激光钻孔板(HDI)流程及设计规范2

激光钻孔板(HDI)流程及设计规范2
激光钻孔板(HDI)流程及设计规范2

激光钻孔的设备原理【深度解析】

激光钻孔的设备原理【深度剖析】 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、自动化、数字无人工厂、精密测量、3D 打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 激光打孔技术具有精度高、通用性强、效率高、成本低和综合技术经济效益显著等优点,已成为现代制造领域的关键技术之一。在激光出现之前,只能用硬度较大的物质在硬度较小的物质上打孔。这样要在硬度大的金刚石上打孔,就成了极其困难的事。激光出现后,这一类的操作既快又安全。但是,激光钻出的孔是圆锥形的,而不是机械钻孔的圆柱形,这在有些地方是很不方便的。可透过振镜进行程式化编程控制图形输出。 激光打孔指激光经聚焦后作为高强度热源对材料进行加热,使激光作用区内材料融化或气化继而蒸发,而形成孔洞的激光加工过程。激光束在空间和时间上高度集中,利用透镜聚焦,可以将光斑直径缩小10的5次方~10的15次方W/cm2的激光功率密度。如此高的功率密度几乎可对任何材料进行激光打孔。例如,在高熔点的钼板上加工微米量级的孔,在硬质合金(碳化钨)上加工几十微米量级的小孔,在红蓝宝石商人加工几百微米量级的深孔,金刚石拉丝模,化学纤维喷丝头等。 激光打孔是早早达到实用化的激光加工技术,也是激光加工的重要应用领域之一。激光打孔主要用于金属材料钢、铂、钼、钽、镁、锗、硅,轻金属材料铜、锌、铝、不锈钢、耐热合金、镍基质合金、钛金、白金,普通硬质合金磁性材料以及非金属材料中的陶瓷基片、人工宝石、金刚石膜、陶瓷、橡胶、塑料、玻璃等。 如此高的功率密度几乎可以在任何材料实行激光打孔,而且与其它方法如机械钻孔、电火花加工等常规打孔手段相比,具有以下显著的优点: (1)激光打孔速度快,效率高,经济效益好。|

HDI镭射成孔技术与讨论

雷射成孔技术介绍与讨论 雷射成孔的商用机器,市场上大体可分为:紫外线的Nd:YAG雷射机(主要供应者为美商ESI公司);红外线的CO2雷射机(最先为Lumonics,现有日立、三菱、住友等);以及兼具UV/IR之变头机种(如Eecellon之2002型)等三类。前者对3mil以下的微孔很有利,但成孔速度却较慢。次者对4~8mil 的微盲孔制作最方便,量产速度约为YAG机的十倍,后者是先用YAG头烧掉全数孔位的铜皮,再用CO2头烧掉基材而成孔。若就行动电话的机手机板而言,CO2雷射对欲烧制4~6mil的微盲孔最为适合,症均量产每分钟单面可烧出6000孔左右。至於速度较的YAG雷射机,因UV光束之能量强且又集中故可直接打穿铜箔,在无需“开铜窗”(Conformal Mask)之下,能同时烧掉铜箔与基材而成孔,一般常用在各式“对装载板”(Package Substrste) 4mil以下的微孔,若用於手机板的4~6mil微孔似乎就不太经济了。以下即就雷射成孔做进一进步的介绍与讨论。 1.雷射成孔的原理 雷射光是当:“射线”受到外来的刺激,而增大能量下所激发的一种强力光束,其中红外光或可见光者拥有热能,紫外光则另具有化学能。射到工作物表面时会发生反射(Refliction)吸收(Absorption)及穿透(Transmission)等三种现象,其中只有被吸收者才会发生作用。而其对板材所产生的作用又分为热与光化两种不同的反应,现分述於下: 1.1 光热烧蚀Photothermal Ablation 是指某雷射光束在其红外光与可见光中所夹帮的热能,被板材吸收后出现熔融、气化与气浆等分解物,而将之去除成孔的原理,称为“光热烧蚀”。此烧蚀的副作用是在孔壁上的有被烧黑的炭化残渣渣(甚至孔缘铜箔上也会出现一圈高熟造成的黑氧化铜屑),需经后制程Desmear清除,才可完成牢固的盲孔铜壁。 1.2 光化裂蚀Photochemical Ablation 是指紫外领域所具有的高光子能量(Photon Energy),可将长键状高分子有机物的化学键(Chemical Bond)予以打断,於是在众多碎粒造成体积增大与外力抽吸之下,使板材被快速移除而成孔。本反应是不含熟烧的“冷作”(Cold Process),故孔壁上不至产生炭化残渣。 1.3 板材吸光度 由上可知雷射成孔效率的高低,与板材的吸光率有直接关系。电路板板材中铜皮、玻织布与树脂三者的吸收度,民因波长而有所不同。前二者在UV 0.3mu以下区域的吸收率颇高,但进入可见光与IR后即大幅滑落。至於有机树脂则在三段光谱中,都能维持於相当不错的高吸收率。 1.4 脉冲能量 实用的雷射成孔技术,是利用断续式(Q-switch)光束而进行的加工,让每一段光敕(以微秒us计量)以其式(Pulse)能量打击板材,此等每个Pulse(可俗称为一枪)所拥有的能量,又有多种模式(Mode),如单光束所成光点的GEMOO单束光点的能量较易聚焦集中故多用於钻孔。多束光点不但还需均匀化且又不易集中成为小光点,一般常用於雷射直接成像技术(LDI)或密贴光罩(Contact Mask)等制程。 1.5 精确定位系统 1.5.1 小管区式定位 以“日立微孔机械”公司(Hitachi via Machine,最近由“日立精工”而改名)之RF/CO2钻孔机为例,其定位法是采“电流计式反射镜”(Galvanometer and Mirro)本身的X.Y.定位,加上机种台之XY台面(XY Table)定位等两种系统合作而成。后者是将大板面划分成许多小“管区”(最大为50mm见方,一般为精确起见多采用30mm见方),工作中可XY移动台面以交换管区。前者是在单一管区内,以两具Galvanometer的XY微动,将光点打到板面上所欲对准的靶位而成孔。当管区内的微孔全部钻妥后,即快速移往下一个管区再继续钻孔。

