响应特性快及陡波特性好等优点,因此已广泛应用于电力系统中。

3、金属氧化物避雷器的选用

金属氧化物避雷器的特性分为保护特性和运行特性。保护特性有保护水平决定;而运行特性则有额定电压、冲击通流能力(雷电通流能力、长持续时间耐受能力)、工频电压耐受时间特性、耐污性能、短路电流试验等级等决定,其中避雷器的短路电流试验等级主要由系统的容量和避雷器的安装点决定,具有独立的属性。避雷器的保护特性和运行特性是互相制约的。

在系统条件一定、阀片性能一定的条件下,若避雷器的额定电压提高,则其运行的持续运行电压就高,耐受工频电压、能量吸收的能力随之提高,标称电流下的残压也随之提高,但保护裕度却会减小;反之,若避雷器的额定电压降低,则其允许的持续运行电压就低,标称电流下的残压也随之降低,但保护裕度却会增大。

若对系统的接地方式、过电压的幅值及持续时间等情况掌握清楚的话,就可以选择最佳的避雷器额定电压值,以取得较大的保护裕度;反之,若对系统的情况了解的不清楚、不准确,那么就要选择额定电压高一些的避雷器,这时避雷器的保护裕度就会小一些,被保护物的绝缘所受的电应力就会大一些。若选择避雷器的额定电压较低,就有可能带来安全事故。

在同一电压等级的系统中,接于相对地间的避雷器与接于相对相间的避雷器,其额定电压是不同的。在同一个变电站的同一电压侧,线路型避雷器和母线型避雷器的额定电压也是不同的。

金属氧化物避雷器在选用中应注意其参数的正确选择, 否则将会在运行中

发生各类问题, 导致事故的发生。下面以无间隙金属氧化物避雷器为例,介绍避雷器选型中的

3.1 标称放电电流

因金属氧化物避雷器的标称放电电流分为五类, 在选用时应根据避雷器的

应用场合和避雷器的技术参数来选择, 如表1 所示:

a)电站用避雷器:用以限制作用在发变电所3kV~500kV设备的雷电过电压和除谐振过电压及暂态过电压以外的相对地过电压。

b)配电用避雷器:用以限制作用在3kV~20kV配电设施,主要是配电变压器、分段开关、刀闸及电缆头的雷电过电压和除谐振过电压及暂态过电压以外的相对地过电压。

c)并联补偿电容器用避雷器:用以限制投切电容器时可能产生的过电压,用于不同容量和电压等级电容器组的避雷器,其方波通流容量有不同的要求。

d)发电机用避雷器:用以限制作用在发电机的雷电过电压和除谐振过电压以外的相对地过电压,并可限制升压变压器的传递过电压。

e)电动机用避雷器:用以限制3kV~10kV投切电动机时的操作过电压。

f)发电机中性点用避雷器:用以限制发电机中性点的雷电侵入波过电压,同时对发电机整个绝缘也有一定的保护作用。在正常运行工况下,作用在避雷器上的电压很低。

g)变压器中性点用避雷器:主要用以限制中性点为分级绝缘的变压器(包括中性点接有低于其设备绝缘水平的设备,如消弧线圈)雷电过电压。在正常运行工况下,作用在避雷器上的电压很低。

h)其他特殊用途避雷器:避雷器还可用于下列设备的过电压保护,如输电线路、串联电抗器、串联电容器、电缆护层、电流互感器低压和高压侧匝间、发电机灭磁回路。

3.2 额定电压(U

r

避雷器额定电压是施加到避雷器端子间的最大运行工频电压有效值,它是表明避雷器运行特性的一个重要参数,但它不等于系统标称电压。

按IEC 及国家标准规定, 避雷器在注入标准规定的能量后, 必须能耐受相当于额定电压数值的暂时过电压至少10s。

避雷器额定电压可按下式选择:

Ur≥KUt (kV )

式中: K —切除短路故障时间系数。10s 及以内切除故障K = 1.0; 10s 以上切除故障K = 1.25~1.3。

Ut—暂时过电压, kV

在选择避雷器额定电压时, 仅考虑单相接地、甩负荷和长线电容效应引起的暂时过电压。暂时过电压Ut推荐值见表2:

3.3 最大持续运行电压

避雷器持续运行电压是运行持久的加在避雷器端子间的工频电压有效值。

一般情况下, 避雷器最大持续运行电压Uc≥0.8Ur, 且不得低于以下规定值:对于中性点直接接地系统,接在相对地的无间隙避雷器,其持续运行电压应不低于系统的最高工作相电压,即,Uc≥Um/

式中: Um —系统最高工作电压, kV

对于中性点非直接接地系统,应根据单相接地故障切除时间确定:

10s 及以内切除故障时, Uc≥Um/

10s 以上切除故障时,Uc≥Um(35kV~66kV )

Uc≥1.1Um (3kV~20kV )

3.4 雷电冲击保护水平

无间隙金属氧化物避雷器的保护水平完全由它的残压决定,其雷电过电压的保护水平是下列两项数值的较高者:

a) 标称放电电流下的最大残压值

b) 陡波冲击电流下最大残压值除以1.15。

避雷器雷电冲击保护水平应满足保护电力设备绝缘配合的要求,按国家标准规定,其配合系数如下:

中性点避雷器Ks>1.25;

避雷器非紧靠保护设备 Ks>1.4。

3.5 操作冲击保护水平

避雷器操作冲击电流(波前30μs~100μs) 下的残压值为避雷器的操作冲击保护水平。操作冲击绝缘配合系数应满足: 电气设备的操作冲击绝缘水平与操作冲击保护水平之比值不得小于1.15。

3.6 绝缘配合

对于不同保护对象,由于绝缘等级的不同,选择避雷器时也应有所区别。例如,对于3 5kV油浸式变压器,其额定雷电冲击耐受电压(全波)为200kV,而对于35kV干式变压器而言,其额定雷电冲击耐受电压(全波)值为170kV,此时普通35 kV 氧化锌避雷器的残压取134 kV 就显得偏高,134×1.4= 187.6>170。因此用于35kV干式变压器保护用的氧化锌避雷器的残压应取120kV 比较合理(120×1.4= 168)。

3.7 避雷器选择实例

对于常规电压等级避雷器,可根据已知的系统接地方式、过电压的幅值及持续时间等情况选择最佳的避雷器额定电压值,以取得较大的保护裕度。

对于非常规电压等级避雷器,则需要尽量收集系统情况,了解系统运行方式,并根据前面介绍的避雷器参数选择合适的避雷器。下面以安哥拉电网恢复项目为例,介绍避雷器的选择方法。

下图为安哥拉某城市变电所系统示意图,系统标称电压为15kV,采用中性点直接接地方式运行。

由于国内以往没有15kV 这一配电电压等级,所以国标GB11032-2000 《交流无间隙金属氧化物避雷器》对这一等级电网的氧化锌避雷器参数没有作出明确的规定,因此根据DL/T 804-2002 交流电力系统金属氧化物避雷器使用导则和D L/T613-1997 进口交流无间隙金属氧化物避雷器技术规范的原则,对氧化锌避雷器的技术参数进行选择。

a)氧化锌避雷器的额定电压Ur

按《交流电力系统金属氧化物避雷器使用导则》表3 的推荐值,对中性点直接接地中,系统的接地故障持续时间应不大于10s,参考直接接地系统的暂时过电压推荐值,确定避雷器的额定电压(Ur):

Un=15kV,

Um=15×1.2=18kV

Ur≥Ut=1.4×Um/ =14.6kV—(1)

