二阶常系数线性微分方程的解法word版

二阶常系数线性微分方程的解法word版
二阶常系数线性微分方程的解法word版

第八章 8.4讲

第四节 二阶常系数线性微分方程

一、二阶常系数线形微分方程的概念

形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数.

如果0)(≡x f ,则方程式 (1)变成

0=+'+''qy y p y (2)

我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法.

二、二阶常系数齐次线性微分方程

1.解的叠加性

定理 1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是式(2)的解,其中21,C C 是任意常数.

证明 因为1y 与2y 是方程(2)的解,所以有 0111

=+'+''qy y p y 0222

=+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得

)()()(22112211221

1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111

1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解.

定理1说明齐次线性方程的解具有叠加性.

叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)的通解.

2.线性相关、线性无关的概念

设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数

,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n

个函数在区间I 内线性相关,否则称线性无关.

例如 x x 2

2sin

,cos ,1在实数范围内是线性相关的,因为

0s i n c o s 12

2≡--x x

又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使

02

321≡++x

k x k k

必须0321===k k k .

对两个函数的情形,若

=2

1y y 常数, 则1y ,2y 线性相关,若

≠2

1y y 常数, 则

1y ,2y 线性无关.

3.二阶常系数齐次微分方程的解法

定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则212211,(C C y C y C y +=为任意常数)是方程式(2)的通解.

例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的两个解,且

≠=x y y tan 2

1常数,即1y ,2y 线性无关, 所以

x C x C y C y C y cos sin 212211+=+=

( 21,C C 是任意常数)是方程0=+''y y 的通解.

由于指数函数rx

e y =(r 为常数)和它的各阶导数都只差一个常数因子, 根据指数函数的这个特点,我们用rx

e y =来试着看能否选取适当的常数r ,

使rx e y =满足方程(2).

将rx e y =求导,得

rx

rx

e r y re

y 2,=''='

把y y y ''',,代入方程(2),得

0)(2=++rx e q pr r

因为0≠rx e , 所以只有 02=++q pr r (3)

只要r 满足方程式(3),rx e y =就是方程式(2)的解.

我们把方程式(3)叫做方程式(2)的特征方程,特征方程是一个代数方程,其中r r ,2的系数及常数项恰好依次是方程(2)y y y ,,'''的系数.

特征方程(3)的两个根为 2

42

2,1q p p r -±

-=, 因此方程式(2)的通

解有下列三种不同的情形.

(1) 当042>-q p 时,21,r r 是两个不相等的实根.

2

42

1q p p r -+

-=,2

42

2q p p r ---=

x

r x

r e

y e

y 2121,==是方程(2)的两个特解,并且

≠=-x

r r e

y y )(2

121常数,即

1y 与2y 线性无关.根据定理2,得方程(2)的通解为 x

r x

r e

C e

C y 2121+=

(2) 当042

=-q p 时, 21,r r 是两个相等的实根.

2

21p r r -

==,这时只能得到方程(2)的一个特解x

r e

y 11=,还需求出另

一个解2y ,且

≠1

2y y 常数,设

)(1

2x u y y =, 即

)(12x u e

y x

r =

)2(),(2

112

12

11u r u r u e y u r u e y x

r x

r +'+''=''+'='.

将22

2,,y y y '''代入方程(2), 得 [

]

0)()2(12

111

=++'++'+''qu u r u p u r u r u e x r

整理,得

0])()2([12

111

=+++'++''u q pr r u p r u e x r

由于01

≠x r e , 所以 0)()2(12

11=+++'++''u q pr r u p r u

因为1r 是特征方程(3)的二重根, 所以

02,

0112

1=+=++p r q pr r

从而有 0=''u

因为我们只需一个不为常数的解,不妨取x u =,可得到方程(2)的另一个解

x

r xe

y 12=.

那么,方程(2)的通解为

x

r x

r xe

C e

C y 1121+=

即 x

r e

x C C y 1)(21+=.

(3) 当042

<-q p 时,特征方程(3)有一对共轭复根

βαβαi r i r -=+=21, (0≠β)

于是 x

i x

i e

y e y )(2)(1,βαβα-+==

利用欧拉公式 x i x e

ix

sin cos +=把21,y y 改写为

)s i n (c o s )(1x i x e

e e

e y x

x

i x

x

i ββαβαβα+=?==+ )s i n (c o s )(2x i x e

e

e

e y x

x

i x x

i ββαβαβα-=?==--

21,y y 之间成共轭关系,取

-

1y =

x e y y x

βαcos )(2

121=+,

x e

y y i

y x

βαsin )(21

21_

2=-=

方程(2)的解具有叠加性,所以-

1y ,-

2y 还是方程(2)的解,并且

≠==

-

-

x x

e

x e y y x

x βββααt a n c o s s i n 1

2

常数,所以方程(2)的通解为

)s i n c o s (21x C x C e y x ββα+= 综上所述,求二阶常系数线性齐次方程通解的步骤如下:

(1)写出方程(2)的特征方程

02=++q pr r

(2)求特征方程的两个根21,r r

(3)根据21,r r 的不同情形,按下表写出方程(2)的通解.

例1求方程052=+'+''y y y 的通解. 解: 所给方程的特征方程为

0522

=++r r

i r i r 21,2121--=+-=

所求通解为 )2s i n 2c o s (21x C x C e y x +=-.

