土层地下结构水、土压力的计算

土层地下结构水、土压力的计算
土层地下结构水、土压力的计算

第一节 经典土压力理论

浅埋地下结构的竖向土压力计算:土柱理论,即竖向土压力即为结构顶盖上整个土柱的全部重量。

侧向土压力计算的经典理论的主要依据:库伦(Coulomb)理论和朗肯〔Rankine)理论。

计算静止土压力计算一般采用弹性理论,它也可以称为经典理论。

1.1 静止土压力

z K p γ00= (1-1)

z c γσ= (1-2)

μ

μ

?=

10K (1-3)

0202

1

K h E γ= (1-4)

图1.1 静止土压力计算图式

式中

γ-土的重度;z -由地表面算起至M 点的深度;-静止土压力系数;0K μ-土的泊松比,

其值通常由试验来确定;合力作用点位于距墙踵h /3处。

0E 图1.2 库伦土压力计算图式

1.2 库伦土压力理论

a

a K h E 221

γ= (1-5) p

p K h E 221

γ= (1-6)

2

222]

)sin()sin()sin()sin(1)[(sin sin )(sin δαβαδ?β?δαα?α?++?+?+=a K (1-7)

2

222]

)

sin()sin()sin()sin(1)[(sin sin )

(sin δαβαδ?β?δαα?α++++?+?=p K (1-8)

粘性土中等效内摩擦角换算有多种, (1)根据土的抗剪强度相等的原则进行换算为:

)(h

c

tg arctg D γ??+

= (1-9) 还有其他换算方式:

(2) 借助朗肯土压力理论进行换算,按朗肯理论同时考虑c 、?值得到的土压力值要

和已换算成等效内摩擦角D ?后得到的土压力值相等,推算得到等效内摩擦角D ?。

(3)采用《建筑地基基础设计规范》计算。

1.3 朗肯土压力理论

图1.3 朗肯极限平衡状态

z z γσ= (1-10) z K x γσ0= (1-11)

a a a K c zK p 2?=γ (1-12)

P P P K c zK p 2+=γ (1-13)

式中:)2

45(2

?

?

=tg K a ,245(2?

+=tg K p

γ

γ2

22221c

K ch K h E a a a +?= (1-14)

第二节 地下结构的土层压力

2.1 浅埋地下结构的竖向土层压力

在软土地层中当地下结构物采用明挖法施工,埋置深度较浅(顶盖离地表面距离较近时),称为浅埋地下结构。

作用于浅埋地下结构物顶盖上的竖向土压力值分2种情况计算:

图2-1土柱理论 图2-2 修正的土柱理论

(1)一般情况下,采用土柱理论计算。即竖向土层压力随埋深成正比例增加,它等于顶盖上土柱的全部重量,如图2-1所示。由式(2-1)计算:

H q γ= (2-1)

(2)采用的修正土柱理论计算

当埋深相对于跨度增加到一定程度,且土层较硬时,工程经验和试验表明,结构上的竖向土压力比按土柱理论计算的结果为小,从面产生了考虑土柱两侧摩擦力和粘聚力的修正土柱理论,如图2-2所示。

地下结构洞室上覆土层垂直向下滑动时,土柱两侧产生二个滑动面AB 和CD 滑动面的起点在墙基,滑动面与垂直线的夹角为450-2?,在洞室上方的土柱为“GJKH"。由此可认为,作用在结构上的垂直土层压力Q(总压力),等于土柱GJKH 的重量G 减去两侧GJ 、KH 面上的夹制力T ,即

T G Q 2?= (2-2)

夹制力T 为摩擦力和粘结力之和,作用在土柱侧面处任一点上的夹制应力为:

?tg e c t z += (2-3)

式中:—距地面深度Z 处一点上的侧压力,按朗肯公式得

z e 2

45(2)245(2?

?γ????=tg c ztg e z (2-4)

)21(2

1

2120K cH K H dz t T H ?+==∫γ (2-5)

式中: )245(2

1?

??

?=tg tg K ,)2

45(2?

???=tg tg K

由式(2-2)可得到作用于地下结构上的竖向土压力的总值为:

)21(2222121K cH K H H a T G Q ???=?=γγ (2-6)

若假定结构顶部的竖向土压力是均匀分布的,则垂直均布压力为:

)]21(21[2111K a c K a H H q ???

γ (2-7) 当有地面荷载时,则可将地面荷载换算成土层高度1q γ

1/

0q h =(γ为复土层的平均重

度),以(H 十)代替式《2-47)中的H 计算。

/

0h 例题1,已知如图2-2的拱形地下结构,高度h=4m, H=5m ,跨度之半a=3m ,土体参数为:c=10KN/m 2,,o

20=?γ=20KN/m 3。试求:作用于结构顶盖上的垂直均布压力q 。

解:(1)按照土柱理论计算

)(100520m kN H q =×==γ

(2)采用的修正土柱理论计算

1785.0)220

45(20)245(221=??=??=tg tg tg tg K ??

2548.0)220

45(20)245(2=??=??=tg tg tg tg K ??

8.5)2

20

45(43)245(1=?×+=??+=tg tg h a a ?

)(1.88)]2548.021(20

8.510

1785.08.5251[520)]21(21[2111m kN K a c K a H H q =×?×?××?

××=???

γ

由上述例题可以看出当考虑了土柱两侧摩擦力和粘聚力的影响后,作用于结构顶盖上的

垂直土压力应能减小一些。

实际工程中往往出于安全的考虑,目前仍普遍使用土柱理论来计算竖向土压力。

2.2 深埋地下结构的竖向土层压力

当采用暗挖法施工,且埋置较深的地下建筑物称为深埋地下结构。

在埋深较大,土质很好的情况下,地下洞室上方的土体形成一个承力的压力拱,可以将洞室上方土体自重的大部分卸载到周围的地层中去。在有些情况下,即使不作衬砌,地下洞室也不会坍塌。这样如果仍用土柱理论计算竖向土压力显然是不合理的。

作用于深埋地下结构物顶盖上的竖向土压力值分有2种理论: (1)普氏压力拱理论

由苏联学者普洛托雅可诺夫于1909年提出。普氏理论假定土层为松散体,并认为在深埋情况下,洞室上方形成一个抛物线型压力拱。压力拱能够承受自身土体自重,而压力拱以下为一个塌落拱,塌落拱的土体重量就是作用在地下结构顶盖上的竖向地层压力,见图2.3。

塌落拱的高度为:

k

f a h 1

0=

(2-8) 2

45(1?

?+=htg a a (2-9)

竖向土层压力为塌落拱的自重,分为均布部分和近似三角形部分q q Δ

q 0h γ=0)''(h f h q (2-10)

图2.3 普氏压力拱理论计算简图

+γ?γ=Δh (2-11)

式中 —压力拱的半跨度(m) ; —地下结构宽度之半(m); —地下结构的高度(m) ; —土层坚固系数;

1a a k f ?一土层的内

摩擦角;—拱外缘高度;一拱脚外边缘

的压力拱高度,即'f 'h )1('0h h =21

2

a a ?。

式中,称为土层坚固系数,又称为普氏似摩擦系数,它反映了土层的坚硬程度。土层越好,值越大,塌落拱高度越小,相应竖向土压力也越小。对于软土地层,土层坚固系数可按下式计算

k f k f ?tg f k = (2-12) (2)泰沙基理论

泰沙基(K. Teraaghi)于1946年提出了地层的垂直土压力计算公式。

泰沙基理论也是将地层看作松散体,但考虑的方法与普氏理论不同。它是从应力传递概念出发,考虑了洞室尺寸,埋深,土体?、c 对土层稳定性的影响,根据微分单元体的平衡和实验结果,推导出作用于地下结构上的垂直压力公式,见图2-4。

B e tg K a c a ????=

?

γn tg K n tg K qe ?????+??σ1()

(11 (2-13)

)

图2.4 泰沙基理论计算简图

式中 -土层粘聚力;c ?-土层内摩擦角;γ-土层的重度; -地下结构的外缘尺寸宽度之半;a -地下结构上部土层塌落宽度之半; -地下结构的相对埋深,a 1n a H n =;-土层中

k

水平应力N σ与垂直应力B σ之比,即B N k σσ=;?q 地面附加荷载。

当地下结构埋置很深时,可认为∞→n ,且不考虑粘聚力的影响,则式(2-13)可简化为式(2-14),其基本形式与普氏公式(2-8), (2-10)相似。

c

?

