带光纤温控器的变压器温升试验及分析

带光纤温控器的变压器温升试验及分析
带光纤温控器的变压器温升试验及分析

带光纤温控器的变压器温升试验及分析

摘要:介绍了在传统的温升试验中加入光纤温控器实时监测绕组热点的试验过程及结果分析。

1 引言

温升试验是保证变压器使用寿命和安全运行的重要试验。温升试验的目的是验证变压器在额定工作条件下, 主体总损耗所产生的热量与散热装置达到热平衡的温度是否符合有关的标准及技术协议的要求,并验证产品结构的合理性,发现油箱(或外壳)和结构件上的局部过热的程度。

变压器绕组最热点温度是变压器的安全、经济运行和使用寿命的决定因素, 因为绕组最热点绝缘因过热而导致的老化可能发展成为整个变压器的损坏。因此GB1094.2-1996《电力变压器第2 部分温升》和IEC354《油浸式电力变压器负载导则》在以往相关标准的基础上增加了绕组热点温升的计算。但是任何的理论计算都需要试验的检验, 可靠的检验是在试验中实际测量热点的温升。

浙江电力变压器有限公司在变压器温升试验中采用光纤温控器实测热点温升。该试验在国家变压器质量监督监测中心的指导下进行, 试验流程和结果完全符合国家相关标准。

2 光纤测温原理

确定绕组热点温度的方法可分为直接测量法、热模拟测量法和间接计算法三种。直接测量法是在绕组中埋设传感器,由光纤传播信号在高电压、高磁场条件下实现在线、实时地准确测量绕组的热点温度,是未来变压器温升试验热点测量的首选方法。

以美国Lumasense 公司的ThermAsset2 为例,该变压器绕组热点光纤温控器是通过测量磷光体单独的固有参数(衰减时间)而确定的,不会因为光纤的物理变化而改变, 所以该系统是一个无需校验的系统。磷光物质传感器直接附于光纤探头末端。该探头采用经过验证与油浸高压电力变压器长期兼容,且具有优良电气性能的材料制成。20 世纪80 年代起,该技术就已经运用于电力变压器(多年来,广泛被世界各地大变压器厂商作为工业标准所接受)。在温升试验期间仅需安装光纤探头(使用工厂现有的工具),由光纤探头测量的数据即可知道绕组最热点的实际温度而且操作简单。该系统具有4~8 个有独立输出和显示的测量通道, 采用的温度传感器由一种稳定的耐高温的荧光材料制成, 直接置于光导纤维一端。其原理是当LED 光源发出的光脉冲通过光纤送到与绕组接触的温度传感器时, 该脉冲激励传感器的荧光材料,使其产生波长较长的荧光,根据返回荧光的衰减时间测出该传感器的温度, 然后通过处理,显示出温度值和有关系统参数,并同时将温度信息传输到控制室。该系统可在变压器处于峰值负载和紧急超铭牌容量运行时提供精确的绕组温度, 并可使变压器根据测出的绕组实际温度及时调整负载。

3 试验方法与过程

GB1094.2-1996 规定, 短路法为油浸式电力变压器温升试验的标准方法。

3.1 绕组热点温度和位置的预报

首页 | 行业黑名单 | 委托交易 | 帮助 | English IC

非IC 电子资讯技术资料电子论坛 IC库存(103815364条)

PDF资料(329万) IC价格 IC求购 资讯

技术资料 电子元器件搜索:请输入搜索关键词!

采购IC ?下载Datasheet ?上维库,维库电子市场网,中国最大的IC 采购和资料下载平台!查看最近90天中添加的最新产品最新电子元器件资料免费下载派睿电子TI有奖问答 - 送3D汽车鼠标

IR推出采用焊前金属的汽车级绝缘栅双极晶体管

全球电子连接器生产商—samtec

最新断路器保护套

试验前根据绕组的相关参数,包括绕制方法、导线类别及参数、绕组尺寸及油道尺寸等,运用专门的计算软件确定热点的位置和温度值。本文中采用变压器温度场计算软件, 该软件能对饼式绕组和筒式绕组的温度场进行计算分析。软件的计算结果已在各种型号的变压器上得到实际的检验, 具有较高的精度。

3.2 光纤温控器的安装

3.2.1 传感器的安装

(1)在饼式绕组中的安装。把光纤测温探头插入相邻线饼间的垫块中, 探头在垫块中的安装以及绝缘处理如图1 和图2 所示。垫块处理好后把垫块放入探头部位即可,如图3 所示。

(2)在筒式绕组中的安装。在筒式绕组中由于没有水平撑条,因此,为了不破坏绕组绝缘结构,将探头安装在垂直撑条上。安装时在垂直撑条上开槽,开槽高度为事先计算好的热点高度。在撑条对应的位置开槽,探头应能与绕组接触,如图4 所示。

3.2.2 引线探头的安装(选择)

根据GB1094.3-2003 套管温升测量属监测性测量,只需防止过热即可,试验中可采用红外测温。但为了实现温度自动报警以及得到套管连续的温度数据,本次试验采用光纤测温。在引线上的光纤探头安装如图5 所示。

3.2.3 安装油箱壁结合板

油箱壁有四个锥螺纹用于安装贯通器。在油箱上开孔后, 可将结合板焊接在油箱壁或用螺丝安装在油箱壁上。

3.2.4 装贯通器和内外光纤

贯通器用于内外光纤的光学连接, 内外光纤采用ST 连接器进行插拔式连接。将带有锁紧螺帽的内部光纤的SMA 型接头与贯通器连接好,如图6 所示。外部光纤一端接到贯通器,另一端接到光纤测温系统本体,如图7 所示。