UV激光基板钻孔新工艺讲解

UV激光基板钻孔新工艺 目前,UV激光钻孔设备只占全球市场的15%,但该类设备市场需求的增长要比新型的CO2激光钻孔设备的需求高3倍。孔的直径甚至小于50μm,1~2的多层导通孔和较小的通孔也是当前竞争的焦点,UV激光为当前的竞争提出了解决方案;除此之外,它还是一种用于精确地剥离阻焊膜以及生成精密的电路图形的工具。本文概述了目前UV激光钻孔和绘图系统的特性和柔性。还给出了各种材料的不同类型导通孔的质量和产量结果以及在各种蚀刻阻膜上的绘图结果。本文通过展望今后的发展,讨论了UV激光的局限性。 本文还对UV激光工具和CO2激光工具进行了比较,阐明了二者在哪些方面是可以竞争的,在哪些方面是不可竞争的,以及在哪些方面二者可以综合应用作为 互补的工具。 UV与CO2的对比 UV激光工具不仅与CO2的波长不同,而且各自在加工材料,如像PCB和基板,也是两种不同的工具。光点尺寸小于10倍,较短的脉冲宽度和极高频使得在一般的钻孔应用中不得不使用不同的操作方法,并且为不同的应用开辟了其它的 窗口。 表1给出了目前激光系统中通常采用的两种激光装置的最主要技术特性的比 较。 表1:CO2激光与UV激光钻孔技术特性比较 UV在极小的脉冲宽度内具有高频和极大的峰值功率。工作面上光点尺寸决定了能量密度。CO2能量密度达到50~70J/cm2,而UV激光由于光点尺寸小得多,所 以能量密度可达50~200J/cm2。

由于UV光点尺寸比目标孔直径还要小,激光光束以一种所谓的套孔方式聚焦 于孔的目标直径内。 图1给出了套孔方式。 图1 套孔方式示意图 对于UV激光,钻一个完整的孔所需的脉冲数在30到120之间,而CO2激光则只需2到10个脉冲。UV激光的频率要比CO2的高5到15倍。在去除了顶部铜层后,可使用第二步,通过扩大的光点清理孔中的灰色区域。 当然还可使用UV激光进行冲压,不过光点的大小决定了能量密度,且不同材料的烧蚀极限值决定了所需的最小能量密度。这样根据不同材料的烧蚀极限就可 导出UV冲压方式使用和最大光点尺寸。 由于UV激光所具有的能量,目前仅将冲压方式用于孔直径小于75im、烧蚀极限极低的软材料如TCD,或用于小焊盘开口的阻焊膜烧蚀。 通过套孔方式将必要的能量带进孔内的时间在很大程度上取决于孔自身尺寸,孔直径越小,UV激光工具就钻的越快。CO2与UV激光之间的切换点为75到50im 的孔直径之间。 CO2激光的三种局限性: 第一:由于10im光波在孔边缘的绕射,需要考虑最小的孔尺寸。 第二:在铜上该波长的反射。 第三:厚度达波长1/2的底层铜上的残留物。 波长短得多的且在铜上有较高吸收率的UV激光就不存在上述三种局限性,因此,UV激光就成为一种理想的工具,它可用来在涂覆了任意一种铜材料的高档PCB 和基板即高密度互连技术(HDI)上钻小孔。 HDI一瞥

激光钻孔原理讲解

雷射成孔的商用机器,市场上大体可分为:紫外线的Nd :YAG雷射机(主要供应者为美商ESI公司;红外线的C02雷射机(最先为Lumonics,现有日立、三菱、住友等;以及兼具UV/IR之变头机种(如Eecellon之2002型等三类。前者对3mil以下的微孔很有利,但成孔速度却较慢。次者对4~8mil的微盲孔制作最方便,量产速度约为YAG机的十倍,后者是先用YAG头烧掉全数孔位的铜皮,再用CO2头烧掉基材而成孔。若就行动电话的机手机板而言,CO2雷射对欲烧制4~6mil的微盲孔最为适合,症均量产每分钟单面可烧出6000孔左右。至於速度较的YAG雷射机,因UV光束之能量强且又集中故可直接打穿铜箔,在无需“开铜窗”(Conformal Mask 之下,能同时烧掉铜箔与基材而成孔,一般常用在各式’对装载板” (Package Substrste 4mil以下的微孔,若用於手机板的4~6mil 微孔似乎就不太经济了。以下即就雷射成孔做进一进步的介绍与讨论。 、雷射成孔的原理 雷射光是当:射线”受到外来的刺激,而增大能量下所激发的一种强力光束,其中红外光或可见光者拥有热能,紫外光则另具有化学能。射到工作物表面时会发生反射(Refliction吸收(Absorption及穿透(Transmission等三种现象,其中只有被吸收者才会发生作用。而其对板材所产生的作用又分为热与光化两种不同的反应,现分述於下: 1、光热烧蚀Photothermal Ablation 是指某雷射光束在其红外光与可见光中所夹帮的热能,被板材吸收后出现熔融、气化与气浆等分解物,而将之去除成孔的原理,称为“光热烧蚀”。此烧蚀的副作用是在孔壁上的有被烧黑的炭化残渣渣(甚至孔缘铜箔上也会出现一圈高熟造成的黑氧化铜屑,需经后制程Desmear清除,才可完成牢固的盲孔铜壁。 2、光化裂蚀Photochemical Ablation