γ

σtg K a B ?=

1 (2-14)

2.3 浅埋和深埋的界限

理论和实践都证明:随着地下结构的埋置深度不同,土层压力的分布规律和数值大小也就不同。因此,确定划分浅埋和深埋的界限是十分必要的。根据地压测试和理论分析,结合工程实践经验,有些设计部门提出松散上层中浅理和深埋的分界深度为:

cr H B H cr )0.2~0.1(= 同时还规定 0)5.2~0.2(h H cr >式中,B-洞室的跨度;塌落拱的高度。

0h

第三节 几种地下结构的水、土压力计算

3.1 水土压力计算原则

(1)水土分算原则,即分别计算土压力和水压力,作用在结构上的侧压力为有效土压力和水压力之和。

地下水位以下,有效土压力按浮重度'γ计算;水压力的计算依据渗流条件分别考虑(详见夏明耀编.地下工程设计施工手册第160页)。

这一原则适用于土孔隙中存在自由的重力水的情况或土的渗透性较好的情况,一般适用于砂土。

(2)水土合算的原则,认为土孔隙中的水是结合水,不是自由的重力水,因此它不传递静水压力。c sat 、γ、①②

粘性土层和粉土一般采用水土合算原则计算,地下水位以下取饱和重度sat γ计算。

3.2浅埋矩形结构的水、土压力

图2-5饱和土中的地下结构顶盖和底板的荷载

软土地层中浅埋的矩形结构,单跨或多跨,在正常使用阶段,按照图2-5的荷载图计算土压力。

计算原则:

竖向土压力一般按土柱理论计算

侧向土层压力一般应按水土分算原则计算,一般不采用静止土压力计算公式,而是按工程界习惯采用朗肯主动土压力理论计算。

(1)-顶盖荷载,结构顶盖上包括了地面超载、土柱重量和结构顶盖自重等,

1q 1q 其它+?+?=111w sat h h q γγ;

(2)、-顶板、底板处侧向静水压力,为

1w q 2w q 11w w w h q ?=γ,22w w w h q ?=γ;

(3)、-顶板、底板处侧向土压力,为

1e 2e

245(2)245()'(2)'(211111?

?γγγγ????+=??+=tg c tg h h K c K h h e w a a w

)245(2)245()'(2)'(221212?

?γγγγ????+=??+=tg c tg h h K c K h h e w a a w ; 1w h 、-地下水位到顶板、底板处的距离;

2w h (4)-地基反力,其值为顶盖的均布荷载加上结构自重平均到单位面积上的荷载, 2q 1q 计算地基反力时要注意2点:

① 在分析底板内力时,地基反力应扣除底板自重引起的地基反力; ② 作用于底板的地下水水浮力值>地基反力值时,取水浮力为底板荷载。

3.3 圆形隧道上的水、土压力

3.3.2 浅埋圆形隧道

图2-6 圆形隧道的地层压力

大开挖施工的大型地下圆管道以及埋深较浅的小直径顶管衬砌结构等都属于浅埋圆形隧道结构。

图2-6为浅埋圆形隧道在正常使用期间的土压力分布图形,与浅埋矩形结构大同小异。

(1)-圆形隧道顶部作用的竖向土压力,由土柱理论计算,为:

1q h q ?=γ1

拱背弧形部分的土体重量可近似简化为均布荷载。

(2)圆形隧道侧向土压力、一般也是按朗肯土压理论计算; 1e 2e (3)圆形隧道的底部地基反力也可由静力平衡条件确定;。

2q (4)静水压力:径向作用在圆形隧道的衬砌上,静水压力值沿拱圈逐渐变化,在拱顶最小,底部最大(图2-6)。为便于结构内力分析,也可将静水压力分解为两项:

① 沿圆环均匀分布的径向压力,它只引起衬砌的轴力,不产生弯矩; ②圆环顶部向下呈月牙形变化的径向压力。

(5)弹性抗力:圆形隧道要考虑侧向被动土抗力的作用。 由于圆形隧道结构属于跨变结构,即在竖向荷载作用下结构的横向跨度会发生变化。圆形衬砌横向直径将变大,竖向直径将变小,形状由圆形变成了椭圆。由跨度变化引起圆环的侧向位移量较为可观,故在地层的相对刚度较大的情况下,侧向弹性抗力的作用将会明显地表现出来,改善了结构的受力情况。

弹性抗力的作用区域:应根据结构的侧向变形情况确定,但为简化计算也可假定弹性抗力作用区为图中圆心角的范围内,弹性抗力图形为线性分布的三角形。弹性抗力的最大值为:o

90=αδK P K =,其中K 为弹性抗力系数,δ为圆环中腰的侧向水平位移值。由于弹性抗力对结构的受力有帮助作用,将弹性抗力估计过大会使结构设计偏于危险。 在土回填不密实或土质很松软的情况下,也可忽略弹性抗力的作用,这样圆形结构就成为无侧向约束的“自由变形圆环”。

3.3.3 深埋圆形隧道

用矿山法暗挖或用盾构法暗挖施工的圆形隧道称为深埋的圆形隧道。

(1)深埋圆形隧道的土压力汁算与浅埋圆形隧道有两个不同点:

①要考虑周围土体对隧道顶面以上土柱的夹制力以及土体卸载拱效应,从而减少了竖向土压力。

②埋深的增加会使侧向压力数值与竖向土压力数值趋向一致。 (2)竖向土压力的确定

a 、在非饱和水土的土层中,用矿山法暗挖的圆形隧道(也包括其他拱形衬砌结构),其竖向土压力的确定可用前述的普氏理论式(2-8)~式(2-11)计算,也可按泰沙基理论式(2-53)

计算。

图2.3 普氏压力拱理论计算简图

k

f a h 1

0=

(2-8) )2

45(1?

?+=htg a a 0h (2-9)

竖向土层压力为塌落拱的自重,分为均布部分和近似三角形部分

q q Δ q γ=0)''(h f h q (2-10)

γγ?+=Δ (2-11)

n tg K n tg K B qe e tg K a c a ??????+???=

???

γσ)1()

(11 (2-13)

b 、在饱和水土的软弱地层中,计算竖向土压力时,过去多采用土柱理论,即圆形隧道上方的均布竖向土压力等于土柱重量h q ?=γ1。但根据一些土压力实测资料表明,深埋圆

形隧道的竖向土压力用土柱理论计算过于保守。

土压力实测资料,得到两个结论:

① 深埋圆形隧道的竖向土压力一般小于土柱理论的计算值;

② 深埋圆形隧道的侧向土压力值与竖向土压力的比值λ接近于1,要明显大于浅埋圆形隧道的比值。

在饱和土软弱地层中的深埋圆形隧道,从理论上和实测资料数据均证明这样一个事实:圆形结构所受的地层压力要比用土柱理论和朗肯土压理论得到的地层压力对结构受力有利。然面,考虑到盾构在施工阶段的受力复杂性,出于安全的原因,衬砌结构上的水、土压力仍然采用图2-6的计算图式。对于竖向土压力仍按土柱理沦h q ?=γ1计算,但当埋深h 与隧道外径D 的比值5≥D h 时,可取:h q ?≤γ8.01

图2-6 圆形隧道的地层压力

(3)侧向土压力的确定

圆形隧道侧向土压力的确定也是从安全的目的出发。因为过高估计侧向土压力的数值,往往对结构是不安全的。按轴心受压设计的钢筋混凝土结构的配筋数量是很小的,一旦出现不均匀土压时,结构将会不安全,所以工程上仍采用图2-6的计算图式。

侧向地层压力一般按水土分算,其中侧向土压力用朗肯主动土压力公式计算。 通常也应考虑弹性抗力的影响。

图2-6的计算图式可偏安全地得到深埋圆形隧道顶部的最大正弯矩和圆环侧而最大负弯矩。

需要注意的是:侧向土压力系数λ=侧向土压力/竖向土压力,若

① 盾构采用敞胸全断面进土时,衬砌圆环脱出盾构后成“横鸭蛋”变形,λ<1,图2-6的土压力计算图式是合适的;

②盾构用闭胸挤压推进时,衬砌脱出盾尾后,衬砌为“竖鸭蛋”变形,λ>1,采用图2-6的-土压力图式就不合适。为使结构设计符合实际受力情况,这时应增大侧向土压力(例如取侧向压力为h ?γ;降低衬砌顶部竖向土压力(例如取h h ??γγ8.0~7.0),从而才能求得衬砌圆环拱顶最大负弯矩和侧腰最大正弯矩。此外,还应考虑注浆压力或相邻隧道的盾构推

