功率分析仪详解:谐波测量的解析(二)

功率分析仪详解:谐波测量的解析(二)
功率分析仪详解:谐波测量的解析(二)

1. 功率分析仪详解:谐波测量的解析(二)

上次介绍了FFT的一些基础定义,以及PA6000功率分析仪与示波器的FFT的功能差异。如果大家想要了解更多的DFT以及FFT的介绍,可以参考《ZDS2000示波器FFT性能分析》这篇文章,里面详细介绍了采样率、FFT点数、频率分辨率等定义,我们后续的介绍都是基于这篇文章中描述的FFT原理来进行延伸的。

从《ZDS2000示波器FFT性能分析》里可以知道,不同的采样率,不同的FFT点数会产生不同的频率分辨率,而不同的频率分辨率,会引起不同的谐波测量结果!同一个被测信号,用不同的频率分辨率去计算FFT,得到的谐波测量结果是不一样的,为什么呢?我们知道信号在通过非线性元件的时候都会发生混频,我们测试的信号肯定是经过很多非线性元件的,所以都会经过多次混频,混频后的结果是,信号的的频谱里面布满了各种各样的杂散和谐波,而FFT运算一般都会有频谱泄露及栅栏效应,不同的频谱分辨率,就会有不同的频谱泄露及栅栏效应,所以测量出来的谐波都不一样,THD也是不一样的。

大家知道计算谐波的第一步是FFT,那计算完FFT后,又如何得出所需要的谐波?

最简单最直接的方式是对应频点的有效值。当然有简单的方式,肯定也有复杂的方式,这个我们后面再介绍。

●整流:将输入交流信号转换为直流信号

PLL源的基波频率采样率(S/s)相对FFT数据长度的

窗口宽度(基波频率)

最大谐波分

析次数

采样

点数

10~20Hz f×3200 3 128 9600

20~40Hz f×1600 6 128 9600

40~55Hz f×960 10 128 9600

55~75Hz f×800 12 128 9600

75~150Hz f×480 20 128 9600

150Hz~440Hz f×320 30 128 9600

440Hz ~1.1KHz f×160 60 80 9600

1.1KHz~

2.6KHz f×80 120 40 9600

到此我们就可以清楚的知道,同一个信号用不同的仪器测量谐波,因为测量参数的不一样,测量出来的谐波结果会存在差异,这个差异的大小不单单与测量参数有关,与被测信号

类型也有关,比如正弦波信号差异会少一些,方波或PWM波信号差异会很大(可能差几十倍!)。所以我们测试前要先了解测试仪器的FFT计算参数:采样率、FFT点数、频率分辨率。

●PA6000常规谐波/谐波/IEC谐波

PA6000有多种谐波测量模式,包括常规模式谐波、谐波模式谐波、IEC模式谐波,还有独立的FFT模式。从上表可以看出,就是PA6000在不同的谐波测量模式下,参与FFT 运算的点数都是不一样的,从测量的输入信号范围不一样,也可以猜测出,采样率也是不一样的。这些不一样,也就表明了就算同一款仪器,不同的谐波测量模式测出的谐波结果也是不一样的。这就引入两个问题,为什么要这么多的谐波测量模式?那个更准确呢?这里就涉及到谐波正确应用的方法问题,我们下次再介绍。

JJG780-1992《交流数字功率表检定规程》对电参数测量仪的解读

JJG780-1992《交流数字功率表检定规程》对电参数测量仪的 解读 www.cqstyq.com 《数字式交流电参数测量仪JJF1491-2014 校准规范》解读 DOI:10.16569/https://www.360docs.net/doc/a74620717.html,11-3720/t.2015.07.065 一、制定背景 传统的电测量仪表采用模拟指示,随着集成电路和计算机技术的发展,模拟指示仪表越来越多地被数字显示仪表所替代。电参数测量仪代表了一种先进的测量技术,已经成为各行各业通用的计量仪器,目前国家尚未制定电参数测量仪的校准规范, 1992年实施的JJG780-1992《交流数字功率表检定规程》,仅对单一参数———“交流功率”的测量进行了规定,远远满足不了目前日新月异的现代工业发展的需求。国家校准规范JJF1491-2014《数字式交流电参数测量仪校准规范》顺应形势发展,于2015年2月17日开始实施。该规范的制定和实施,解决了电参数测量仪的量值统一问题,为电参数测量仪的计量校准提供了良好的技术依据。 二、主要内容解析 本规范正文部分包括适用范围、引用文件、概述、计量特性、校准条件、校准项目、校准方法、校准结果表达和复校时间间隔。附录部分包括测量结果不确定度评定示例、原始记录格式、校准证书内页格式、电源负

载法校准交流功率示值误差和示值误差的表达式。 1.规范的适用范围 通过调研,大部分的电参数测量仪应用于工频范围内,综合考虑航空电源系统的频率范围,确定本规范电参数测量仪输入信号的频率范围为40Hz~1kHz。既包括工频又能覆盖航空电源系统的400Hz频率范围。 www.cqstyq.com □谷扬 马雪锋 郑孟霞 2.引用文件 交流功率部分的功率误差计算公式参照JJG780- 1992;计量特性部分的最大允许误差表述采用a+b误差表示方法;附录F示值误差表达式,参照GB/T13978- 2008《数字多用表》的表示方法。 3.概述 介绍电参数测量仪的主要组成部分及其应用。 4.计量特性 给出了常见电参数测量仪的测量范围和最大允许误差。由于编制组所能调研应用领域的限制,测量范围只是覆盖了大多数电参数测量仪。也可能有一部分电参数测量仪的测量范围在给出的范围之外,在校准过程中可酌情参照本规范。最大允许误差不用于合格性判别,仅表示本规范适用于最大允许误差不优于本规范表1给出值的电参数测量仪的校准。

有关功率分析仪的谐波测量技术解析

有关功率分析仪的谐波测量技术解析 几乎所有的功率分析仪都有谐波测量功能,有的支持40次,有的支持100次,有的支持128次,这个值是不是越大就越好呢?这个功能又用在哪些测试领域呢?常规谐波测量,IEC谐波测量以及FFT都是与谐波有关的,他们之间有何区别,实际使用过程中又该如何选择呢? 谐波测量的重要参数THD说明 说到谐波,我们首先关注的参数就是THD(总谐波畸变率),总谐波畸变率就是各次谐波的均方根值除以基波值(有时候是除以总波值叫THF),其值以百分比方式显示。 从上面的计算公式我们可以看出,除数基波值是基本不变的,但是被除数各次谐波的均方根值,则随着谐波次数的增多而增大。也就是说,用于计算THD 的谐波次数越大,THD值就越大。而谐波次数越多测试出来的THD值离真实值就越接近。接近真实值有什么用呢?那需要测试多少次谐波的THD值才算比较接近真实值呢?