例 2 求方程

02

22

=++S dt

dS dt

S d 满足初始条件2

,400

-='===t t S S

的特解.

解 所给方程的特征方程为

0122

=++r r

121-==r r

通解为 t e t C C S -+=)(21 将初始条件40

==t S

代入,得 41=C ,于是

t

e

t C S -+=)4(2,对其求导得

t e t C C S ---=')4(22 将初始条件20-='=t S 代入上式,得

22=C

所求特解为

t

e t S -+=)24(

例3求方程032=-'+''y y y 的通解. 解 所给方程的特征方程为 0322

=-+r r 其根为 1,321=-=r r 所以原方程的通解为 x

x

e C e

C y 231+=-

二、二阶常系数非齐次方程的解法

1.解的结构

定理3 设*y 是方程(1)的一个特解,Y 是式(1)所对应的齐次方程式(2)的通解,则*+=y Y y 是方程式(1)的通解.

证明 把*+=y Y y 代入方程(1)的左端:

)()()(*++*'+'+*''+''y Y q y Y p y Y =)()(*+*'+*''++'+''qy py y qY Y p Y =)()(0x f x f =+

*+=y Y y 使方程(1)的两端恒等,所以*+=y Y y 是方程(1)的解.

定理4 设二阶非齐次线性方程(1)的右端)(x f 是几个函数之和,如 )()(21x f x f qy y p y +=+'+'' (4)

而*1y 与*

2y 分别是方程 )(1x f qy y p y =+'+''

与 )(2x f qy y p y =+'+''

的特解,那么**+21y y 就是方程(4)的特解, 非齐次线性方程(1)的特解有时可

用上述定理来帮助求出.

2.)()(x P e x f m x

λ=型的解法

)()(x P e

x f m x

λ=,其中λ为常数,)(x P m 是关于x 的一个m 次多项式.

方程(1)的右端)(x f 是多项式)(x P m 与指数函数x

e

λ乘积的导数仍为

同一类型函数,因此方程(1)的特解可能为x

e x Q y λ)(=*,其中)(x Q 是某个多项式函数.

把 x

e x Q y λ)(=*

x

e x Q x Q y λλ)]()(['+=*'

x

e x Q x Q x Q y λλλ)]()(2)([2

''+'+=*''

代入方程(1)并消去x

e

λ,得

)()()()()2()(2

x P x Q q p x Q p x Q m =+++'++''λλλ (5)

以下分三种不同的情形,分别讨论函数)(x Q 的确定方法:

(1) 若λ不是方程式(2)的特征方程02=++q pr r 的根, 即

02

≠++q p λλ,要使式(5)的两端恒等,可令)(x Q 为另一个m 次多项式

)(x Q m :

m

m m x b x b x b b x Q ++++= 2

210)(

代入(5)式,并比较两端关于x 同次幂的系数,就得到关于未知数m b b b ,,,10 的1+m 个方程.联立解方程组可以确定出),,1,0(m i b i =.从而得到所求方程的特解为

x

m e

x Q y λ)(=*

(2) 若λ是特征方程02=++q pr r 的单根, 即

02,

02

≠+=++p q p λλλ,要使式(5)成立, 则)(x Q '必须要是m 次多

项式函数,于是令

)()(x xQ x Q m =

用同样的方法来确定)(x Q m 的系数),,1,0(m i b i =.

(3) 若λ是特征方程02=++q pr r 的重根,即,02

=++q p λλ

02=+p λ.

要使(5)式成立,则)(x Q ''必须是一个m 次多项式,可令

)()(2

x Q x x Q m =

用同样的方法来确定)(x Q m 的系数.

综上所述,若方程式(1)中的x

m e x P x f λ)()(=,则式(1)的特解为

x

m k e x Q x y λ)(=*

其中)(x Q m 是与)(x P m 同次多项式,k 按λ不是特征方程的根,是特征方程的单根或是特征方程的重根依次取0,1或2.

例4 求方程x e y y 232-='+''的一个特解. 解 )(x f 是x m e x p λ)(型, 且2,3)(-==λx P m

对应齐次方程的特征方程为 022=+r r ,特征根根为2,021-==r r . λ=-2是特征方程的单根, 令

x

e

xb y 20-=*,代入原方程解得

2

30-

=b

故所求特解为 x

xe

y 223--=* .

例5 求方程x e x y y )1(2-='-''的通解. 解 先求对应齐次方程02=+'-''y y y 的通解. 特征方程为 0122=+-r r , 121==r r 齐次方程的通解为 x e x C C Y )(21+=. 再求所给方程的特解

1)(,1-==x x P m λ

由于1=λ是特征方程的二重根,所以

x

e b ax x y )(2

+=*

把它代入所给方程,并约去x

e 得

126-=+x b ax

比较系数,得

6

1=

a 2

1-

=b

于是 x

e x x y )2

16

(

2

-

=*

所给方程的通解为 x

e x x x C C y y y )6

12

1(32

21+

-

+=+=*

3.x B x A x f ??sin cos )(+=型的解法

,sin cos )(x B x A x f ωω+=其中A 、B 、ω均为常数.