进时所引起的地层压力增加。

计算出的水土压力用于隧道衬砌结构计算-荷载结构法、地层结构法。

具体参考行业规范:

[1]《地铁设计规范》(GB50157-2003);

[2]《公路隧道设计规范》(JTG D70-2004);

[3]《铁路隧道设计规范》(TB 10003-2005);

[4]《地铁土压平衡盾构机技术规程》(DG T J08-2063-2009);

[5]《地下铁道建筑结构抗震设计规范》(DG T J08-2064-2009);

[6]《铁路旅客车站建筑设计规范》(GB 50226-2007)

盾构土压力计算

城市地铁盾构施工土压力选择 随着北京2008年申奥成功,我国的城市地铁施工必将走向了一个崭新的一页。城市地铁盾构施工具有快速、安全、对地面建筑物影响小等诸多优点,已经被越来越多的人们所认可。在城市地铁盾构施工中,如何设置合理的土压,对于控制地表沉降有着至关重要的意义。 一、土压平衡复合式盾构机三种工况的简要介绍土压平衡复合式盾构有三种工况,即敞开式、半敞开式、土压平衡三种掘进模式。地层围岩条件较好时,螺旋输送机伸入土仓,螺旋输送机的卸料口完全打开,土仓内不保持土压,维持刀盘、土仓、螺旋输送机之间的完全敞开,实现敞开式模式掘进。当围岩稳定性变坏,工作面有坍塌时或有坍塌的可能,或地下涌水不能得到有效控制时,缩回螺旋输送机,关闭螺旋输送机的卸料口,压入压缩空气,土仓会被压力封闭,控制地下水的涌出,防止坍塌的进一步发生,即可实现半敞开式掘进模式;若水压力大或工作面不能达到稳定状态,则先停止螺旋输送机的出碴,切削下来的碴土充满土仓。与此同时,用螺旋输送机排土机构,进行与盾构推进量相应的排土作业,掘进过程中,始终维持开挖土量与排土量的平衡来维持仓内碴土的土压力。以土仓内的碴土压力抗衡工作面的土体压力和水压力,以保持工作面的土体的稳定,防止工作面的坍塌和地下水的涌出,从而使盾构机在不松动的围岩中掘进,确保不产生地层损失,实现土压平衡掘进模式。 二、掘进土压力的设定 在选择掘进土压力时主要考虑地层土压,地下水压(孔隙水压),预先考虑的预备压力地层施工土压 在我国铁路隧道设计规范中,根据大量的施工经验,在太沙基土压力理论的基础上,提出以岩体综合物性指标为基础的岩体综合分类法,根据隧道的埋资深度不同,将隧道分为深埋隧

(完整版)土力学土压力计算.doc

第六章挡土结构物上的土压力 第一节概述 第五章已经讨论了土体中由于外荷引起的应力,本章将介绍土体作用在挡土结构物上的 土压力,讨论土压力性质及土压力计算,包括土压力的大小、方向、分布和合力作用点, 而土压力的大小及分布规律主要与土的性质及结构物位移的方向、大小等有关,亦和结构物的刚度、高度及形状等有关。 一、挡土结构类型对土压力分布的影响 定义:挡土结构是一种常见的岩土工程建筑物,它是为了防止边坡的坍塌失稳,保护 边坡的稳定,人工完成的构筑物。 常用的支挡结构结构有重力式、悬臂式、扶臂式、锚杆式和加筋土式等类型。 挡土墙按其刚度和位移方式分为刚性挡土墙、柔性挡土墙和临时支撑三类。 1.刚性挡土墙 指用砖、石或混凝土所筑成的断面较大的挡土墙。 由于刚度大,墙体在侧向土压力作用下,仅能发身整体平移或转动的挠曲变形则可忽 略。墙背受到的土压力呈三角形分布,最大压力强度发生在底部,类似于静水压力分布。 2.柔性挡土墙 当墙身受土压力作用时发生挠曲变形。 3.临时支撑 边施工边支撑的临时性。 二、墙体位移与土压力类型 墙体位移是影响土压力诸多因素中最主要的。墙体位移的方向和位移量决定着所产生 的土压力性质和土压力大小。 1.静止土压力(E0) 墙受侧向土压力后,墙身变形或位移很小,可认为墙不发生转动或位移,墙后土体没 有破坏,处于弹性平衡状态,墙上承受土压力称为静止土压力E0。 2.主动土压力(E a) 挡土墙在填土压力作用下,向着背离填土方向移动或沿墙跟的转动,直至土体达到主 动平衡状态,形成滑动面,此时的土压力称为主动土压力。 3.被动土压力( E p) 挡土墙在外力作用下向着土体的方向移动或转动,土压力逐渐增大,直至土体达到被 动极限平衡状态,形成滑动面。此时的土压力称为被动土压力 E p。 同样高度填土的挡土墙,作用有不同性质的土压力时,有如下的关系: E p> E0> E a 在工程中需定量地确定这些土压力值。 Terzaghi( 1934)曾用砂土作为填土进行了挡土墙的模型试验,后来一些学者用不同土 作为墙后填土进行了类似地实验。 实验表明:当墙体离开填土移动时,位移量很小,即发生主动土压力。该位移量对砂土

基坑支护结构的计算

第二部分 基坑支护结构的计算 支护结构的设计和施工,影响因素众多,不少高层建筑的支护结构费用已超过工程桩基的费用。为此,对待支护结构的设计和施工均应采取极慎重的态度,在保证施工安全的前提下,尽量做到经济合理和便于施工。 一、支护结构承受的荷载 支护结构承受的荷载一般包括 –土压力 –水压力 –墙后地面荷载引起的附加荷载。 1 土压力 ⑴主动土压力: 若挡墙在墙后土压力作用下向前位移时随位移增大,墙后土压力渐减小。当位移达某一数值时,土体内出现滑裂面,墙后土达极限平衡状态,此时土压力称为主动土压力,以Ea表示。 ⑵静止土压力: 若挡墙在土压力作用下墙本身不发生变形和任何位移(移动或滑动),墙后填土处于弹性平衡状态,则此时作用在挡墙上的土压力成为静止土压力。以E0表示。 (3)被动土压力: 若挡墙在外力作用下墙向墙背向移动,随位移增大,墙所受土的反作用力渐增大,当位移达一定数值时,土体内出现滑裂面,墙后土处被动极限平衡状态,此时土压力称为被动土压力,以Ep表示。

主动土压力计算 ?主动土压力强度 ?无粘性土 粘性土 土压力分布 对于粘性土按计算公式计算时,主动土压力在土层顶部(H=0处)为负值,即 表明出现拉力区,这在实际上是不可能发生的。只计算临界高度以下的主动土压力。土压力分布 可计算此种情况下的临界高度Zc,进而计算临界高度以下的主动土压力。

被动土压力计算 被动土压力强度 ?无粘性土 粘性土 计算土压力时应注意 ?不同深度处土的内聚力C不是一个常数,它与土的上覆荷重有关,一般随深度的加大而增大,对于暴露时间长的基坑,土的内聚力可由于土体含水量的变化和氧化等因素的影响而减小甚至消失。 ?、C 值是计算侧向土压力的主要参数,但在工程桩打设前后的、C值是不同的。 在粘性土中打设工程桩时,产生挤土现象,孔隙水压力急剧升高,对、C值产生影响。另外,降低地下水位也会使、C值产生变化。 水压力