3.3 试验过程

短路法温升试验按国家标准规定的两个阶段进行。

3.3.1 施加总损耗阶段

温升稳定条件按GB1094. 2-1996 规定。此处应该注意的是不能以热点的温升作为稳定的标准,因为顶层油温升的稳定滞后于热点一段时间。当热点温升稳定时顶层油温升可能还没有达到稳定。

3.3.2 施加额定电流阶段

该阶段的绕组电阻的测量按照国家标准要求的方法测出热电阻即可得出绕组的平均温度, 加入光纤温控器以后,该仪器能自动记录热点的温度(间隔时间用户自定),根据该数据就可以找到断电时刻的热点温度。

3.4 温度的测量

(1)环境温度的测量。环境温度的测量参照国家标准的试验规范测量。

(2)散热器进出口温度的测量。分别在散热器的进出口设置2~3 个温度传感器,记录其读数的平均值。每隔一段时间,记录一次散热器油进出口温度。

(3)顶层油温升的测量。油顶层温度是用多个插入油箱顶部和插入散热器的连管内的温度计进行测量。

(4)绕组热点温升的测量。用光纤温控装置实时自动测量热点的温升, 通过电脑终端保存大量的温度数据。

(5)油箱外部的局部温度测量。在变压器温升试验中需要注意测量油箱壁和套管连接处有无局部过热,通常采用红外测温仪检测。

4 工程实例

4.1 试验结果

带光纤温控器的温升试验结果符合国家标准,得到的数据, 特别是热点温度值和位置对于变压器的安全可靠运行具有指导价值。表1 为某台主变的试验结果和计算结果的比较。

4.2 结果分析

由光纤探头的安装方法可知, 探头的位置都在绕组绝缘的外部, 探头所测的温度均为贴近导线的绝缘层的温度。根据传热学的导热机理,铜线表面和绝缘纸外表面之间有一个温度梯度。因而测量温度与热点的真实有一个差值,测量值需要修正。根据导热傅立叶定律:

根据式(3)经过修正,光纤所测热点温度值也示于表1 中。

相对误差:

将数据代入式(4),试验结果用修正后的值,相对误差的计算结果如表2 所示。

从表2 可以看出, 高压绕组的相对误差很小,这是由于探头和铜导线之间只隔着导线绝缘层和绝缘垫片。而低压绕组的相对误差偏大,这是由于低压绕组的探头安装在撑条中,与热点不仅隔着绝缘层而且离热点有一定距离,所以相对误差偏大。

5 结束语

(1) 浙江电力变压器有限公司在50MVA 变压器上进行的带光纤温控器的温升试验,试验过程和结果符合国家相关标准。

(2)在温升试验时使用光纤探头测量绕组最热点温度是可行的,所获得的经验对今后变压器现场运行时采用光纤测温探头进

行在线监测绕组热点温度具有参考价值。

(3)平均温升及热点温度的试验结果和预报结果吻合良好, 验证了本试验预报热点的温度场计算软件的可靠性; 同时也间接证明了本次试验确定的热点位置的误差是在合理的允许范围之内。

来源:椰子

【收藏此页】【关闭】【返回】【打印】【推荐】

QQ空间人人网开心网腾讯微博新浪微博搜狐微博网易微博

分享:

本页面信息由维库用户提供,如有侵犯您的知识产权,请致电本站,本站核实后将迅速删除!

热门词条:高压真空断路器功率电阻PCB剪裁分板机硫化氢检测仪变压器空载短路测试仪DIP式开关网络滤

波器数字存储示波器发热管自动抄表系统更多>>

相关文章

安华高低噪声的高线性度 LNA

音频系统噪声源分析及排除方法

Proteus软件在嵌入式系统教学中的应用研究

基于扭矩信息的运动系统故障检测装置

查找嵌入式C语言程序/软件中的缺陷的多种技术(3)

查找嵌入式C语言程序/软件中的缺陷的多种技术(2)

查找嵌入式C语言程序/软件中的缺陷的多种技术(1)

基于ARM和FPGA的智能小车监控系统

小贴士:教你查找嵌入式软件技术的缺陷

基于ARM技术的服装舒适性检测系统的设计

关于我们 | 服务项目 | 付款方式 | 联系我们 | 友情链接 | 投诉 建议 合作 | 网站地图 | 加入收藏 | 公司库?2010 维库电子市场网 经营许可证编号:浙B2-20050339版权声明

干式变压器试验指导

干式变压器试验指导 Document number:PBGCG-0857-BTDO-0089-PTT1998

[键入公司名称] 变压器实验指导丛书 [键入文档副标题]

目录 1、编制说明------------------------------------------3 2、变压器试验项目的性质和程序------------------------3 、变压器测量和联结组别标号检定--------------------4 、绕组电阻测定规程--------------------------------4 、绝缘例行试验------------------------------------6 、外施耐压试验------------------------------------7 、短路阻抗和负载损耗测量规程----------------------8 、空载试验和空载损耗测量规程----------------------10 、感应耐压试验------------------------------------12 、局部放电测量规程--------------------------------13 、声级测量规程------------------------------------13 、变压器零序阻抗测定规程-------------------------14 、雷电冲击试验-----------------------------------16 、温升试验---------------------------------------19 3、附录----------------------------------------------20

