嵌体的制备原则及方法

嵌体的制备原则及方法
嵌体的制备原则及方法

首页|博文目录|相册|关于博主

学习蒋长利老师《嵌体的制备原则及方法》小结

发布时间:2014-11-06 21:19:39 | 文章分类:学习小结浏览次数:653 | 评论:49

关键字:

七大原则:

1.牙体缺损窝洞宽度大于等于2mm,保证嵌体抗力形

2.嵌体外形线角光滑,清晰,连续流畅

3.洞壁敞开度在10度到15度之间,保证无倒凹

4.预备体窝沟处深度大于等于1.5mm,牙尖处深度大于等于2mm

5.预备区外剩余牙壁的宽度大于等于2mm

6.洞底处点线角圆钝,预防应力集中

7.嵌体边缘避开咬合接触点。

方法:用推荐的车针遵原则预备

车针展示如下

此车针5大优点:

1.头部直径很大为2mm,可很好的平整洞底;

2.此车针聚合度为10度,直立时洞侧壁聚合度为10度;

3.此车针能通过的地方就证明嵌体窝洞宽度已经达到2mm;

4.用此车针制备的窝洞内线角自然就是圆缓的;

5.可以有效去除菲边

脂质体制备方法

微脂体(又称脂质体)及其制备方法一二 微脂体(又称脂质体) 微脂体起源于1960 年代中期,Bangham博士等人首先提出,在磷酸脂薄膜上加入含盐分的水溶液后,再加以摇晃,会使脂质形成具有通透性的小球;196 8年,Sessa 和Weissmann 等人正式将此小球状的物体命名为微脂体(liposo me)并做出明确的定义: 指出微脂体是由一到数层脂质双层膜(lipid bilayer) 所组成的微小的囊泡,有自行密合(self-closing)的特性。微脂体由脂双层膜包裹水溶液形成,由于构造的特性,可同时作为厌水性(hydrophobic)及亲水性(hydrophilic)药品的载体,厌水性药品可以嵌入脂双层中,而亲水性药品则可包覆在微脂体内的水溶液层中。如同细胞膜,微脂体的脂质膜为脂双层构造,由同时具有亲水性端及厌水性端的脂质所构成,脂双层由厌水性端相对向内而亲水性端面向水溶液构成,组成中的两性物质以磷酸脂质最为常见。微脂体的形成是两性物质在水溶液中,依照热力学原理,趋向最稳定的排列方式而自动形成。微脂体的性质深受组成脂质影响,脂质在水溶液的电性,决定微脂体是中性或带有负电荷、正电荷。此外,磷酸脂碳链部分的长短,不饱和键数目,会决定微脂体的临界温度(transition temperature, Tc),影响膜的紧密度。一般来说,碳链长度越长临界温度越高,双键数越多则临界温度越低,常见的DPPC(dipalmitoylp hosphatidylcholine)与DSPC(distearoylphosphatidylcholine)的临界温度分别是42℃与56℃,而Egg PC(egg phosphatidylcholine)与POPC(palmitoyl oleoyl phosphatidylcholine)的Tc 则低于0℃。临界温度影响微脂体包裹及结合药物的紧密度,当外界温度高于Tc时,对膜有通透性的药物,较容易通过膜;此外,当外界温度处于临界温度时,微脂体脂质双层膜中的脂质,会因为流动性不一致而使微脂体表面产生裂缝,造成内部药物的释出。在磷脂质内加入胆固醇,会对微脂体性质产生下列影响:增加微脂体在血液中的安定性,较不易发生破裂;减少水溶性分子对微脂体脂膜的通透性;增加微脂体的安定性,使其在血液循环中存在的时间较长。 微脂体可依脂双层的层数或是粒子大小,加以命名或分类: (1) Multilamellar vesicle(MLV)是具有多层脂双层之微脂体,粒子大小介于100-1000 nm,特色是粒子内具多层脂质膜,一般而言,干燥后的脂质薄膜,

拟南芥原生质体制备转化方法整理

溶液配制 1、纤维素酶解液:

2、PEG4000溶液(一次配置可以保存五天,但是最好现用现配,每个样品需100μl PEG4000溶液,可根据实验样品量调整溶液配置总量)

3、W5 溶液 4、MM G溶液

5、WI溶液 拟南芥原生质体制备转化方法整理 一、土培室播种种植的拟南芥。 二、生长良好情况下在未开花前用于取材叶片制备原生质体。 三、剪取中部生长良好的叶片用刀片切成0.5 -1 mm宽的叶条。 四、将切好叶条掷入预先配置好的酶解液中(每5-10 ml酶解液大约需10-20片叶子)。并用镊子帮助使叶子完全浸入酶解液。

五、用真空泵于黑暗中抽30分钟。(此时可配制PEG4000溶液,200和1000 ul 枪头去尖使操作时吸打缓和。) 六、在室温中无须摇动继续黑暗条件下酶解至少3个小时。当酶解液变绿时轻轻摇晃培养皿促使原生质体释放出来。(此时预冷一定量W5溶液) 七、显微镜下检查溶液中的原生质体,拟南芥叶肉原生质体大小大约30-50 um。 八、在过滤除去未溶解的叶片前用等量的W5溶液稀释含有原生质体的酶液。 九、先用W5溶液润湿35-75 um的尼龙膜或60-100目筛子,然后用它过滤含有原生质体的酶解液。 十、用30毫升的圆底离心管100g,1-2分钟离心沉淀原生质体。尽量去除上清然后用10ml 冰上预冷的W5溶液轻柔重悬原生质体。 十一、在冰上静至原生质体30分钟。 以下操作在室温23℃下进行

十二、100g离心八至十分钟使原生质体沉淀在管底。在不碰触原生质体沉淀的情况下尽量去除W5溶液。然后用适量MMG溶液(1m)重悬原生质体,使之最终浓度在2X105个/ml。 十三、加入10 ul DNA(10-20微克约5-10kb的质粒DNA)至2ml离心管中。 十四、加入100 ul原生质体(2x104个),轻柔混合。 十五、加入110 ul PEG溶液,轻柔拍打离心管完全混合(每次大约可以转化6-10个样品)。 十六、诱导转化混合物5-15分钟(转化时间视实验情况而定,要表达量更高也许需要更高转化时间)。 十七、室温下用400-440 ul W5溶液稀释转化混合液,然后轻柔颠倒摇动离心管使之混合完好以终止转化反应。 十八、室温下用台式离心机100g离心2分钟然后去除上清。再加入1ml W5溶液悬浮清洗一次,100g离心两分钟去上清。