此时,方程式(1)成为

x B x A q y p y ωωsin cos +=+'+'' (7)

这种类型的三角函数的导数,仍属同一类型,因此方程式(7)的特解*y 也应属同一类型,可以证明式(7)的特解形式为

)s i n c o s (x b x a x y k ωω+=*

其中b a ,为待定常数.k 为一个整数.

当ω±i 不是特征方程02=++q pr r 的根, k 取0; 当ω±i 不是特征方程02=++q pr r 的根, k 取1; 例6 求方程x y y y sin 432=-'+''的一个特解.

解 1=ω,ω±i i ±=不是特征方程为0322=-+r r 的根,0=k .因此原方程的特解形式为

x b x a y sin cos +=*

于是 x b x a y c o s s i n +-=*' x b x a y s i n c o s --=*'' 将*''*'*y y y ,,代入原方程,得

?

??=--=+-4420

24b a b a

解得 5

4,5

2-

=-

=b a

原方程的特解为: x x y sin 5

4cos 5

2-

-

=*

例7 求方程x e y y y x sin 32+=-'-''的通解.

解 先求对应的齐次方程的通解Y .对应的齐次方程的特征方程为

0322

=--r r

3,121=-=r r

x

x

e

C e

C Y 321+=-

再求非齐次方程的一个特解*y .

由于x e x x f -+=2cos 5)(,根据定理4,分别求出方程对应的右端项为

,)(1x

e x

f =x x f sin )(2=的特解*

1y 、*

2y ,则 *

*

+=*21y y y 是原方程的一

个特解.

由于1=λ,ω±i i ±=均不是特征方程的根,故特解为 )s i n c o s (21x c x b ae y y y x ++=+=**

*

代入原方程,得

x e x c b x c b ae

x

x

sin sin )42(cos )24(4=-++--

比较系数,得

14=-a 024=+c b 142=-c b

解之得 5

1,101,41-

==

-

=c b a .

于是所给方程的一个特解为

x x e y x

s i n 51c o s 10

14

1-

+

-

=*

所以所求方程的通解为

x x e e

C e

C y

Y y x

x

x

sin 5

1cos 10

14

1321-

+

-+=+=-*

.

变系数线性常微分方程的求解

变系数线性常微分方程的求解 张慧敏,数学计算机科学学院 摘要:众所周知,所有的常系数一阶、二阶微分方程都是可解的,而变系数 二阶线性微分方程却很难解,至今还没有一个普遍方法。幂级数解法是一个非常有效的方法,本文重点讨论二阶变系数线性常微分方程的解法,从幂级数解法、降阶法、特殊函数法等方面探究了二阶微分方程的解法,简单的介绍了几种高阶微分方程的解法,并讨论了悬链线方程等历史名题。 关键词:变系数线性常微分方程;特殊函数;悬链线方程;幂级数解法 Solving linear ordinary differential equations with variable coefficients Huimin Zhang , School of Mathematics and Computer Science Abstract:As we know, all of ordinary differential equations of first, second order differential equations with constant coefficients are solvable. However, the linear differential equations of second order with variable coefficients are very difficult to solve. So far there is not a universal method. The method of power-series solution is a very efficient method. This article focuses on solving linear ordinary differential equations of second order with variable coefficients, and exploring the solution of in terms of power-series solution, the method of reducing orders, the method of special functions. Also, this paper applies the above methods to solve several linear differential equations of higher order and especially discusses the famous catenary equation. Key words:Linear ordinary differential equations with variable coefficients; Special Functions; catenary equation; Power Series Solution.

高阶线性微分方程常用解法介绍

高阶线性微分方程常用解法简介 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3,,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++=其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ是特征方程111()0n n n n F a a a λλλλ--≡++++=的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ(5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ=均为实数,则(5)是方程(3)的n 个线性无关的实值 解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而于这对共轭复根

最新二阶变系数线性微分方程的一些解法

二阶变系数线性微分方程的一些解法

第九节 二阶变系数线性微分方程的 一些解法 常系数线性齐次方程和某些特殊自由项的常系数线性非齐次方程的解法已在第七节中介绍,而对于变系数线性方程,要求其解一般是很困难的。本节介绍处理这类方程的二种方法 §9.1 降阶法 在第五节中我们利用变量替换法使方程降阶,从而求得方程的解,这种方法也可用于二阶变系数线性方程的求解。 考虑二阶线性齐次方程 22dx y d +p(x) dx dy +q(x)y =0 (9.1) 设已知其一个非零特解y 1,作变量替换,令 y =uy 1 (9.2) 其中u =u(x)为未知函数,求导数有 dx dy =y 1dx du +u dx dy 1 求二阶导数有22dx y d =y 122dx u d +2dx du dx dy 1 +u 2 12dx y d 代入(9.1)式得

y 122dx u d +(2dx dy 1+p(x)y 1)dx du +(212dx y d +p(x) dx dy 1 +q(x)y 1)u =0 (9.3) 这是一个关于u 的二阶线性齐次方程,各项系数是x 的已知函数,因为y 1是(9.1)的解,所以其中 212dx y d +p(x) dx dy 1 +q(x)y 1≡0 故(9.3)式化为 y 122dx u d +(2dx dy 1+p(x)y 1) dx du =0 再作变量替换,令dx dy =z 得 y 1dx dz +(2dx dy 1 +p(x)y 1)z =0 分离变量 z 1dz =-[1 y 2 +p(x)]dx 两边积分,得其通解 z =21 2y C e -∫p(x)dx 其中C 2为任意常数 积分得u =C 2∫21 y 1e -∫p(x)dx dx +C 1代回原变量得(9.1) 的通解 y =y 1[C 1+C 2∫21 y 1e -∫p(x)dx dx ]