由于按国际IEC标准生产的进口中压避雷器在额定电压下的耐受时间只有1 0 s,在选用进口氧化锌避雷器时(如ABB公司的MWD 型),宜提高一个等级,为15kV。

b)最大持续运行电压Uc

由于氧化锌避雷器没有串联间隙,正常工频相电压要长期作用在金属氧化物电阻片上,为了保证一定的使用寿命,长期作用在避雷器上的运行电压不得超过避雷器的持续运行电压。在实际运行中,持久地加在氧化锌避雷器两端的工频电压最大值为系统最高工作相电压(Um/ )。因此,选择氧化锌避雷器时必须使它的持续运行电压大于或等于Um/ 。

所以确定避雷器的持续运行电压(Uc):

Uc≥Um/ =10.4kV—(2)

一般情况下Uc≥0.8Ur,选用按IEC 标准生产的进口氧化锌避雷器时(如AB B 公司的MWD 型) 宜选用12 kV。避雷器的额定电压和持续运行电压分别采用(1)和(2)所确定的数值后,将使氧化锌避雷器具有较高的工频过电压耐受水平,从而在系统发生单相接地后,保护动作跳闸前的几秒钟内,健全相电压即使升高到线电压,也不会危及避雷器的安全运行,从而提高了配电网的可靠性。

c)标称放电电流

按DL/T613-1997 进口交流无间隙金属氧化物避雷器技术规范,对3~66 kV 系统的配电网和电容器之标称放电电流一般均定为5 kA,这也正是一般10k V~35kV 电网所采用的,因而本系统也选择为5 kA。

d)雷电冲击保护水平

电气设备全波冲击绝缘水平与雷电冲击保护水平之比值不得小于1.4,15 k V 系统电气设备的全波冲击耐受电压为105 kV,所以避雷器5 kA(8/20μs)下的残压应不大于75 kV(105/1.4)。所以选用的避雷器在5 kA(8/20μs)下的残压值为不大于40 kV,裕度还是相当大的。

e)操作冲击残压

按进口交流无间隙金属氧化物避雷器技术规范之5.4.3 条,操作冲击电流为500A(30/60μs)。根据《交流电气装置的过电压保护和绝缘配合》要求,15k V电气设备的耐受电压为45kV(开关为46kV),则避雷器的操作冲击残压应不大于39.1kV(45/1.15)。

2.2 避雷器的选择

按照以上的分析,安哥拉15kV配电网络母线选用MWD 13型氧化锌避雷器,其主要技术参数见表3。

根据以上数据可以看出,选用ABB公司的MWD 13型避雷器,可以满足电网运行要求,并具有较大的裕度。

4、结论

a)系统的接地方式及产生的工频过电压是选择避雷器额定电压的主要依据。

b)避雷器的保护特性和运行稳定性是互相制约的。应结合被保护物的绝缘特性、绝缘水平和运行环境条件合理的选择避雷器的参数,避免偏颇。

c)由于保护的电气设备以及安装地点的不同而应选择不同类型的避雷器,此时对避雷器有另外的要求,可参照《交流电力系统金属氧化物避雷器使用导则》进行参数选择。

线路型避雷器的选择及安装规范 图文 民熔

线路型避雷器的选择及安装规范本文对线路避雷器的国内外现状和研究进展进行了综述。 线路避雷器已大量地安装在从配电到500kV(部分800kV)系统电压的架空输电线路上,它是降低线路雷击跳闸率的有效手段,从而提高系统的可靠性。在大多数情况下,线路避雷器是合成外套的避雷器。 小型化、智能化及高压化将会是线路避雷器今后的发展方向。随着线路避雷器的国际电工委员会(IEC)标准和国际大电网会议(CIGRE)导则的即将发布,外串间隙线路避雷器(EGLA)的应用将更加广泛。线路避雷器的应用也给输电线路的电压等级升级及紧凑型输电线路的建设带来了机遇。 避雷器:氧化锌避雷器简单介绍 氧化锌避雷器 HY5WS-17/50氧化锌避雷器 10KV高压配电型 A级复合避雷器 产品型号: HY5WS- 17/50 额定电压: 17KV 产品名称:氧化锌避雷器 直流参考电压: 25KV 持续运行电压: 13.6KV 方波通流容量: 100A 防波冲击电流: 57.5KV(下残压) 大电流冲击耐受: 65KA 操作冲击电流: 38.5KV(下残压) 注:高压危险!进行任何工作都必须先切断电流,严重遵守操作规程执行各种既定的制度慎防触电与火灾事故。 使用环境: a.海拔高度不超过2000米; b.环境温度:最高不高于+40C- -40C; C.周围环境相对湿度:平均值不大于85%; d.地震强度不超过8级; e.安装场所:无火灾、易燃、易爆、严重污秽、化学腐蚀及剧烈震动场所。

体积小、重量轻,耐碰撞运输无碰损失,安装灵活特别适合在开关柜内使用 民熔HY5WZ-17/45高压氧化锌避雷器 10KV电站型金属氧化锌避雷器 民熔35KV高压避雷器 HY5WZ-51/134户外电站型 氧化锌避雷器复合型 避雷器(linearrester)通常是适用于电力线路以降低瞬态雷电冲击时绝缘子闪络危险的一种避雷器。必要时,也可以用于保护线路绝缘子之外的任何其它电器设备。 线路避雷器运行时它与线路绝缘子并联,当线路遭受雷击时,能有效地防止雷电直击输电线路所引起的故障和雷电绕击输电线路所引起的故障。 架空输电线路是电力系统的重要组成部分,由于其分布范围广,极易遭受雷击。从目前运行情况看,在国内外雷击仍然是输电线路的主要危害。

线路避雷器的选择与安装 图文 民熔

线路避雷器的选择与安装 目前.国外已广泛使用线路型合成绝缘氧化锌避雷器用于输电线路的防雷,取得了很好的效果。随着我们国家科技的不断发展和进步,我国也对线路避雷器开始了研制和开发,目前线路避雷器已经广泛地应用于电力部门。 在电力配电线路中,常用的避雷器有:阀型避雷器、管型避雷器、氧化锌避雷器等,低压配电系统提倡选用低压氧化锌避雷器。 氧化锌阀片在正常运行电压下,阀片的电阻很高。仅可通过微安级的泄漏电流。氧化锌避雷器具有优异的非线性伏安特性。残压随冲击电流波头时间的变化特性平稳,陡波响应特性好,没有间隙击穿特性和灭弧问题。其电阻片单位体积吸收能量大,还可以并联使用,所以在保护超高压长距离输电系统和大容量电容器组特别有利。 对于低压配电网的保护也很适合,是低压配电网的主要保护措施。 氧化锌避雷器介绍: 民熔 HY5WS-17/50氧化锌避雷器

10KV高压配电型 A级复合避雷器 产品型号: HY5WS- 17/50 额定电压: 17KV 产品名称:氧化锌避雷器 直流参考电压: 25KV 持续运行电压: 13.6KV 方波通流容量: 100A 防波冲击电流: 57.5KV(下残压) 大电流冲击耐受: 65KA 操作冲击电流: 38.5KV(下残压) 注:高压危险!进行任何工作都必须先切断电流,严重遵守操作规程执行各种既定的制度慎防触电与火灾事故。 使用环境: a.海拔高度不超过2000米; b.环境温度:最高不高于+40C- -40C; C.周围环境相对湿度:平均值不大于85%; d.地震强度不超过8级; e.安装场所:无火灾、易燃、易爆、严重污秽、化学腐蚀及剧烈震动场所。