温升试验

什么是温升测试仪?温升测试仪工作原理、条件 温升测试仪,可用于考核电器附件在接上负载电流时其表面发 热情况,电极温升是否符合标准的要求,能有效检测插销和插座的 插套是否偏薄,插头和插座是否配合良好 在变压器所有型式试验和例行试验项目中以温升试验最为特殊。现在各大厂家一般都采用短路法,人工现场操作。温升试验具有以 下特点:第一,时间较长,大型变压器的试验需要十几个小时甚至 更长时间,即使中小型的试验过程也需要八、九个小时;第二,试验 过程单调枯燥,不仅需要监视加在被试变压器上的总损耗,调节试 验电源保证所加的总损耗,还要长时间地反复测量温度值。由此可见,温升试验常常长时间在夜间进行,夜间人容易疲劳,再加上试 验过程本身的单调,往往容易影响测量准确度,甚至操作错误。为此,实现试验过程的控制自动化就十分必要。 该温升试验自动控制系统引入微计算机技术,既能自动测量记 录相关温度,做出判断,又能测量试验中的相关电量做到实时监测 加在被试变压器上的总损耗等重要参数,并能在偏离预定值时自动 调整试验电源。 1 试验原理及过程简述 1.1温升试验原理 按JB/T501–91《电力变压器试验导则》进行变压器温升试验 有以下几种方法:直接负载法;相互负载法;循环电流法;零序电流法;短路法。 短路法试验是利用变压器短路产生损耗,来进行温升试验的。 目前,一般都用短路法。短路法试验变压器的温升是所有变压器温 升试验中需要电源容量最小,试验电压最低的试验方法,是大型油 浸式变压器温升试验最常用的方法。 1.2试验过程 采用短路法进行温升试验。首先确定试验电源容量和试验电流,连接好试验线路,然后开始试验。试验中监测加在被试变压器上的 损耗和电流,与设定值进行比较,若超过允许误差范围,调整试验 电源;并在间隔预定时间后(一般间隔15~30min)测试一次试验部 位温度,并记录、对测量结果做出判断。一直到检测的顶层油温升 的变化率小于1K/h,并继续维持3h,就认为油顶层温升已经稳定。 取最后一个小时中的平均值为油顶层温升。 之后,开始试验的第二阶段:绕组温升试验(测量热态电阻, 冷态电阻在温升试验前已经测定)。

干式变压器热时间常数的计算和试验方法

干式变压器热时间常数的计算和试验方法 0概述 变压器短时过负荷(以下简称过载)运行是一种发热的过渡过程。过载某一时刻的绕组温升可按下式计算: θ=θ■+(θ■-θ■)(1-e■)(1) 式中t——过载时间,min; θ——过载时间为t所对应的绕组平均温升,K; θ■——t=0时绕组平均温升,即正常运行时绕组初始温升,K; θ■——过载稳定后绕组的平均温升,K,与变压器过载倍数有关; τ——在过载状态下的热时间常数,min。 干式变压器和油浸变压器不同的是没有油,因此在讨论干式变压器短时过负荷能力时仅需考虑干式变压器高、低压绕组的短时过负荷能力。由(1)可知,绕组短时过负荷能力的大小取决于绕组的热时间常数,而热时间常数和绕组的热容量、损耗水平以及额定温升等因素密切相关。 1热时间常数的计算 干式变压器的热时间常数(理想值)是指干式变压器在恒定负债条件下,温升达到变化值的63.2%所需经历的时间,也等于变压器从稳定温升状态下断开负载,在自然冷却状况下,温升下降63.2%所需的时间,对于干式变压器,其高低压相互独立,故计算时需分别处理。 根据IEEE C57.96-1999(R2005)IEEE Guide for Loading Dry-Type Distribution and Power Transformer中A.8.3提供的公式: τ■=■(2) 式中:τ■——额定负载下的热时间常数,min; C——比热容,W·min/K; Δθ■——额定负载下的稳定温升,K; θ■——铁心引起的温升对线圈的影响,对于内线圈,取20K,外线圈,取0K; P■——线圈的负载损耗,W。 对于比热容C的计算,通常采用以下公式: C=C■*m■+C■*m■(3) 式中:C■——导体的比热值,Cu取6.42(W·min)/(kg·K),Al取14.65(W·min)/(kg·K); m■——导体质量,单位kg; C■——绝缘材料的比热,对于树脂取24.5(W·min)/(kg·K); m■——绝缘材料质量,单位kg。 需要注意的是,在式(3)中的树脂比热值取24.5(W·min)/(kg·K)与IEEE C57.96-1999(R2005)IEEE Guide for Loading Dry-Type Distribution and Power Transformer中选用的6.35(W·min)/(kg·K)是有很大区别的,这是因为,在美国,应用最广泛的干式变压器主要还是敞开式的,而不是环氧浇注式的,其绝缘材料和组成也不一样。根据相关参考资料,环氧树脂的比热约2000J/kg·K=33.3(W·min)/(kg·K),环氧浇注干式变压器绕组中的主要填充材料为玻璃纤维的比热约为800J/kg·K=13.3(W·min)/(kg·K),绕组中树脂质量与玻璃纤维质量的

变压器实验报告汇总

四川大学电气信息学院 实验报告书 课程名称:电机学 实验项目:三相变压器的空载及短路实验专业班组:电气工程及其自动化105,109班实验时间:2014年11月21日 成绩评定: 评阅教师: 电机学老师:曾成碧 报告撰写:

一、实验目的: 1 用实验方法求取变压器的空载特性和短路特性。 2 通过空载及短路实验求取变压器的参数和损耗。 3 计算变压器的电压变化百分率和效率。 4掌握三相调压器的正确联接和操作。 5 复习用两瓦特法测三相功率的方法。 二.思考题的回答 1.求取变压器空载特性外施电压为何只能单方向调节?不单方向调节会出现什么问题? 答:因为当铁磁材料处于交变的磁场中时进行周期性磁化时存在磁滞现象。如果不单方向调节变压器外施电压,磁通密度并不会沿原来的磁化曲线下降,所以会影响实验结果的准确性。 2.如何用实验方法测定三相变压器的铜、铁损耗和参数?实验过程中作了哪些假定? 答:变压器的空载实验中认为空载电流很小,故忽略了铜耗,空载损耗近似等于变压器铁耗Fe P P ≈0,同时忽略了绕组的电阻和漏抗。空载时的铁耗可以直接用两瓦特法测得,根据公式2 003/I P r m ≈可以求得励磁电阻,由003/I U Z m ≈可以求得励磁阻抗,由2 2 k m m r Z X -=可以求得励磁电抗值。 在变压器的短路实验中,由于漏磁场分布十分复杂,故在T 形等效电路计算时,可取k x x x 5.0'21==σσ,且k r r r 5.0'21==。同时由于外加电压低,忽略了铁耗,故假设短路损耗等于变压器铜耗。短路损耗k P 可直接由两瓦特法测得,有公式k k k I P r 2/=可得k r ,k k k I U Z 3/=,故k k k r Z x 22-=。 3.空载和短路实验中,为减小测量误差,应该怎样联接电压接线?用两瓦特表法测量三相功率的原理。 答:变压器空载实验中应当采用电流表内接法。因为空载实验测量的是励磁阻抗,阻抗值较大,若采用电流表外接法,电压表会有明显的分流作用,从而产生较大的误差。 变压器短路实验应当采用电流表外接法。因为短路实验中测量的是漏阻抗,

电力变压器试验报告

电力变压器试验报告 装设地点:幸福里小区运行编号:14#箱变试验日期:2013.07.25 试验性质:交接天气:晴温度:36 ℃ 相对温度: 一、设备型号: 型号电压比制造厂家出厂编号S11—M—630/10 10000/400 南阳市鑫特电气有限公司130274 容量相数接线组别出厂日期630KVA 3 DY0—11 2013.07 二、试验项目: 1、绝缘电阻及吸收比: 测量部位R15”(MΩ)R60”(MΩ)吸收比 高压/低压及地2500 低压/高压及地2500 2、直流电阻:

绕阻S位置 实测值(mΩ)最大不平衡 率% AB BC AC 高压1 1049 1050 1050 0.1 2 993.8 994.2 993.9 3 937.7 938.6 938.1 低压a~o b~o c~o 2.8 1.271 1.281 1.307 3、交流耐压试验: 交流耐压:38 KV 时间:60 S 结论:合格 三、试验结论:合格 四、试验仪器及编号:BCSB系列多用型实验变压器、JRR-10直流电阻测试仪、ZC-7绝缘摇表 五、试验负责人: 六、试验人员: 七、备注: 电力变压器试验报告

装设地点:幸福里小区运行编号:15#箱变试验日期:2013.07.25 试验性质:交接天气:晴温度:36 ℃ 相对温度: 一、设备型号: 型号电压比制造厂家出厂编号S11—M—650/10 10000/400 南阳市鑫特电气有限公司131105 容量相数接线组别出厂日期630KVA 3 DY0—11 2013.07 二、试验项目: 4、绝缘电阻及吸收比: 测量部位R15”(MΩ)R60”(MΩ)吸收比 高压/低压及地2500 低压/高压及地2500 5、直流电阻: 实测值(mΩ)最大不平衡绕阻S位置 率% AB BC AC 高压 1 1050 1048 1050 0.1

变压器实验报告汇总

变压器实验报告汇总

四川大学电气信息学院 实验报告书 课程名称:电机学 实验项目:三相变压器的空载及短路实验专业班组:电气工程及其自动化105,109班实验时间:2014年11月21日 成绩评定: 评阅教师: 电机学老师:曾成碧 报告撰写:

一、实验目的: 1 用实验方法求取变压器的空载特性和短路特性。 2 通过空载及短路实验求取变压器的参数和损耗。 3 计算变压器的电压变化百分率和效率。 4掌握三相调压器的正确联接和操作。 5 复习用两瓦特法测三相功率的方法。 二.思考题的回答 1.求取变压器空载特性外施电压为何只能单方向调节?不单方向调节会出现什么问题? 答:因为当铁磁材料处于交变的磁场中时进行周期性磁化时存在磁滞现象。如果不单方向调节变压器外施电压,磁通密度并不会沿原来的磁化曲线下降,所以会影响实验结果的准确性。 2.如何用实验方法测定三相变压器的铜、铁损耗和参数?实验过程中作了哪些假定? 答:变压器的空载实验中认为空载电流很小,故忽略了铜耗,空载损耗近似等于变压器铁耗Fe P P ≈0,同时忽略了绕组的电阻和漏抗。空载时的铁耗可以直接用两瓦特法测得,根据公式2 003/I P r m ≈可以求得励磁电阻,由003/I U Z m ≈可以求得励磁阻抗,由2 2 k m m r Z X -=可以求得励磁电抗值。 在变压器的短路实验中,由于漏磁场分布十分复杂,故在T 形等效电路计算时,可取k x x x 5.0'21==σσ,且k r r r 5.0'21==。同时由于外加电压低,忽略了铁耗,故假设短路损耗等于变压器铜耗。短路损耗k P 可直接由两瓦特法测得,有公式k k k I P r 2/=可得k r ,k k k I U Z 3/=,故k k k r Z x 22-=。 3.空载和短路实验中,为减小测量误差,应该怎样联接电压接线?用两瓦特