二阶线性微分方程的解法

二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常 系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是 式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)的通解. 2.线性相关、线性无关的概念

设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数 ,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n 个函数在区间I 内线性相关,否则称线性无关. 例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法 定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则 212211,(C C y C y C y +=为任意常数)是方程式(2)的通解. 例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的 两个解,且≠=x y y tan 2 1常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解. 由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子, 根据指数函数的这个特点,我们用rx e y =来试着看能否选取适当的常数r , 使rx e y =满足方程(2).

变系数_非线性微分方程的求解

变系数/非线性微分方程的求解:Example1: van der Pol equation Rewrite the van der Pol equation (second-order) The resulting system of first-order ODEs is 见:vdp_solve.m及vdp.mdl vdp_solve.m vdp.mdl

Example2: 2 with x(0) = 4 x (0)=0 5(5)5sin()5 +-+= x t x t x 见:exam2_solve.m及exam2.mdl exam2_solve.m exam2.mdl

Example3: ODEs 函数实现及封装说明[以一阶微分方程为例] 510 w i t h (0)4 dx x x dt +==- 引言: 一步Euler 法求解[相当于Taylor 展开略去高阶项]: 11()k k k k k k k k k k k x x x Ax bu t x x t x x t Ax bu ++-==+??=+??=+??+ 补充说明1:对于任意方程/方程组可化为如下一阶形式[方程组]: x Ax Bu =+ 或者(,)(,)M t x x f t x = 补充说明2:ODEs 的解法不同之处在于 1、时间步长的选取(及导数的求解?):有无误差控制 变步长; 2、积分方法:选用哪几个时间状态信息。 见:my_ode_rough.m[直接求解] / test_my_ode.m[按Matlab/ODEs 方式封装] my_ode_rough.m

一阶线性非齐次微分方程求解方法归类

一阶线性非齐次微分方程一、线性方程 方程 dy dx P x y Q x += ()() 1 叫做一阶线性微分方程(因为它对于未知函数及其导数均为一次的)。 如果 Q x()≡0,则方程称为齐次的; 如果 Q x()不恒等于零,则方程称为非齐次的。 a)首先,我们讨论1式所对应的齐次方程 dy dx P x y += ()0 2 的通解问题。 分离变量得dy y P x dx =-() 两边积分得ln()ln y P x dx c =-+ ? 或 y c e P x dx =?-?() 其次,我们使用所谓的常数变易法来求非齐次线性方程1的通解。 将1的通解中的常数c换成的未知函数u x(),即作变换 y u e P x dx =?-?() 两边乘以得P x y uP x e P x dx ()()() ?=-? 两边求导得dy dx u e uP x e P x dx P x dx ='- -?-? ()() () 代入方程1得

'=-?u e Q x P x dx ()() , '=?u Q x e P x dx ()() u c Q x e dx P x dx =+??()() 于是得到非齐次线性方程1的通解 [] y e c Q x e dx P x dx P x dx =?+-???()()() 将它写成两项之和 y c e e Q x e dx P x dx P x dx P x dx =?+?--????()()()() 非齐次通解 = 齐次通解 + 非齐次特解 【例1】求方程 dy dx y x x -+=+21 13 2 () 的通解。 解: ] 23 )1([1212dx e x c e y dx x dx x ??++??=+-+-- ] 23 )1([22 )1(ln )1(ln dx e x c e x x +-+??++?= =+?++- ?()[()]x c x dx 1121 2 =+?++()[()] x c x 12121 2 由此例的求解可知,若能确定一个方程为一阶线性非齐次方程,求解它只需套用公式。

一阶线性微分方程组

第4章 一阶线性微分方程组 一 内容提要 1. 基本概念 一阶微分方程组:形如 ??? ????? ???===) ,,,,( ),,,,(),,,,(2121222111 n n n n n y y y x f dx dy y y y x f dx dy y y y x f dx dy ΛΛΛΛΛ (3.1) 的方程组,(其中n y y y ,,,21Λ是关于x 的未知函数)叫做一阶微分方程组。 若存在一组函数)(,),(),(21x y x y x y n Λ使得在[a,b]上有恒等式 ),,2,1))((,),(),(,() (21n i x y x y x y x f dx x dy n i i ΛΛ==成立,则 )(,),(),(21x y x y x y n Λ称为一阶微分方程组(3.1)的一个解 含有n 任意常数n C C C ,,,21Λ的解 ?????? ?===) ,,,,( ),,,,(),,,,(21321222111n n n n C C C x y C C C x y C C C x y ΛΛΛΛΛ??? 称为(3.1)通解。如果通解满方程组 ???????=Φ=Φ=Φ0 ),,,,,,,,( 0),,,,,,,,(0),,,,,,,,(21212121221211n n n n n n n C C C y y y x C C C y y y x C C C y y y x ΛΛΛΛΛΛΛΛ 则称这个方程组为(3.1)的通积分。 满足初始条件,)(,,)(,)(0020021001n n y x y y x y y x y ===Λ的解,叫做初值问题的解。