同济大学地下建筑结构复习要点

同济大学地下建筑结构复习 1 绪论 1.1简述地下建筑结构的概念及形式 地下建筑结构即埋置于地层内部的结构。包括衬砌结构和内部结构两部分。要考虑地下结构与周围岩土体的共同作用。地下建筑结构的形式主要由使用功能、地质条件和施工技术等因素确定。根据地质情况差异可分为土层和岩层内的两种形式。 土层地下建筑结构分为1.浅埋式结构2.附建式结构3.沉井(沉箱)结构4.地下连续墙结构5.盾构结构6.沉管结构7其他如顶管和箱涵结构。 岩石地下建筑结构形式主要包括直墙拱形、圆形、曲墙拱形,还有如喷锚结构、穹顶结构、复合结构。 1.2简述地下建筑结构设计程序及内容 设计工作一般分为初步设计和技术设计两个阶段 初步设计主要内容:1.工程等级和要求,以及静、动荷载标准的确定2.确定埋置深度和施工方法3.初步设计荷载值4.选择建筑材料5.选定结构形式和布置6.估算结构跨度、高度、顶底板及边墙厚度等主要尺寸7.绘制初步设计结构图8.估算工程材料数量及财务概算 技术细节主要内容:1.计算荷载2.计算简图3.内力分析4.内力组合5.配筋设计6.绘制结构施工详图7材料、工程数量和工程财务预算 2 地下建筑结构的荷载 2.1地下建筑荷载分哪几类? 按其存在的状态,可以分为静荷载、动荷载和活荷载等三大类 2.2简述地下建筑荷载的计算原则 需进行最不利情况的组合,先进性个别荷载单独作用下的结构各部件截面内力,再进行最不利的内力组合,得出各设计控制截面的最大内力。 2.3土压力可分为几种形式?其大小关系如何? 土压力分为静止土压力E0、主动土压力力Ea 被动土压力Ep,则Ep>E0>Ea 2.4静止土压力是如何确定的? 在挡土结构在土压力作用下,结构不发生变形和任何位移,背后填土处于弹性平衡状态,则作用于结构上的侧向土压力,称为静止土压力。静止土压力可根据半无限弹性体的应力状态求解。 2.5库仑理论的基本假设是什么?并给出其一般土压力计算公式。 基本假设:1)挡土墙墙后土体为均质各向同性的无黏性土2)挡土墙是刚性的且长度很长,属于平面应变问题3)挡土墙后土体产生主动土压力或被动土压力

基坑支护设计计算——土压力.

基坑支护设计计算 1基坑支护设计的主要内容 2设计计算 根据地质条件的土层参数如图所示,根据设计要求,基坑开挖深度暂定为9m,按规范设定桩长为16.8m ,桩直径设定为0.8m ,嵌固深度站定为7.8m,插入全风化岩3.0m 。 2.1水平荷载的计算 按照超载作用下水土压力计算的方法,根据朗肯土压力计算理论计算土的侧向压力,计算时不考虑支护桩与土体的摩擦作用。地下水以上的土体不考虑水的作用,地下水以下的土层根据土层的性质差异需考虑地下水的作用。 土层水平荷载计算依据《建筑基坑支护技术规程》JGJ 120-99 1.计算依据和计算公式 主动土压力系数:) 2 45(tan 2i ai K ?-=ο 被动土压力系数:) 2 45(tan 2i pi K ?+?= (1)支护结构水平荷载标准值e ajk 按下列规定计算: 1)对于碎石土及沙土: a)当计算点深度位于地下水位以上时: ai ik ai ajk ajk K C K e 2-=σ b)当计算点深度位于地下水位以下时: w ai wa wa j wa j ai ik ai ajk ajk K h m h z K C K e γησ])()[(2---+-= 式中ai K —第i 层土的主动土压力系数;

ajk σ—作用于深度z j 处的竖向应力标准值; C ik —三轴实验确定的第i 层土固结不排水(快)剪粘聚 力标准值; z j —计算点深度; m j —计算参数,当h z j π时,取z j ,当h z j ≥时,取h ; h wa —基坑外侧水位深度; wa η—计算系数,当h h wa ≤时,取1,当h h wa φ时,取零; w γ—水的重度。 2)对于粉土及粘性土: ai ik ai ajk ajk K C K e 2-=σ (2)基坑外侧竖向应力标准值ajk σ按下列规定计算: ok rk ajk σσσ+= (3)计算点深度z j 处自重应力竖向应力rk σ 1)计算点位于基坑开挖面以上时: j mj rk z γσ= 式中mj γ—深度z j 以上土的加权平均天然重度。 2)计算点位于基坑开挖面以上时: h mh rk γσ= 式中mh γ—开挖面以上土的加权平均天然重度。 (4)第i 层土的主动土压力系数K ai 应按下式计算 )245(tan 2ik ai K ?- =ο 式中ik ?—三轴实验确定的第i 层土固结不排水(快)剪摩擦角标准值。

同济大学地下建筑结构复习重点

第一章:概论 1.地下建筑结构的概念。 地下建筑结构——埋置地层内部的结构 衬砌——与土层接触的永久性支护结构承重、维护作用 2.结构形式选择考虑的因素: 答:1、使用功能;2、地质条件;3、施工技术 第二章:地下建筑结构的荷载 1、概念: 主动土压力:当挡土结构向离开土体方向偏移时,使墙后土体的应力状态达到主动极限平衡状态时填土作用于墙背的土压力。 被动土压力:当挡土墙向土体方向偏移挤压填土至其达到极限平衡状态时作用于墙背上的土压力。 静止土压力:挡土结构在土压力作用下,结构不发生变形和任何位移,背后填土处于弹性平衡状态,此时作用在结构上的侧向土压力称为静止土压力。 围岩压力:位于地下结构周围变形或破坏的岩层,作用在衬砌结构或支撑结构上的压力。 普氏压力拱理论:洞室开挖后如不及时支护,洞顶岩土将不断垮落而形成一个拱形,又称塌落拱。其最初不稳定,若洞侧壁稳定,则拱高随塌落不断增高,如侧壁不稳定,则拱高和拱跨同时增大。当洞的埋深较大时塌落拱不会无限发展,最终将在围岩中形成一个自然平衡拱。地层弹性抗力:结构变形使土体被动受力时,土对结构的产生的反作用力。决定于结构的变形和地层的物理力学性质。 2.水土压力计算方法:郎肯土压力计算公式,考虑地下水时水土压力计算方法和计算图式。 3.(了解)按松散体理论对浅埋结构与深埋结构的划分,浅埋结构和深埋结构垂直围岩压力的计算方法。 4 .土层弹性抗力的计算理论:局部变形和共同变形理论要点。 局部变形理论:Winkler模型,认为地层的弹性抗力与变为成正比。 共同变形理论:弹性半无限空间模型,弹性地基上一点的外力不仅引起该点发生沉陷而且还会引起附近一定范围的地基沉陷。 第四章:浅埋式结构 1.概念:浅埋式结构 浅埋式结构:覆盖土层较薄,不满足压力拱成拱条件,或软土地层中覆盖层厚度小于结构尺寸的地下结构。 2.了解浅埋式结构形式和特点。 (1)直墙拱:从结构受力分析看,拱形结构主要承受轴向压力,其中弯矩和剪力都较小。所以一些砖、石和混凝土等抗压性能良好,而抗拉性能又较差的材料在拱形结构中得以充分发挥其材料的特性。 (2)矩形闭合框架:用在跨度大、整体性和防护等级高地下结构中,空间利用率高,挖掘断面经济,且易于施工。分为: 1)单跨矩形闭合框架 2)双跨和多跨的矩形闭合框架 3)多层多跨的矩形闭合框架 (3)梁板式结构

土压力计算方法.

第五章土压力计算 本章主要介绍土压力的形成过程,土压力的影响因素;朗肯土压力理论、库仑土压力理论、土压力计算的规范方法及常见情况的土压力计算;简要介绍重力式挡土墙的设计计算方法。 学习本章的目的:能根据实际工程中支挡结构的形式,土层分布特点,土层上的荷载分布情况,地下水情况等计算出作用在支挡结构上的土压力、水压力及总压力。 第一节土压力的类型 土体作用在挡土墙上的压力称为土压力。 一、土压力的分类 作用在挡土结构上的土压力,按挡土结构的位移方向、大小及土体所处的三种平衡状态,可分为静止土压力E o,主动土压力E a和被动土压力E p三种。 1.静止土压力 挡土墙静止不动时,土体由于墙的侧限作用而处于弹性平衡状态,此时墙后土体作用在墙背上的土压力称为静止土压力。 2.主动土压力 挡土墙在墙后土体的推力作用下,向前移动,墙后土体随之向前移动。土体内阻止移动的强度发挥作用,使作用在墙背上的土压力减小。当墙向前位移达主动极限平衡状态时,墙背上作用的土压力减至最小。此时作用在墙背上的最小土压力称为主动土压力。 3.被动土压力 挡土墙在较大的外力作用下,向后移动推向填土,则填土受墙的挤压,使作用在墙背上的土压力增大,当墙向后移动达到被动极限平衡状态时,墙背上作用的土压力增至最大。此时作用在墙背上的最大土压力称为被动土压力。 大部分情况下作用在挡土墙上的土压力值均介于上述三种状态下的土压力值之间。 二、影响土压力的因素 1.挡土墙的位移 挡土墙的位移(或转动)方向和位移 量的大小,是影响土压力大小的最主要的因 素,产生被动土压力的位移量大于产生主动 土压力的位移量。 2.挡土墙的形状 挡土墙剖面形状,包括墙背为竖直或是 倾斜,墙背为光滑或粗糙,不同的情况,土压力的计算公式不同,计算结果也不一样。 3.填土的性质 挡土墙后填土的性质,包括填土的松密程度,即重度、干湿程度等;土的强度指标内摩擦角和粘聚力的大小;以及填土的形状(水平、上斜或下斜)等,都