激光钻孔原理

雷射成孔的商用机器,市场上大体可分为:紫外线的Nd:YAG雷射机(主要供应者为美商ESI公司);红外线的CO2雷射机(最先为Lumonics,现有日立、三菱、住友等);以及兼具UV/IR之变头机种(如Eecellon之2002型)等三类。前者对3mil以下的微孔很有利,但成孔速度却较慢。次者对4~8mil的微盲孔制作最方便,量产速度约为YAG机的十倍,后者是先用YAG头烧掉全数孔位的铜皮,再用CO2头烧掉基材而成孔。若就行动电话的机手机板而言,CO2雷射对欲烧制4~6mil的微盲孔最为适合,症均量产每分钟单面可烧出6000孔左右。至於速度较的YAG雷射机,因UV光束之能量强且又集中故可直接打穿铜箔,在无需“开铜窗”(Conformal Mask)之下,能同时烧掉铜箔与基材而成孔,一般常用在各式“对装载板”(Package Substrste)4mil以下的微孔,若用於手机板的4~6mil微孔似乎就不太经济了。以下即就雷射成孔做进一进步的介绍与讨论。 一、雷射成孔的原理 雷射光是当:“射线”受到外来的刺激,而增大能量下所激发的一种强力光束,其中红外光或可见光者拥有热能,紫外光则另具有化学能。射到工作物表面时会发生反射(Refliction)吸收(Absorption)及穿透(Transmission)等三种现象,其中只有被吸收者才会发生作用。而其对板材所产生的作用又分为热与光化两种不同的反应,现分述於下: 1、光热烧蚀Photothermal Ablation 是指某雷射光束在其红外光与可见光中所夹帮的热能,被板材吸收后出现熔融、气化与气浆等分解物,而将之去除成孔的原理,称为“光热烧蚀”。此烧蚀的副作用是在孔壁上的有被烧黑的炭化残渣渣(甚至孔缘铜箔上也会出现一圈高熟造成的黑氧化铜屑),需经后制程Desmear清除,才可完成牢固的盲孔铜壁。 2、光化裂蚀Photochemical Ablation 是指紫外领域所具有的高光子能量(Photon Energy),可将长键状高分子有机物的化学键(Chemical Bond)予以打断,於是在众多碎粒造成体积增大与外力抽吸之下,使板材

常用激光器简介

几种常用激光器的概述 一、CO2激光器 1、背景 气体激光技术自61年问世以来,发展极为迅速,受到许多国家的极大重视。特别是近两年,以二氧化碳为主体工作物质的分子气体激光器的进展更为神速,已成为气体激光器中最有发展前途的器件。 二氧化碳分子气体激光器不仅工作波长(10.6微米)在大气“窗口”,而且它正向连续波大功率和高效率器件迈进。1961年,Pola-nyi指出了分子的受激振动能级之间获得粒子反转的可能性。在1964年1月美国贝尔电话实验室的C.K.N.Pate 研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0.01%。不到两年,现在该类器件的连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采用Q开关技术已获得50千瓦的脉冲功率输出。最近,有人认为,进一步提高现有的工艺水平,近期可以达到几千瓦的连续波功率输出和30~40% 的效率。 2、工作原理 CO2激光器中,主要的工作物质由CO?,氮气,氦气三种气体组成。其中CO?是产生激光辐射的气体、氮气及氦气为辅助性气体。加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空。氮气加入主要在CO?激光器中起能量传递作用,为CO?激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。CO?分子激光跃迁能级图CO?激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。这时受到激发的氮分子便和CO?分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO?分子从低能级跃迁到高能级上形成粒子数反转发出激光。 3、特点 二氧化碳分子气体激光器不但具有一般气体激光器的高度相干性和频率稳定性的特点,而且还具有另外三个独有的特点: (1)工作波长处于大气“窗口”,可用于多路远距离通讯和红外雷达。 (2)大功率和高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,其效率为0.17 %,原子激光器的连续波输出功率一般为毫瓦极,其效率约为0.1%,而二氧化碳分子激光器连续波输出功率高达1200瓦,其效率为17%)。 (3)结构简单,使用一般工业气体,操作简单,价格低廉。由此可见,随着研究工作的进展、新技术的使用,输出功率和效率会不断提高,寿命也会不断增长,将会出现一系列新颖的应用。例如大气和宇宙通讯、相干探测和导航、超外

激光打孔(论文)