细胞原生质体的制备

细胞原生质体的制备 —植物原生质体分离和活性鉴定 一、实验目的 1.学习植物细胞原生质体分离纯化的方法。 2.了解原生质体活性鉴定的原理。 3.了解植物原生质体分离、融合和培养的基本原理及其过程 二、实验原理 去掉植物细胞壁的方法可以是机械的人工操作,也可以利用酶解法。较早利用机械法制备原生质体的 酶解法分离原生质体是一个常用的技术,其原理是植物细胞壁主要由纤维素、半纤维素和果胶质组成,因而使用纤维素酶、半纤维素酶和果胶酶能降解细胞壁成分,除去细胞壁,即可得到原生质体。由于原生质体内部与外界环境之间仅隔一层薄薄的细胞膜,必须保持在渗透压平衡的溶液中才能保持其完整性。其次,还应当考虑取材、酶的种类和纯度、酶液的渗透压、酶解时间及温度等因素对分离原生质体的影响。 测定原生质体的活性有多种方法。荧光素双醋酸酯(FDA)染色是常用的一种方法,FAD 本身无荧光,无极性,可透过完整的原生质膜。一旦进入原生质体后,由于受到酯酶分解而产生具有荧光的极性物质荧光素。它不能自由出入原生质膜,因此有活力的细胞能产生荧光,无活力的原生质体不能分解FAD无荧光产生。 PEG作为一种高分子化合物,20~50%的浓度能对原生质体产生瞬间

冲击效应,原生质体很快发生收缩与粘连,随后用高Ca高pH法进行清洗.使原生质体融合得以完成。 PEG诱导融合的机理:PEG由于含有醚键而具负极性,与水、蛋白质和碳水化合物等一些正极化基团能形成氢键,当PEG分子足够长时,可阼为邻近原生质表面之间的分子桥而使之粘连。PEG也能连接Ca2+等阳离子,Ca2+可在一些负极化基团和PEG之间形成桥,因而促进粘连。在洗涤过程中,连接在原生质体膜上的PEG分子可被洗脱.这样将引起电荷的紊乱和再分布.从而引起原生质体融合:高Ca高pH由于增加了质膜的流动性,因而也大大提高了融合频率,洗涤时的渗透压冲击对融合也可能起作用。 原生质体分离纯化或融合后,在适当的培养基上应用合适的培养方法,能够再生细胞壁,并启动细胞持续分裂,直至形成细胞团,长成愈伤组织或胚状体,再分化发育成苗。其中,选择合适的培养基及培养方法是原生质体培养中最基础也是最关键的环节。 三、实验用品 1.材料:绿豆,烟草幼苗叶片,油菜或菠菜或烟草等。 2.试剂: 酶解液(绿豆):1%(W/V) 纤维素酶,1% (W/V)果胶酶,0.7mol/L 甘露醇;10mmol/L CaCl,2.2H2O,0.7mmol/L KH2PO4,pH 6.8~ 7.0。 13%CPW洗涤液(绿豆):27.2mg/L KH2PO4,101.0 mg/L KNO3,

通用技术课程设计的基本原则-学生导学案

§2.3《设计的基本原则》导学案 设计人:肥城六中郭建国 班级姓名组别教师评价 【学习目标】 知识与技能:(1)理解设计的基本原则; (2)理解设计的基本原则之间存在的相互关联、相互制约的关系; (3)初步学会用设计的基本原则来评价某个产品。 过程与方法:培养学生自主、合作、探究学习的能力。 情感态度与价值观:(1)辩证地看待设计原则间关系及设计中的人文因素; (2)增强面对技术世界的信心以及对个人、社会、环境的责任心。【学习重点】 理解设计的基本原则其及相互关系 【学习难点】 能初步应用设计的基本原则来评价某些产品 【课前自主预习案】 一、知识回顾: 1、设计是技术发展的,技术发展为设计创新提供了。 2、需要发明与革新,催化了发明与革新,从而促进了 技术的发展。任何新技术设计都是在上产生的。 3、技术与设计是相互依存,相互促进的,其闪亮的结合点是。 【课中探究案】 一、合作探究: 【学生思考】很多同学都对自己的座椅感到不满意,假设现在学校请来专家给你专门设计一把椅子,你有什么样的要求呢? 【小组讨论】各个小组展开讨论,举出一些设计成功的案例,说出它们遵循了什么样的科学原理?

【学生思考】从产品的实用性出发进行设计时,通过案例说明产品的功能是否越多越好?【小组讨论】从产品的实用性角度,对下面的水壶进行评价。 【学生思考】分析自行车、洗衣机和手机3个实例在哪些方面体现了创新性。 【提出问题】举出生活中一些技术设计的案例,说一下他们是从哪些地方考虑到安全性的? 【小组讨论】观察下面的儿童游乐设施,说一下它的设计从哪些角度考虑了安全性原则?

【学生思考】结合刚才的塑料椅案例,同学们分析一下:设计产品时应从哪些方面着手降低成本,体现经济原则? 【学生思考】相同功能的钟表,你会不会宁愿多花点钱也买外形漂亮一些的款式?产品的外观美是怎样来表达的? 【提出问题】你能举出日常生活中你见过的体现技术规范性原则的几个例子吗? 【学生思考】设计中该如何做才能实现可持续发展目标? 二、自主探究: 【小组讨论】我们已经学习了设计的8个原则,这些原则之间是怎样的一种关系?这些原则是独立存在的吗?这些原则能同时遵守吗? 【本节达标测试】 1、电话机发展好几代,从砖头式的手机到现代小巧玲珑、功能齐备的手机这都显示出手机设计的()原则 A、经济性 B、可持续发展 C、创新性 D、都不对 2、现代同学们可经常看到人们不再用绳捆扎啤酒(因为捆扎的啤酒有时瓶炸裂易伤人),