(整理)常系数线性微分方程的解法

常系数线性微分方程的解法 摘要:本文对常系数线性方程的各种解法进行分析和综合,举出了每个方法的例题,以便更好的掌握对常系数线性微分方程的求解. 关键词:特征根法;常数变易法;待定系数法 Method for solving the system of differential equation with Constant Coefficients Linear Abstract: Based on the linear equations with constant coefficients of analysis and synthesis method, the method of each sample name, in order to better grasp of the linear differential equation with constant coefficients of the solution. Key Words: Characteristic root ;Variation law ;The undetermined coefficient method 前言:常系数性微分方程因形式简单,应用广泛,解的性质及结构已研究的十分清楚,在常微分方程中占有十分突出的地位。它的求解是我们必须掌握的重要内容之一,只是由于各种教材涉及的解法较多,较杂,我们一般不易掌握,即使掌握了各种解法,在具体应用时应采用哪种方法比较适宜,我们往往感到困难。本文通过对一般教材中涉及的常系数线性微分方程的主要解法进行分析和比较,让我们能更好的解常系数线性微分方程。 1.预备知识 复值函数与复值解 如果对于区间a t b ≤≤中的每一实数t ,有复值()()()z t t i t ?ψ=+与它对应,其中()t ?和()t ψ是在区间a t b ≤≤上定义的实函数,1i =-是虚数单位,我们就说在区间a t b ≤≤上给定了一个复值函数()z t .如果实函数()t ?,()t ψ当t 趋于 0t 时有极限,我们就称复值函数()z t 当t 趋于0t 时有极限,并且定义

二阶变系数线性微分方程的一些解法

第九节 二阶变系数线性微分方程 的一些解法 常系数线性齐次方程和某些特殊自由项的常系数线性非齐次方程的解法已在第七节中介绍,而对于变系数线性方程,要求其解一般是很困难的。本节介绍处理这类方程的二种方法 §9.1 降阶法 在第五节中我们利用变量替换法使方程降阶,从而求得方程的解,这种方法也可用于二阶变系数线性方程的求解。 考虑二阶线性齐次方程 22dx y d +p(x) dx dy +q(x)y =0 (9.1) 设已知其一个非零特解y 1,作变量替换,令 y =uy 1 (9.2) 其中u =u(x)为未知函数,求导数有 dx dy =y 1dx du +u dx dy 1 求二阶导数有22dx y d =y 122dx u d +2dx du dx dy 1+u 21 2dx y d 代入(9.1)式得

y 122dx u d +(2dx dy 1+p(x)y 1)dx du +(21 2dx y d +p(x) dx dy 1+q(x)y 1)u =0 (9.3) 这是一个关于u 的二阶线性齐次方程,各项系数是x 的已知函数,因为y 1是(9.1)的解,所以其中 21 2dx y d +p(x) dx dy 1+q(x)y 1≡0 故(9.3)式化为 y 122dx u d +(2dx dy 1+p(x)y 1) dx du =0 再作变量替换,令dx dy =z 得 y 1dx dz +(2dx dy 1 +p(x)y 1)z =0 分离变量 z 1 dz =-[1y 2+p(x)]dx 两边积分,得其通解 z =21 2y C e -∫p(x)dx 其中C 2为任意常数 积分得u =C 2∫21 y 1e -∫p(x)dx dx +C 1代回原变量得(9.1) 的通解 y =y 1[C 1+C 2∫21 y 1e -∫p(x)dx dx ]

8.1.n阶常系数线性方程的解法

第二讲§4.2 n 阶常系数线性齐次方程的解法(2学时) 教学目的: 本节主要讨论n 阶常系数线性齐次方程的解法。 教学要求: 掌握n 阶常系数线性齐次方程的一些解法,了解复值函数与复值解的有关结论。 教学重点: n 阶常系数齐次线性方程的特征根法和待定系数法 教学难点: 特征根法和待定系数法 教学方法: 讲练结合教学法、提问式与启发式相结合教学法。 教学手段: 传统板书与多媒体课件辅助教学相结合。 上一节我们已详细地讨论线性方程通解的结构问题,但是如何求通解的方法还没有具体给出,事实上,对一般的线性方程是没通用的解法.本节介绍求解常系数齐次线性方程通解的方法,是在线性方程基本理论上化为解一个相应的代数方程,而不必进行积分运算.进而介绍可化为常系数齐次线性方程的解法. 讨论常系数线性方程的解法时,需要涉及到定变量的变值函数及复指数函数的问题.为此首先作一介绍. 一. 复值函数与复值解 1. 复值函数 若)()(t t ψ?和是区间b t a ≤≤上定义的实函数,我们称) 1(),()()(2 -=+=i t i t t z ψ?为区间b t a ≤≤上的复值函数. 若)(),(t t ψ?在b t a ≤≤上连续,则称z(t)在b t a ≤≤上连续. 若)(),(t t ψ?在b t a ≤≤上可微,则称z(t)在b t a ≤≤上可微. 且z(t)的导数为: ,dt d i dt d dt dz ψ?+= 复函数求导法则与实函数相同. 2.复指数函数 ()()(cos sin )i t t z t e e t i t αβαββ+==+, 欧拉公式:cos sin i e i θθθ=+ 3.复值解 定义 定义在区间a t b ≤≤上的实变量复值函数)(t z x =称为方程(4.5)的复值解,如果 ()(1)11()()()()n n n n z p t z p t z p t z f t --'++++= 对于a t b ≤≤恒成立。 对线性方程的复值解有下面的两个结论:

常系数线性微分方程的解法

常系数线性微分方程的解法 摘 要:本文主要介绍了常系数线性微分方程的解法.着重讨论利用代数运算和微分运算来求常系数齐次线性微分方程和非齐次线性微分方程的通解. 关键词:复值函数与复值解;欧拉方程;比较系数法;拉普拉斯变换法 The Solution of Linear Differential Equation with Constant Coefficients Abstract :The solutions of linear differential equation with constant coefficients are introduced in this article. And using the algebraic operation and differential operation to solv the general solution of homogeneous linear differential equation and nonhomogeneous linear differential equation are discussed emphatically. Key Words :complex flnction and complex answer; euler equation;the method of coefficients comparison; the method of laplace transformation. 前言 为了让我们更多的认识和计算常系数线性微分方程,本文通过对复值函数和复值解以及常系数线性微分方程和欧拉函数的简单介绍,进而简单讨论了常系数线性微分方程的解法,以此来帮助我们解决常系数线性微分方程的解. 1. 预备知识 1.1复值函数与复值解 如果对于区间a t b ≤≤中的每一个实数t ,有复数()()()z t t i t ?ψ=+与它对应,其中 ()t ?和()t ψ是在区间a t b ≤≤上定义的实函数,i =是虚数单位,我们就说在区间 a t b ≤≤上给定了一个复值函数()z t .如果实函数()t ?,()t ψ当t 趋于0t 时有极限,我们 就称复值函数()z t 当t 趋于0t 时有极限,并且定义 lim ()lim ()lim ()t t t t t t z t t t ?ψ→→→=+. 如果0 0lim ()()t t z t z t →=,我们就称()z t 在0t 连续.显然,()z t 在0t 连续相当于()t ?,()t ψ在0 t 连续.当()z t 在区间a t b ≤≤上每点都连续时,就称()z t 在区间a t b ≤≤上连续.如果极

1、变系数线性微分方程的求解

本科毕业论文 题目:变系数线性微分方程的求解问题院(部):理学院 专业:信息与计算科学 班级:信计081 姓名:张倩 学号:2008121191 指导教师:庞常词 完成日期:2012年6月1日

目录 摘要 (Ⅱ) ABSTRACT (Ⅲ) 1前言 1.1微分方程的发展和应用 (1) 1.2二阶变系数线性常微分方程的重要性 (2) 1.3本文的研究内容及意义 (2) 2二阶变系数线性微分方程特、通解与系数的关系 2.1基本概念 (3) 2.2二阶变系数线性微分方程的求解定理 (3) 2.3二阶变系数线性微分方程特、通解与系数的关系 (5) 3 微分方程的恰当方程解法 3.1恰当方程的概念 (8) 3.2恰当微分方程解法 (10) 4 微分方程的积分因子解法 4.1积分因子的概念 (14) 4.2积分因子解法 (14) 5二阶变系数微分方程可积的条件 结论 (22) 谢辞 (23) 参考文献 (24)

摘要 微分方程在数学理论中占有重要位置,在科学研究、工程技术中有着广泛的应用。在微分方程理论中,一些特殊的微分方程的性质及解法也已经有了深入的研究,它们总是可解的,但是变系数微分方程的解法比较麻烦的。 如果能够确定某一类型的二阶变系数线性微分方程的积分因子或恰当方程,则该二阶变系数线性微分方程就可以求解,问题在于如何确定积分因子和恰当方程及该类方程在何种情况下可积。 本文通过对微分方程的理论研究,用不同的方法探讨这类问题,扩展了变系数线性微分方程的可积类型,借助积分因子和恰当方程的方法求解方程。 关键词:变系数;二阶微分方程;积分因子;恰当因子

S olve For Varied Coefficient Second Order Liner Differential Equation ABSTRACT Second order liner homogeneous differential equation plays an important role in mathematics theory, and use extensively in science research and technology. In differential equation theory, some special differential equation’s solve ways have already been researched. So they can be seemed as could be solved sort of equation. But varied coefficient equation, however, this solve for this sort of equation is hard. If we can make integrating factor or exact equation of some types of second order liner different equation, and this types of second order liner different equation can be solved. The problem is how to make integrating factor and exact equation, and this type equation can be integral in which condition. This article utilizes different ways to research this problem in different equation theories, which expand could be solved type of varied coefficient second order liner differential equation. By integrating factor and exact equation make varied coefficient second order liner differential equation. Key Words: varied coefficient; second order liner differential equation; integrating factor; exact equation

第三章 一阶线性微分方程组 第四讲 常系数线性微分方程组的解法(1)