THD就是告诉你,被测信号里面含有多少谐波成分,是否足够“纯净”。我们的常识里面谐波就是危害很大的,几乎没有好处(谐波当然也可以废物利用,比如供电线融冰),THD的真实值可以最准确的告诉我们,被测信号的“纯度”,就像饮用水里面各种成分的含量一样,谐波就像水里面的漂白粉、重金属、有机物成分等,我们当然希望了解我们的饮用水里面所有各种成分的含量。PA6000最高支持256次谐波,让你看到信号里面的各种”成分”。 希望总是美好的,但现实总是残酷的。由于国内大部分仪器都只能测试40次或以内的谐波,所以目前国内的THD测试标准还是沿用比较落后的40次。不同的谐波测试次数又有什么区别呢?测试40次与测试256次的差异就像,测试饮用水的成分,测试40次只检测了漂白粉的含量;测试256次则除了除漂白粉外,还检测了铜、铁、钠、钾、氨、氰化物等的含量。欧美的一些最新标准已经开始沿用64次谐波的测量标准,德国并网逆变器谐波测量的最新要求已经达到178次。谐波测量次数越来越高将是谐波测量领域的发展趋势,选择PA6000就是占领谐波测量的制高点! 谐波既然这么重要,那谐波是如何测量出来的呢? 谐波测量的核心是时域到频域的转换。离散傅里叶变换(DFT)是对数字信号进行时域到频域转换,而高效进行DFT的方法就是快速傅里叶变换(FFT)。 PA6000的谐波测量与示波器的FFT有什么区别呢? 示波器的FFT运算是通过采集周期中的某一段数据进行运算并显示结果,用于运算的数据仅仅是所有数据里面的某一部分;而PA6000在谐波测量模式下,所有采集到的数据都用于FFT运算,所以能够测量出谐波在任何时刻的变化!这

电气测量题09-全填空要点说课讲解

(一)单项选择题:(每题1分,共10分) 1、表征系统误差大小程度的量称为。 2、精密度是表征的大小程度。 3、准确度是表征的大小程度。 4、检流计下量限可达到A。 5、直流电位差计量限一般不超过V。 6、电动系仪表的转动力矩由被测量的决定。 7、电磁系仪表的转动力矩由被测量的决定。 8、整流系仪表的转动力矩由被测量的决定。 9、通常,级以下的电测仪表用于一般工程测量。 10、准确度超过级的测量需要选用比较仪器。 11、配套用的扩大量程的装置(分流器、互感器等),它们的准确度选择要求比测量仪器 本身高级。 12、测量电能普遍使用表。 13、直流电度表多为系 14、精确测量电路参数可以使用。 15、直流单电桥适用于测量电阻。 16、直流双电桥适用于测量电阻。 17、直流单电桥测量范围一般为电阻。 18、直流双电桥测量范围一般为电阻。 19、使用单电桥测量电阻时,当被测电阻小于Ω时,引线电阻、与电桥连接处的 接触电阻就不能忽略。 20、兆欧表专用于检查和测量电气设备或供电线路的电阻。 21、通常规定兆欧表的额定转速为转/分。 22、兆欧表专用于检查和测量电气设备或供电线路的电阻。 23、磁通的单位是。 24、磁感应强度的单位是。 25、磁性材料的直流磁特性常用进行测量。 26、用测量磁性材料在交变磁场中所消耗的功率,是测量损耗的重要方法。 27、电子电压表的输入阻抗一般大于Ω。 28、电子电压表的输入电容一般小于F。 29、电子电压表的频率范围可以达到Hz。 30、现在生产的电子电压表大部分都按刻度。 31、测量额定电压为500V以下电气设备线圈的绝缘电阻,应选用额定电压为V的 兆欧表。 32、适合测量损耗大的电容器的电桥是电桥。 33、适合测量小值电感的电桥是电桥。(P105) 34、适合测量损耗小的电容器的电桥是电桥。 35、按峰值刻度的峰值检波电压表,测量时的读数与被测电压无关。

谐波测量

全光学互感器的谐波测量应用技术 采用电容分压器作为谐波电压传感器,信号经过高速数字化处理,发送到二次单元进行计算处理。本文经比较分析并结合实际,选择了操作性和实用性较强的快速傅里叶变换法作为谐波测量的分析方法,并且对谐波测量中普遍存在的频谱混叠和频谱泄漏问题进行了分析,提出了在测量算法上避免和减少上述两个问题的方法。[1] 光学电压互感器(OVT)的主要原理是利用光学晶体在外加电场的作用下,所产生 Pockels 效应、Kerr 效应等。当一束光射入某些处于电场中的光学晶体时,其出射光为有一定相位差的两束光,而这个相位差与光学晶体所处的电场强度成正比。测出此相位差,就能知道电场强度,达到测量电压的目的。光学电压互感器的优点在于:高压侧与低压侧达到了完全的电气隔离,适用于高压电网中;光信号不受电磁干扰;重量轻;用光纤传送信号,可供数字化的二次设备直接使用。但是光学晶体受温度影响较大,可靠性较差,这是目前待解决的问题。 电力系统中谐波的定义为:谐波是一个周期电气量的正弦波分量,其频率为基波的整数倍。电网中有时也存在非整数倍谐波,称为分数次谐波。谐波频率与基波频率的比值称为谐波次数。理想的公用电网所提供的电压应该是单一而固