原生质体制备

1.影响原生质体数量和活力的因素 (1)细胞壁降解酶的种类和组合 不同植物种类或同一植物种的不同器官以及它们的培养细胞,由于它们的细胞壁结构组成不同,分解细胞壁所需的酶类也不同。例如,叶片及其培养细胞用纤维素酶和果胶酶,根尖细胞以果胶酶为主附加纤维素酶或粗制纤维素酶(Driselase酶),花粉母细胞和四分体期小孢子用蜗牛酶和胼胝质酶,成熟花粉用果胶酶和纤维素醇。 (2)渗造压稳定剂 用酶法降解细胞壁前,为防止原生质体的破坏,一般需先用高渗液处理细胞,使细胞处于微弱的质壁分离状态,有利于完整原生质体的释放。这种高渗液称为渗透压稳定剂。常用的滲透压稳定剂有甘露醇、山梨醇、蔗糖、葡萄糖、盐类(KCI、MgSO4.7H2O)等。在降解细胞壁时,渗透压稳定剂往往和酶制剂混合使用。滲透压稳定剂中,用得最多的是甘露醇,常用于烟草、胡萝ト、柑橘、蚕豆原生质体制备;蔗糖常用于烟草、月季等;山梨醇常用于油菜原生质体制备。滲透压稳定剂种类及浓度的选择应根据植物种类而异,例如胡萝ト用0.56mol /L甘露醇,月季用14%蔗糖,柑橘用0.8mol/L甘露醇,蚕豆用0.7mol/L甘露醇,烟草的四分体用7%熊糖,烟草的成熟花粉用13%甘露醇。 (3)质膜稳定剂 质膜稳定剂可以增加完整原生质体数量、防止质膜破坏,促进原生质体胞壁再生和细胞分裂形成细胞团。如在分离烟草原生质体时,在酶液中加人入葡聚糖硫酸钾,一旦洗净确液进行培养,原生质体很快长壁并持续细胞分裂形成细胞团。而未加葡聚糖硫酸钾的对照,原生质体经一周培养即解体。常用的原生质膜稳定剂有葡聚糖硫酸钾、MES、氯化钙、磷酸二氢钾等。 (4)pH的影响 分离原生质体时,酶液的pH是值得注意的问题。因为降解酶的活力和细胞活力最适pH是不一致的低pH时(<4.5),酶的活力强,原生质体分离速度快,但细胞活力差,破坏的细胞较多;pH偏高时,酶活力差,原生质体分离速度慢,完整的原生质体数目较多。分离原生质体时,酶液的pH因植物种类不同而有差异,如胡萝ト为5.5、月季为5.5~6.0、烟草为5.4~5.8、柑橘为5.6、蚕豆为5.6~5.7。 (5)温度影响 制备生质体时,一般在26土1℃条件下酶解。 (6)植物材料的生理状态 一般应选择植物体细胞分裂旺盛的部分进行取材。采用那些颗粒细小、疏松易碎的胚性愈伤组织和由其建立的胚性悬浮细胞系,更容易获得高质量的原生质体。要得到良好的供体材料,必要时应对材料进行预处理及预培养。 2.植物原生质体的纯化 材料经过一段时间的酶解后,需要将酶解混合物中破碎的原生质体、未去壁的细胞、细胞器及其他碎片去除出去。纯化原生质体的常用方法有过滤、离心、飘浮法,在实际操作中一般联合运用这三种方法。 1)过滤法用滤网过滤酶解混合物,滤去未被酶解的细胞、细胞团及组织块 2)离心法利用比重原理,在具有一定渗透压的溶液中,先进行过滤然后低速离心,使纯净完整的原生质体沉积于离心管底部。 3)飘浮法采用比原生质体比重大的高渗溶液(如蔗糖、Ficoll溶液),使原生质体漂浮在溶液表面。

脂质体及其制备方法的选择

脂质体及其制备方法的选择 1.脂质体概述 1965年,英国学者Bangham和Standish将磷脂分散在水中进行电镜观察时发现了脂质体。磷脂分散在水中自然形成多层囊泡,每层均为脂质的双分子层;囊泡中央和各层之间被水相隔开,双分子层厚度约为4纳米。后来,将这种具有类似生物膜结构的双分子小囊称为脂质体。此两位学者曾获得过诺贝尔奖提名。 某些磷脂分散在过量的水中形成了脂质体,该脂分子本身排成双分子层,在磷脂的主要相变温度(Tm)以上,瞬间形成泡囊,且泡囊包围水液,根据磷脂种类及制备时所用温度,双分子层可以是凝胶或液晶状态。在凝胶态时磷脂烃链是一种有规律的结构,在液态时烃链是无规律的,每一种用来制备脂质体的纯磷脂由凝胶状态过渡到液晶状态时均具有特征的相变温度。这种相变温度(Tin)是根据磷脂性质而变(见下表),它可在-20~+90℃之间变化,双分子层的不同成分混合物可引起相变温度的变化或相变完全消失,当双分子层通过相变温度时,被封闭的水溶性标示物的漏出量增加。 脂质体的相变行为决定了脂质体的通透性、融合、聚集及蛋白结合能力,所有这些都明显影响脂质体的稳定性和它们在生物体系中的行为。

脂质体根据其脂质膜的层数和腔室的数量,可以分为单层脂质体,多层脂质体和多囊脂质体,单层脂质体。不同类型的脂质体其结构特点各不相同,见下图表。 1971年,英国Rymen等人开始将脂质体用作药物载体。所谓载体,可以是一组分子,包蔽于药物外,通过渗透或被巨嗜细胞吞噬后载体被酶类分解而释放药物,从而发挥作用。它具有类细胞结构,进入动物体内主要被网状内皮系统吞噬而激活机体的自身免疫功能,并改变被包封药物的体内分布,使药物主要在肝、脾、肺和骨髓等组织器官中积蓄,从而提高药物的治疗指数,减少药物的治疗剂量和降低药物的毒性。脂质体技术是被喻为“生物导弹”的第四代靶向给药技术,也是目前国际上最热门的制药技术。至于药物在脂质体中的负载定位,其取决于所载药物的性质,见下图。

实验十五 脂质体的制备.

实验十五脂质体的制备 一、实验目的 1. 掌握注入法制备脂质体的工艺。 2. 掌握脂质体包封率的测定方法。 二、实验原理 60年代初 Banghan 等发现磷脂分散在水中可形成多层囊,并证明每层囊均为双分子脂质膜组成且被水相隔开,称这种具有生物膜结构的囊为脂质体。197l 年Ryman 等人提出将脂质体作为药物载体, 即将酶或药物包囊在脂质体中。近年来脂质体作为药物载体在传递给药系统中的研究有了迅速的发展。 脂质体系一种人工细胞膜, 它具有封闭的球形结构, 可使药物被保护在它的结构中, 发挥定向作用。特别适于作为抗癌药物载体,以改善药物的治疗作用,降低毒副作用等。脂质体系由磷脂为骨架膜材及附加剂组成。用于制备脂质体的磷脂有天然磷脂, 如豆磷脂,卵磷脂等;合成磷脂,如二棕榈酰磷脂酰胆碱,二硬脂酰磷脂酰胆碱等。磷脂在水中能形成脂质体是由其结构决定的。磷脂具有两条较长的疏水烃链和一个亲水基团。当较多的磷脂加至水或水性溶液中, 磷脂分子定向排列, 其亲水基团面向两侧的水相, 疏水的烃链彼此对向缔合形成双分子层, 并进一步形成椭圆形或球状结构——脂质体。常用的附加剂为胆固醇,它也是两亲性物质,与磷脂混合使用,可制备稳定的脂质体,其作用是调节双分子层流动性,减低脂质体膜的通透性。其它附加剂有十八胺,磷脂酸等,这两种附加剂可改变脂质体表面电荷的性质。 脂质体可分为三类:小单室(层脂质体,粒径在 20~50nm,凡经超声波处理的脂质体混悬液, 绝大部分为小单室脂质体; 多室(层脂质休, 粒径约在 400~1000nm; 大单室脂质, 粒径约为 200~1000nm,用乙醚注入法制备的脂质体多属这—类。 脂质体包封率的测定包封率的定义可用下式表示: 包封率% =(W总 - W游离 / W总 x 100