第八章挡土结构物上的土压力

第八章挡土结构物上的土压力 第一节概述 第五章已经讨论了土体中由于外荷引起的应力,本章将介绍土体作用在挡土结构物上的土压力,讨论土压力性质及土压力计算,包括土压力的大小、方向、分布和合力作用点,而土压力的大小及分布规律主要与土的性质及结构物位移的方向、大小等有关,亦和结构物的刚度、高度及形状等有关。 一、挡土结构类型对土压力分布的影响 定义:挡土结构是一种常见的岩土工程建筑物,它是为了防止边坡的坍塌失稳,保护边坡的稳定,人工完成的构筑物。 常用的支挡结构结构有重力式、悬臂式、扶臂式、锚杆式和加筋土式等类型。 挡土墙按其刚度和位移方式分为刚性挡土墙、柔性挡土墙和临时支撑三类。 1.刚性挡土墙 指用砖、石或混凝土所筑成的断面较大的挡土墙。 由于刚度大,墙体在侧向土压力作用下,仅能发身整体平移或转动的挠曲变形则可忽略。墙背受到的土压力呈三角形分布,最大压力强度发生在底部,类似于静水压力分布。 2.柔性挡土墙 当墙身受土压力作用时发生挠曲变形。 3.临时支撑 边施工边支撑的临时性。 二、墙体位移与土压力类型 墙体位移是影响土压力诸多因素中最主要的。墙体位移的方向和位移量决定着所产生的土压力性质和土压力大小。 1.静止土压力(E0) 墙受侧向土压力后,墙身变形或位移很小,可认为墙不发生转动或位移,墙后土体没有破坏,处于弹性平衡状态,墙上承受土压力称为静止土压力E0。 2.主动土压力(E A) 挡土墙在填土压力作用下,向着背离填土方向移动或沿墙跟的转动,直至土体达到主动平衡状态,形成滑动面,此时的土压力称为主动土压力。 3.被动土压力(E P) 挡土墙在外力作用下向着土体的方向移动或转动,土压力逐渐增大,直至土体达到被动极限平衡状态,形成滑动面。此时的土压力称为被动土压力E P。 同样高度填土的挡土墙,作用有不同性质的土压力时,有如下的关系: E P >E0> E A

(整理)土主动、被动土压力概念及计算公式

主动土压力 挡土墙向前移离填土,随着墙的位移量的逐渐增大,土体作用于墙上的土压力逐渐减小,当墙后土体达到主动极限平衡状态并出现滑动面时,这时作用于墙上的土压力减至最小,称为主动土压力P a 。 被动土压力 挡土墙在外力作用下移向填土,随着墙位移量的逐渐增大,土体作用于墙上的土压力逐渐增大,当墙后土体达到被动极限平衡状态并出现滑动面时,这时作用于墙上的土压力增至最大,称为被动土压力P p 。上述三种土压力的移动情况和它们在相同条件下的数值比较,可用图6-2来表示。由图可知P p >P o >P a 。 朗肯基本理论 朗肯土压力理论是英国学者朗肯(Rankin )1857年根据均质的半无限土体的应力状态和土处于极限平衡状态的应力条件提出的。在其理论推导中,首先作出以下基本假定。 (1)挡土墙是刚性的墙背垂直; (2)挡土墙的墙后填土表面水平; (3)挡土墙的墙背光滑,不考虑墙背与填土之间的摩擦力。 把土体当作半无限空间的弹性体,而墙背可假想为半无限土体内部的铅直平面,根据土体处于极限平衡状态的条件,求出挡土墙上的土压力。 如果挡土墙向填土方向移动压缩土体,σz 仍保持不变,但σx 将不断增大并超过σz 值,当土墙挤压土体使σx 增大到使土体达到被动极限平衡状态时,如图6-4的应力园O 3,σz 变为小主应力,σx 变为大主应力,即为朗肯被动土压力(p p )。土体中产生的两组破裂面与水平面的夹角为2 45?- ?。 朗肯主动土压力的计算 根据土的极限平衡条件方程式 σ1=σ3tg 2 (45°+2?)+2c ·tg(45°+2?) σ3=σ1tg 2(45°-?)-2c ·tg(45°-?)

地下室外墙计算书

地下室外墙计算书1、地下室外墙(DWQ1)计算 主动土压力系数Ka取0.5 土重度r=18KN/m3无地下水地下室9.9m深 按单向板计算 主动土压力q土=rHKa=18x0.5x9.9=89.1KN/m 地面荷载产生侧压力q活=10x0.5=5KN/m ①竖向配筋计算 计算简图 三种压力产生的弯矩

①地下二层弯矩 支座基本组合弯矩值M C=(Ms+Mw)x1.27+1.4xMm=168.6KN·m 支座准永久组合弯矩值M Cq=Ms+Mw+0.5Mm=129.9KN·m 跨中基本组合弯矩值M BC=(Ms+Mw)x1.27+1.4xMm=81N·m 跨中准永久组合弯矩值M BCq=Ms+Mw+0.5Mm=61.9KN·m ②地下一层弯矩 支座基本组合弯矩值M B=(Ms+Mw)x1.27+1.4xMm=147.1KN·m 支座准永久组合弯矩值M Bq=Ms+Mw+0.5Mm=106.4KN·m 跨中基本组合弯矩值M AB=(Ms+Mw)x1.27+1.4xMm=67.2N·m 跨中准永久组合弯矩值M BCq=Ms+Mw+0.5Mm=46.2KN·m 假设壁厚地下二h2=350,地下一h1=300,混凝土强度C35 (1)地下二层配筋 地下室外墙外侧查表可知选筋C16@100的裂缝(0.20mm)和承载力弯矩分别为134.76KN·m、233.2KN·m,大于支座计算准永久弯矩129.9KN·m和基本组合弯矩168.6KN·m,满足要求。且配筋率0.574%,合适。 地下室外墙内侧侧查表可知选筋C12@100的裂缝(0.20mm)和承载力弯矩分别为91.61KN·m、122.1KN·m,大于支座计算准永久弯矩61.9KN·m和基本组合弯矩81KN·m,满足要求。且配筋率0.323%,合适。 ∴外侧钢筋选配C16@100 As=2011mm2/m

地下建筑结构

1.3地下建筑工程的特点: 1)工程受力特点不同:地面是先有结构后有荷载,地下结构是先有荷载后有结构 2)工程材料特性的不确定性:空间上不确定,时间上不确定性 3)工程荷载的不确定性 4)破坏模式的不确定性 5)地下建筑工程信息的不完备性和模糊性 6)地下支护结构形式的多样性 1.4地下支护结构的类型: 地下支护结构有:临时支护结构和永久支护结构 支护结构的两个最基本使用要求:一是满足结构强度、刚度要求,以承受诸如水、围岩压力以及一些特殊使用要求的外荷载;二是提供一个能满足使用要求的工作环境,以便保持隧道内部的干燥和清洁。 (1)按设计与施工要求分类 地下建筑结构分为: 1)整体浇注结构:施工时,将地下支护结构整体现浇,一次性施工完成,形成整体型承载结构体。 2)锚喷支护结构:由锚杆、喷射混凝土结构组成的支护结构体 3)复合式衬砌结构:该结构由初期支护结构(锚喷支护)和二次衬砌组成,是应用新奥法理论产生的支护结构,也是我过目前钻爆法中应用最广范的支护结构。 4)管片支护结构:该结构是盾构法或掘进机法施工中最常用的支护结构,环状结构由数个管片组成环形闭合承载结构体。 (2)按用途与功能分为:交通隧道、水工隧道、矿山隧道、城市地下建筑结构、地下工厂、基坑工程、军事与国防工程 2.1地下岩体结构类型: 岩体结构:是指岩体中结构面与结构体的排列组合关系 结构体:是指岩体中被结构面切割围限的岩石块体 结构体常见形状:柱状、板状、楔形、菱形, 2.1.2岩体结构类型: 1)整体与块状结构 2)层状结构 3)碎裂状结构 4)散体状结构 2.2结构面类型与特征 岩体结构面:是指岩体内开裂的和易开裂的面如层理、节理、断层、片理等,又称不连续面。 2.2.1结构面的类型和特征 (1)岩体中结构面的种类: 岩体中有三种结构面: (1)原生结构面:又称成岩结构面,它是在成岩过程中形成的结构界面如:岩浆岩的流层、流纹、冷却、胀缩裂隙及侵入接触面;沉积岩的层理层面、龟裂;变质岩的片理、板理。(2)次生结构面:又称风化结构面、非构造结构面,是岩石受外动力地质作用(风、水、生物等)产生的,如由风化产生的风化裂隙等, (3)构造结构面:指各类岩体在构造运动作用下形成的各种结构面,如劈理、节理、断层、层间错动等 2.4.3结构面的强度特性:

土压力计算

本工程场地平坦,经过与类似工程的比较,土体上部底面超载20kPa;假定支护墙面垂直光滑,故采用郎肯土压力理论计算,计算土压力时首先要确定土压力系数,主动土压力系数和被土压力系数的计算分式分别如下[2]:

主动土压力系数: o 2a tan (45/2)K ?=- 被动土压力系数: 2p (tan 45/2)K ?=?+ 其中: a K ——主动土压力系数; p K ——被动土压力系数; ?——土的摩擦角。

()12210111011222222 218tan 45tan 450.756 2220 20.756202015.12 2200 1.50.75620 15.1210tan 45tan 450.704 222K kPa P K c kPa P K z c kPa K P K z c ?σσγ?γ???? ?=?-=?-= ? ???? ?==-=?-?==-=+??-?=???? ?=?-=?-= ? ????? =-()()()222 3223 331332 200.70421511.09 2200 1.5 00.60.704215 11.0921.5tan 45tan 450.463 222200 1.500.60.463211 5.722kPa P K z c kPa K P K z c kPa P K z γ?γγ+?-?=-=-=+?+??-?=-???? ?=?-=?-= ? ????? =-=+?+??-?-=-4224441442223.082118.09825tan 45tan 450.406 22249.850.406227.514.796288.610.406227.50.94c kPa K P K z c kPa P K z c kPa ?γγ=-?=???? ?=?-=?-= ? ????? =-=?-?=-=-=?-?=

土力学土压力计算

第六章 挡土结构物上的土压力 第一节 概述 第五章已经讨论了土体中由于外荷引起的应力,本章将介绍土体作用在挡土结构物上的土压力,讨论土压力性质及土压力计算,包括土压力的大小、方向、分布和合力作用点,而土压力的大小及分布规律主要与土的性质及结构物位移的方向、大小等有关,亦和结构物的刚度、高度及形状等有关。 一、挡土结构类型对土压力分布的影响 定义:挡土结构是一种常见的岩土工程建筑物,它是为了防止边坡的坍塌失稳,保护边坡的稳定,人工完成的构筑物。 常用的支挡结构结构有重力式、悬臂式、扶臂式、锚杆式和加筋土式等类型。 挡土墙按其刚度和位移方式分为刚性挡土墙、柔性挡土墙和临时支撑三类。 1.刚性挡土墙 指用砖、石或混凝土所筑成的断面较大的挡土墙。 由于刚度大,墙体在侧向土压力作用下,仅能发身整体平移或转动的挠曲变形则可忽略。墙背受到的土压力呈三角形分布,最大压力强度发生在底部,类似于静水压力分布。 2.柔性挡土墙 当墙身受土压力作用时发生挠曲变形。 3.临时支撑 边施工边支撑的临时性。 二、墙体位移与土压力类型 墙体位移是影响土压力诸多因素中最主要的。墙体位移的方向和位移量决定着所产生的土压力性质和土压力大小。 1.静止土压力(0E ) 墙受侧向土压力后,墙身变形或位移很小,可认为墙不发生转动或位移,墙后土体没有破坏,处于弹性平衡状态,墙上承受土压力称为静止土压力0E 。 2.主动土压力(a E ) 挡土墙在填土压力作用下,向着背离填土方向移动或沿墙跟的转动,直至土体达到主动平衡状态,形成滑动面,此时的土压力称为主动土压力。 3.被动土压力(p E ) 挡土墙在外力作用下向着土体的方向移动或转动,土压力逐渐增大,直至土体达到被动极限平衡状态,形成滑动面。此时的土压力称为被动土压力p E 。 同样高度填土的挡土墙,作用有不同性质的土压力时,有如下的关系: p E >0E > a E 在工程中需定量地确定这些土压力值。 Terzaghi (1934)曾用砂土作为填土进行了挡土墙的模型试验,后来一些学者用不同土作为墙后填土进行了类似地实验。 实验表明:当墙体离开填土移动时,位移量很小,即发生主动土压力。该位移量对砂

地下建筑结构复习

地下建筑结构复习 第一章绪论 1、1简述地下建筑结构的概念及形式:地下建筑结构即埋置于地层内部的结构。包括衬砌结构与内部结构两部分。要考虑地下结构与周围岩土体的共同作用。地下建筑结构的形式主要由使用功能、地质条件与施工技术等因素确定。根据地质情况差异可分为土层与岩层内的两种形式。土层地下建筑结构分为①浅埋式结构②附建式结构③沉井(沉箱)结构④地下连续墙结构⑤盾构结构⑥沉管结构⑦其她如顶管与箱涵结构。岩石地下建筑结构形式主要包括直墙拱形、圆形、曲墙拱形,还有如喷锚结构、穹顶结构、复合结构。 1、2简述地下建筑结构设计程序及内容:设计工作一般分为初步设计与技术设计两个阶段;初步设计主要内容:①工程等级与要求,以及静、动荷载标准的确定②确定埋置深度与施工方法③初步设计荷载值④选择建筑材料⑤选定结构形式与布置⑥估算结构跨度、高度、顶底板及边墙厚度等主要尺寸⑦绘制初步设计结构图⑧估算工程材料数量及财务概算。技术细节主要内容:①计算荷载②计算简图③内力分析④内力组合⑤配筋设计⑥绘制结构施工详图⑦材料、工程数量与工程财务预算 1、3地下建筑结构的优缺点有哪些:优点①被限定的视觉影响②地表面开放空间③有效的土地利用④有效的往来与输送方式⑤环境与利益⑥能源利用的节省与气候控制⑥地下的季节湿度的差异⑧自然灾害的保护⑨市民防卫⑩安全⑾噪声与震动的隔离⑿维修管理缺点①获得眺望与自然采光机会有限②进入与往来的限制③能源上的限制 1、4地下建筑结构的工程特点:①建筑结构替代了原来的地层(承载作用)②地层荷载随施工过程就是发生变化的③地质条件影响地层荷载④地下水准结构设计影响大④设计考虑施工、使用的整个阶段⑤地层与结构共同的承载体系⑥地层的成拱效应 1、5地下建筑地下建筑结构地上建筑区别:计算理论设计与施工方法不同,地下建筑结构所承受的荷载比地面结构复杂,因为地下建筑结构埋置于地下,其周围的岩土体不仅作为荷载作用于地下建筑结构上,而且约束着结构的移动与变形。 第二章地下建筑结构的荷载 2、1地下建筑荷载分哪几类:按其存在的状态,可以分为静荷载(结构自重,岩土体压力)、动荷载(地震波,爆炸产生冲击)与活荷载(人群物件与设备重量,吊车荷载)三大类 2、2简述地下建筑荷载的计算原则:需进行最不利情况的组合,先进性个别荷载单独作用下的结构各部件截面内力,再进行最不利的内力组合,得出各设计控制截面的最大内力。 2、3土压力可分为几种形式?其大小关系如何:土压力分为静止土压力E0、主动土压力力Ea、被动土压力Ep,则Ep>E0>Ea 2、4静止土压力就是如何确定的:在挡土结构在土压力作用下,结构不发生变形与任何位移,