定的频率以及规定的电压幅值,谐波电压的出现,是本应单一而固定的电力信号产生畸变,变为多样且变化的信号,对公用电网来说是一种污染。 (1)谐波的产生。 ①发电机是电源的始发端,受限于加工工艺及机械工艺的水平,发电机的绕组和铁芯很难做到绝对的对称和均匀,那么发电机所发出的电就会有谐波成分。配电中的变压器铁芯饱和,磁化曲线非线性,也会引起谐波。这是电源本身质量不高引起的谐波。②各大电力公司为改善功率因数,大量使用的电容器组,电力电子装置中的整流装置、变频调速装置、电弧炉等都是谐波产生的源。由于电力电子技术的快速发展,非线性负载比例增加,工业和民用中大量的电力电子设备的运用,电力电子设备成为了主要的谐波源。 (2)谐波的危害 ①在电网的发电、输电中,谐波引起发电机、变压器等输变电设备产生谐波损耗(铜、铁损耗等)、噪声和机械振动,降低发电、输电和用电的效率。②无功补偿电容器使谐波电流放大,引起电容器过电压或者过负荷而烧毁。③谐波会在电缆上产生集肤效应,使电缆绝缘寿命缩短,同时熔断器等对发热效应很敏感的设备会严重受损。④谐波会引起继电保护和自动装置的误动作,电力测量仪表产生误差,在局部会造成并联和串联谐振,谐波量被严重放大,引起电网的

功率表的使用方法-2

功率表的使用方法-2

电动式功率表的使用方法 一、电动式功率表的结构及工作原理 电动式功率表的结 构如图2-1所示。它的 固定部分是由两个平 行对称的线圈1组成, 这两个线圈可以彼此 串联或并联连接,从 而可得到不同的量 限。可动部分主要有 转轴和装在轴上的可 动线圈2,指针3,空 图2-1 电动式功率表 气阻尼器4,产生反抗 力矩和将电流引入动圈的游线5组成。电动式功率表的接线如图2-2所示,图中固定线圈串联在被测电路中,流过的电流就是负载电流,因此,这个线圈称为电流线圈。可动线圈在表内串联一个电阻值很大的电阻R后与负载电流并联,流过线圈的电流与负载的电压成正比,而且差不多与其相同,因而这个线圈称为电压线圈。固定线圈产生的磁场与负载电流成正比,该磁场与可动线圈中的电流相互作用,使动圈产生一力矩,并带

动指针转动。在任一瞬间,转动力矩的大小总是与负载电流以及电压瞬时值的乘积成正比,但由于转动部分有机械惯性存在,因此偏转角决定于力矩的平均值,也就是电路的平均功率,即有功功率。 由于电动式功率表是单向偏转,偏转方向与 电流线圈和电压线圈中的电流方向有关。为了使指针不反向偏转,通常把两个线圈的始端都标有“*”或“±”符号,习惯上称之为“同名端”或“发电机端”,接线时必须将有相同符号的端钮接在同一根电源线上。当弄不清电源线在负载哪一边时,针指可能反转,这时只需将电压线圈端钮的接线对调一下,或将装在电压线圈中改换极性的开关转换一下即可。 图2-2(a )和2-2(b )的两种接线方式,R I ** 负载 图2-2 功率表的两种接线方式 R I **负 载 (a (b

谐波测量基本原理

谐波测量基本原理 目前最常用的谐波分析方法是使用傅里叶变换,将时域的离散信号进行傅里叶级数展开,得到离散的频谱,从离散的频谱中挑选出各次谐波对应的谱线,计算得出谐波各项参数。 在实际实现时,由于离散傅里叶变换存在“栅栏效应”,采样频率不为基波的整数倍时,部分谐波可能不在离散傅里叶变换后的离散频率点上,需要使用特殊的手段将栅栏空隙对准我们关心的谐波频率点。其中同步采样法和频率重心法使用最为广泛。 同步采样法 顾名思义,就是使采样频率与基波频率同步改变。该方法从源头上保证数据的采样频率为基波频率的整数倍,如IEC 61000-4-7标准就规定50Hz使用10倍基波采样率,采样数据经离散傅里叶变换即可得到各次谐波分量。同步采样常用硬件PLL实现,需要实时调整采样频率,频率的锁定需要时间,受限于滤波器及相关器件,很难做到很宽的频域,也很难保证频谱特别丰富时的准确性。 频率重心法 使用足够高的采样频率(一般大于4倍基波频率)即可满

足直接对信号进行采样,将信号的频谱间隔拉开,并且使用更多周期的数据点做离散傅里叶变换,降低频谱泄露的影响。最后根据窗函数的功率谱分布特性,通过频谱的谱峰和次谱峰,找到真正的谱峰频点——即离散频谱的谱峰和次谱峰的重心。 通过频率重心法消除了栅栏效应的影响,对各次谐波使用重心法,还得到一个偏离系数,使用该系数配合窗函数功率谱,可求解得到对应频点的相位和幅值等信息。至此,非同步采样法同样得到了各次谐波。受限于窗函数的频谱特性,该法需要用足够高采样率来保证各频率成分的频谱互相影响足够小;而且截断造成的泄漏也不能太大,否则产生的假频率叠加到真实频谱里,导致结果误差更大。 简单对比 基于以上实现原理可知,同步采样法精度取决于PLL的准确度,而后期计算简单。PLL中用到的滤波器限制了支持的基波频率上限,因此在基波频率较高时,同步采样法一般无法支持;同样是滤波器原因,无法很好滤除低偶次谐波,所以低偶次谐波幅值较大时,PLL就无法同步基波采样,谐波分析结果也就完全错误。 频率重心法不需要额外滤波器,采样器件可工作在支持的最高采样频率,使有效谱线拉开的同时提高了支持的谐波频率范围,而为了消除泄漏的影响,需要使用更多的数据进

电动系功率表结构和工作原理

电动系功率表结构和工作原理 电动系测量机构用于功率测量时,其定圈串联接入被测电路;而动圈与附加电阻串联后并联接人被测电路。国家标准规定,在测量线路中,用一个圆加-条水平粗实线和一条竖直细实线来表示电压与电流相乘的线圈。电动系功率表的电路原理图如图1所示。显然,通过定圈的电流就是被测电路的电流I,所以通常称定圈为电流线圈;动圈支路两端的电压就是被测电路两端的电压,所以通常称动圈为电压线圈,而动圈支路也常被称为电压支路。 ①当用于直流电路的功率测量时,通过电流线圈的电流I;与被测电路电流相等,即 I 1=I 图1 电动系功率表的原理电路图 而电压线圈中的电流Jz可由欧姆定律确定,即