避雷器安装位置的选择(图文) 民熔

避雷器 避雷器介绍 氧化锌产品介绍 民熔氧化锌避雷器 HY5WS-17/50氧化锌避雷器 10KV高压配电型 A级复合避雷器 产品型号: HY5WS- 17/50 额定电压: 17KV 产品名称:氧化锌避雷器直流参考电压: 25KV 持续运行电压: 13.6KV 方波通流容量: 100A 防波冲击电流: 57.5KV(下残压) 大电流冲击耐受: 65KA 操作冲击电流: 38.5KV(下残压) 注:高压危险!进行任何工作都必须先切断电流,严重遵守操作规程执行各种既定的制度慎防触电与火灾事故。 使用环境: a.海拔高度不超过2000米; b.环境温度:最高不高于+40C- -40C; C.周围环境相对湿度:平均值不大于85%; d.地震强度不超过8级; e.安装场所:无火灾、易燃、易爆、严重污秽、化学腐蚀及剧烈震动场所。

体积小、重量轻, 耐碰撞运输无碰损失, 安装灵活特别适合在开关柜内使用 民熔 HY5WZ-17/45高压氧化锌避雷器 10KV电站型金属氧化锌避雷器 民熔 35KV高压避雷器 HY5WZ-51/134 户外电站型 氧化锌避雷器复合型 在实际安装避雷器时,有安装于跌落保险上侧和跌落保险下侧两种方法。将避雷器安装在跌落保险上侧,是否会削弱对配变的防雷保护? 经过多年的运行经验,避雷器安装在跌落保险下侧还是跌落保险上侧,防雷效果是一样的,现均未发生由于避雷器安装的位置不一样引起雷击配变的事故。另外在《架空配电线路设计技术规程》的规定,防雷装置应尽量靠近变压器安装。一般认为距离不超过10m即可。

所有特殊变压器用户均采用高压计量箱。计量箱一般安装在坠落保险的上方。在实际运行中,避雷器安装在高压计量箱的上方,即要安装高压计量箱的用户必须安装一组隔离开关,然后通过计量箱进行坠落保险。 隔离开关的安装解决了安装在跌落保险上侧所带来的问题。当一台变压器的避雷器发生故障或检修时,只需切断一台变压器的电源,就可以减少全线停电次数。同时发生单相接地或相间短路时,可以减少故障查找和处理的时间。 因此,避雷器的安装应根据现场设备的安装位置而定。城市变压器一般安装高压计量箱的隔离开关和避雷器,最好安装在跌落保险上。如果市郊型变压器不设隔离开关,避雷器最好安装在跌落保险的下侧。

防雷器的选型的知识汇总

防雷器的选型的知识汇总 (一) 防雷器,又称避雷器、浪涌保护器、电涌保护器、过电压保护器等,主要包括电源防雷器和信号防雷器,防雷器是通过现代电学以及其它技术来防止被雷击中的设备的损坏。避雷器中的雷电能量吸收,主要是氧化锌压敏电阻和气体放电管。基于防雷器的防护想要取得理想的效果,应注重“在合适的地方合理地装设合适的防雷器”,防雷器的选择十分重要。⒈进入建筑物的各种设施之间的雷电流分配情况如下:约有50%的雷电流经外部防雷装置泄放入地,另有50%的雷电流将在整个系统的金属物质内进行分配。这个*估模式用于估算在LPAOA区、LPZOB区和LPZ1区交界处作等电位连接的防雷器的通流能力和金属导线的规格。该处的雷电流为10/35μs电流波形。在各金属物质中雷电流的分配情况下:各部分雷电流幅值取决于各分配通道有的阻抗与感抗,分配通道是指可能被分配到雷电流的金属物质,如电力线、信号线、自来水管、金属构架等金属管级及其它接地,一般仅以各自的接地电阻值就可以大致估算。在不能确定的情况下,可以认为接是电阻相等,即各金属管线平均分配电流。⒉在电力线架空引入,并且电力线可能被直击雷击中时,进入建筑物内保护区的雷

电流取决于外引线路、防雷器放电支路和用户侧线路的阻抗和感抗。如内外两端阻抗一致,则电力线被分配到一半的直击雷电流。在这种情况下必须采用具有防直击雷功能的防雷器。 ⒊后续的*估模式用于*估LPZ1区以后防护区交界处的雷电流分配情况。由于用户侧绝缘阻抗远远大于防雷器放电支路与外引线路的阻抗,进入后续防雷区的雷电流将减少,在数值上不需特别估算。一般要求用于后续防雷区的电源防雷器的通流能力在20kA(8/20μs)以下,不需采用大通流能力的防雷器。后续防雷区防雷器的选择应考虑各级之间的能量分配和电压配合,在许多因素难以确定时,采用串并式电源防雷器是个好的选择。串并式是根据现代雷电防护中许多应用场合、保护范围层次区分等特点提出的概念(相对于传统的并式防雷器而言)。其实质是经能量配合和电压分配的多级放电器与滤波器技术的有效结合。串并式防雷有如下特点:应用广泛。不但可以按常规进行应用,也适合保护区难以区别的场所。感生退耦器件在瞬态过电压下的分压、延迟作用,以帮助实现能量配合。减缓瞬态干扰的上升速率,以实现低残压与长寿命以及极快的响应时间。⒋防雷器的其它参数选择取决于各个被保护物所在防雷区的级别,其工作电压以安装在引电路中所有部件的额定电压为准。串并式防雷器还需注意其额定电流。⒌影响电子线雷电流分配的其它因素:变压器端接地电阻降低将使电子线中分配电流增大。供电线缆的长度的增加将使电力线中分配电流减少,并使几要导线中有平衡的电流分配。过短的电缆长度和过低的中性线阻抗将使电流不平衡,从而引起差模干扰。供电线缆并接多用户将降低有效阻抗,导致分配电流增大,在连成网状的供电状态下,雷临时性流主要流入电力线,这是多数雷损发生在电力线处的原因。 (二) 首先要搞清楚防雷器用在什么地方,按照三级防雷保护原理,电源和设备所需要的保护措施被分为三个等级。在总配电柜安装第一级防雷器,选择相对通流容量大的电源防雷器(最大放电电流80KA~160KA视情况而定),然后在下属的区域配电箱处安装第二级电源防雷器

避雷器安装原则

避雷器安装原则 防雷工程当中,电源避雷器的安装位置和选型存在很多争议,笔者就这些年的工作经验和防雷理论结合在一起,阐述一下自己的一些观点: B级避雷器(安装于LPZ0A区) 1、安装原则理论上一级避雷器(B级)应尽量安装在总进线空开前端,如果安装不方便,也可安装在空开后端。但是,如果进线前端有双电源切换装置时,必须安装在双电源切换装置的前端,从而使切换装置得到保护(现在的双电源切换装置多为机械型和电子控制型、有的还有232和485控制装置和24伏消防电源,雷电流一旦通过,极易发生损坏)。理由是,空开(断路器)的动作时间远远大于避雷器的动作时间,一旦有雷电流(过电压)通过,避雷器会在断路器动作之前提前动作,把过电流泄放掉,从而保护电路及其后端的用电设备。 2、选型原则B级避雷器尽量选择电压开关型避雷器,通流容量大,保护电压UP要尽量小。一般避雷器的前端要串接相应容量的断路器,断路器的作用:在避雷器损坏时,方便更换;其二是在避雷器发生老化时,避免发生电流对地故障。 C级避雷器(安装于LPZ1区) 1、安装原则采用限压型避雷器,可并联安装于二级电源空开前端或后端,避雷器前端串接相应容量的断路器。作用同上。 2、选型原则C级避雷器采用限压型,把B级避雷器导通后产生的残压控制在设备的冲击绝缘水平以下。由于限压元件的相应时间快,一般为25ns左右,而放电间隙的相应时间则比较慢,约为100ns,所以要在保证C级避雷器导通之前,B级避雷器应先导通。这样就必须是保证B级和C级之间有一定的安装距离。 D级避雷器 同上 B级避雷器的作用主要是泄放大的电流,C级和D级避雷器的作用主要是把B级避雷器的残压限制在后端设备的耐压水平以下。以保护设备。 C、D级避雷器应尽量靠近安装在被保护物端。