激光打孔技术 班级:XX 作者:周欣指导老师:XX 摘要: 激光打孔是最早达到实用化的激光加工技术,也是激光加工的主要应用领域之一。随着近代工业和科学技术的迅速发展,使用硬度大、熔点高的材料越来越多,而传统的加工方法已不能满足某些工艺需求, 而用激光打孔则不难实现。激光束在空间和时间上的高度集中,可以将光斑直径缩小到微米级从而获得很高的功率密度,几乎可以对任何材料进行激光打孔。 关键词: 激光打孔 一.激光打孔的原理 激光束打孔机一般由固体激光器、电气系统、光学系统和三坐标移动工作台等四大部分组成。 1)固体激光器工作原理 当激光工作物质钇铝石榴石受到光泵(激励脉冲氙灯)的激发后,吸收具有特 定波长的光,在一定条件下可导致工作物质中的亚稳态粒子数大于低能级粒 子数,这种现象称为粒子数反转。 一旦有少量激发粒子产生受激辐射跃迁,就会造成光放大,再通过谐振腔内 的全反射镜和部分反射镜的反馈作用产生振荡,最后由谐振腔的一端输出激 光。激光通过透镜聚焦形成高能光束照射在工件表面上,即可进行加工。2)电气系统包括对激光器供给能量的电源和控制激光输出方式(脉冲式或连续 式等)的控制系统。在后者中有时还包括根据加工要求驱动工作台的自动控制 装置。 3)光学系统的功能是将激光束精确地聚焦到工件的加工部位上。为此,它至少含有激光聚焦装置和观察瞄准装置两个部分。 4)投影系统用来显示工件背面情况,在比较完善的激光束打孔机中配备。

5)工作台由人工控制或采用数控装置控制,在三坐标方向移动,方便又准确地 调整工件位置。 工作台上加工区的台面用玻璃制成,因为不透光的金属台面会给检测带来不 便,而且台面会在工件被打穿后遭受破坏。工作台上方的聚焦物镜下设有吸、 吹气装置,以保持工作表面和聚焦物镜的清洁。 二、激光打孔的特点 激光打孔是最早达到实用化的激光加工技术,也是激光加工的主要应用领域之一。随着近代工业和科学技术的迅速发展,使用硬度大、熔点高的材料越来越多,而传统的加工方法已不能满足某些工艺需求。例如,在高熔点金属钼板上加工微米量级孔径,在硬质碳化钨上加工几十微米的小孔;在红、蓝宝石上加工几十微米的深孔以及金刚石拉丝模具、化学纤维的喷丝头等。这一类的加工任务用常规的机械加工方法很难,有时甚至是不可能的,而用激光打孔则不难实现。激光束在空间和时间上的高度集中,可以将光斑直径缩小到微米级从而获得很高的功率密度,几乎可以对任何材料进行激光打孔。 激光打孔技术与机械钻孔、电火花加工等常孔打孔手段相比,具有显著的优点:(1)激光打孔速度快,效率高,经济效益好 由于激光打孔是利用功率密度为l07-109W/cm2的高能激光束对材料进行瞬时作用,作用时间只有0.001-0.00001s,因此激光打孔速度非常快。将高效能激光器与高精度的机床及控制系统配合,通过微处理机进行程序控制,可以实现高效率打孔。在不同的工件上激光打孔与电火花打孔及机械钻孔相比,效率提高l0-1000倍。 (2)激光打孔可获得大的深径比 小孔加工中,深径比是衡量小孔加工难度的-个重要指标。对于用激光束打孔来说,激光束参数较其它打孔方法草便于优化,所以可获得比电火花打孔及机械钻孔大得多的深径比。一般情况下,机械钻孔和电火花打孔所获得的深径比值不超过10。 (3)激光打孔可在硬、脆、软等各类材料上进行 高能量激光束打孔不受材料的硬度、刚性、强度和脆性等机械性能限制,它既适于金属材料,也适于一般难以加工的非金属材料,如红宝石、蓝宝石、陶瓷、人造金刚石和天然金刚石等。由于难加工材料大都具有高强度、高硬度、低热导率、加工易硬化、化学亲和力强等性质,因此在切削加工中阻力大、温度高、工具寿命短,表面粗糙度差、倾斜面上打孔等因素使打孔的难度更大。而用激-光在这些难加工材料上打孔,以上问题将得到解决。我国钟表行业所用的宝石轴承几乎全部是激光打孔。人造金刚石和天然金刚石的激光打孔应用也非常普遍。用YAG激光在厚度为5.5mm的硬质合金上打孔,深径比高达l4:1,而在1l.5mm 厚的65Mn上可打出深径比为l9:1的小孔。在l0mm厚的坚硬的氮化硅陶瓷上可容易地打出直径为0.6mm的小孔,这都是常规打孔手段无法办到的。特别是在弹性材料上,由于弹性材料易变形,很难用一般方法打孔。