水稻原生质体制备及转化方法

原生质体制备及转化 1.去皮的日本晴种子在75%的酒精中消毒1 min。然后用 2.5%的次氯酸钠消毒20 min。用无菌水洗至少5次,然后在1/2 MS培养基上,12 h光照(大约150umol m-1 s-1)十二小时黑暗,26 ℃培养7-10天,提前一天烧好去尖的黄蓝枪头备用。 2.取40-60棵水稻幼苗的茎和叶鞘的绿色组织。 3.将一捆水稻植株(大概10棵幼苗)用剃刀一起切成大约0.5 mm的小段。 4.将小片段立刻放进0.6 M的甘露醇中,黑暗中放置10 min。 5.用100目钢制滤网去掉甘露醇,将小片段放在加入15mL酶液的25mL锥形瓶中, (1.5% Cellulase RS,0.75% Macerozyme R-10,0.6 M甘露醇,pH5.7的10mM MES,10mM CaCl2,0.1% BSA),28℃摇床中轻轻摇晃(50rpm),黑暗孵育4-6 h。 6.此时配置40%的PEG4000,酶消化后,分三次加入等体积15mL的W5溶液(154 mM NaCl,125mM CaCl2,5 mM KCl,pH 5.7的2mM MES)。用手充分摇晃10s。 7.用400目钢制滤网过滤得到原生质体在圆底管中。 8.80g离心(升降速度设为1档)5min,缓慢吸走上清液。 9.沿壁缓慢加入4mL W5溶液,轻轻悬浮,再离心80g,5min,弃上清 10.沿壁缓慢加入4mL Mmg溶液,离心80g,5min,弃上清 11.再加Mmg溶液,补至每个样品100μl原生质体 12.分装2mL离心管,每100μl原生质体,加入20μl质粒和120μl新鲜制备的 40%的PEG4000,混匀 13.28℃避光静置转化20--25min 14.加1.5 mL W5溶液混匀,80g离心3min,弃上清。 15.重复步骤14 16.加2mL W5溶液重悬,轻轻混匀,移到细胞培养板,锡箔纸包裹避光28℃避 光静置培养15-20小时 17.培养完成后,将培养板中沉淀的原生质体轻轻混匀,吸到2 mL离心管中,80g 离心3min,弃上清,保留100μl上清液 18.共聚焦显微镜观察拍照 配制溶液方法:

高中通用技术苏教版 必修1 第三章 设计过程、原则及评价 第2节 设计的一般原则 说课稿

3.2 设计的一般原则说课稿 一、说教材 1.教材分析 本节课是第三章“设计过程、原则及评价”第二节“设计的一般原则”。这节内容有两个方面要求:一是理解设计的一般原则及其之间相互关系;二是初步学会用设计的一般原则评价某个技术产品。本节课由设计的创新原则、实用原则、经济原则、美观原则、道德原则、技术规范原则、可持续发展原则七个一般原则组成。 分析课本可以看出,本节内容是全章的重点,也是下一章开始学生进行具体的设计活动体验时,各环节需要遵守的基本准则。学生通过对设计的一般原则及原则之间关系的理解,不仅可以为“能制定符合一般原则和相关设计规范的完整设计方案”作知识准备,而且可以更有效地把握设计的过程,并进行设计的评析。 设计原则既是设计应遵循的标准和规范,同时又是技术评价的基本手段和尺度。“设计的一般原则”则是设计活动经过长期检验所整理出来的合理化现象,其内涵成为通用技术课程思想方法的核心,也成为通用技术课程教学的重点之一。在了解了“技术世界中的设计”之后,通过“设计的一般过程”的初步体验,进入“设计的一般原则”的学习,体现了通用技术课程独具匠心的安排,对后续课程内容的学习具有指导作用,对于提高学生的技术素养有着重要的意义。 2.教学目标 1. 知识与技能目标:

(1)通过对实例的分析、归纳,得出设计的一般原则。 (2)理解设计的一般原则。 2. 过程与方法目标 (1)通过对典型案例的分析,理解各设计原则实现的途径和方法。 (2)通过引导学生以自主、合作、探究的学习方式学习,让学生在探究中自主建构知识。 3. 情感态度和价值观目标 (1)培养学生的独立思考能力和创新能力,培养学生的团队意识及学会与他人交流观点的能力。 (2)增强学生对技术设计中人文因素的理解,提高学生审美情趣和技术素养,增强面对技术世界的信心以及对个人、社会、环境的责任心。 3.教学重难点 理解各设计原则实现的途径和方法。 二、说教法 本节课教学主要采用导学式小组合作学习的教学方法完成教学任务,即各个环节均以学生为主体,教师为主导,引导学生进行自主、合作、探究的学习方式学习,让学生在探究中自主建构知识,在设计中发现问题,在活动中体验原则。 三、说学法 作为设计的一般原则的组成部分,七个原则是不可分割的。但是,作为一个学习过程,需要分步学习。因此课堂教学的总体思路为:总分总模式。具体的主要教学思路为:第一课时——购买手机(引入情景)→合作探究

脂质体的制备概要

实验十五 脂质体的制备

一实验目的 1.了解脂质体(liposome)在细胞 工程技术中的应用及其制备方法。 2.掌握采用超声波法、冰冻干燥法 和冻融法三种不同的方法制备脂 质体的方法并了解该技术在细胞 工程中的应用。

二实验原理 脂质体(liposome)的制备技术,一般采用超声波法、振荡法、乙醚蒸发法、去污剂透析法、冰 冻干燥法和冻融法等。制备方法 不同,所得脂质体结构、大小不 同,性质和用途也就不同(表15-1)。