第四讲 常系数线性微分方程组的解法(4课时) 一、目的与要求: 理解常系数线性微分方程组的特征方程式, 特征根, 特征向量的概念, 掌 握常系数线性微分方程组的基本解组的求法. 二、重点:常系数线性微分方程组的基本解组的求法. 三、难点:常系数线性微分方程组的特征方程式, 特征根, 特征向量的概念. 四、教学方法:讲练结合法、启发式与提问式相结合教学法. 五、教学手段:传统板书与多媒体课件辅助教学相结合. 六、教学过程: 1 新课引入 由定理3.6我们已知道,求线性齐次方程组(3.8)的通解问题,归结到求其基本解组. 但是对于一般的方程组(3.8),如何求出基本解组,至今尚无一般方法. 然而对于常系数线性齐次方程组 dY AY dx = (3.20) 其中A 是n n ?实常数矩阵,借助于线性代数中的约当(Jordan)标准型理论或矩阵指数,可以使这一问题得到彻底解决. 本节将介绍前一种方法,因为它比较直观. 由线性代数知识可知,对于任一n n ?矩阵A ,恒存在非奇异的n n ?矩阵T ,使矩阵 1T AT -成为约当标准型. 为此,对方程组(3.20)引入非奇异线性变换 Y TZ = (3.21) 其中()(,1,2,,),ij T t i j n == det 0T ≠,将方程组(3.20)化为 1dZ T ATZ dx -= (3.22) 我们知道,约当标准型1 T AT -的形式与矩阵A 的特征方程 11121212221 2 det()0n n n n nn a a a a a a A E a a a λ λλλ ---= =-

的根的情况有关. 上述方程也称为常系数齐次方程组(3.20)的特征方程式.它的根称为矩阵 A 的特征根. 下面分两种情况讨论. (一) 矩阵A 的特征根均是单根的情形. 设特征根为12,,,,n λλλ 这时 12 1 00 n T AT λλλ-????? ?=?????? 方程组(3.20)变为 11122 200n n n dz dx z dz z dx z dz dx λλλ?????????????? ????????= ???????????????? ?????? (3.23) 易见方程组(3.23)有n 个解 1110(),00x Z x e λ????????=???????? 220010(),,()0001n x x n Z x e Z x e λλ???????????? ????==???????????????? 把这n 个解代回变换(3.21)之中,便得到方程组(3.20)的n 个解 12()i i i i x x i i ni t t Y x e e T t λλ?? ????==?????? (1,2,,)i n =

常微分方程论文,变系数线性微分方程的解法

变系数线性微分方程的解法 ... 摘 要:文章通过对一些变系数线性微分方程的经典题目总结一下解决这类问题的基本方法。 关键词:变系数线性微分方程,基本解法。 1 引 言 整体回顾了一下第三章,我想感慨一下现在数学发展得真是完备。我们学的95%以上的知识数学书上都给出了一般的解。比如说可降阶的高阶方程,我们用一个变量代换最低阶的自变量那项就可以解出所有的这类题目了;又比如说线性常系数微分方程,使用常数变易法和待定系数法也可以解决所有的题目,特别是待定系数法,实在是解决线性非齐次常系数微分方程的利器!在这几块,我觉得实在是难以补充什么了。当下我觉得最需要我们去探索和挖掘的应该是那些目前不能够有普适解法的题目,比如说接下来要讲的变系数线性微分方程。下面,我们通过几个例题来总结一下解决这类问题的基本方法。 2 几个变系数线性微分方程的基本方法 2.1 化为常系数法 2.1.1形如0222 =++x dt dx bt dt x d at 的常微分方程。 这类题目是书上明确告诉我们的解法的,其实这类方程叫欧拉方程,虽然书上讲过了,但是也是这部分很重要的一类题,这边放在第一类。 因为这类题目的形式统一,所以直接求解带未知数的微分方程了。 解:作变换u e t =,即t u ln =,则: du dx t dt du du dx dt dx 1==,)(122222du dx du x d t dt x d -= 用上式带入原方程,得0)(22=++-x du dx b du dx du x d a 这样的话我们得到了一个自变量为u,应变量为x 的一个常系数线性齐次微分方程,显

常系数线性微分方程的解的结构分析

常系数线性微分方程的解的结构分析 【 摘要】在参考和总结了许多场系数线性微分方程的解法的基础上,本文总结了一些常系数微分方程的解的解法,并针对一类常系数线性微分方程的已有结论给予证明,以解给予一些结论证明思路,以及一些实例,并向高阶推广。 【关键词 】常系数 线性 微分方程 结构 一阶常系数齐次线性微分方程 0=+ax dt dx , (1.1) 的求解 上式可以改写为 adt x dx -= , (1.2) 于是变量x 和t 被分离,再将两边积分得 c at x +-=ln , (1.3) 这里的c 为常数。又由对数的定义,上式可以变为 at ce x -= , (1.4) 其中c= , 因为x=0也是方程的解,因此c 可以是任意常数。 这里首先是将变量分离,然后再两边积分,从而求出方程的解。这便要方程式可以分离变量的,也就是变量分离方程。 一阶常系数微分方程 )()(x Q y x P dx dy += , (2.1) 其中P (x ),Q(x)在考虑的区间上式连续函数,若Q (x )=0 ,上式就变为 y x P dx dy )(= , (2.2) 上式为一阶齐次线性微分方程。还是变量分离方程我们可以参考上面变量分离方程的解法,先进行变量分离得到 dx x P y dy )(= , (2.3) 两边同时积分,得到 ? =dx x p ce y )( , (2.4) 这里c 是常数。 若Q (x )≠ 0 , 那么上式就变成了 一阶非齐次线性微分方程。 我们知道一阶齐次线性微分方程是一阶常微分方程的一种特殊情况,那么可以设想将一阶