干式变压器运行及实验

六、变压器维护 1、一般在干燥清洁的场所,每年或更长时间进行一次检查;在其他场合(灰尘较多的场合),每三到六个月进行一次检查。 2、检查时,如发现较多的灰尘集聚,则必须清除,以保证空气流通和防止绝缘击穿,特别要注意清洁变压器的绝缘子、下垫块凸台处,并使用干燥的压缩空气吹净灰尘。如变压器带温控及风冷系统,可设置其每天自动吹一次(10-30分钟),以清除灰尘。 3、检查各紧固件是否有松动,导电零件有无生锈、腐蚀痕迹,还需要观察绝缘表面有无爬电、碳化痕迹。 第二节干变试验 一、试验目的 为确保干式变压器的顺利生产,确保试验数据的准确无误,考核该产品结构采取的工艺、材料和操作技术、制造质量是否能满足标准要求,通过对试验数据的分析,为改进结构、提高产品质量性能提供依据。 二、适用范围 适用于干式电力变压器。 三、试验内容 1、试验现场环境条件 1.1、试验区的环境温度为10~40℃,相对湿度小于85%。 1.2、试品的位置离周围物体应有足够的距离,不得有影响测量结果的物品在试验场地。 1.3、设备的布置应避开高电场、强磁场或足以影响仪表读数的振动源,以保证测量精度。 2、试验依据标准 GB1094.11—2007 《电力变压器第11部分:干式变压器》 GB/T10228-2008《干式电力变压器技术参数和要求》 GB7354-2003《局部放电测量》 JB/T501-2006《电力变压器试验导则》 四、直流电阻试验 1、试验目的:

直流电阻测量时检查线圈内部导线、引线与线圈焊接质量,线圈所用导线的规格是否符合设计要求,以及分节开关、套管等载流部分的接触是否良好,三相电阻是否平衡,并为变压器的出厂报告提供最终数据。 2、测量方法: 采用直流电阻测试仪进行测量。试验前按照仪器接线端子接线,将两根测量线中的电流、电压线分别接入对应端子,然后将两根线对应接到变压器测量端,根据实际测试绕组所有分接的电阻。测量时环境温度应变化不大,直流电阻随温度变化每升高10度,电阻值升高1.3倍。 3、试验标准: 试验标准:电阻三相不平衡率允许误差符合国标GB1094.1-1996及技术协议的规定。 容量在1600KVA及以下变压器三相测得值最大差值相间应小于平均值的4%,线间应小于2%,2000KVA及以上的变压器相间应小于平均值的2%、线间应小于1%,验收试验与出厂值相比较(同一温度下)相应变化不应大于2%。 根据GB10228-2008《干式电力变压器技术参数和要求》5.3中:对于2500KVA及以下的配电变压器,其绕组直流电阻不平衡率:相为不大于4%,线为不大于2%;对于630KVA及以上的电力变压器,其绕组直流电阻不平衡率:相(有中性点引出时)为不大于2%,线(无中性点引出时)为不大于2%。如果由于线材及引线结构等原因而使绕组直流电阻不平衡率超过上述值时,除应在例行试验记录中记录实测值外,尚应写明引起这一偏差的原因。使用单位应与同温度下的例行试验实测值进行比较,其偏差应不大于2%。 五、电压比及联结组标号测定 1、试验目的: 电压比试验是验证各相应接头电压比与铭牌相比不应有明显差别且符合规律,接线组别与设计要求、铭牌上标记与外壳上符号相符。 2、测量方法: 试验前按照仪器接线端子指示接线,仪器高压侧接线柱上的黄、绿、红三根线分别接至变压器高压侧A、B、C上,低压侧接线柱上的黄、绿、红三根线分别接至被测变压器低压侧a、b、c上。试验设备应安全接地。接好220V电源线,闭合仪器电源开关,选择接线组别,

电力变压器试验规范标准[详]

电力变压器试验记录

试验单位:试验人:审核:

电力变压器、消弧线圈和油浸电抗器试验规程 第1条电力变压器、消弧线圈和油浸式电抗器的试验项目如下: 一、测量线圈连同套管一起的直流电阻; 二、检查所有分接头的变压比; 三、检查三相变压器的结线组别和单相变压器引出线的极性; 四、测量线圈连同套管一起的绝缘电阻和吸收比; 五、测量线圈连同套管一起的介质损失角正切值tgδ; 六、测量线圈连同套管一起的直流泄漏电流; 七、线圈连同套管一起的交流耐压试验; 八、测量穿芯螺栓(可接触到的)、轭铁夹件、绑扎钢带对铁轭、铁芯、油箱及线圈压环的绝缘电阻(不作器身检查的设备不进行); 九、非纯瓷套管试验; 十、油箱中绝缘油试验; 十一、有载调压切换装置的检查和试验; 十二、额定电压下的冲击合闸试验; 十三、检查相位。 注: (1)1250千伏安以下变压器的试验项目,按本条中一、二、三、四、七、八、十、十三项进行; (2)干式变压器的试验项目,按本条中一、二、三、四、七、八、十三项进行; (3)油浸式电抗器的试验项目,按本条中一、四、五、六、七、八、九、十项进行; (4)消弧线圈的试验项目,按本条中一、四、五、七、八、十项进行; (5)除以上项目外,尚应在交接时提交变压器的空载电流、空载损耗、短路阻抗(%) 和短路损耗的出厂试验记录。 第2条测量线圈连同套管一起的直流电阻。 一、测量应在各分接头的所有位置上进行;