三种钻孔方法的比较

旋挖钻与冲击反循环、回旋钻施工比较 一、旋挖钻机 ? ? 旋挖钻机在国际上的发展已经有几十年的历史,在中国也是在最近四五年才被逐渐认识和应用,成为近年来发展最快的一种新型桩孔施工方法,旋挖钻孔灌注桩技术被誉为“绿色施工工艺” ,其特点是工作效率高、施工质量好、尘土泥浆污染少。旋挖钻机是一种多功能、高效率的灌注桩桩孔的成孔设备,可以实现桅杆垂直度的自动调节和钻孔深度的计量;旋挖钻孔施工是利用钻杆和钻斗的旋转,以钻斗自重并加液压作为钻进压力,使土屑装满钻斗后提升钻斗出土。通过钻斗的旋转、挖土、提升、卸土和泥浆置换护壁,反复循环而成孔。吊放钢筋笼、灌注砼、后压浆等同其他水下钻孔灌注桩工艺。 ? ? 此方法自动化程度和钻进效率高,钻头可快速穿过各种复杂地层,在桩基施工特别是城市桩基施工中具有非常广阔的前景。 ? ? 1 旋挖钻孔桩的施工特点 ? ? 可在水位较高、卵石较大等用正、反循环及长螺旋钻无法施工的地层中施工。 ? ? 自动化程度高、成孔速度快、质量高。该钻机为全液压驱动,电脑控制,能精确定位钻孔、自动校正钻孔垂直度和自动量测钻孔深度,最大限度地保证钻孔质量。其工效是循环钻机的20倍,最重要的是,工程的质量和进度得到了充分的保证。目前在我国的公路、铁路、桥梁和大型的建筑物的基础桩施工中均有采用。 ? ? 伸缩钻杆不仅向钻头传递回转力矩和轴向压力,而且利用本身的伸缩性实现钻头的快速升降,快速卸土,以缩短钻孔辅助作业的时间,提高钻进效率。 ?? 环保特点突出,施工现场干净。这是由于旋挖钻机通过钻头旋挖取土,再通过凯式伸缩钻杆将钻头提出孔内再卸土。旋挖钻机使用泥浆仅仅用来护壁,而不用于排碴,成孔所用泥浆基本上等于孔的体积,且泥浆经过沉淀和除砂还可以多次反复使用。目前很多城市在施工中的排污费用明显提高,使用旋挖钻机可以有效降低排污费用,并提高文明施工的水平。 ?? 履带底盘承载,接地压力小,适合于各种工况,在施工场地内行走移位方便,机机动灵活,对桩孔的定位非常准确、方便。

激光钻孔工艺介绍

随着微电子技术的飞速发展,大规模和超大规模集成电路的广泛应用,微组装技术的进步,使印制电路板的制造向着积层化、多功能化方向发展,使印制电路图形导线细、微孔化窄间距化,加工中所采用的机械方式钻孔工艺技术已不能满足要求而迅速发展起来的一种新型的微孔加工方式即激光钻孔技术。 一激光成孔的原理 激光是当“射线”受到外来的刺激而增加能量下所激发的一种强力光束,其中红外光和可见光具有热能,紫外光另具有光学能。此种类型的光射到工件的表面时会发生三种现象即反射、吸收和穿透。 透过光学另件击打在基材上激光光点,其组成有多种模式,与被照点会产生三种反应。 激光钻孔的主要作用就是能够很快地除去所要加工的基板材料,它主要靠光热烧蚀和光化学烧蚀或称之谓切除。 (1)光热烧蚀:指被加工的材料吸收高能量的激光,在极短的时间加热到熔化并被蒸发掉的成孔原理。此种工艺方法在基板材料受到高能量的作用下,在所形成的孔壁上有烧黑的炭化残渣,孔化前必须进行清理。 (2)光化学烧蚀:是指紫外线区所具有的高光子能量(超过2eV电子伏特)、激光波长超过400纳米的高能量光子起作用的结果。而这种高能量的光子能破坏有机材料的长分子链,成为更小的微粒,而其能量大于原分子,极力从中逸出,在外力的掐吸情况之下,使基板材料被快速除去而形成微孔。因此种类型的工艺方法,不含有热烧,也就不会产生炭化现象。所以,孔化前清理就非常简单。 以上就是激光成孔的基本原理。目前最常用的有两种激光钻孔方式:印制电路板钻孔用的激光器主要有RF激发的CO2气体激光器和UV固态Nd:YAG激光器。 (3)关于基板吸光度:激光成功率的高低与基板材料的吸光率有着直接的关系。印制电路板是由铜箔与玻璃布和树脂组合而成,此三种材料的吸光度也因波长不同有所不同但其中铜箔与玻璃布在紫外光0.3mμ以下区域的吸收率较高,但进入可见光与IR后却大幅度滑落。有机树脂材料则在三段光谱中,都能维持相当高的吸收率。这就是树脂材料所具有的特性,是激光钻孔工艺流行的基础。 二 CO2激光成孔的不同的工艺方法 CO2激光成孔的钻孔方法主要有直接成孔法和敷形掩膜成孔法两种。所谓直接成孔工艺方法就是把激光光束经设备主控系统将光束的直径调制到与被加工印制电路板上的孔直径相同,在没有铜箔的绝缘介质表面上直接进行成孔加工。敷形掩膜工艺方法就是在印制板的表面涂覆一层专用的掩膜,采用常规的工艺方法经曝光/显影/蚀刻工艺去掉孔表面的铜箔面形成的敷形窗口。然后采用大于孔径的激光束照射这些孔,切除暴露的介质层树脂。现分别介绍如下: (1)开铜窗法: 首先在内层板上复压一层RCC(涂树脂铜箔)通过光化学方法制成窗口,然后进行蚀刻露出树脂,再采用激光烧除窗口内基板材料即形成微盲孔:

激光打孔机

机型简介: 激光打孔机是利用激光技术和数控技术设计而成的一种打孔专用设备。 具有激光功率稳定、光束模式好、峰值功率高、高效率、低成本、安全、稳定、操作简便等特点。 咨询:一三四三零七二零九七零 QQ:一一八五九四零八一七 根据小孔的尺寸范围划分为六档: 小孔:1.00~3.00(mm); 次小孔:0.40~1.00(mm); 超小孔:0.1~0.40(mm); 微孔:0.01~0.10(mm); 次微孔:0.001~0.01(mm); 超微孔:<0.001(mm)。

适用材料和行业应用: 激光打孔主要进行金属非接触打孔; 最小孔径可达到0.01mm,适合普通金属及合金(铁、铜、铝、镁、锌等所有金属),稀有金属及合金(金、银、钛)等材料的打孔。