由于电流线圈两端的电压降远小于负载两端的电压U,所以可以认为电压支路两端的电压与负载电压tJ是相等的。式(2-21)中R2是电压支路总电阻,它包括电压线圈电阻和附加电阻Rfj。对于一个已制成的功率表,R2是一个常数。又因为电动系功率表可动部分的偏转角为 即电动系功率表用于直流电路的测量时,其可动部分的偏转角α正比于被测负载功率P。 ②当用于交流电路的测量时,通过电流线圈的电流I,等于负载电流I,即 而通过电压线圈的电流I2与负载电压J成正比,即 式中Z2——电压支路的总阻抗。 由于电压支路中附加电阻R凸总是比较大,在工作频率不太高时,电压线圈的 感抗可以忽略不计。因此,可以近似认为电压线圈电流I2与负载电压J是同相的,即I2与山之间的相位差等于零,而I1与I2之间的相位差矽跟J;与山之间的相位差¢相等,如图2所示。 因此可得

图2 I1、U、∮、I2、φ的相位关系 即电动系功率表用于交流电路的功率测量时,其可动部分的偏转角α与被测电路的有功功率P 成正比。虽然这一结论是在正弦交流电路的情况下得出的,但它对非正弦交流电路同样适用。

电气测量习题答案-陈立周

《电气测量》五版习题参考答案 (说明)以下答案并不是标准答案,因为有的题目可能有多解,任何一种解法都不能称为标准解法。其次,计算中在遇到多位数时,允许取近似的有效数,有效数可以取三位。有的时候也可以取四位或两位,这在工程计算中都是允许的。所以下面答案中取近似值的方法,也不是标准方法,所有答案都仅供参考。 第一章 1.用电压表测量实际值为220V 的电压,若测量中该表最大可能有±5%相对误差,则可能出现的读数最大值为多大。若测出值为230V ,则该读数的相对误差和绝对误差为多大。 解:可能出现的读数最大值为 220+220×231100 5=V 若测出值为230V ,则该读数的绝对误差为 0A A X -=?=230-220=10 V 相对误差为 γ0A ?=×100%220 10=×100% =% 2.用量程为10A 的电流表,测量实际值为8A 的电流,若读数为,求测量的绝对误差和相对误差。若所求得的绝对误差被视为最大绝对误差,问该电流表的准确度等级可定为哪一级 解:该读数的绝对误差为 0A A X -=?=-8= A 该表的最大引用误差为 m m m A ?=γ×100% =81.0×100% =% 按表1-1该电流表的准确度等级可定为级

3.用准确度为1级、量程为300V 的电压表测量某电压,若读数为300V ,则该读数可能的相对误差和绝对误差有多大,若读数为200V ,则该读数可能的相对误差和绝对误差有多大。 解:准确度1级、量程为300V 的电压表,最大绝对误差为 V 3%)1(300±=±?=?=?m m m A γ 若读数为300V ,则该读数可能的最大绝对误差为V 3±,相对误差为 γx A ?===±300 3%1± 读数为200V 时,则该读数可能的最大绝对误差仍为V 3±,此时的相对误差为 γx A ?===±200 3%5.1± 4.欲测一250V 的电压,要求测量的相对误差不要超过±0.5%,如果选用量程为250V 的电压表,那么应选其准确度等级为哪一级如果选用量程为300V 和500V 的电压表,则其准确度等级又应选用哪一级 解:如果选用量程为250V 的电压表,可选准确度为0.5级的电压表,其最大绝对误差 为 V 25.1%)5.0(250±=±?=?=?m m m A γ 在测量250V 时相对误差不会超过±0.5%。 若选用量程为300V 的电压表,准确度为0.5级时,其最大绝对误差为,测 量250V 时相对误差为γx A ?===±250 5.1% 6.0±,不能满足要求,必须选用0.2级.最大绝对误差为0.6V ,测量250V 时相对误差为γx A ?===±250 6.0%24.0±,不会超过±0.5%。 若选用量程为500V 的电压表,准确度为0.2级时,其最大绝对误差为1V , 测量250V 时相对误差为γx A ?===±250 1%4.0±,可以满足要求.,

读懂压力表讲解

读懂压力表 厦门伍纵船舶液压技术有限公司 马明东 前言 在液压维修时,想要找出缺陷机器的故障点,就需要对机器上的液压元件进行压力测量,通过压力测量,了解所测量液压元件内的压力状况。压力测量就须使用压力测量工具,常用的是弹簧管式、表壳内冲满硅油抗震压力表,用压力表测量压力时,压力表针是一晃而过,虽然不能再现压力变化的数值,但液压系统中的流量特性、压力脉动都能在压力表上显现出来,这就需要炼就一双敏锐慧眼捕捉一闪即逝的表针运动轨迹、一个清晰大脑来观察、记录,并头脑中迅速生成压力曲线图,运用分析及经验来判断故障诱因,“观想”一边观、一边想,思索问题出在那里,制定维修方案。 1,测压前的准备工作 张海平老师说过:液压测试中最关键的是测试准备工作,准备是测试成功的保证[1]。准备工作: 1.1,要了解需要进行测试的液压设备整机的工况特性、液压回路图及执行元件性能 1.2,制定需要测试的设备各项功能图及正常情况下执行元件运动数据,确定测试点。 1.3,准备好测试用的各量程值压力表、测压接头、记录纸、笔、秒表、串接的三通,必要时采用录像做好回放工作。 1.4,安全准备工作及检查测压表具及防护装置。 2,读懂压力表, 压力测量,压力升程从低到高是有一时间段的,不同的液压执行元件容积、不同的质量流量、不同的负载工况,时间段也是改变的,在压力表测量时,观看某一时间段内的表针升程变化,根据压力表的显像在头脑中生成压力变化曲线图并自己动笔画出压力曲线图。 2.1,在几秒内压力表开始0bar达到最高压力?达到最高压力值后表针是稳定还是颤动、还是抖动?抖动幅度值是多少?要记录在纸面上留备用。(表针颤动是表针指示在某一数值上时的小幅度、左右不停晃动。表针抖动与表针颤抖的区分是“抖动”的表针比颤动摆动幅度大)。 2.2,表针在升程的全程过程中内是否有抖动现象?最好能观测到全程表针抖动了多少“次”,压力表针是瞬间达到最高压力,还是先在低压升到中压后,停顿一下后突然跳到高压值(见图1)。 2.3,在压力测量时,先要多次反复的测量压力,让表线中冲满油液,排出表线中的空气,尤其是超长表线,最好是能用一长一短的两块表、线接到同一测压点上来确认长表线的阻尼误差,超长表线,最好先不要把表与接表线螺纹头部拧紧,在测压表与线接点处泄漏点油后再拧紧,这样才能确认表压,也才具备记录值。 3,压力表安装在液压缸上测量 测量前要在无杆腔、有杆腔各安装一个压力表,如果缸筒外部没有可安装测压点接压力表时,可以用三通管件串进压力表。油缸测量压力分为油缸有负载状况和缸无负载两种状况,常用的工程机械油缸活塞左右两端带有缓冲装置,而工业油缸上是没有这种缓冲装置的。无负载油缸测量压力首先要测量“最低起动压力”:是指油缸在无负载状态下能驱动缸杆伸缩时需要的最小压力值是“多少”,它能反映出油缸零件制造精度和密封组件与金属间摩擦力大小的综合指标,也能检测缸杆伸缩平稳性能。油缸起动最低压力是:7~14bar(缸筒内径100mm标准,随着缸径的加大,摩擦线性关系增加,起动压力也随线性加大)。油