二、1600千伏安以上的变压器,各相线圈的直流电阻,相互间差别均应不大于三相平均的值2%;无中点性引出时的线间差别应不大于三相平均值的1%;三、1600千伏安及以下的变压器相间差别应不大于三相平均值的4%,线间差别应不大于三相平均值的2%; 四、三相变压器的直流电阻,由于结构等原因超过相应标准规定时,可与产品出三厂实测数值比较,相应变化也应不大于2%。 第3条检查所有分接头的变压比。 变压比与制造厂铭牌数据相比,应无显著差别,且应符合变压比的规律。 第4条检查三相变压器的结线组别和单相变压器引出线的极性。 必须与变压器的标志(铭牌及顶盖上的符号)相符。 第5条测量线圈连同套管一起的绝缘电阻和吸收比。 一、绝缘电阻应不低于产品出厂试验数值的70%,或不低于表1—1的允许值; 油浸式电力变压器绝缘电阻的允许值(兆欧) 表1—1 二、当测量温度与产品出厂试验时温度不符合时,可按表1—2换算到同一温度时的数值进行比较; 油浸式电力变压器绝缘电阻的温度换算系数表1—2

干式变压器的安装调试方案

干式变压器安装调试 一、干式变压器安装方案 1 干式变压器型钢基础的安装 (1)型钢金属构架的几何尺寸、符合设计基础配置图的要求与规定,如设计对型钢构架高出地面无要求,施工时将其顶部高出地面100mm。 (2)型钢基础构架与接地扁钢连接不少于二端点,在基础型钢架构的两端,用不小于40X4mm的扁钢相焊接,焊接扁钢时,焊缝长度为扁钢宽度的二倍,焊接三个棱边,焊完后去除氧化皮,焊缝均匀牢靠,焊接处做防腐处理后再刷两遍灰面漆。 2 干式变压器二次搬运 (1)二次运输为将干式变压器由设备库运到干式变压器的安装地点,搬运过程中注意交通路线情况。到地点后做好现场保护工作。 (2)干式变压器吊装时,索具必须检查合格,运输路径道路平整良好。根据干式变压器自身重量及吊装高度,决定采用何种搬运工具进行装卸。 3 干式变压器本体安装 (1)干式变压器安装可根据现场实际情况进行,如干式变压器室在首层则可直接吊装进室内;如在地下室,可采用预留孔吊装干式变压器或预留通道运至室内就位到基础上。 (2)干式变压器就位时,按设计要求的方位和距墙不小于800mm,距门不小于1000mm,并适当考虑推进方向,开关操作方向留有1200mm以上的净距。 (3)装有滚轮的干式变压器,滚轮转动灵活,干式变压器就位后,将滚轮用能拆卸的制动装置固定。或者将滚轮拆下保存好。 4 干式变压器附件安装 (1)干式变压器一次原件按产品说明书位置安装,二次仪表装在便于观测的干式变压器护网栏上。软管不得有压扁或死弯,富余部分盘圈并固定在温度计附近。 (2)干式变压器的电阻温度计,一次元件预装在干式变压器内,二次仪表安装在值班室或操作台上。温度补偿导线符合仪表要求,并加以适当的温度补偿电阻,校验调试合格后方可使用。

干式变压器有哪些常规检测项目与试验方法

干式变压器有哪些常规检测项目与试验方法 干式变压器有哪些常规检测项目与试验方法 1.绕组直流电阻测量 1.1 此项目周期不得超过3年,在大修前后、无载分接开关变换分接位置后或必要时进行。 1.2 可用红外线测温仪测量变压器温度,待器身温度接近大气温度时(相差不超出±5℃),可进行此项试验工作。 1.3 拆除变压器高、低压侧连接排线。 1.4 采用双臂电桥或变压器直阻电阻测试仪器进行测量。接线时注意夹线钳的电压端与电流端的位置,避免不必要的测量误差。 1.5 分别测量高压侧各绕组直流电阻,测量时,应先按下电桥的B键,充电约1分钟后,再进行细致的测量。 1.6 高压侧直阻测量完毕后,应进行温度换算,1600kVA以上变压器,其线间电阻值差别一般不大于三相平均值的1%,1600kVA及以下变压器,其线间电阻值差别一般不大于三相平均值的2%,与以前相同部位测得值比较,其变化不大于2%。 1.7 分别测量低压侧各绕组的直流电阻,因低压侧直阻很小,除了要将电桥的灵敏度旋至大值外,还要将电桥引线的电压引线尽量夹在低压侧引出铜排的根部,以便准确地测量。 1.8 低压侧各相电阻测量完毕后,应进行温度换算,1600kVA以上变压器,其相间电阻值差别一般不大于三相平均值的2%,1600kVA及以下变压器,其相间电阻值差别一般不大于三相平均值的4%,与以前相同部位测得值比较,其变化不大于2%。 1.9 若直流电阻出现超标情况,应汇同检修专业人员查明原因。 2.绕组绝缘电阻、吸收比测量 2.1 此项目周期不得超过3年,在大修前后、必要时进行。 2.2 继续保持变压器高、低压侧绕组及中性点成拆开状态,并将低压绕组及中性点短路接地,将高压侧线圈短路。 2.3 采用2500V绝缘电阻测试仪测量高压绕组对低压绕组及地的绝缘电阻和吸收比。 2.4 测量完毕,先将绝缘电阻测试仪的L端引线脱开,再停止绝缘电阻测试仪,并对变压器的高压绕组对地进行充分放电。 2.5 将高压绕组短路接地,低压绕组短路,采用2500V绝缘电阻测试仪测量低压绕组对高压绕组及地的绝缘电阻和吸收比。