避雷器参数及选型原则

金属氧化物避雷器的选择 避雷器是电力系统中主要的防雷保护装置之一,只有正确地选择避雷器,方能发挥其应有的防雷保护作用。 1、无间隙金属氧化物避雷器的选择 选择的一般要求如下: (1)、应按照使用地区的气温、海拔、风速、污秽以及地震等条件确定避雷器使用环境条件,并按系统的标称电压、系统最高电压、额定频率、中性点接地方式,短路电流值以及接地故障持续时间等条件确定避雷器的系统运行条件。 (2)、按照被保护的对象确定避雷器的类型。 (3)、按长期作用于避雷器上的最高电压确定避雷器的持续运行电压。 (4)、按避雷器安装地点的暂时过电压幅值和持续时间选择避雷器的额定电压。 (5)、估算通过避雷器的放电电流幅值,选择避雷器的标称放电电流。 (6)、根据被保护设备的额定雷电冲击耐受电压和额定操作冲击耐受电压,按绝缘配合的要求,确定避雷器的雷电过电压保护水平和操作过电压保护水平。 (7)、估算通过避雷器的冲击电流和能量,选择避雷器的试验电流幅值,线路放电耐受试验等级及能量吸收能力。 (8)、按避雷器安装处最大故障电流,选择避雷器的压力释放等级。 (9)、按避雷器安装处环境污染程度,选择避雷器瓷套的泄漏比距。

(10)、按避雷器安装的引线拉力、风速和地震等条件,选择它的机 械强度。 (11)、当避雷器不满足绝缘配合要求时,可采取适当降低其额定电 压或标称放电电流等级或提高被保护设备的绝缘水平等补救措施。2、主要特性参数选择 (1)、持续运行电压Uc 页16 共页1 第 中性点直接接地系统的相对地无间隙金属氧化物避雷器,其Uc可按不低于系统最高相电压选取。 在中性点非直接接地系统,如单相接地故障能在10s以内切除,其Uc仍可按不低于选取,但由于我国大部分中性点非直接接地系统中 允许带接地故障运行2h以上,因此Uc可按以下原则选取:10s及以内切除故障2h及以上切除故障3~10kV 1.0~1.1U,35~66kV Uc≥U LL至于10s~2h之间,可按2h以上选取,也可 参照避雷器的工频电压耐受特性曲线选取。 (2)、额定电压Ur Ur是指避雷器两端间的最大允许工频电压的有效值,是在60℃温度下注入规定能量后,能耐受额定电压Ur10s,随后在Uc下,耐受30min,能保持热稳定。 (3)、暂时过电压U T暂时过电压UT是确定避雷器额定电压之依据,在选择U时,主要考虑单T相接地,甩负荷和长线电容效应所引起的工频电压升高,幅值可按下列条件选取。 ①中性点非直接接地系统:

避雷器知识

1. OBO 480、481地极保护器 OBO地极保护器功能 对于独立地网如果地网的布放的距离过小,在过电压来临的时候容易产生地电位反击的问题,故需要在两个地极之间安装地极保护器480或481。480、481地极保护器由两个电极组成间隙放电装置,如果发生雷击,产生危险电位差,该间隙就会瞬间被击穿,达到等电位。 OBO地极保护器应用 480、481地极保护器是用来避免不同接地地网之间产生不同电位差的危险。当雷电来临时,由于不同的接地地网布放距离过近时,会有其中的某个地网的地电位在瞬间被抬生到很高的水平,从而与其他接地网之间产生很高的电位差,该电位差可能会造成在连接于不同地极间的线路或设备形成网络,即平常所称的地电位反击,它对设备和人员的安全存在着巨大的危险。此时需要在不同地网之间安装地极保护器来避免地电位反击的问题。 OBO地极保护器特性 480型内部采用钨铜电极,提供防爆功能,481型内部采用不锈钢电极。由于采用全密封设计,地极保护器可应用在不同的环境下。 OBO地极保护器技术参数 OBO地极保护器安装 480、481地极保护器安装在不同地网的主等电位连接排之间,这些等电位连接排将通过连接电缆与保护器连接在一起。

2.氧化锌避雷器 氧化锌避雷器是具有良好保护性能的避雷器。利用氧化锌良好的非线性伏安特性,使在正常工作电压 时流过避雷器的电流极小(微安或毫安级);当过电压作用时,电阻急剧下降,泄放过电压的能量,达到保护的效果。这种避雷器和传统的避雷器的差异是它没有放电间隙,利用氧化锌的非线性特性起到泄流和开断的作用。 介绍 氧化锌避雷器测试仪介绍:采用微电脑进行采样、控制等先进技术,可测量氧化锌避雷器在工频电压下的全电流、三次谐波、阻性电流、阻性电流峰值、容性电流、有功功率等。 发展来源 氧化锌避雷器是七十年代发展起来的一种新型避雷器,它主要由氧化锌压敏电阻构成。每一块压敏电阻从制成时就有它的一定开关电压(叫压敏电阻),在正常的工作电压下(即小于压敏电压)压敏电阻值很大,相当于绝缘状态,但在冲击电压作用下(大于压敏电压),压敏电阻呈低值被击穿,相当于短路状态。然而压敏电阻被击状态,是可以恢复的;当高于压敏电压的电压撤销后,它又恢复了高阻状态。因此,在电力线上如安装氧化锌避雷器后,当雷击时,雷电波的高电压使压敏电阻击穿,雷电流通过压敏电阻流入大地,使电源线上的电压控制在安全范围内,从而保护了电器设备的安全。 分类 1.按电压等级分 氧化锌避雷器按额定电压值来分类,可分为三类; 高压类;其指66KV以上等级的氧化锌避雷器系列产品,大致可划分为500kV、220kV、110kV、66k V四个等级等级。 中压类;其指3kV~66kV(不包括66kV系列的产品)范围内的氧化锌避雷器系列产品,大致可划分 为3kV、6kV、10kV、35KV四个电压等级。 低压类;其指3KV以下(不包括3kV系列的产品)的氧化锌避雷器系列产品,大致可划分为1kV、0. 5kV、0.38kV、0.22kV四个电压等级。 2.按标称放电电流分 氧化锌避雷器按标称放电电流可划分为20、10、5、2.5、1.5kA五类。 3.按用途分 氧化锌避雷器按用途可划分为系统用线路型、系统用电站型、系统用配电型、并联补偿电容器组保护型、电气化铁道型、电动机及电动机中性点型、变压器中性点型七类。 4.按结构分 氧化锌避雷器按结构可划分为两大类; 瓷外套;瓷外套氧化锌避雷器按耐污秽性能分为四个等级,Ⅰ级为普通型、Ⅱ级为用于中等污秽地区(爬电比距20mm/KV)、Ⅲ级为用于重污秽地区(爬电比距25mm/kV)、Ⅳ级为用于特重污秽地区(爬 电比距31mm/kV)。 复合外套;复合外套氧化锌避雷器是用复合硅橡胶材料做外套,并选用高性能的氧化锌电阻片,内部采用特殊结构,用先进工艺方法装配而成,具有硅橡胶材料和氧化锌电阻片的双重优点。该系列产品除具有瓷外套氧化锌避雷器的一切优点外,另具有绝缘性能、高的耐污秽性能、良好的防爆性能以及体积小、重量轻、平时不需维护、不易破损、密封可靠、耐老化性能优良等优点。