齐次线性微分方程的解 ? =dx x p ce y )( , (2.5) 中的常数c 变易成为待定的函数c (x ),令 ?=dx x p e x c y )()( , (2.6) 微分之,就可以得到 ?+?=dx x p dx x p e x P x c e dx x dc dx dy )()()()()( , (2.7) 以(2.7),(2.6)代入2.1,得到 )()()()()()()()()(x Q e x c x p e x P x c e dx x dc dx x p dx x p dx x p +?=?+?,(2.8) 即 ?=-dx x p e x Q dx x dc )()() (, 积分后得到 c (x )=c dx e x Q dx x p +?? -)()( , (2.9) 这里c 是任意常数,将上式代入(2.6)得到方程(2.1)的通解 ))(()()(c dx e x Q e y dx x p dx x p +? ? =?- (2.91) 在上面的一阶线性微分方程中,是将一阶齐次线性微分方程中的通解中的常数c 变成c(x) ,常数变易法一阶非齐次线性微分方程的解, 感觉这个方法之所以用x 的未知函数u(x)替换任意常数C,是因为C 是任意的,C 与x 形成函数关系,要确定C,需要由初始条件确定,一个x,确定一个C,也就形成一对一或多对多的映射,也就是函数关系,而这里的C 是任意的,也就可以用一个未知的,也就是任意的函数u(x)来代替,进而求得非齐次线性微分方程的解。这种将常数变异为待定函数的方法,我们通常称为常数变易法。常数变易法实质也是一种变量变换的方法,通过变换(2.6可将方程(2.1)化为变量分离方程。 二阶常系数线性微分方程 (1)二阶常系数线性齐次方程 022=++qy dx dy p dx y d (3.1) 其中p 、q 是常数,我们知道,要求方程(3.1)的通解,只要求出其任意两个线性无关的特 解y 1,y 2就可以了,下面讨论这样两个特解的求法。 我们先分析方程(3.1)可能具有什么形式的特解,从方程的形式上来看,它的特点是22dx y d ,

(整理)二阶常系数线性微分方程的解法word版.

第八章 8.4讲 第四节 二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)

的通解. 2.线性相关、线性无关的概念 设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数 ,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n 个函数在区间I 内线性相关,否则称线性无关. 例如 x x 2 2 sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若 =21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法 定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则 212211,(C C y C y C y +=为任意常数)是方程式(2)的通解. 例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的两个解,且 ≠=x y y tan 2 1 常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解. 由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子,

常系数线性方程组基解矩阵的计算

常系数线性方程组基解矩阵的计算

常系数线性方程组基解矩阵的计算 董治军 (巢湖学院数学系,安徽巢湖238000) 摘要:微分方程组在工程技术中的应用时非常广泛的,不少问题都归结于它的求解问题,基解矩阵的存在和具体寻求是不同的两回事,一般齐次线性微分方程组的基解矩阵是无法通过积分得到的,但当系数矩阵是常数矩阵时,可以通过方法求出基解矩阵,这时可利用矩阵指数exp A t,给出基解矩阵的一般形式,本文针对应用最广泛的常系数线性微分方程组,结合微分方程,线性代数等知识,讨论常系数齐次线性微分方程的基解矩阵的几个一般的计算方法. 关键词;常系数奇次线性微分方程组;基解矩阵;矩阵指数 Calculation of Basic solution Matrix of

Linear Homogeneous System with Constant Coefficients Zhijun Dong (Department of Mathematics, Chaohu College Anhui, Chaohu) Abstract: Differential equations application in engineering technology is very extensive, when many problems are attributable to its solving problem, base solution matrix existence and specific seek is different things, general homogeneous linear differential equations is not the base solution matrix by integral get, but when coefficient matrix is constant matrix, can pass out the base solution matrix method, then are available matrix exponential t, the general form base solution matrix, the paper discusses the most widely used differential equations with constant coefficients, combined with differential equations, linear algebra, discuss knowledge of homogeneous linear differential equation with constant coefficients of base solution matrix several general calculation method. Keyword: linear homogeneous system with constant coefficients; matrix of basic solutions; matrix exponent 引言: 线性微分方程组的求解历来是常微分方程的重点,根据线性微分方程组的解的结构理论,求解线性微分方程组的关键在于求出对应齐次线性微分方程组的基解矩阵,本文主要讨论齐次线性微分方程组 X ’=AX ★ 的基解矩阵的计算问题,这里A 是n n ?常数矩阵. 一.矩阵指数exp A 的定义和性质: 1.矩阵范数的定义和性质 定义:对于n n ?矩阵A =ij a ???? n ×n 和n 维向量X =()1,...,T n X X 定义A 的范数为A =,1 n ij i j a =∑ ,X =1 n i i x =∑ 设A ,B 是n ×n 矩阵,x ,y 是n 维向量,易得下面两个性质:

相关文档
最新文档