广泛应用于: 汽车喷油嘴,细孔穿孔,吸嘴,雾化器,精密模具,航天电子,微晶电路板,滤网滤芯,激光冲孔筛网,微孔滤膜,微孔曝气管,金属微孔管,微孔膜过滤器,内燃机燃油喷嘴,手表夹板,飞机透平叶片,探测器,传感器,喷油孔,冲孔铝板,微孔增氧机,微孔振荡器,微孔网,雾化喷嘴,发动机喷油嘴,喷油嘴,喷气嘴,微孔板,穿孔板,吸音板,微孔过滤器,微孔过滤网,微孔筛,不锈钢过滤网,滤清器,激光打孔网,喷枪喷嘴,化纤喷丝板,电子计算机打印头,细胞过滤器,电视机障板,天象仪星孔板,激光细孔网,精密细孔,SMT吸嘴,CPU 端子模,小孔吸嘴,燃烧器,过滤孔, --------------------------------- 激光打孔机技术指标: 型号:XH-B200; 技术参数: 激光功率:200W; 激光波长:1064NM;

常用激光器简介

几种常用激光器的概述 一、CO 激光器 2 1、背景 气体激光技术自61年问世以来,发展极为迅速,受到许多国家的极大重视。特别是近两年,以二氧化碳为主体工作物质的分子气体激光器的进展更为神速,已成为气体激光器中最有发展前途的器件。 二氧化碳分子气体激光器不仅工作波长(10.6微米)在大气“窗口”,而且它正向连续波大功率和高效率器件迈进。1961年,Pola-nyi指出了分子的受激振动能级之间获得粒子反转的可能性。在1964年1月美国贝尔电话实验室的C.K.N.Pate研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0.01%。不到两年,现在该类器件的连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采用Q开关技术已获得50千瓦的脉冲功率输出。最近,有人认为,进一步提高现有的工艺水平,近期可以达到几千瓦的连续波功率输出和30~40% 的效率。 2、工作原理 CO2激光器中,主要的工作物质由CO?,氮气,氦气三种气体组成。其中CO?是产生激光辐射的气体、氮气及氦气为辅助性气体。加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空。氮气加入主要在CO?激光器中起能量传递作用,为CO?激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。CO?分子激光跃迁能级图CO?激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。这时受到激

发的氮分子便和CO?分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO?分子从低能级跃迁到高能级上形成粒子数反转发出激光。 3、特点 二氧化碳分子气体激光器不但具有一般气体激光器的高度相干性和频率稳定性的特点,而且还具有另外三个独有的特点: (1)工作波长处于大气“窗口”,可用于多路远距离通讯和红外雷达。 (2)大功率和高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,其效率为0.17 %,原子激光器的连续波输出功率一般为毫瓦极,其效率约为0.1%,而二氧化碳分子激光器连续波输出功率高达1200瓦,其效率为17%)。 (3)结构简单,使用一般工业气体,操作简单,价格低廉。由此可见,随着研究工作的进展、新技术的使用,输出功率和效率会不断提高,寿命也会不断增长,将会出现一系列新颖的应用。例如大气和宇宙通讯、相干探测和导航、超外差技术和红外技术等。 4、应用 二氧化碳分子激光器以其独有的特点获得广泛的应用,现就某些方面的应用介绍如下: 1、热效应的应用 可以毫不困难地把激光器的射束直径聚成100微米。在此情况下。300瓦的功率就相当于107瓦/厘米2数量级的能量密度,此值已超过太阳光的能量密度,能达到极高的温度。例如Garver公司研制的800 瓦二氧化碳激光器在2秒钟之内就能烧穿4寸厚的耐火砖。因而,可以想象这些分子激光器可以用于解决高温材料的焊接、融熔和钻孔。例如6200型二氧化碳激光器连续波输出10瓦,可用

激光打孔

激光打孔 佛山市富兰激光科技有限公司简称:富兰激光 导语:随着科学科技的飞速发展,各行业中带有小孔的零件材料越来越多,并且对孔的精度和尺寸要求越来越高,孔径越来越小。而且,工件的材料也越 来越多样化,使用硬度大、熔点高的材料越来越多,而传统的加工方法已不能满足某些工艺要求。这一类的加工任务用常规机械加工方法很困难,有时甚至是 不可能的,而用激光打孔则不难实现。 正文: 精密激光打孔加工设备介绍: 精密激光打孔所用的设备是激光打标机(也叫:激光刻字机、镭射机、镭 雕机、激光打号机、激光标刻机、激光打码机、激光雕刻机等等),可以在纺 织面料、皮革、纸制品、金属制品、塑料制品、玻璃制品等金属及非金属材质 上进行非接触式打孔、切割、打标等操作,最小孔径可达到0.01mm。 激光打孔技术具有速度快、效率高、环保、操作简单、应用领域广泛、打 孔处光滑无毛刺、可实现自动化生产等优点。 激光打孔的机理: 激光束是一种在时间上和空间上高度集中的光子流束,其发散角极小、聚 焦性能良好,采用光学聚焦系统,可以将激光束会聚到微米量级的极小范围内,其功率密度极高,当这种微细的高能激光束照射到工件上时,可使得照射区内 的温度瞬时上升到一万度以上,从而引起被照射区内的材料瞬时熔化并大量汽 化蒸发,气压急剧上升,高速气流猛烈向外喷射,在照射点上立即形成一个小 阻坑。随着激光能量的不断输入,阻坑内的汽化程度加剧,蒸气量急剧增多, 气压骤然上升,对阻坑的四周产生强烈的冲击波作用,致使高压蒸气带着溶液,从凹坑底部高速向外喷射,利用辅助气体吹走激光熔化的范围,在工件上迅速打出孔来。 激光打孔技术: 激光打孔是最早达到实用化的激光加工技术,也是激光加工的主要应用领 域之一。激光束在空间和时间上高度集中,利用透镜聚焦,可以将光斑直径缩 小到微米级从而获得特别高的激光功率密度。如此高的功率密度几乎可以在任 何材料实行激光打孔。 激光打孔的优势: 激光打孔机与传统打孔工艺相比,具有以下一些优点: 1、速度快,效率高; 2、可在硬、脆、软等各类材料上进行; 3、激光打孔无工具损耗;