种类制备方法大小(m) 特性 多层大脂质体(MLV) 乙醚蒸发法、醇醚水 法、振荡法、液相快 速混合振荡法 0.1~50 易制备,包被物释放 速度慢 单层小脂质体(SUV) 直接超声波法、溶剂 超声波法、乙醚注射 法 0.02~0.05 体积小,适合包被离 子、小分子药物等 单层大脂质体(LUV) 递相蒸发法、去污剂 (胆酸纳等)透析法、 冰冻干燥法 0.05~0.5 适合包被蛋白质、 RNA、DNA片段、 大分子药物及细胞融 合 单层巨大脂质体(GUV) 冻融法5~30 适合包被蛋白质、 RNA、DNA片段, 除菌处理较难

本实验采用超声波法、冻融法、冰冻干燥 法三种不同类型的方法,超声波法的原理是:在超声波作用下,磷脂类双亲媒性分子被打碎为分子或分子团,并自动重新排布成类似生物膜的双分子层囊泡。冻融法是在超声波法形成的小脂质体基础上,通过冷冻和融解过程使其破裂,重组为大体积脂质体,在通过透析时膜内外渗透压的变化而膨胀为更大体积的脂质体。冰冻干燥法语原理与冻融法基本一致,只在处理条件上有所不同。

三实验用品 1.器材 超声波清洗机、光学显微镜、荧光显微镜、荧光 分光光度计、漩涡混合器、核酸蛋白检测仪、柱层析装置、冰冻干燥机。 2.试剂 1)磷脂液:100mg经丙酮-乙醚法纯化的卵磷 脂,57.2mg胆固醇,溶于1ml氯仿。 2)荧光液:钙黄绿素(calcein)47mg溶于 100ml Tris缓冲液。 3)Tris 缓冲液:称取Tris 0.12g,EDTA 0.288mg,溶于80ml去离子水中,用0.1 mol/L 盐酸调Ph7.2,再加水至100ml。

拟南芥原生质体的制备及转化

拟南芥原生质体制备转化操作流程 主要试剂 1. 纤维素酶解液: 试剂 15ml酶液体系 1.1-1.5﹪Cellulase R10 (YaKult Honsha)0.225g干粉 2.0.2-0.4﹪Mecerozyme R10 (YaKult Honsha)0.045g干粉 3.0.4M mannitol1.09g干粉 4.20mM KCl1 ml 0.3 M KCl母液 5.20mM MES,pH5.7,1 ml 0.3 M MES,pH5.7母液 6.加入10ml 水 7.55℃水浴加热10分钟(钝化酶,提高酶的可溶性),冷却至室温后加入以下试剂8.10mM CaCl,1 ml 0.15M CaCl2 9.5 mM β-Mercaptoethanol(可选用)1ml 75mM β-Mercaptoethanol母液(Sigma A-6793) 10.0.1﹪BSA,1 ml 1.5﹪BSA(4℃保存) 11.用0.45μm滤膜过滤后使用,酶液是淡棕色的澄清溶液。 2. PEG溶液(40%, v/v)(一次配置可以保存五天,但是最好现用现配,每个样品需100ul PEG4000溶液,可根据实验样品量调整溶液配置总量) PEG4000( Fluka, #81240)……………1g………………………………….4g 水…………………………………………………0.75ml…………………………..3g 0.8 M Mannitol…………………………..0.625ml…………………………2.5ml 1 M CaCl2或Ca(NO3)2………………..0.25ml………………………….1ml 约1.2ml 3. W5 溶液(1000ml) 154mM NaCl, NaCl9g 125mM CaCl2, CaCl2.H2O18.4g 5mM KCl, KCl0.37g 2mM MES(PH 5.7),MES0.39g pH to 5.8 with KOH,高温高压灭菌20分钟,室温保存。 4. MMG溶液 MaMg溶液(500ml) 15mM MgCl2,MgCl0.71g 4 mM MES(PH5.7)MES0.39g 0.4 M mannitol,Mannitol36.5g 用KOH调pH 5.7,高温高压灭菌20分钟,室温保存。 5. WI溶液 WI(200ml) 0.5M mannitol,mannitol18.217g 4mM MES,pH5.7,MES0.156g

原生质体制备

原生质体的制备: 1、选取3-4周长势良好的植株的展开叶片(通常选取第5~7片真叶)。 2、用新的锋利的刀子从叶片的中部切0.5-1 mm叶条,比较理想的情况下,每克新鲜叶片中大约含有107个原生质体(大约100-150个叶条在5-10 ml酶溶液中消化)。对于常规实验,10-20个叶条消化在5-10 ml酶溶液中将得到0.5-1×106个原生质体,足够25-100个样品使用。 3、快速而温柔的转移叶条到准备好的酶溶液中(10-20叶条在5-10 ml酶液中),用平头镊子将叶条完全淹没。 4、用真空泵将叶条在黑暗中真空30 min。 5、室温下在黑暗中至少消化3 h(继续消化,不要摇晃)。经过轻微转动后酶溶液应该变成绿色,这表明原生质体已经被释放。 6、用显微镜检查原生质体的释放(拟南芥叶肉的原生质体的大小大约为30-50μm)。 7、用等体积的W5溶液稀释酶溶液,通过过滤去除没有消化的叶片组织。 8、用水洗去75 μm尼龙过滤器中的酒精(通常浸泡在95%乙醇中)并去除过量的水,用W5溶液润洗过滤器后过滤原生质体。 9、将原生质体溶液转移到30 mL圆底离心管中,100×g离心5 min,尽可能的去除上清液。 10、用计数板进行细胞计数,每2×105个原生质体加入1 mL W5溶液,在冰,上静置30 min。 11、室温下沉降原生质体15 min,去除W5溶液,每2×105个原生质体加入1 mL MMG溶液重悬浮。 12、在2 mL离心管中分别加入10 mL DNA(5-10 kb的质粒DNA 10-20 mg)和100 mL原生质体(2×104个原生质体细胞),轻轻混匀。 13、加入110 mL PEG溶液,轻弹试管完全混匀。 14、室温下孵育转染混合物15 min(反应5 min足够)。 15、室温下,用400-440 mL W5溶液稀释转染混合物,轻轻摇动或倒置离心管混匀来停止转染过程。 16、室温下,100×g离心2 min,去除上清液。 17、在六孔板中,每孔用1 mL WI溶液重悬浮原生质体。 18、室温下(20-25℃)孵育原生质体一段时间。 19、重悬浮,通过100×g离心2 min收获原生质体。 20、去除上清液并观察GFP成像。