电网谐波测量

1 绪论 随着国民经济的发展和人们生活水平的提高,电力电子产品广泛地应用于工业控制领域,用户对电能质量的要求也越来越高,其中最为突出的是电压质量和谐波的问题,因此,如何提高电压质量、治理谐波就成为输配电技术中最为迫切的问题之一。所以,面对我国目前电网结构薄弱和输配电技术普遍存在的技术手段的落后、自动化水平低的现状,针对电压质量和谐波问题,研究电网谐波治理问题和无功补偿新技术及新装备,具有十分重要的理论和现实意义[3]。 1.1 谐波的定义 “谐波”这一名词起源于声学,在声学中谐波表示一根弦或一个空气柱以基波频率的倍数频率振动。电气学中所谓电网谐波,就是电网正弦电压波形畸变后,其波形可以按傅立叶级数进行分解,除了基波(50HZ)之外,还有一系列频率为基波频率整数倍的正(余)弦波,这些正(余)弦波称之为谐波。正是由于这些谐波注入了电网,就使得电网电压波形畸变[14]。 1.2 谐波的危害 电网谐波的危害主要有以下几点: 1、相同频率的谐波电压余谐波电流要产生同此谐波的有功功率与无功功率,从而降低电网电压,浪费电网容量。 2、高次谐波能使电容器出现过电流与过负荷,温度增高,寿命减少,甚至出现发热、鼓肚、击穿或爆炸事故。同时在电压已经畸变的电网中,电容器的投入,还可能使电网的谐波加剧(谐波放大现象)。 3、谐波往往引起继电保护不工作或误动作,从而造成设备与系统的事故,尤其是半导体继电保护与整流型继电保护更为严重。

4、谐波能增大仪表的计量误差,干扰通讯网络的正常工作。 5、电机中有谐波电流,且频率接近某个零件的固有频率时,使电机产生机械振动并发出很大的噪声。 6、谐波对人体有影响。从人体生理学来看,人体细胞在受到刺激兴奋时,会在细胞膜静息电位基础上发生快速电波动或可逆翻转。其频率如果与谐波频率相接近,电网谐波的磁辐射就会直接影响人的脑磁场和心磁场。 1.3 谐波的产生 电网谐波来源于三个方面:其一是发电源质量不高产生谐波;其二是输电网产生谐波;其三是用电设备产生的谐波。其中以电气设备产生的谐波最多,具体情况如下: 1、整流设备。由于晶闸管整流的广泛应用(如电力机车的、路电解槽、电池充电器等),给电网造成大量的谐波。统计表明:由于整流装置产生的谐波占所有谐波的40%左右,这是最大的谐波源。 2、电弧炉、电石炉。由于加热原料时电炉的三项电极很难同时接触到高低不平的炉料,使得燃料不稳定,引起三项负荷不平衡,产生谐波电流,经变压器的△形连接线圈而注入电网。其中主要是2~7次的谐波,平均可达基波的8%~20%,最大可达45%。 3、电力变压器。由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济型,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波,其次谐波电流可达额定电流的0.5%。另外变压器空载合闸时出现的涵流中也含有大量的谐波量。 4、家用电器。如电视机、录像机、电子调光灯具、调温炊具等,因具有调压整流装置,会产生较深的奇次谐波;在洗衣机、电风扇、空调器等有绕组的设备中,因不平衡电流的变化也能是波形改变。

电气测量技术总结doc

电气测量总结 一、课程的目的 掌握基本电量(电压、电流、功率、电能、频率、相位差、功率因数)和电路参数(直流电阻、交流阻抗,包括电感的品质因数、电容的介质损耗)的测量方法。 了解电工仪表、仪器的基本工作原理,能够正确选择和使用。 掌握误差估算方法,能够在工程测量中估算直接测量和间接测量的系统误差。 为从事电气方面的工作和科研奠定工程测量方面的基础。 二、学习方法 掌握原理,理解特点,能够正确使用。 主要资料:教材,课件,习题。 辅助资料:电路,电磁场。 三、主要内容 u,i。直流,交流,大,中,小。 功率。直流,交流;单相,三相;有功,无功。 f T??。数字测量方法。 ,,,cos 直流电阻,交流阻抗。大,中,小。 附件:采样电阻,分流器,分压器。互感器。 误差分析及传递。 重点: 各量的模拟测量方法、数字测量方法、间接测量方法、其它测量方法。各方法的适用情况、原理、特点、误差分析。 四、具体内容(依据陈立周电气测量(第5版)) (一)电工仪表与测量的基本知识 1、模拟指示仪表的组成和基本原理 测量机构是核心。一种测量机构和不同的测量线路可以组成不同功能的电工仪表,例如,磁电系测量机构接分流器可构成直流电流表,接分压器可构成直流电压表,接电源可构成欧姆表,接整流电路可构成交流的电压或电流表,接传感器可用于测量非电量。 不同类型的测量机构其具体结构不同,但基本原理是相同的,即必然有三个基本力矩:作用力矩,反作用力矩,阻尼力矩。这三个力矩是各种测量机构中必不可少的,它们决定了测量机构特性。当作用力矩和反作用力矩相等时,决定了指针的平衡位置。阻尼力矩改善可动部分的运动特性,使指针尽快静止在平衡位置。不同的测量机构产生着三个力矩的方式是不同的。 2、数字仪表的组成和基本原理 核心是直流数字电压表,将直流电压进行A/D转换和处理。不同的测量线路将各种待测量转换为允许输入的直流电压。 数字法测量频率和周期不需要A/D转换。相位差可转换为时间测量,因而数字法测相位差和功率因数也不用A/D转换。 3、测量误差及其表示方法 分类:系统误差,随机误差,疏忽误差。各自的特点,产生的原因,处理的方法。工程测量中因系统