输电线路避雷器的选择与安装

雷鸣闪电,是常见的自然现象。近几年来.由雷电流的分流将发生变化,—部分雷电流从避雷试验研究表明:当氧化锌避雷器阀片受潮或于环境条件的不断劣化,雷击引起的输电线路掉闸故障也日益增多,不仅影响设备的正常运行,而且极大地影响了日常的生产、生活。雷击已成为影响输电线路安全可靠运行的最主要因素。 为了减少输电线路的雷击故障,采取了各种综合防雷措施,如降低杆塔接地电阻、提高线路绝缘水平、采用负角保护、架设耦合地线等,取得了一定的效果。但对于分布在高土壤电阻率的部分线路。降低杆塔接地电阻难度较大,对于防治绕击雷对线路造成的故障仍没有好的对策。 目前.国外已广泛使用线路型合成绝缘氧化锌避雷器用于输电线路的防雷,取得了很好的效果。随着我们国家科技的不断发展和进步,我国也对线路避雷器开始了研制和开发,目前线路避雷器已经广泛地应用于电力部门。在电力配电线路中,常用的避雷器有:阀型避雷器、管型避雷器、氧化锌避雷器等,低压配电系统提倡选用低压氧化锌避雷器。氧化锌阀片在正常运行电压下,阀片的电阻很高。仅可通过微安级的泄漏电流。但在强大的雷电流通过时,却呈现很低的电阻,使其迅速泄人大地,实现限压分流的目的。阀片上的残压几乎不随通过电流的大小而变化,时常维持在小于被保护电器的i申击试验电压,使设备的绝缘得到保护,雷电流过后又恢复到原绝缘状态。 氧化锌避雷器具有优异的非线性伏安特性。残压随冲击电流波头时间的变化特性平稳,陡波响应特性好,没有间隙击穿特性和灭弧问题。其电阻片单位体积吸收能量大,还可以并联使用,所以在保护超高压长距离输电系统和大容量电容器组特别有利。对于低压配电网的保护也很适合,是低压配电网的主要保护措施。 线路避雷器防雷的基本原理 雷击杆塔时,—部分雷电流通过避雷线流到相临杆塔,另一部分雷电流经杆塔流人大地,杆塔接地电阻呈暂态电阻特性,—般用冲击接地电阻来表征。 雷击杆塔时塔顶电盥迅速提高,其电位值为 Ut=iRd+Ldi/dt(1) 式中i——雷电流; Rd——冲击接地电阻: Ldi/dt——暂态分量。 当塔顶电位Ut与导线上的感应电位U1的差值超过绝缘子串50%的放电电压时,将发生由塔顶至导线的闪络。即Ut-Ul>U50,如果考虑线路工频电压幅值Um的影响。则为Ut-Ul+Um>U50。因此,线路的耐雷水平与3个重要因素有关,即线路绝缘子的5∞墩电电压、雷电流强度和塔体的冲击接地电阻。—般来说,线路的50%放电电压是—定的,雷电流强度与地理位置和大气条件相关。不加装避雷器时,提高输电线路耐雷水平往往是采用降低塔体的接地电阻,在山区,降低接地电阻是非常困难的。这也是为什么输电线路屡遭雷击的原因。 加装避雷器以后,当输电线路遭受雷击时,线传人相临杆塔。一部分经塔体入地,当雷电流超过一定值后,避雷器动作加入分流。大部分的雷电流从避雷器流入导线,传播到相临杆塔。雷电流在流经避雷线和导线时。由于导线问的电磁感应作用,将分另!}在导线和避雷线七产生耦合分量。因为避雷器的分流远远大于从避雷线中分流的雷电流,这种分流的耦合作用将使导线电位提高,使导线

避雷器的选择方法

避雷器的选择方法 避雷器如何选择 (1)按额定电压选择:要求避雷器额定电压与系统额定电压一致。 (2)校验最大允许电压:核对避雷器安装地点可能出现的导线对地最大电压,是否不超过避雷器的最大工作电压。导线对地最大电压与系统中性点是否接地及系统参数有关: ①中性点不接地系统:导线对地最大电压为系统电压的1.1倍,所以一般没有问题。 ②中性点经消弧线圈或高阻抗接地系统:一般选择避雷器的最大工作电压等于线电压。 ③中性点直接接地系统:国产避雷器的中性点直接接地系统中其最大工作电压等于系统电压的0.8倍,所以按额定电压选择是没有问题的。 (3)校验工频放电电压: ①在中性点绝缘或经阻抗接地的系统中,工频放电电压应大于相电压的3.5倍。在中性点直接接地的系统中,工频放电电压应大于相电压的3倍。 ②工频放电电压应大于最大工作电压的1.8倍 防雷器,又称避雷器、浪涌保护器、电涌保护器、过电压保护器等,主要包括电源防雷器和信号防雷器,防雷器是通过现代电学以及其它技术来防止被雷击中的设备的损坏。避雷器中的雷电能量吸收,主要是氧化锌压敏电阻和气体放电管。 基于防雷器的防护想要取得理想的效果,应注重“在合适的地方合理地装设合适的防雷器”,防雷器的选择十分重要。 ⒈进入建筑物的各种设施之间的雷电流分配情况如下:约有50%的雷电流经外部防雷装置泄放入地,另有50%的雷电流将在整个系统的金属物质内进行分配。这个*估模式用于估算在LPAOA区、LPZOB区和LPZ1区交界处作等电位连接的防雷器的通流能力和金属导线的规格。该处的雷电流为10/35μs电流波形。在各金属物质中雷电流的分配情况下:各部分雷电流幅值取决于各分配通道有的阻抗与感抗,分配通道是指可能被分配到雷电流的金属物质,如电力线、信号线、自来水管、金属构架等金属管级及其它接地,一般仅以各自的接地电阻值就可以大致估算。在不能确定的情况下,可以认为接是电阻相等,即各金属管线平均分配电流。 ⒉在电力线架空引入,并且电力线可能被直击雷击中时,进入建筑物内保护区的雷电流取决于外引线路、防雷器放电支路和用户侧线路的阻抗和感抗。如内外两端阻抗一致,则电力线被分配到一半的直击雷电流。在这种情况下必须采用具有防直击雷功能的防雷器。 ⒊后续的*估模式用于*估LPZ1区以后防护区交界处的雷电流分配情况。由于用户侧绝缘阻抗远远大于防雷器放电支路与外引线路的阻抗,进入后续防雷区的雷电流将减少,在数值上不需特别估算。一般要求用于后续防雷区的电源防雷器的通流能力在20kA(8/20μs)以下,不需采用大通流能力的防雷器。 后续防雷区防雷器的选择应考虑各级之间的能量分配和电压配合,在许多因素难以确定时,采用串并式电源防雷器是个好的选择。串并式是根据现代雷电防护中许多应用场合、保护范围层次区分等特点提出的概念(相对于传统的并式防雷器而言)。其实质是经能量配合和电压分配的多级放电器与滤波器技术的有效结合。串并式防雷有如下特点:应用广泛。不但可