激光钻孔技术介绍讲解

激光钻孔技术介绍 2007-1-25 17:47:23 源自:中国PCB制造作者: 雷射成孔的商用机器,市场上大体可分为:紫外线的Nd:YAG雷射机(主要供应者为美商ESI公司);红外线的CO2雷射机(最先为Lumonics,现有日立、三菱、住友等);以及兼具UV/IR之变头机种(如Eecellon之2002型)等三类。前者对3mil以下的微孔很有利,但成孔速度却较慢。次者对4~8mil的微盲孔制作最方便,量产速度约为YAG机的十倍,后者是先用YAG头烧掉全数孔位的铜皮,再用CO2头烧掉基材而成孔。若就行动电话的机手机板而言,CO2雷射对欲烧制4~6mil的微盲孔最为适合,症均量产每分钟单面可烧出6000孔左右。至於速度较的YAG雷射机,因UV光束之能量强且又集中故可直接打穿铜箔,在无需“开铜窗”(Conformal Mask)之下,能同时烧掉铜箔与基材而成孔,一般常用在各式“对装载板”(Package Substrste)4mil以下的微孔,若用於手机板的4~6mil微孔似乎就不太经济了。以下即就雷射成孔做进一进步的介绍与讨论。 1.雷射成孔的原理 雷射光是当:“射线”受到外来的刺激,而增大能量下所激发的一种强力光束,其中红外光或可见光者拥有热能,紫外光则另具有化学能。射到工作物表面时会发生反射(Refliction)吸收(Absorption)及穿透(Transmission)等三种现象,其中只有被吸收者才会发生作用。而其对板材所产生的作用又分为热与光化两种不同的反应,现分述於下: 1.1 光热烧蚀Photothermal Ablation 是指某雷射光束在其红外光与可见光中所夹帮的热能,被板材吸收后出现熔融、气化与气浆等分解物,而将之去除成孔的原理,称为“光热烧蚀”。此烧蚀的副作用是在孔壁上的有被

激光打孔的特点及工艺介绍

激光打孔的特点及工艺介绍 2006年7月5日10:19 来源:武汉华工激光工程有限责任公司 一、激光打孔的特点。 激光打孔是最早达到实用化的激光加工技 术,也是激光加工的主要应用领域之一。随 着近代工业和科学技术的迅速发展,使用硬 度大、熔点高的材料越来越多,而传统的加 工方法已不能满足某些工艺需求。例如,在 高熔点金属钼板上加工微米量级孔径,在硬 质碳化钨上加工几十微米的小孔;在红、蓝 宝石上加工几十微米的深孔以及金刚石拉 丝模具、化学纤维的喷丝头等。这一类的加工任务用常规的机械加工方法很难,有时甚至是不可能的,而用激光打孔则不难实现。激光束在空间和时间a上的高度集中,可以将光斑直径缩小到微米级从而获得很高的功率密度,几乎可以对任何材料进行激光打孔。 激光打孔技术与机械钻孔、电火花加工等常孔打孔手段相比,具有显著的优点: (1)打孔速度快,效率高,经济效益好。 (2)可获得大的深径比。 (3)可在硬、脆、软等各种材料上进行。 (4)无工具损耗。 (5)适合于数量多、高密度的群孔加工。 (6)可在难以加工的材料倾斜面上加工小孔。 二、激光打孔的分类。 1、复制法。

激光束以一定的形状及精度重复照射到工件固定的一点上,在和辐射传播方向垂直的方向上,没有光束和工件的相对位移。 复制法包括单脉冲和多脉冲。目前一般采用多脉冲法,其特点是可使工件上能量的横向扩散减至最小,并且有助于控制孔的大小和形状。毫秒级的脉冲宽度可以使足够的热量沿着孔的轴向扩散,而不只被材料表面吸收。 激光束形状可用光学系统获得。如在聚焦光束中或在透镜前方放置一个所需形状的孔栏,即可以打出异形孔。 2、轮廓迂回法。 加工表面形状由激光束和被加工工件相对位移的轨迹决定。 用轮廓迂回法加工时,激光器既可以在脉冲状态下也可以在连续状态下工作。用脉冲方式时,由于孔以一定的位移量连续的彼此迭加,从而形成一个连续的轮廓。采用轮廓加工,可把孔扩大成具有任意形状的横截面。 三、激光打孔设备。 1、激光打孔用激光器。 激光器是激光打孔设备的重要组成部分,它的主要作用是将电源系统提供的电能以一定的转换效率转换成激光能。按激光器工作物质性质,可分为气体激光器和固体激光器。用于打孔的气体激光器主要有二氧化碳激光器,而用于打孔的固体激光器主要有红宝石激光器、钕玻璃激光器和YAG激光器。 二氧化碳激光器有许多独特的优点,它的转换效率高于其它激光器,可以为许多非金属材料(如有机玻璃、塑料、木材、多层复合板材、石英玻璃等)所吸收。更为重要的是,二氧化碳激光器与其他激光器相比,可以进行大功率输出。当与其他技术配合时,可以实现高速打孔,最高速度可达100孔/秒,这是其他激光器很难做到的。 虽然如此,但由于二氧化碳激光器的对焦、调光都不方便,设备一次性投资也比较大,在激光打孔设备中不及其他三种激光器应用普遍。 固体激光器以其独特的优点在激光打孔中得到广泛的应用。它的主要优点是:(1)输出波长短。(2)输出的光可用普通的光学材料传递。(3)整机体积小,使用维护方便,价格低于二氧化碳激光器。