脂质体的制备方法及其研究进展

脂质体的制备方法及其研究进展 作者:穆筱梅,梁世强 【摘要】介绍了目前常用脂质体的两大类制备方法:被动载药法和主动载药法,并对其优缺点进行比较。被动载药法适于脂溶性强的药物,包封率高且不易泄露;而主动载药法适于两亲性药物。 【关键词】脂质体;被动载药;主动载药 脂质体作为药物载体具有提高药物疗效、减轻药物不良反应及靶向作用的特点。三十多年来,人们就其制备方法进行了大量的研究。脂质体是由磷脂分子在水相中通过疏水作用形成的,因此制备脂质体所强调的不是膜组装,而是如何形成适当大小、包封率高和稳定性高的囊泡。制备的方法不同,脂质体的粒径可从几十纳米到几微米,并且结构也不尽相同。目前,制备脂质体的方法较多,常用的有薄膜法、反相蒸发法、溶剂注入法和复乳法等,这些方法一般称为被动载药法,而pH梯度法,硫酸铵梯度法一般被称为主动载药法。 1 被动载药法 脂质体常用制备方法主要有薄膜分散法、反相蒸发法、注入法、超声波分散等。在制备含药脂质体时,首先将药物溶于水相或有机相中,然后按适宜的方法制备含药脂质体,该法适于脂溶性强的药物,所得脂质体具有较高包封率。 1.1 薄膜分散法 此法最初由Bangham 等报道,是最原始但又是迄今为止最基本和应用最广泛的脂质体的制备方法。将磷脂和胆固醇等类脂及脂溶性药物溶于有机溶剂,然后将此溶液置于一大的圆底烧瓶中,再旋转减压蒸干,磷脂在烧瓶内壁上会形成一层很薄的膜,然后加入一定量的缓冲溶液,充分振荡烧瓶使脂质膜水化脱落,即可得到脂质体。这种方法对水溶性药物可获得较高的包封率,但是脂质体粒径在0.2~5 μm 之间,可通过超声波仪处理或者通过挤压使脂质体通过固定粒径的聚碳酸酯膜,在一定程度上降低脂质体的粒径。 1.2 超声分散法 将磷脂、胆固醇和待包封药物一起溶解于有机溶剂中,混合均匀后旋转蒸发去除有机溶剂,将剩下的溶液再经超声波处理,分离即得脂质体。超声波法可分为两种“水浴超声波法和探针超声波法”,本法是制备小脂质体的常用方法,但是超声波易引起药物的降解问题。 1.3 冷冻干燥法 脂质体混悬液在贮存期间易发生聚集、融合及药物渗漏,且磷脂易氧化、水解,难以满足药物制剂稳定性的要求。1978 年Vanleberghe 等首次报道采用冷冻干燥法提高脂质体的贮存稳定性。目前,该法已成为较有前途的改善脂质体制剂长期稳定性的方法之一。 脂质体冷冻干燥包括预冻、初步干燥及二次干燥 3 个过程。冻干脂质体可直接作为固体剂型,如喷雾剂使用,也可用水或其它溶剂化重建成脂质体混悬液使用,但预冻、干燥和复水等过程均不利于脂质体结构和功能的稳定。如在冻干前加入适宜的冻干保护剂,采用适当的工艺,则可大大减轻甚至消除冻干过程对脂质体的破坏,复水后脂质体的形态、粒径及包封率等均无显著变化。单糖、二糖、寡聚糖、多糖、多元醇及其他水溶性高分子物质都可以用做脂质体冻干保护剂,其中二糖是研究最多也是最有效的,常用的有海藻糖、麦芽糖、蔗糖及乳糖。本法适于热敏型药物前体脂质体的制备,但成本较高。陈建明等[1]以大豆磷脂为膜材,以甘露醇为冻干保护剂,采用冻干法制备了维生素A前体脂质体,复水化后平均粒径为0.615 1 μm ,包封率98.5%。林中方等[2]采用冻干法制备了鬼臼毒素体脂质体,复水化后平均粒径为 1.451 μm ,包封率72.3%,但是这种方法仍然存在着不足之处,例如脂质体复水化后粒径分布不够均匀。 1.4 冻融法 此法首先制备包封有药物的脂质体,然后冷冻。在快速冷冻过程中,由于冰晶的形成,使形成的脂质体膜破裂,冰晶的片层与破碎的膜同时存在,此状态不稳定,在缓慢融化过程中,暴露出的脂膜互相融合重新形成脂质体。何文等[3]分别用反相蒸发法、乳化法和冻融法制备了甲氧沙林脂质体。通过研究发现,冻融法制备的脂质体的包封率最高,但是粒径最大。反复冻融可以提高脂质体的包封率,王健松[4]

脂质体的制备

脂质体的制备及检测 一.目的要求 1.掌握注入法制备脂质体的工艺。 2.掌握脂质体包封率的测定方法。 二.实验原理 1. 60年代初,Begkan等发现磷脂分散在水中可形成多层囊,并证明每层囊均为双分子脂质膜且被水隔开,称这种具有生物膜结构的囊为脂质体。1971年Rymen 等人提出将脂质体作为药物载体,即将酶或药物包裹在脂质体中。 2. 脂质体系一种人工细胞膜,它具有洋葱似的封闭球形结构,可使药物被保护在它的结构中,发挥定向作用,特别适于作为抗癌药物载体,以改善药物的治疗作用,降低毒副作用等。脂质体系由磷脂为骨架膜材及附加剂组成。用于制备脂质体的磷脂有天然磷脂,如豆磷脂,卵磷脂等,合成磷脂,如二棕榈酰磷脂酰胆碱,二硬脂酰磷脂酰胆碱等。磷脂在水中能形成脂质体是由其结构决定的。磷脂具有两条较长的疏水烃链和一个亲水基团。当较多的磷脂加至水或水性溶液中,磷脂分子定向排列,其亲水基团面向两侧的水相,疏水的烃链彼此对向缔合形成双分子层,形成椭圆形或球状结构一—脂质体。常用的附加剂为胆固醇,它也是两亲性物质,与磷脂混合使用,可制备稳定的脂质体,其作用是调节双分子层流动性,减低脂质体膜的通透性。其它附加剂有十八胺、磷脂酸等,这两种附加剂可改变脂质体表面电荷的性质。 3. 脂质体载药系统的优势: 1.被动靶向:脂质体进人体内可被巨噬细胞作为外界异物而吞噬,主要被单核巨噬细胞系统的巨噬细胞所吞噬而摄取,形成肝、脾等网状内皮系统的被动靶向性。 2.缓释作用:将药物包封成脂质体,可减少肾排泄和代谢,延长药物在血液中的滞留时间,使药物在体内缓慢释放,从而延长了药物的作用时间。 3.降低药物毒性:药物被脂质体包封后,有效地在肝、脾和骨髓等单核巨噬细胞较丰富的器官中浓集,对心、肾有毒性的药物或对正常细胞有毒性的抗癌药包封脂质体后,可明显降低药物的毒性。 4.提高稳定性:一些不稳定的药物被脂质体包封后,可受到脂质体双层膜的保护。 4. 常用的脂质体制备方法: 注入法、薄膜分散法、超声波分散法、逆向蒸发法。 脂质体作为药物载体的应用: 1、抗肿瘤药物载体:

原生质体转化

拟南芥原生质体制备 制备酶解液10 ml 1.取幼嫩拟南芥叶片,使用新的单面刀片将叶片切为0.5 mm-1 mm大小。 (用胶带把下表皮沾掉,效果更好。放一小培养皿里面降解) 2.材料侵入10 ml酶解液中,暗培养2 h-2.5 h,至原生质体完全从叶片上解离下来。 3.酶解结束后轻轻晃动溶液,镜检酶解结果。 4.使用200目不锈钢网筛过滤原生质体至新离心管中10ml。(冰上) 5.100×g,4℃,离心2 min,收集原生质体。 6.重悬原生质体于等体积预冷的W5液体培养基中,100×g离心2 min,收集原生质体,(重复三次)。(重悬时,先加入少些W5轻轻悬起原生质体,随后再轻轻加入剩W5) 7.重悬原生质体于等体积预冷的W5液体培养基中,冰浴30 min。 8.100×g离心2 min,收集原生质体,重悬原生质体于1/10体积Mamg中。(看细胞浓度而定) 9.取少量重悬原生质体镜检,其余用于转化或4℃保存一周内使用。 2.2.8 原生质体转化 1.在2 ml离心管中一次加入10 μl质粒DNA(10-20 μl,大小在5 Kb之内),100 μl原生质体,充分混匀后加入110 μl PEG4000溶液。(3=1+2) 2.上述混合物室温放置10-30 min。 3.反应结束后加入440 μl W5液体培养基,充分混匀。 4.100×g离心2 min,收集原生质体,移除上清。 5.加入500 μl W5溶液培养基,100×g离心2 min,收集原生质体,(重复一次,可以重复两次)。 6.重悬原生质体于1 ml W5液体培养基中,在细胞培养板中,24℃黑暗培养。7.取黑暗培养18 h后的原生质体,加入荧光素底物,使用CCD照相成像保存。

脂质体制备方法

2 脂质体的制备方法 2.1 薄膜蒸发法该方法是将脂质及芯材(脂溶性药物)溶于有机溶剂,然后将此溶液置于大圆底烧瓶中,再旋转减压蒸干,磷脂在烧瓶内壁上会形成一层很薄的膜,然后加入一定量的缓冲溶液(生理盐水),充分振荡烧瓶使脂质膜水化脱落,即可制得脂质体。尽管薄膜分散法是使用最广泛的方法,由于这种方法比较原始,所以尚存在较多缺点。用该方法制备得到的脂质体的粒径较大且不均匀,为了使其粒径更小、更均匀,可通过超声波仪处理,在一定程度上降低脂质体的粒径,从而提高包封率。如采用此法制备得到的细辛脑脂质体的包封率达54. 1%[5]。 2.2 超声波法 MLVs的混悬液经超声波处理,再通过 Sepharose 2B或4B柱色谱仪可去除较大的脂质体和 MLVs 。常用的方法有探针型和水浴型。小量脂质悬液(高浓度脂质或黏性水溶液)需要高能 量时用探针型。水浴型更适于大量的稀释脂质。郑宁等[6]采用薄膜 -超声分散法制备依托泊苷脂质体,按均匀设计的最优组合制备脂质体的平均包封率为(61.58±0.83)% ,粒径均小于2卩m,体外释药达到了长效缓释的作用,60Co灭菌后脂质体较稳定。李维凤等⑺以薄 膜-超声法和乙醚注入法制备硝苯地平脂质体,结果表明薄膜蒸发法和超声法综合使用,所得脂质体粒径均匀,粒度小,且多为单室。 2.3复乳法(二次乳化法)这种方法是先将脂质溶于有机溶剂,加入待包封芯材的溶液,乳化得到W/O 初乳,其 次将初乳加入到 10 倍体积的水溶液中混合,进一步乳化得到 W/O/W 乳液,然后在一定温度下去除有机溶剂即可得到脂质体,其包封率变化较大,一般为20%-80% 。通过研究发现, 在第二步乳化过程和有机溶剂的去除过程中, 对脂质体的粒径有较大影响的因素是温度, 较 低的温度有利于减小脂质体的粒径。姚瑶等[8]采用二次乳化法制备的酪丝亮肽多囊脂质体, 不仅稳定性好,80%的粒径分布在 20-30卩m,且包封率为 92. 43%。 2.4反相蒸发法(逆相蒸发法)反相蒸发法最初由 Szoka 和 Papahadjopoulos 于 1978 年提出, 这 种方法适用于脂质成分中磷脂占有较大的比例, 且芯材中水溶性成分较多的情况。一般的制备方法是将脂质等膜材料溶于有机溶剂中,加入芯材药物的水溶液经过短时超声振荡形成稳定的W /O 乳液后,减 压蒸发除掉有机溶剂,形成所谓“反相胶团” ,在达到胶态后,滴加缓冲液,旋转蒸发使器壁上的凝胶脱落,然后在减压下继续蒸发,制得水性混悬液, 再除去未包入的芯材,即得到 单层脂质体。因这种方法可包裹较大的水容积, 所以一般适用于包封水溶性药物、大分子生物活性物质等的情况。李淑梅等[9]采用逆向蒸发法制备黄芪多糖脂质体,操作简单可行,包 封率为 44. 32%。 2.5 注入法将脂质和芯材溶于水中或者不相溶的有机溶剂中, 然后用微量注射器把有机相均速注射到水相(含水溶性药物)中,搅拌挥发除去有机溶剂,再超声得到脂质体。此法根据溶剂的不同可分为乙醇注入法和乙醚注入法。用乙醇注入法制备时若放慢注入速度可制得具有较高包封率的脂质体, 并且乙醇注入法避免了使用有机溶剂。乙醚注入法制备的脂质体大多为单层脂质体,粒径绝大多数在 2卩m以下,操作过程中温度比较低(40 — 50C),该方法适用于在乙醚中有较好溶解度和对热不稳定的芯材, 通过调节乙醚中不同磷脂的浓度, 可以得到不同粒径且粒径分布均匀的脂质体混悬液。许洁等[10]采用乙醇注入法制备环孢素 A 脂质体, 包封率高达 87. 09%。 2.6冷冻干燥法 采用低温干燥技术,通过反复包封、冻干和重新融合来实现较高的包封率。冻干法为提高脂质体储存期的稳定性提供了较好的解决方法,它改变了液态脂质体不稳定和易氧化的缺点,具有工艺稳定、适合于工业化生产、质量易于控制和产品稳定性好等特点。冻干法存在的问题是 :制备工艺