支挡结构设计

西北民族大学土木工程学院(部)期末考试 支挡结构设计复习试卷(卷) 名词解释 1.重力工挡土墙:以挡土墙自身的重力来维持挡土墙的土压力作用下的稳定 2.悬臂式挡土墙:是一种轻型支挡结构,其支挡结构的抗滑抗倾覆主要取决于墙身和抢底板以上填筑土体的重力效应。 3.扶壁式挡土墙:对于悬臂式挡土墙,当其沿墙的纵向变形较大时,可考虑在立壁墙面板后设置扶壁。 4.加筋挡土墙:其工作原理是依靠填料与拉筋间的摩擦力来平衡墙面所曾受的土压力 5.锚杆挡土墙:由墙面板和锚杆组成,墙面板与锚杆连接,并以锚杆为支撑,土压力通过墙面板来平衡 6.锚定板挡土墙:由墙面板、钢拉杆、锚定板组成,钢拉杆与外端墙面板连接,内部与锚定板连接。 7.土钉墙:是由喷射的钢筋混凝土薄墙和加固土体的土钉组成,土钉可由钢筋或钢筋棒钻孔植入,然后压入满浆形成狼牙棒 8.框架预应力锚杆挡土墙:由框架、挡土板、锚杆和墙后土体组成,属于轻型挡土结构,挡土板与一系列间距相等的框架刚性连接而形成框架结构,以保持挡土墙稳定 9.排桩、地下连续墙:属于柔性支护结构,悬臂式排桩适用于浅基坑,地质条件较好和位移要求不严格的基坑支护。 二、简答题 1.按受力形式进行分类 重力式、悬臂式、扶壁式、加筋挡土墙、土钉墙、锚定板挡土墙、框架预应力锚杆挡土墙、锚杆挡土墙、悬臂式排桩、地下连续墙、单支点和多支点排桩 2.挡土墙原理及使用条件 ①重力式挡土墙,依靠自身重力来平衡土压力。适用范围:3-6m小型填方边坡,可用于非饱和土工程支护结构,两侧均侵水条件的风化岩土质边坡 ②悬臂式挡土墙:钢筋混凝土结构,立壁、趾板和踵板组成,断面尺寸较小,受力较好,适用于4-8m高的填方边坡,可防止填方边坡隐性滑动 ③扶壁式:立壁、踵板、扶壁组成,断面较小,适用于6-12m高的填方边坡 ④土钉墙:有钢筋混凝土面板和加固土体的土钉组成,土压力靠土钉来平衡。

盈建科专题12地下室计算

地下室计算 一、地下室和上部结构整体建模共同计算 一般应将地下室和其上的上部结构各层共同建立完整的计算模型进行计算分析。上部结构和地下室组成一个受力体系,具有共同的位移场,相互协调变形。共同作用分析可以较准确地得到上部结构对地下室变形的影响,同样也可以较准确地反映地下室结构的变形对上部结构的影响。一般情况下地下室都有侧土约束,因此需要考虑地下室回填土侧向约束对整体结构水平位移的影响。另外,规范对于地下室的很多要求、地下室本身的计算等常需要在整体模型中得到体现。 二、地下室的计算参数 将地下室建入整体模型后,需要在计算参数的几处设置地下室相关的参数:一是在结构总体信息页中设置地下室层数、嵌固端所在层号等;二是在地下室信息页填写地下室回填土的侧向约束、侧向水土压力等地下室相关参数。 1、结构总体信息页 嵌固端所在层号一般和地下室层数相同。但是当地下一层的刚度不够大、不能起到嵌固作用时,可能比地下室层数小。嵌固端所在层号影响底层柱内力调整、嵌固层梁柱配筋调整、刚重比计算等。 在楼层组装时,应正确输入地下室各层的底标高。软件可根据用户输入的地下室层数,给出每层的层名称,如地下1层、地下2层等。这些信息的输入还有助于基础部分的设计。 2、计算控制信息页 这里设置有选项“地下室是否按照刚性楼板假定计算”,软件隐含将地下室部分的各层按照强制刚性板假定计算。 有的地下室结构不适合按照强制刚性板假定计算,如板柱结构的地下室层,若计算时不能考虑楼板的面外刚度,计算模型与实际不符。此时可将这样的楼层设置为弹性楼板3,并在此处的选项中取消对地下室按照强制刚性板假定计算。 3、地下室信息页 如图3.6.1,这是有关地下室计算的重要参数,主要填写“土层水平抗力系数的比例系数(m值)。 m值可按《建筑桩基技术规范》(JGJ94-2008)表5.7.5中取值。同时软件在对话框中给出m值的常见取值范围。 地下室部分特殊的荷载就是地下室外墙的侧向土、水压力。软件假定侧土压力沿地下室外墙高度方向线性分布。在计算参数的地下室部分输入土、水压力参数。 地下室外墙由软件自动判断,并可由用户补充修改。软件根据定义的侧向土、水压力计算地下室外墙的平面外弯矩。

《地下建筑结构》考试重点

第一章 衬砌结构的作用:承重和围护。 结构形式影响因素:受力条件、使用要求、施工方案。 结构形式:浅埋式结构、附建式结构、沉井结构、地下连续墙结构、盾构结构、沉管结构、桥梁基础结构、其他结构。 拱形结构的优点: 1.地下结构的荷载比地面结构大,且主要承受垂直荷载。因此,拱形结构就受力性能而言 比平顶结构好。 2.拱形结构的内轮廓比较平滑,只要适当调整拱曲率,一般都能满足地下建筑的使用要求, 并且建筑布置比圆形结构方便,净空浪费也比圆形结构少。 3.拱主要是承压结构。适用于采用抗拉性能较差,抗压性能较好的砖、石、混凝土等材料 构筑。材料造价低,耐久性良好,易维护。 地下建筑与地面建筑结构的区别: 1.计算理论、设计和施工方法。 2.地下建筑结构所承受的荷载比地面结构复杂。 3.地下建筑结构埋置于地下,其周围的岩土体不仅作为荷载作用于地下建筑结构上,而且 约束着结构的移动和变形。 岩石地下建筑结构形式 (一)拱形结构:1.贴壁式拱形结构:(1)半衬砌结构(2)厚拱薄墙衬砌结构(3)直墙拱形衬砌(4)曲墙拱形衬砌结构2.离壁式拱形衬砌结构 (二)喷锚结构 (三)穹顶结构 (四)连拱隧道结构 (五)复合衬砌结构 第二章 荷载种类: 静荷载:是指长期作用在结构上且大小、方向和作用点不变的荷载。 动荷载:原子武器和常规武器的爆破冲击波;地震波作用下的动荷载。 活荷载:指在结构物施工和使用期间可能存在的变动荷载,其大小和作用位置都可能变化。其他荷载:混凝土收缩、温度变化、结构沉降、装配误差等。 按其作用特点及使用中可能出现的情况分为以下三类:永久(主要)荷载、可变(附加)荷载和偶然(特殊)荷载。 软土地区浅埋地下工程采用“土柱理论”进行计算。 第三章 弹性地基梁与普通梁的区别: 1.超静定的次数是有限,还是无限。 2.普通梁的支座通常看作刚性支座,即略去地基的变形,只考虑梁的变形;弹性地基梁必 须同时考虑地基的变形。 第四章 国际隧协认为可将其归纳为以下四种模型: 1.以参照已往隧道工程的实践经验进行工程类比为主的经验设计法;

地下建筑结构重点(整理)

第16周周5第3,4节教3-A102 填:1*30名:4*5简:6*5计:1*20 第一章:概论 1.地下建筑结构的概念。 地下建筑结构——埋置地层内部的结构 衬砌——与土层接触的永久性支护结构承重、维护作用 内部结构——同地面建筑(与之区别) 2.地下建筑结构的工程特点: 答:建筑结构替代了原来的地层(承载作用) 地层荷载随施工过程是发生变化的 地质条件影响地层荷载 地下水碓结构设计影响大 设计考虑施工、使用的整个阶段 地层与结构共同的承载体系 地层的成拱效应 3.地下建筑结构的设计程序和内容 答:设计程序:初步设计技术设计 初步设计的步骤:1.找到主题2.依据主题3.用途设计模式4.收集资料5.整理分析资料6.摆出多种界面7.设计出多种思路8. 选出合适的设计模式。 初步设计内容: (一)工程等级和要求,以及静、动载标准的确定; (二)确定埋置深度与施工方法; (三)初步设计荷载值; (四)选择建筑材料; (五)选定结构形式和布置; (六)估算结构跨度、高度、顶底板及边墙厚度主要尺寸; (七)绘制初步设计结构图; (八)估算工程材料数量及财务概算。 技术设计内容: (一)计算荷载:求出作用在结构上的各种荷载值; (二)计算简图:拟定出恰当的计算图式; (三)内力分析:得出控制截面的内力; (四)内力组合:求出各控制截面的最大设计内力值; (五)配筋设计:得出受力钢筋,确定分布钢筋与架立钢筋; (六)绘制结构施工详图:结构平面图,结构构件配筋图,节点详图,内部设备的预埋件图; (七)材料,工程数量和工程财务预算。 第二章:地下建筑结构的荷载 概念: 主动土压力: 被动土压力: 静止土压力: 围岩压力:位于地下结构周围变形或破坏的岩层,作用在衬砌结构或支撑结构上的压力。 普氏压力拱理论: 地层弹性抗力:结构变形使土体被动受力时,土对结构的产生的反作用力。决定于结构的变形和地层的物理力学性质。 1.水土压力计算方法:郎肯土压力计算公式,考虑地下水时水土压力计算方法和计算图式。 2.(了解)按松散体理论对浅埋结构与深埋结构的划分,浅埋结构和深埋结构垂直围岩压力的计算方法。 3.土层弹性抗力的计算理论:局部变形和共同变形理论要点。