功率表原理

功率表原理 F0803016 刘冰阳5080309564 摘要:分析功率表的结构,工作原理及其应用 关键字:功率,功率因素cosφ 前言:在学到三相电路功率测量时,出现了一个新的测量仪表——功率表。但是对于其工作原理,它是怎么可以直接显示功率的大小,为什么要这样接线不甚了解,也为此查阅了些资料。本文介绍了功率表的结构,工作原理等情况。 正文: 功率表是测量直流,交流电路中功率的机械式指示电表。直流电路和交流电路中的功率分别为P=UI。 直流电路和交流电路中的功率分別为P=UI和P=UIc osφ﹐U,I 为负载电压和电流,φ为电流相量与相量间夹角﹐cosφ为功率因数。虽然各系电表的测量机构都有可能构成测量功率的电表﹐但最适于制成功率表的是电动系电表和铁磁电动系电表的测量机构。 功率表的结构: 由于功率表的种类很多,这里只以单相电动系功率表进行分析。 单相电动系功率表的接线原理见图。 这种电表测量机构的转动力矩M与I 1I 2 cosθ有关﹐I 1 为静圈电流,I 2 为动圈电 流﹐θ为两电流相量间夹角。使负载电流I通过静圈﹐即I 1 =I。将负载电压加于动 圈及与动圈串联的大电阻R上﹐则动圈中电流I 2 =U/R。这样θ=φ﹐而转动力矩 M=kI 1I 2 cosφ﹐这反映了功率P的大小。 改变与动圈串联的电阻值﹐可改变电压量程﹐将静圈的两线圈由串联改为并联﹐可扩大电流量程。功率表的表盘一般按额定电压与额定电流相乘﹐并使功率因数cosφ=1來标值。如电压量程为300V﹑电流量程为5A的功率表﹐表盘的满

刻度值为300×5×1=1500W。也有制成功率因数为0.1的低功率因数功率表﹐其满刻度值为300×5×0.1=150W。功率表的量程不能简单地只提功率量程﹐而应同時指明电压﹑电流量程及功率因数数值。 功率表的接线: 功率表的正确接法必须遵守“发电机端”的接线规则。 1)功率表标有“*”号的电流端必须接至电源的一端,而另一端则接至负载端。电流线圈是串联接入电路的。 2) 功率表上标有“*”号的电压端子可接电流端的任一端而另一端子则并联至负载的另一端。功率表的电压支路是并联接入电路的。 a) 电压线圈前接法适用于负载电阻的电流线圈的电阻大的情况,电流线 圈的电压降使测量产生误差。 b) 电压线圈后接法适用于负载电阻远比电压,支路电阻小的情况流过电 压线圈的电流使测量产生误差。 我们往往都是按照电路图接线,却从来不去搞清楚为什么这样接? 在这里为什么要把标有“*”号的端子连在一起呢? 这两个端子称为对应端。它们的用途是﹕①如将对应端按图中所示接在一起﹐则当功率表的指针正向偏转時﹐表示能量由左向右传送﹔若指针反向偏转﹐表示能量由右向左传送﹔②电流线圈的任一接线端应与电压线圈标有“”符号的接线端连接﹐这样线圈间电位比较接近﹐可减小其间的寄生电容电流和静电力﹐保证功率表的准确度和安全。 功率的测量: 正弦交流电路中﹐无功功率Q=UIsinφ﹐因此只需将电压或电流的的相位移动90﹐即可用一般的功率表测无功功率。通常将功率表內部的电阻器R代以同数值的容性电抗器﹐使动圈中的电流与所加电压相位差90﹐其作用相当于将电压相位移动90﹐此时即可用来测无功功率。 小结: 以上介绍了功率表的结构,原理,以及接线等内容。以前在做实验或做题目时经常对这个新的测量仪表搞不清楚,不知道读数是什么,不知道怎么接线,不知道为什么“多此一举”地在两个带“*”号端接上一根线。。。我想通过这篇论文,我们以后在实验中或做习题时对功率表的情况又多了一个参考。 参考文献: 《基本电路理论》 《广播电视测量技术》

分析仪器安全操作规程(新版)

( 操作规程 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 分析仪器安全操作规程(新版) Safety operating procedures refer to documents describing all aspects of work steps and operating procedures that comply with production safety laws and regulations.

分析仪器安全操作规程(新版) 一、低速大容量离心机(DL-5型) 操作注意事项 1.除工作温度、运转速度和运转时间外,请不要随意更改及其的工作参数,以免影响其性能。 2.使用前应检查转子是否有划痕、腐蚀等现象;同时应对离心杯作裂纹、老化等方面的检查,发现问题立即停止使用,并与厂方联系。开机运转前,请务必拧紧转头的压紧螺帽,以免高速旋转的转头飞出造成事故。 3.转速不得超过最高转速(5000rpm),以确保机器安全运转。 4.使用中如出现0.00或其他数字,应关机停电,10秒钟后重新开机,待所设转速显示后,在按运转键将机器照常运行。 5.如需分离的样品比重超过1.2g/cm3

,最高转速N必须按下式修正N=Nmax ×(1.2÷样品比重)1/2 Nmax ——转子极限转速。 6.不得在机器运转过程中或转子未停稳的情况下打开盖门,以免发生事故。 7.离心杯必须等量灌注样品,切不要使转头在不平衡的情况下运行。 8.离心机一次运行最好不要超过60分钟。 9.离心机必须可靠接地;机器不使用,请拔掉电源插头。 车间机械设备卡片 装置 设备名称 低速大容量离心机 型号 DL—5