110(66)kV~750kV避雷器技术标准

110(66)kV~750kV避雷器技术标准

附件8: 110(66)kV~750kV避雷器技术标准 (附编制说明) 国家电网公司

目录 1 总则 (1) 2 引用标准 (1) 3 避雷器类型 (4) 3.1 金属氧化物避雷器 (4) 3.2 碳化硅阀式避雷器 (4) 4 使用环境条件 (4) 4.1 正常使用环境条件 (4) 4.2 异常使用环境条件 (5) 5 避雷器选择的一般程序 (6) 6 技术要求 (8) 6.1 无间隙金属氧化物避雷器 (8) 6.2 带串联间隙金属氧化物避雷器 (28) 6.3 碳化硅阀式避雷器 (36) 7 技术资料 (41) 7.1 招标前用户和制造厂所需提供的技术资料 41 7.2 合同签订后供货方所需提供的技术资料 (42) 7.3 设备供货时应提供以下资料 (42) 8 试验 (43) 8.1 无间隙金属氧化物避雷器 (43) 8.2 带串联间隙金属氧化物避雷器 (46) 8.3 碳化硅阀式避雷器 (49) 8.4 试验方法 (51) 9 标志、包装、贮存和运输 (57) 9.1 标志 (57) 9.2 包装 (59) 9.3 随产品提供的技术文件 (60) 9.4 运输和贮存 (60) 10 技术服务 (60) 10.1 项目管理 (60) 10.2 设备监造 (61) 10.3 现场服务 (61) 10.4 售后服务 (61) 附录A无间隙金属氧化物避雷器的典型参数63附录B避雷器用橡胶密封件的结构型式及系列参数 (64)

附录C绝缘子金属附件热镀锌层技术要求.67附录D碳化硅阀式避雷器的电气特性 (69) 附录E碳化硅阀式避雷器直流泄漏电流要求70附录F碳化硅阀式避雷器用碳化硅技术要求71

避雷器参数讲解(图文)民熔

避雷器参数 1.标称电压Un 被保护系统的额定电压相符,在信息技术 系统中此参数表明了应该选用的保护器的类型,它标出交流或直流电压的有效值。 2.额定电压Uc: 能长久施加在保护器的指定端,而不引起 保护器特性变化和激活保护元件的最大电压有 效值。 3.额定放电电流Isn: 给保护器施加波形为8/20μs 的标准雷电波冲击10 此时,保护器所耐受的最大冲击电流峋值。4.最大放电电流 Imax: 给保护器施加波形为8/20μs的标准雷电 波冲击1次时,保护器所耐受的最大冲击电流 峰值。

5电压保护等级上升:保护器在下列试验中的最大值:点火电压的1kV/ys斜率;额定放电电流的残余电压。 6响应时间TA:主要反映保护器中特殊保护元件的动作灵敏度和击穿时间。在一定时间内的变化取决于Du/dt或di/dt的斜率。 7数据传输速率vs:表示每秒传输的比特数,单位为BPS,是数据传输系统中正确选择防

雷装置的参考值,防雷装置的数据传输速率取决于系统的传输方式。 8插入损耗AE:在给定频率下插入保护器前后的电压比。 9回波损耗ar:表示保护设备(反射点)反射的前波所占的比例,是直接衡量保护设备是否与系统阻抗兼容的参数。 10最大纵向放电电流:当8/20us波形的标准雷电波对地一次时,保护器能承受的最大冲击电流的峰值。 11最大横向放电电流:在线路间施加波形为8/20μs的标准雷电波一次时,保护器能承受的最大冲击电流的峰值。 12线路阻抗UN为流过线路阻抗的总和。它通常被称为“系统电阻13峰值放电电流:有两种:额定放电电流LSN和最大放电电流Imax。 13泄漏电流:指在75或80额定电压UN 下流过保护器的直流电流。 从安全运行的角度看,避雷器额定电压的选择还应遵循以下原则:1)避雷器的额定电压应高于安装现场可能出现的工频暂态电压。

避雷器的电气参数

避雷器的电气参数 [ 2007-1-7 16:51:00 | By: 35dtb ] 1.系统额定电压(有效值)(kV):与电力系统标称电压相对应。 2.避雷器额定电压(有效值)(kV)(灭弧电压):保证避雷器能灭弧的最高工频电压允许值。 3.工频放电电压(有效值)(kV):避雷器在工频电压下将放电的电压值。由于火花间隙击穿的分散性,它有一个上限值和下限值。 工频放电电压不能低于下限值,以避免在能量大的内过电压下动作,使避雷器损坏或爆炸。 工频放电电压也不能高于上限值,因在一定的结构下工频放电电压和冲击放电电压有一定的影响关系,工频放电电压高了将使冲击放电电压提高,影响保护效果。 4.冲击放电电压:在冲击电压作用下避雷器发生放电的电压值(幅值)。 5.残压:当波形为8/20μs,5kA或10kA的冲击电流流过避雷器时避雷器两端的电压降,以幅值表示。此残压为避雷器雷电放电时加于并接的被保护设备上的电压,当然低一点好。 6.避雷器持续运行电压:加于避雷器两端允许持续运行的工频电压有效值。 7.避雷器的直流参考电压U1mA:使恒定的1mA电流流过避雷器时施加于避雷器两端的电压。

避雷器额定电压是施加到避雷器端子间的最大允许工频电压有效值,按照此电压设计的避雷器,能在所规定的动作负载试验中确定的暂时过电压下正确地工作。它是表明避雷器运行特征的一个重要参数,但它不等于系统标称电压。 由于电力系统的标称电压使该系统相间电压的标幺值,而避雷器一般安装在相对地之间,正常工作时承受的是相电压和暂时过电压,并且避雷器有它本身的特点,因此其额定电压与电力系统的标称电压以及其他电器的额定电压有不同意义。按照国际电工委员会(IEC99-4)及GB11032对无间隙金属氧化物避雷器的规定,避雷器在60度的温度下,注入标准规定的能量后,必须能耐受相当于额定电压数值的暂时过电压至少1s。 避雷器额定电压建议值: 非直接接地系统及小阻抗接地系统:1s及以内切除故障,10kV选用13kV避雷器 1s以上切除故障,10kV选用17kV避雷器 直接接地系统:110kV选用102kV避雷器 并联电容器装置保护用氧化锌避雷器的选型问题 唐耀胜

避雷器主要特性及参数选择 图文 民熔

避雷器 避雷器是电力系统中主要的防雷保护装置之一,只有正确地选择避雷器,方能发挥其应有的防雷保护作用。 1、无间隙金属氧化物避雷器的选择选择的一般要求如下: (1)、应按照使用地区的气温、海拔、风速、污秽以及地震等条件确定避雷器使用环境条件,并按系统的标称电压、系统最高电压、额定频率、中性点接地方式,短路电流值以及接地故障持续时间等条件确定避雷器的系统运行条件。 (2)、按照被保护的对象确定避雷器的类型。 (3)、按长期作用于避雷器上的最高电压确定避雷器的持续运行电压。

(4)、按避雷器安装地点的暂时过电压幅值和持续时间选择避雷器的额定电压。 (5)、估算通过避雷器的放电电流幅值,选择避雷器的标称放电电流。 (6)、根据被保护设备的额定雷电冲击耐受电压和额定操作冲击耐受电压,按绝缘配合的要求,确定避雷器的雷电过电压保护水平和操作过电压保护水平。 (7)、估算通过避雷器的冲击电流和能量,选择避雷器的试验电流幅值, 线路放电耐受试验等级及能量吸收能力。 (8)、按避雷器安装处最大故障电流,选择避雷器的压力释放等级。 (9)、按避雷器安装处环境污染程度,选择避雷器瓷套的泄漏比距。