土体主动、主动土压力概念及计算公式

[指南]土体主动、主动土压力概念及计算公式主动土压力 挡土墙向前移离填土,随着墙的位移量的逐渐增大,土体作用于墙上的土压力逐渐减小,当墙后土体达到主动极限平衡状态并出现滑动面时,这时作用于墙上的土压力减至最小,称为主动土压力P。 a 被动土压力 挡土墙在外力作用下移向填土,随着墙位移量的逐渐增大,土体作用于墙上的土压力逐渐增大,当墙后土体达到被动极限平衡状态并出现滑动面时,这时作用于墙上的土压力增至最大,称为被动土压力P。上述三种土压力的移动情况和它们在相同条件下的数值比较,p 可用图6-2来表示。由图可知P,P,P。 poa 朗肯基本理论 朗肯土压力理论是英国学者朗肯(Rankin)1857年根据均质的半无限土体的应力状态和土处于极限平衡状态的应力条件提出的。在其理论推导中,首先作出以下基本假定。 (1)挡土墙是刚性的墙背垂直; (2)挡土墙的墙后填土表面水平; (3)挡土墙的墙背光滑,不考虑墙背与填土之间的摩擦力。 把土体当作半无限空间的弹性体,而墙背可假想为半无限土体内部的铅直平面,根据土体处于极限平衡状态的条件,求出挡土墙上的土压力。 如果挡土墙向填土方向移动压缩土体,ζ仍保持不变,但ζ将不断增大并超过ζ值,zxz当土墙挤压土体使ζ增大到使土体达到被动极限平衡状态时,如图

6-4的应力园O,ζx3z变为小主应力,ζ变为大主应力,即为朗肯被动土压力(p)。土体中产生的两组破裂面与xp

,45:,水平面的夹角为。 2 朗肯主动土压力的计算 根据土的极限平衡条件方程式 ,,2ζ=ζtg(45?+)+2c?tg(45?+) 1322 ,,2ζ=ζtg(45?-)-2c?tg(45?-) 3122 土体处于主动极限平衡状态时,ζ=ζ=γz,ζ=ζ=p,代入上式得 1z3xa 1)填土为粘性土时 填土为粘性土时的朗肯主动土压力计算公式为 ,,2,ap=γztg(45?-)-2c?tg(45?-)=γzK-2c (6-3) aa22 由公式(6-3),可知,主动土压力p沿深度Z呈直线分布,如图6-5所示。a (一)Z 0 ZH-H30 HZPa-3 H γ2cHKa?Ka 图5,5粘性土主动土压力分布图 当z=H时p=γHK-2cK aaa 在图中,压力为零的深度z,可由p=0的条件代入式(6-3)求得 0a 2cz, (6-4) 0,Ka 在z深度范围内p为负值,但土与墙之间不可能产生拉应力,说明在z深度范围内,0a0 填土对挡土墙不产生土压力。墙背所受总主动土压力为P,其值为土压力分布图中的阴影部分面积,即a 1aaa0,,,,P(HK2cK)(Hz)2 (6-5) 212c2,,,,aaHK2cHK,2

路基与支挡结构作业及答案

《路基与支挡结构》作业 第一章路基工程概述与路基构造 复习思考题: 1 路基工程包括哪些方面? 2 什么是路基横断面?基本形式有哪些? 3 路基本体组成包括哪些?路肩的作用是什么? 4 在什么条件下路基需作个别设计? 第二章路基基床 一、选择题 1我国Ⅰ、Ⅱ、Ⅲ级铁路基床厚度标准(TB10001-99)分别是:(1)3.0m、2m、1.2m;(2)2.5m、2m、1.2m;(3)2.5m、2m、1.5m;(4)2.5m、1.5m、1.2m。 2下列土中不宜用作Ⅰ、Ⅱ、Ⅲ级铁路基床表层填料的是:(1)中砂;(B)砾砂;(3)硬块石;(4)易风化软块石。 3 基床容易发生翻浆冒泥的是:(1)粘性土填土基床;(2)无路拱的全风化砂岩路堑基床;(3)深路堑基床;(4)高路堤基床。 (答案:1(3)2(4)3(1)) 二、简答题 1 如何确定基床表层厚度? 2 基床填料与压实度要求如何? 3 常见基床病害有哪些?如何整治? 第三章路基边坡的稳定分析方法 一、思考题: 1.简述直线破裂法、瑞典圆弧法、瑞典条分法和折线滑动面法的适用条件方法与分析步骤。 2.如何对浸水路基边坡和地震条件下边坡稳定性进行评价? 二、计算题 根据下图求整个路堑边坡的剩余下滑力,滑动土体的γ=18.0kN/m3,内摩擦角φ=10°,C=2kN/m2,安全系数K=1,滑体分块重量: Q1=122.4kN, L1=5.7m, Q2=472.9kN, L2=8.0m, Q3=690.2kN, L3=9.2m, Q4=688.5kN, L4=9.2m.

第四章一般路基设计、施工与养护 一、选择题: 1.当路堤或路堑的土质为非渗水性土或多雨地区易风化的泥质岩石时, 路基面作成路拱:(1)路拱的形状为三角形或梯形,单线路拱高0.15m,一次修筑的双线路拱高为0.2m。(2)路拱的形状为三角形或梯形,单、双线路拱高都为0.2m。(3)路拱的形状为三角形,单、双线路拱高都为0.15m。(4) 路拱的形状为三角形,单线路拱高0.15m,一次修筑的双线路拱高为0.2m。 2. 无路拱地段的路肩实际高程应比其设计高程:(1)相同;(2)降低;(3)抬高;(4)有时抬高,有时降低。 3.无路拱与有路拱一端的土质路基连接处:(1)应向土质路基方向用渗水土作过渡段,过渡段的长度一般不小于10m,(2)应向土质路基方向用非渗水土作过渡段,过渡段的长度一般不小于10m,(3)应向土质路基方向用非渗水土作过渡段,过渡段的长度一般不大于10m,(4)应向土质路基方向用渗水土作过渡段,过渡段的长度一般不大于10m。 4.Ⅰ、Ⅱ、Ⅲ级铁路路堑的路肩宽度在任何情况下不得小于:(1)) 0.8m;(2)0.6m;(3) 0.4m;(4)视铁路等级不同而不同。 5.缓和曲线范围内的路基面宽度:(1)不设置曲线加宽;(2)按圆曲线设置加宽;(3)由圆曲线向直线递增设置加宽;(4)由圆曲线向直线递减设置加宽。 6.路肩标高:(1)以路肩边缘的标高表示;(2)以路肩标高加路拱高表示;(3)以路肩与道床边坡交点标高表示;(4)以路基边坡与地面交点标高表示。 7. 不得用于Ⅰ、Ⅱ、Ⅲ级铁路基床表层填料的是:(1)角砾土;(2)粘土;(3)中砂;(4)漂石土。 8.当用粗粒土(粘砂、粉砂除外)作路堤填料时,填土质量控制指标应采用:(1)相对密度或地基系数;(2)地基系数;(3)压实系数和地基系数;(4)压实系数和相对密度。 9.最优含水量是指指填土在一定的压实功能下:(1)最易施工的含水量;(2)填土施工许可的最大含水量;(3)产生填土最大密实度的含水量;(4)填土施工许可的最小含水量。 10.粘性土路堤边坡高18m,其设计边坡可采用:(1)1:1.5;(2)1:1.75;(3)8m 以上用1:1.5,8m以下用1:1.75;(4)按个别设计通过边坡稳定性检算确定。 11.按折线滑动面法检算陡坡路堤稳定性时,当计算某条块所得剩余下滑力为负值时,(1)该负值计入下一条块;(2)不计入下一条块,从下一条块开始往下计算剩余下滑力;(3)该负值乘以安全系数计入下一条块;(4)按一定比例计入下一条块。

相关文档
最新文档