原生质体的制备

拟南芥原生质体转化实验 每次做大反应(用于CO-IP)最多做8管,每管需3 ml 原生质体溶液,浓度为106 ,10 ml 酶液需要40片叶子。小反应用于用于做蛋白定位,每管需200 μl 原生质体溶液 叶片的选取:,取刚刚完全展开,叶面光滑,非凹凸不平的,最上面最中间的叶片,依次向下选取,取瘦长的,叶缘尖锐的叶片为佳。每四棵苗取8-10片叶子。 1.打开水浴锅,TM=55o C 2. 配40 ml酶解液(8种试剂) Cellulose R10 0.6 g 不要粘在管壁上 Macrozyme R10 0.16 g Mannitol(4 o C) 20 ml KCl 0.4 ml MES 4 ml 55 o C,10 min(严格,前边摇2-3次,待管壁不再粘有酶,溶液澄清就不用摇) 待酶液自然降至室温,加入0.4 mL CaCl2 母液以及15.2 mL DDW ,0.04 g BSA,放置于3.将0.4 M mannitol 滴至一次性培养皿上,将叶片切成细丝,一刀一刀断开切,忌来回蹭。4.23 o C酶解2 h (或3 h,放置时间较长的酶液),40 rpm。收获前75 rpm,摇1 min。5.配PEG 100 ml用Mannitol(4 o C) PEG 4000 40 g DDW 30 ml Mannitol 25 ml CaCl2 10 ml 6.提前将BD 50 ml 离心管置于冰上,尼龙膜过滤收集原生质体,100 g,3min,23 o C,升速3,降速3离心 7.用5 ml 大枪头吸除酶液,原生质体多则把酶液吸净,少则留一点酶液,加入W5 10-20 ml (依量而定)洗涤。100 g,3min,23 o C,升速3,降速3离心 8.吸去上清,再加入W5 20 ml,轻摇离心管重悬原生质体。100 g,3min,23 o C,升速3,降速3离心。 9.加入3-9 ml Mmg重悬,使原生质体浓度达到106,冰上放置。 10.取50 ml离心管(大反应),每管加入120 μg 质粒/每一种,然后用枪吸打混匀,阴性对照加一种质粒,然后用水补齐使总体积一致,然后用枪吸打混匀。冰上放置。 11.50 ml离心管中加入3 ml 原生质体溶液,沿管壁缓慢加入,充分摇匀。 12.每次室温摇匀后随即每50 ml离心管加入3 ml PEG溶液,轻柔颠倒混匀,不要有PEG 溶液一点一点,而应是充分均匀的溶液。加完PEG后每管室温放置6 min。(PEG刚加入时要分层,否则转化效率不好)。

二、技术设计的原则、方法和标准

《设计的一般原则》说课稿 高台一中马育中 一、说教材 1.教材分析 本节课是第三章“设计过程、原则及评价”第二节“设计的一般原则”。这节内容有两个方面要求:一是理解设计的一般原则及其之间相互关系;二是初步学会用设计的一般原则评价某个技术产品。本节课由设计的创新原则、实用原则、经济原则、美观原则、道德原则、技术规范原则、可持续发展原则七个一般原则组成。 分析课本可以看出,本节内容是全章的重点,也是下一章开始学生进行具体的设计活动体验时,各环节需要遵守的基本准则。学生通过对设计的一般原则及原则之间关系的理解,不仅可以为“能制定符合一般原则和相关设计规范的完整设计方案”作知识准备,而且可以更有效地把握设计的过程,并进行设计的评析。 设计原则既是设计应遵循的标准和规范,同时又是技术评价的基本手段和尺度。“设计的一般原则”则是设计活动经过长期检验所整理出来的合理化现象,其内涵成为通用技术课程思想方法的核心,也成为通用技术课程教学的重点之一。在了解了“技术世界中的设计”之后,通过“设计的一般过程”的初步体验,进入“设计的一般原则”的学习,体现了通用技术课程独具匠心的安排,对后续课程内容的学习具有指导作用,对于提高学生的技术素养有着重要的意义。 2.教学目标 1. 知识与技能目标: (1)通过对实例的分析、归纳,得出设计的一般原则。 (2)理解设计的一般原则。 2. 过程与方法目标 (1)通过对典型案例的分析,理解各设计原则实现的途径和方法。

(2)通过引导学生以自主、合作、探究的学习方式学习,让学生在探究中自主建构知识。 3. 情感态度和价值观目标 (1)培养学生的独立思考能力和创新能力,培养学生的团队意识及学会与他人交流观点的能力。 (2)增强学生对技术设计中人文因素的理解,提高学生审美情趣和技术素养,增强面对技术世界的信心以及对个人、社会、环境的责任心。 3.教学重难点 理解各设计原则实现的途径和方法。 二、说教法 本节课教学主要采用导学式小组合作学习的教学方法完成教学任务,即各个环节均以学生为主体,教师为主导,引导学生进行自主、合作、探究的学习方式学习,让学生在探究中自主建构知识,在设计中发现问题,在活动中体验原则。 三、说学法 作为设计的一般原则的组成部分,七个原则是不可分割的。但是,作为一个学习过程,需要分步学习。因此课堂教学的总体思路为:总分总模式。具体的主要教学思路为:第一课时——购买手机(引入情景)→合作探究(选择理由)→自主发现、理解(选择理由即设计原则)→实例分析(分步学习一般原则)→技术产品评价(回顾)。通过教学设计达到了学生的每一步学习都有针对性的思考或实践,对于学生的理解学习及能力提升是有益的。 四、教学准备 1.教学资源的准备:各种功能晾衣架。 2.教学课件的准备:课件简洁,以生活实例及直观图片呈现,抓住关键知识点,突出中心。 五、说教学过程

相关文档
最新文档