(10)、按避雷器安装的引线拉力、风速和地震等条件,选择它的机械强度。 (11)、当避雷器不满足绝缘配合要求时,可采取适当降低其额定电压或标称放电电流等级或提高被保护设备的绝缘水平等补救措施。 2.主要特性参数选择 (1)、持续运行电压Uc中性点直接接地系统的相对地无间隙金属氧化物避雷器,其Uc可按不低于系统最高相电压选取。 在中性点非直接接地系统,如单相接地故障能在10s以内切除,其Uc 何按不低于选取,但由于我国大部分中性点非直接接地系统中允许带接地故障运行2h以上,因此Uc可按以下原则选取:10s及以内切除故障U。 2U132h及以上切除故障3~ 10kV 1.0~ 1.1UL, 35~ 66kV Uc2UL至于10s~2h之间,可按2h以上选取,也可参照避雷器的工频电压耐受特性曲线选取。 (2)、额定电压UrUr是指避雷器两端间的最大允许工频电压的有效值,是在60°C温度下注入规定能量后,能耐受额定电压Ur10s,随后在Uc下,耐受30min,能保持热稳定。

避雷器参数及选型原则

金属氧化物避雷器的选择 来源:安徽省广德电力公司时间:2008-03-17 责任编辑:巧兰 标签: 避雷器是电力系统中主要的防雷保护装置之一,只有正确地选择避雷器,方能发挥其应有的防雷保护作用。 1 无间隙金属氧化物避雷器的选择 选择的一般要求如下: (1) 应按照使用地区的气温、海拔、风速、污秽以及地震等条件确定避雷器使用环境条件,并按系统的标称电压、系统最高电压、额定频率、中性点接地方式,短路电流值以及接地故障持续时间等条件确定避雷器的系统运行条件。 (2) 按照被保护的对象确定避雷器的类型。 (3) 按长期作用于避雷器上的最高电压确定避雷器的持续运行电压。 (4) 按避雷器安装地点的暂时过电压幅值和持续时间选择避雷器的额定电压。 (5) 估算通过避雷器的放电电流幅值,选择避雷器的标称放电电流。 (6) 根据被保护设备的额定雷电冲击耐受电压和额定操作冲击耐受电压,按绝缘配合的要求,确定避雷器的雷电过电压保护水平和操作过电压保护水平。 (7) 估算通过避雷器的冲击电流和能量,选择避雷器的试验电流幅值,线路放电耐受试验等级及能量吸收能力。 (8) 按避雷器安装处最大故障电流,选择避雷器的压力释放等级。 (9) 按避雷器安装处环境污染程度,选择避雷器瓷套的泄漏比距。 (10) 按避雷器安装的引线拉力、风速和地震等条件,选择它的机械强度。 (11) 当避雷器不满足绝缘配合要求时,可采取适当降低其额定电压或标称放电电流等级或提高被保护设备的绝缘水平等补救措施。 2 主要特性参数选择 (1) 持续运行电压Uc。中性点直接接地系统的相对地无间隙金属氧化物避雷器,其Uc 可按不低于系统最高相电压( )选取。 在中性点非直接接地系统,如单相接地故障能在10s以内切除,其Uc仍可按不低于选取,但由于我国大部分中性点非直接接地系统中允许带接地故障运行2h以上,因此Uc可按以下原则选取: 10s及以内切除故障

避雷器参数及选型原则

避雷器参数及选项原则 1.金属氧化物避雷器的选择避雷器是电力系统中主要的防雷保护装置之一,只有正确地选择避雷器,方能发挥其应有的防雷保护作用。 1、无间隙金属氧化物避雷器的选择选择的一般要求如下: (1)、应按照使用地区的气温、海拔、风速、污秽以及地震等条件确定避雷器使用环境条件,并按系统的标称电压、系统最高电压、额定频率、中性点接地方式,短路电流值以及接地故障持续时间等条件确定避雷器的系统运行条件。 (2)按照被保护的对象确定避雷器的类型。 (3)(按长期作用于避雷器上的最高电压确定避雷器的持续运行电压。 (4)按避雷器安装地点的暂时过电压幅值和持续时间选择避雷器的额定电压。 (5)估算通过避雷器的放电电流幅值,选择避雷器的标称放电电流。 (6)根据被保护设备的额定雷电冲击耐受电压和额定操作冲击耐受电压,按绝缘配合的要求,确定避雷器的雷电过电压保护水平和操作过电压保护水平。 (7)估算通过避雷器的冲击电流和能量,选择避雷器的试验电流幅值,线路放电耐受试验等级及能量吸收能力。 (8)按避雷器安装处最大故障电流,选择避雷器的压力释放等级。 (9)按避雷器安装处环境污染程度,选择避雷器瓷套的泄漏比距。 (10)按避雷器安装的引线拉力、风速和地震等条件,选择它的机械强度。 (11)当避雷器不满足绝缘配合要求时,可采取适当降低其额定电压或标称放电电在避雷器使用前,都应该对其有关技术参数进行测量,以确保避雷器安装质量。 1 绝缘电阻的测量 1.对35kV及以下氧化锌避雷器用2500V兆欧表摇测,每节的绝缘电阻应不低于1000MΩ。 进口氧化锌避雷器每节的绝缘电阻一般按厂家的标准。如日本明电舍规定:对ZSE-C2Z型294kV 氧化锌避雷器应使用1000V兆欧表,绝缘电阻不低于2000MΩ。 2 测量直流和泄漏电流 测量直流电压U1mA及75%U1mA电压下的泄漏电流,目的是为了检查其非线性特性及绝缘性能。U1mA为试品通过1mA直流时,被试避雷器两端的电压值。《规程》规定:1mA电压值U1mA与初始值比较,变化应不大于±5%。0.75U1mA电压下的泄漏电流应不大于50μA。也就是说,在电压降低25%时,合格的氧化锌避雷器的泄漏电流大幅度降低,从1000μA降至50μA以下。若U1mA电压下降或0.75U1mA下泄漏电流明显增大,就可能是避雷器阀片受潮老化或瓷质有裂纹。测量时,为防止表面泄漏电流的影响,应将瓷套表面擦净或加屏蔽措施,并注意气候的影响。一般氧化锌阀片U1mA的温度系数约为(0.05~0.17)%/℃,即温度每增高10℃,U1mA 约降低1%,必要时可进行换算。 3 运行电压下交流泄漏电流测量用LCD-4型检测仪可以测得运行电压下避雷器的泄漏电流(全电流)及其有功分量(阻性电流)和无功分量(容性电流)、功率损耗Px等。 2.试验研究表明:当氧化锌避雷器阀片受潮或老化时,阻性电流幅值增加很快,因此监测阻性电流可以有效地监测避雷器绝缘状况。《规程》规定:当泄漏电流有功分量增加到2倍初始值时,应停电进行检查。国内有些单位自己制定了某些判断标准,如有的单位规定,当330kV 氧化锌避雷器的阻性电流峰值超过0.3mA、110~220kV,氧化锌避雷器的阻性电流峰值超过0.2mA或测量值较初始值明显增加时,应进行停电试验,以判断绝缘优劣。低压架空线路