干式变压器绕组温升计算方法分析

干式变压器绕组温升计算方法分析 傅华强 2003 1发热与散热的平衡—绕组的稳定温升 绕组上的损耗功率是绕组温升的热源,这是比较好算的.而绕组的散热则是一个比较复杂的问题.在绕组内部热量通过传导的方式传到绕组的表面,在表面则通过对流和幅射的方式传到外界环境中去.当绕组的发热与散热达到平衡时,就是绕组的稳定温升。 绕组的散热是一个复杂过程。影响绕组散热的主要因素:绕组温度;绝缘层厚;绕组外包绝缘厚:绕组外包绝缘材料的散热性能;散热气道的宽度和长度;气流速度;铁芯和相邻绕组散热的影响等。因而绕组温升计算随其所用绝缘材料和结构的不同而不同。 2 绕组温升计算的数学模型 绕组的稳定温升一般用一个简化的公式进行计算,不同的结构和绝缘材料的绕组所用系数是不同的。公式运用的温度范围也是有限定的。如: τ= K Q X Q = W/S S=∑ αi S i 式中:τ—绕组温升; K—系数; X—与散热效果有关的系数,散热越好X的值越小; Q— 绕组的单位热负荷 W/m2 W—参考温度下的绕组损耗功率 W S— 等效散热面 m2 S i— 绕组散热面 m2 αi— 散热系数 2.1 不同结构型式的变压器所用的计算公式是不同的。 2.2 干式变压器的散热主要是对流和幅射完成的,非包封变压器的传导温升

所占比例很小,因而有些计算公式将层绝缘与外绝缘造成的传导引起的温升计算省略了,有些公式还要加上传导引起的温升,如西欧树脂绝缘干式变压器的计算公式。 2.3 黑体面的热量幅射与绝对温度的4次方成比例的,在一个不大的温度段,对流和幅射对散热的综合影响造成的温升式中系数X—与散热效果有关的系数,散热越好X的值越小.如油浸变压器层式绕组温升X值取0.8,而强迫油循环时X取0.7,饼式绕组X取0.6。一般干式变压器X值取0.8,当温升在80K 左右时,由于温度高时散热效率高,在一些计算公式中X取0.75,因而当温升在100—125K时,X的取值应该再小些。 2.4 当温升范围较大时,用一个计算公式会首尾不能兼顾,需要用两个以上的公式,它们的X值不同,即斜率不同。实际上是由几条直线组成的近似曲线。 2.5 绕组的单位热负荷Q 是指在无遮盖的单位散热面上的功率(W/m2),有气道的散热面,则要确定气道的散热系数。 2.6如果计算所得温升离参考温度很远,由于计算所用绕组损耗功率离实际功率差得太大而误差很大,则应调整计算绕组损耗功率所用的参考温度。 3 确定数学模型的工厂方法 最实用的确定数学模型的方法是通过典型变压器的温升试验。无气道绕组的温升是最基本的,如绕在厚绝缘筒上的外线圈。线圈外部的面积大小就是有效散热面,先算出热负荷Q值,由试验所得温升与Q值在双对数座标纸上打点,最少要有3个试验数据,即可在对数坐标纸上连成一条合理的直线,从这条直线上确定公式的两个系数K和X。 τ= K Q X τ1 K = ———— Q1 X Lgτ2 - Lgτ1Lgτ2/τ1 X =———————— = ———— Lg Q2 - Lg Q1Lg Q2/Q1 式中:

干式变压器温升试验

干式变压器温升试验之“模拟负载法” 1.试验方法:模拟负载法。 2.试验原理:通过短路试验和空载试验的组合来确定的。 3.试验目的:是验证变压器冷却能力,能否将由总损耗所产生的热量散发出去,达 到热平衡时使变压器绕组(平均)高于冷却介质的温升不超过规定的限值,同时还要通过红热扫描观测电路联结点、铁心及结构件、绕组等是否有局部过热。 4.试验接线图: 5.试验过程:在额定电压下连续进行的空载试验应一直持续到绕组和铁心的稳定状态, 然后测量各个线圈的温升Δθe;立即进行短路试验,此时一个线圈由开路变成短路,另一 个线圈输入额定电流,直到绕组和铁心稳定为止,然后测量各个线圈的温升Δθc。(试验顺序可以互换) 绕组温升:Δθc(Δθe)=R2/R1(T+θ1)-( T+θ2) 各个线圈的总温升: Δθc’=Δθc [1+(Δθe /Δθc)1/k1]k1 式中:Δθc’--绕组总温升;Δθc—短路试验下的绕组温升; Δθe—空载试验下的绕组温升;T—温度系数,铜时为:235铝时为:225 R1、R2、θ1、θ2—冷态电阻、热态电阻、冷电阻环温、热电阻环温; k1—对于自冷式为0.8;对于风冷式为0.9。 备注:由于某种原因,施加电流没有达到额定电流时折算: I r Δθr=Δθ×(-)q I t 式中:Δθr、Δθt-额定电流下、试验电流下的绕组温升; I r、I t-额定电流、试验电流;(I t >0.9I r) q-AN:1.6、AF:1.8。 首先要测冷电阻并准确的记录绕组温度,接线方式分别同空载试验和负载试验。负载状态下试验的电流应尽可能接近额定持续电流,并不小于此值的90%,电流应持续直到变压器 任何部分每小时的温度上升少于2K。测量高、低压热电阻并准确的记录绕组温度,记录数 据并计算结果。检验绕组的温升是否符合设计要求。 6.温升试验分接位置的选择: a. 对分接范围在±5%以内,且额定容量不超过2500kVA的变压器,如无特殊要求,温 升试验选在主分接上进行。 b. 对分接范围超过±5%,或额定容量大于2500kVA的变压器,温升试验选在最大电流分接上进行。 7.海拔与温升限值的关系: 变压器运行高度超过海拔1000米,但试验场地是正常海拔,温升限值应递减,变压器运行高度低于海拔1000米,但试验场地高于海拔1000米,温升限值应递增,海拔超过1000米每500米为一级, AN:2.5% AF:5% 8.温升稳定的判断方法: 铁芯、绕组温升持续三小时且每小时不超过1K时,变压器视为稳定。 国家标准对温升限值的要求: 部位绝缘系统温度℃最高温升K 线圈 A 105 60 (电阻法) E 120 75 B 130 80