激光钻孔技术介绍与讨论

激光钻孔技术介绍与讨论 雷射成孔的商用机器,市场上大体可分为:紫外线的Nd:YAG雷射机(主要供应者为美商ESI公司);红外线的CO2雷射机(最先为Lumonics,现有日立、三菱、住友等);以及兼具UV/IR之变头机种(如Eecellon之2002型)等三类。前者对3mil以下的微孔很有利,但成孔速度却较慢。次者对4~8mil的微盲孔制作最方便,量产速度约为YAG机的十倍,后者是先用YAG头烧掉全数孔位的铜皮,再用CO2头烧掉基材而成孔。若就行动电话的机手机板而言,CO2雷射对欲烧制4~6mil的微盲孔最为适合,症均量产每分钟单面可烧出6000孔左右。至於速度较的YAG雷射机,因UV光束之能量强且又集中故可直接打穿铜箔,在无需“开铜窗”(Conformal Mask)之下,能同时烧掉铜箔与基材而成孔,一般常用在各式“对装载板”(Package Substrste)4mil以下的微孔,若用於手机板的4~6mil微孔似乎就不太经济了。以下即就雷射成孔做进一进步的介绍与讨论。 1.雷射成孔的原理 雷射光是当:“射线”受到外来的刺激,而增大能量下所激发的一种强

力光束,其中红外光或可见光者拥有热能,紫外光则另具有化学能。射到工作物表面时会发生反射(Refliction)吸收(Absorption)及穿透(Transmission)等三种现象,其中只有被吸收者才会发生作用。而其对板材所产生的作用又分为热与光化两种不同的反应,现分述於下: 1.1 光热烧蚀Photothermal Ablation 是指某雷射光束在其红外光与可见光中所夹帮的热能,被板材吸收后出现熔融、气化与气浆等分解物,而将之去除成孔的原理,称为“光热烧蚀”。此烧蚀的副作用是在孔壁上的有被烧黑的炭化残渣渣(甚至孔缘铜箔上也会出现一圈高熟造成的黑氧化铜屑),需经后制程Desmear清除,才可完成牢固的盲孔铜壁。 1.2 光化裂蚀Photochemical Ablation 是指紫外领域所具有的高光子能量(Photon Energy),可将长键状高分子有机物的化学键(Chemical Bond)予以打断,於是在众多碎粒造成体积增大与外力抽吸之下,使板材被快速移除而成孔。本反应是不含熟烧的“冷作”(Cold Process),故孔壁上不至产生炭化残渣。1.3 板材吸光度 由上可知雷射成孔效率的高低,与板材的吸光率有直接关系。电路板板材中铜皮、玻织布与树脂三者的吸收度,民因波长而有所不同。前

激光钻孔原理讲解

雷射成孔的商用机器,市场上大体可分为:紫外线的 Nd :YAG 雷射机(主要供应者为美商 ESI 公司;红外线的 CO2雷射机(最先为 Lumonics ,现有日立、三菱、住友等;以及兼具 UV/IR之变头机种 (如 Eecellon 之 2002型等三类。前者对 3mil 以下的微孔很有利, 但成孔速度却较慢。次者对 4~8mil的微盲孔制作最方便,量产速度约为 YAG 机的十倍, 后者是先用 YAG 头烧掉全数孔位的铜皮,再用 CO2头烧掉基材而成孔。若就行动电话的机手机板而言, CO2雷射对欲烧制 4~6mil的微盲孔最为适合, 症均量产每分钟单面可烧出 6000孔左右。至於速度较的 YAG 雷射机, 因UV 光束之能量强且又集中故可直接打穿铜箔, 在无需“ 开铜窗” (Conformal Mask 之下,能同时烧掉铜箔与基材而成孔,一般常用在各式“ 对装载板” (Package Substrste 4mil 以下的微孔,若用於手机板的 4~6mil微孔似乎就不太经济了。以下即就雷射成孔做进一进步的介绍与讨论。 一、雷射成孔的原理 雷射光是当:“ 射线” 受到外来的刺激,而增大能量下所激发的一种强力光束,其中红外光或可见光者拥有热能, 紫外光则另具有化学能。射到工作物表面时会发生反射 (Refliction 吸收 (Absorption 及穿透 (Transmission 等三种现象, 其中只有被吸收者才会发生作用。而其对板材所产生的作用又分为热与光化两种不同的反应,现分述於下: 1、光热烧蚀 Photothermal Ablation 是指某雷射光束在其红外光与可见光中所夹帮的热能, 被板材吸收后出现熔融、气化与气浆等分解物,而将之去除成孔的原理,称为“ 光热烧蚀” 。此烧蚀的副作用是在孔壁上的有被烧黑的炭化残渣渣 (甚至孔缘铜箔上也会出现一圈高熟造成的黑氧化铜屑 , 需经后制程 Desmear 清除,才可完成牢固的盲孔铜壁。 2、光化裂蚀 Photochemical Ablation

相关文档
最新文档