电气测量技术A(一)试卷A答案

(勤奋、求是、创新、奉献) ???~ ???? 学年第一学期考试试卷 主考教师:宋万清 学院电子电气工程学院班级_0231061 姓名__________ 学号___________ 《电气测量技术》A(一)课程试卷A参考答案 (本卷考试时间 ?? 分钟) 题号一二三四五六七八九十总 得分 题分 得 分 一、选择题(本题共 小题,每小题 分,共 ?分) 请选择以下答案:(正确√)(错误╳) .他励直流电动机的电枢回路和励磁回路同接一个直流电源,若想使电动机反转,可以采用以下方 ( )可将直流电源正、负端交换( ╳ ), ( )可将电枢回路的两端交换(√ ), ( )可将励磁回路的两端交换(√ )。 ?.他励直流电动机的调速方法有:( )改变电枢回路的串联电阻来调速( )改变

励磁回路的电阻来调速。如果使直流电动机速度提高。 ( )增大电枢回路的串联电阻( ╳ ),减小电枢回路的串联电阻( √ ) ( )增大励磁回路的电阻( √ ),减小励磁回路的电阻( ╳ )。 .三相变压器空载与短路实验中, 空载测量时功率表的电压电流同铭端接于以下两种情况。 ( )接于电源一侧(√ ),( )接于变压器一侧(╳ )。 短路测量时电流表接于以下两种情况。 ( )接于电源一侧(√),( )接于变压器一侧(╳)。 .在进行直流电动机实验中,起动电动机可采用以下方法。 ( )直接起动( ╳ ), ( )电动机电枢回路串电阻起动(√ )。 二、填空题(本题共 小题,每小题 分,共 ?分) ? 他励直流电机在稳定运行时,电枢回路外串电阻后,电阻增大,电枢电流(减小),电磁转矩(减小)而(小于)负载转矩,电机转速下降。 ? 功率表倍率计算公式 ???? ??φ? α 其中??为( 功率表倍的额定电压 ),??为( 功率表倍的额定电流 ), ??φ? 为( 功率表倍的额定功率因素 ),α为( 功率表的满刻度读数 )。 ? 在进行直流电动机实验时,当励磁回路开路时会出现(飞车 )现象,在实验中采用(

功率表测功率

功率表如何测功率 F0403014 眭博聪 5040309405 摘要:分析功率表的结构,工作原理及其应用 关键字:功率,功率因素cosφ 前言:在学到三相电路功率测量时,用到了一个新的测量仪表——功率表。但是对于其工作原理,它是怎么可以直接显示功率的大小,为什么要这样接线不甚了解,也为此查阅了些资料。本文介绍了功率表的结构,工作原理等情况。 正文: 功率表是测量直流,交流电路中功率的机械式指示电表。直流电路和交流电路中的功率分别为P=UI。 直流电路和交流电路中的功率分別为P=UI和P=UIcosφ﹐U,I 为负载电压和电流,φ为电流相量与相量间夹角﹐cosφ为功率因数。虽然各系电表的测量机构都有可能构成测量功率的电表﹐但最适于制成功率表的是电动系电表和铁磁电动系电表的测量机构。 功率表的结构: 由于功率表的种类很多,这里只以单相电动系功率表进行分析。 单相电动系功率表的接线原理见图。 这种电表测量机构的转动力矩M与I1I2cosθ有关﹐I1为静圈电流,I2为动圈电流﹐θ为两 电流相量间夹角。使负载电流I通过静圈﹐即I1=I。将负载电压加于动圈及与动圈串联的大电阻R上﹐则动圈中电流I2=U/R。这样θ=φ﹐而转动力矩M=kI1I2cosφ﹐这反映了功率P的大小。 改变与动圈串联的电阻值﹐可改变电压量程﹐将静圈的两线圈由串联改为并联﹐可扩大电流量程。功率表的表盘一般按额定电压与额定电流相乘﹐并使功率因数cosφ=1來标值。如电压量程为300V﹑电流量程为5A的功率表﹐表盘的满刻度值为300×5×1=1500W。也有制成功率因数为 0.1的低功率因数功率表﹐其满刻度值为300×5×0.1=150W。功率表的量程不能简单地只提功率量程﹐而应同時指明电压﹑电流量程及功率因数数值。 功率表的接线: 功率表的正确接法必须遵守“发电机端”的接线规则。 1)功率表标有“*”号的电流端必须接至电源的一端,而另一端则接至负载端。电流线

功率表的使用

附录5 功率表的使用 功率表是电动系仪表,用于直流电路和交流电路中测量电功率,其测量结构主要由固定的电流线圈和可动的电压线圈组成,电流线圈与负载串联,反映负载的电流;电压线圈与负载并联,反映负载的电压。功率表有低功率因数功率表和高功率因数功率表。 一 功率表的使用 电路实验室中用到两种型号的功率表:D34—W 型功率表,属于低功率因数功率表, cos φ=0.2;D51型功率表,属于高功率因数功率表,cos φ=1。 以D34—W 型功率表为例,对功率表的使用方法进行介绍,其它型号功率表的使用方法与其基本类似。 1. 量程选择: 功率表的电压量程和电流量程根据被测负载的电压和电流来确定,要大于被测电路的电压、电流值。只有保证电压线圈和电流线圈都不过载,测量的功率值才准确,功率表也不会被烧坏。 (a )功率表面板图 (b )两电流线圈串联 (c )两电流线圈并联 图1 D34—W 型功率表 图1(a )所示为D34—W 型功率表面板图,该表有四个电压接线柱,其中一个带有 * 标的接线柱为公共端,另外三个是电压量程选择端,有25V 、50V 、100V 量程。四个电流接线柱,没有标明量程,需要通过对四个接线柱的不同连接方式改变量程,即:通过活动连接片使两个0.25A 的电流线圈串联,得到0.25A 的量程,见图1(b )。通过活动连接片使两个电流线圈并联,得到0.5A 的量程,见图1(c )。