氧化锌避雷器的选型方法

氧化锌避雷器的选型方法 ??? 从我国电力系统实际情况出发,结合避雷器选型的历史回顾和新版本的避雷器国家标准,提出了使电力系统安全、可靠运行的并联电容器装置用氧化锌避雷器的选型方法,对变电站中并联电容器装置的设计具有一定的参考价值。? ??? 关键词:氧化锌避雷器;额定电压;持续运行电压;并联电容器装置? 1 以往只考虑操作过电压和雷电过电压水平的避雷器选型及弊端 国家标准规定,系统供电端电压应略高于系统的标称电压(或额定电压)Un 的K倍,即K=Um/Un(Um是系统最高电压)。电气设备的绝缘应能在Un下长期运行。220kV及以下系统的K为1.15,330kV及以下系统的K=1.1。避雷器设计的初期也遵守上述原则。 ??? 氧化锌避雷器之前是SiC避雷器。10kV及以下SiC避雷器的灭弧电压设计是定在系统最高运行电压的1.1倍;35kVSiC避雷器的灭弧电压等于系统最高电压;110kV及以上SiC避雷器的灭弧电压为系统最高电压的80%。对应以上的倍数分别有110%避雷器、100%避雷器和80%避雷器。 我国使用氧化锌避雷器初期,其额定电压是以SiC避雷器的灭弧电压为参考作设计的。早期的6kV、10kV和35kV避雷器均遵守上述原则,如:Y5WR-7.6/26、Y5WR-12.7/45、Y5WR-41/130。而最大长期工频工作电压为系统最高相电压,如Y5WR-12.7/45为: 2 保证在单相接地过电压下运行且电力系统安全情况下的避雷器选型及必要性 从安全运行角度,避雷器的额定电压的选择还应遵守如下原则: ①氧化锌避雷器的额定电压,应该使它高于其在安装处可能出现的工频暂态电压。在110kV及以上的中性点接地系统中是可以按上述方法选择的。 ②在110kV及以下的中性点非直接接地系统中,电力部门规程规定在单相接地情况下允许运行2h,有时甚至在断续地产生弧光接地过电压情况下运行2h以上才能发现故障,这类系统的运行特点对氧化锌避雷器在额定电压下安全运行10s构成严重威胁。且氧化锌避雷器与SiC避雷器结构、设计不同(后者是有间隙灭弧,前者没有间隙或者只有隔流间隙),使得实践中氧化锌避雷器出现热崩溃甚至严重的爆炸事故。面对这种情况,许多供电局、电力设计院根据各地的电网条件提出了许多类型的额定电压值(如14.4kV,14.7kV等)。而在多次国标讨论稿中动作负载试验中耐受10s的额定电压规定提高至1.2~1.3倍,使氧化锌避雷器对中性点非直接接地系统工况的适应能力有所提高。 而由于氧化锌避雷器的额定电压选择过低,使避雷器在单相接地过电压甚至许多暂态过电压下工作出现安全事故。电力部安全监察及生产协调司早在1993

各种型号的金属氧化物避雷器

各种型号的金属氧化物避雷器 金属氧化物避雷器型号说明: 一、有机复合外套无间隙氧化物避雷器有机复合外套无间隙氧化物避雷器采用通流能力较强的氧化锌非线性电阻片叠加组装,密封于外套腔内,无任何放电间隙。在正常持续运行电压状态下,避雷器不动作,呈高阻状态。当大气过电压或操作过电压的幅值超过一定范围时,避雷器导通。由于氧化锌电阻片优良的非线性伏安特性,导通后其两端的残压被抑制在被保护设备的绝缘安全值以下,从而使电气设备受到保护。氧化锌电阻片通流容量大,保护残压低,电压响应迅速,是近十余年兴起的高性能新型限压元件。优点:有机复合外套是我国硅橡胶复合绝缘子技术在避雷器外套上的应用。由于采用硅橡胶外套,从根本上消除了瓷套式避雷器可能存在的外瓷套爆裂现象,并提高了防潮、耐污、抗老化、散热等性能,同时体积小重量轻,免于维修。因此,该产品聚集了有机外套和氧化锌电阻片的全部优点,是新型的过电压保护电器。二、带脱离装置的复合外套无间隙氧化锌避雷器脱离装置是避雷器本体所带的一种自我保护装置,通常接在避雷器的底部,避雷器通过其接地。当避雷器在系统雷击或操作过电压下泄放能量,外界电动力、机械力及环境温度变化等综合作用时,脱离器不会动作,即避雷器正常工作时,脱离装置不影响其工作。当避雷器自动运行的稳定性受到损坏,或避雷器已经损坏时,脱离器迅速工作,将避雷接地线断开,避雷器电位悬空,退出运行。优点:安秒特性稳定、反应快、灭弧效果好、分断能力强、工作可靠性高、体积小、密封性好、为故障避雷器提供了明显标记、便于迅速发现故障点并及时维修。三、金属氧化物避雷器外形尺寸

避雷器型号D(mm)h(mm)H(mm)伞数重量(kg)YH5WS1-17/50 90 190 260 5 1.5 YH5WZ1-17/45 92 190 260 5 1.7

避雷器参数选择

复合外套氧化物避雷器参数选择 1.避雷器选型总体原则 避雷器选型的一般原则如下。 (1)根据被保护对象选择避雷器类型。 (2)按系统中长期作用在避雷器上的最高电压确定避雷器的持续运行电压。 (3)估算通过避雷器的雷电放电电流幅值,选择避雷器的标称放电电流。 (4)根据被保护设备的额定雷电冲击耐受电压和操作冲击耐受电压,按照绝缘配合系数的要求,留够绝缘裕度,确定避雷器雷电冲击保护水平和操作冲击保护水平。 2、避雷器额定电压:施加避雷器端子间的最大允许工频电压有效值,按照此电压所设计的避雷器,能在所规定的动作负载试验中确定的暂时过电压下正确地工作。 (1)按IEC 标准规定,避雷器在注入标准规定的能量后,必须能耐受相当于额定电压数值的暂时过电压至少10s。 (2)避雷器额定电压选择。避雷器额定电压可按(下)式选择U r≥kU t (1) 式中:U r——避雷器额定电压,kV; k——切除短路故障时间系数,10s 及以内切除故障k=1.0,10s 以上切除故障k=1.3; U t——暂时过电压,kV。

在选择避雷器额定电压时,仅考虑单相接地、甩负荷和长线电容效应引起的暂时过电压,可按表3选取 即:10kV避雷器额定电压选17kV;35kV避雷器额定电压选54KV。3、避雷器的标称放电电流的选取 避雷器的标称放电电流分lkA、1.5kA、2.5kA、5kA、10kA和20kA 共6个等级。 确定避雷器的额定电压后,对照《交流电力系统金属氧化物避雷

器使用导则》中避雷器分类表,可查出相应的避雷器标称放电电流等级。一般保护110kV一220kV设备的避雷器选10kA;保护35kV以下设备的避雷器选5kA;变压器中性点避雷器选1.5kA。 即:油田配电线路选取标称电流为5kA. 在确定避雷器的标称放电电流时,按照《交流无间隙金属氧化物避雷器》GBll032--2000附录K给出的各标称放电电流等级的避雷器每单位额定电压下典型的最大残压范围,用各设备额定雷电冲击电流的耐受电压值除以1.4得到允许的最大残压值,再除以相应电压等级下选定的避雷器的额定电压值得到一个比值(这个比值为允许的最大值),在附录K中,查出相应的额定电压和雷电冲击保护水平栏中对应的最相近的放电电流等级,也可得到选定的避雷器标称放电电流等级。 4、避雷器雷电过电压保护水平的选取 避雷器是否能起到对被保护设备的过电压保护作用,取决于避雷器的保护水平,它是电力系统过电压保护和绝缘配合的一个基本参数。无间隙金属氧化物避雷器的保护水平完全由它的残压来确定,避雷器的雷电过电压保护水平较操作过电压保护水平高,这里只讨论雷电过电压保护水平的选取。

相关文档
最新文档