2. 连接方法; 用功率表测量功率时,需使用四个接线 柱,两个电压线圈接线柱和两个电流线圈接 线柱,电压线圈要并联接入被测电路,电流 线圈要串联接入被测电路。通常情况下,电 压线圈和电流线圈的带有*标端应短接在一 起,否则功率表除反偏外,还有可能损坏。 通过具体实例说明一下功率表的连接 方法,当根据电路参数,选择电压量程为 50V ,电流量程为0.25A 时,功率表的实际 连线如图2。 3. 功率表的读数 功率表与其它仪表不同,功率表的表盘上并不标明瓦特数,而只标明分格数,所以从表盘上并不能直接读出所测的功率值,而须经过计算得到。当选用不同的电压、电流量程时,每分格所代表的瓦特数是不相同的,设每分格代表的功率为c ,则: cos φ为功率表的功率因数,对于D34—W 型功率表,表盘满刻度数为125。 在如图2所示的量程选择下,每分格所代表的瓦特数为 知道了C 值和仪表指针偏转后指示格数α,即可求出被测功率: P =C α 二 使用注意事项 格)(瓦表盘满刻度数 电流量程(安)电压量程(伏)/cos φ??= C 格)(瓦/02.0125 2.025.050=??=C 图2 功率表测量电路示例

WT E功率分析仪操作规程

**规程*********** WT1806E高精度功率分析仪操作规程 20**年**月**日发布20**年**月**日实施 ***************

WT1806E高精度功率分析仪操作规程 1 目的 为了指导检验人员或其他使用人员WT1806E高精度功率分析仪的正确使用和保养方法,确保其量值准确、可靠、稳定和延长其使用寿命,特制定本规程。 2 范围 本规程适用于中心配备的WT1806E高精度功率分析仪。 3 引用文件 《WT1800高精度功率分析仪入门指南》、《WT1806E高精度功率分析仪操作手册》。 4 概述 用途 横河WT1806E数字功率分析仪集六个模块的输入于一体,一台仪器可同时测量两组三相系统,广泛应用于变频器、电机驱动器、照明系统、不间断电源、飞机电力系统、变压器测试和其它功率转换设备。 主要技术指标 WT1806E功率分析仪主要技术参数 1. 电压、电流、功率精度:读数%+量程%; 2. 电压/电流带宽:DC,至5MHz; 3. 采样率:2MS/s(16位); 4. 电压量程:3/6/10/15/30/60/100/150/300/600/1000[V]; 5. 电流量程:1/2/5/10/20/50[A];50mV/100 mV /200 mV /500 mV /1V/2V/5V/10V; 6. 可同时测量电压、电流、有功功率、无功功率、视在功率、功率因数、相位角、频率、电压峰值、电流峰值、峰值因数、积分(Wh,Ah,Varh,Vah)等。 7. 有电机分析功能、6路外部传感器输入、双路谐波分析功能、1ms高速数据捕获、20秒钟原始波形捕捉、星转三角计算、12路频率测试等功能,内置热敏打印机。 电流传感器CPCO1000技术参数和功能 1. 开环,内径77mm; 2. 电流范围:1000A,精度:%量程; 3. 带宽:DC 40KHz;

谐波功率测量

浅述谐波功率测量 摘要:非线性负载引起交流正弦波畸变产生谐波,污染工频电网。电力系统中存在的大量谐波对电能计量的准确性产生了严重的影响。谐波测量是谐波问题研究的出发点和主要依据,概述了电力系统谐波度量方法,并对电力系统谐波测量的方法进行了分析和评述。通过对电能计量中谐波影响因素的分析,不断提高电能计量的准确性。 关键词:谐波测量;谐波功率;电能表;小波分析 电能计量是发电企业、输配电企业、电力用户之间进行贸易结算的依据,它的准确性与合理性直接影响三者之间的利益。 而另一方面.随着电力电子技术的发展,大量的电力电子变流装置和各种非线性负载的比重不断增加,引起电力系统中的电流和电压波形产生畸变。从频域的角度来看,在这些畸变的电流和电压波形中,不仅仅包含与供电电源同频率的正弦量,而且出现了一系列的频率为基波整数倍的正弦分量。这一系列的正弦分量统称为谐波。 电力系统谐波不仅对供电系统造成污染,对电力设备构成危害,而且产生谐波的非线性用户将其吸收的一部分基波电能转化为谐波电能,并反馈给电网,造成供电企业线损增加,电力营运企业非经营性成本增加。为此有必要研究在谐波影响下的电能计量,使电能计量管理更加合理[1,2]。 1 谐波功率的产生及危害 随着电力电子技术的发展,非线性负载是普遍存在的[3,4],尤其是晶闸管(可控硅)技术的发展,工农业、交通部门都在大量使用硅整流、换流和变频技术,例如电气化铁路采用单相交流电硅整流,冶金部门在轧钢机、电弧炼钢炉,矿山的卷扬机,有色金属冶炼的电解槽,化工部门的电离加工等等方面都离不开硅整流设备。就是在家用电器方面也少不了采用硅整流技术。如电视机、计算机、洗衣机、变频空调、手机、电动车电池的各种充电器和开关电源以及冷光照明、节能灯和调光灯等等都属于非线性负载。 在电力生产运行中,由于用户的这些非线性负载对电网产生了严重的有害影响。主要原因是这些负载产生大量的高次谐波电流,而单相非线性负载还产生不对称的高次谐波和不平衡负载,造成屯网电压波形严重畸变和三相不平衡。工频换流变压器严重过载,可使供电系统的电能利用率降低约1/3。这种现象不论对电力系统的发电、输电、配电设备和继电保护、自动控制装置,还是和连接至电网的各类用户的用电设备以及对音频控制系统、通讯线路和计算机均产生干扰,使线路照明闪烁、增加交流系统中旋转电机和其它电气元件的附加谐波损耗与发热,缩短其使用寿命,产生程度不同的有害影响。发电机长期带大量的不平衡负载,网损线损成倍增加;造成自动控制装置失灵和继电保护(尤其是利用负序量的保护)出现拒动和误动作。电容补偿装置的谐振和谐波电流的放大,严重时将造成设备损坏;使常用电气测量仪表误差增大,严重时发生错误指示使用户的实际用电量与计费电能表的计量数相差甚远,供电系统蒙受严重经济损失。 2 谐波功率流向[5,6] 只有当同频率的正弦电压和正弦电流在同相位的情况下才全部合成有功。当电流分量和电压分量都发生畸变,通过下图来分析谐波功率的流向。

相关文档
最新文档