干式变压器技术要求

干式变压器技术要求 规范及标准 所有设备、安装、材料和工艺须符合下列及以下各项所注明的规则及标准;变压器应符合并列运行的条件。(如下述内容中不为最新版本,应按最新版本采用): GB 1994.1-1996《电力变压器第一部分总则》 GB 4208-93 《外壳防护等级》 GB 5273-85 《变压器、高压电器和套管的接线端子》 GB 6450-86 《干式变压器》 GB/T 10288-97 《干式变压器的技术参数和要求》 JG/T 501-91 《电力变压器试验导则》 ZBK4 1005-89 《6~220kV级变压器声级》 GB/T10228 《干式电力变压器技术参数和要求》 GB 6450 《干式电力变压器》 GB 1094.5 《电力变压器》 GB/T 17211 《干式电力变压器负载导则》 GB/T 5465.2 《电气设备用图形符号》高压危险标志 IEC 726 《干式电力变压器》 IEC 60076 《Power Transformer》 BS1433 《电气用铜》 IEC905 《干式变压器负载导则》 IEC529 《设备防护等级》 依据本工程有关部分图集。 本技术条件如与以上标准有矛盾,应按本技术条件执行。 技术性能要求 环境条件 海拔高度:<1000m,户内安装。 环境温度:-10℃~+40℃ 日温差:25℃。 年平均温度:+30℃。 相对湿度:≤95%(+25℃)。 地震烈度:7度 抗震能力:水平加速度<0.4g 垂直加速度<0.2g 安全系数>1.67 运行条件 额定运行电压:380V/220V±10% 额定频率:50Hz±5% 接地方式:TN-S 接地电阻: ≤5欧姆 电力变压器基本选型条件

2014国家电网变压器试验标准

变压器试验项目清单10kV级 例行试验 绕组直流电阻互差: 线间小于2%,相间小于4%; 电压比误差: 主分接小于0.5%,其他分接小于1%; 绝缘电阻测试:2500V摇表高压绕组大于或等于1000MΩ,其他绕组大雨或等于500MΩ; 局部放电测量(适用于干式变压器) 工频耐压试验 感应耐压试验 空载电流及空载损耗测试 短路阻抗及负载损耗测试 绝缘油试验 噪声测试 密封性试验(适用于油浸式变压器) 附件和主要材料的试验(或提供试验报告) 现场试验: 按GB50150相关规定执行 绝缘油试验 绕组连同套管的直流电阻

变压比测量 联结组标号检定 铁心绝缘电阻 绕组连同套管的绝缘电阻 绕组连同套管的交流工频耐压试验 额定电压下的合闸试验 抽检试验 绕组电阻测量 变压比测量 绝缘电阻测量 雷电全波冲击试验 外施耐压试验 感应耐压试验 空载电流及空载损耗测试 短路阻抗及负载损耗测试 绝缘油试验 xx试验 油箱密封性试验(适用于油浸式变压器)容量测试 变压器过载试验 联结组标号检定

突发短路试验 长时间过载试验 35kV级 应提供变压器和附件相应的型式试验报告和例行试验报告 例行试验 绕组电阻测量 电压比测量和联结组标号检定 短路阻抗及负载损耗测量 1.短路阻抗测量: 主分接、最大、最小分接、主分接低电流(例如5A2负载损耗: 主分接、最大、最小分接 3短路阻抗及负载损耗均应换算到75℃ 空载损耗和空载电流测量 1.10%-115%额定电压下进行空载损耗和空载电流测量,并绘制出励磁曲线 2.空载损耗和空载电流进行校正 3.提供380V电压下的空载损耗和空载电流 绕组连同套管的绝缘电阻测量: 比值不小于1.3,或高于5000MΩ绕组的介质损耗因数(tanδ)和电容测量 1.油温10-40℃之间测量 2.报告中应有设备的详细说明

干式电力变压器调试方案

干式电力变压器调试方案 1 概述 1.1 根据《火电工程启动调试工作规定》为明确整个试验项目及过程编制本 方案,本方案主要阐述了干式电力变压器调试的工作内容、试验项目、工作分工、执行标准以及试验过程中应注意的安全事项。 1.2 通过对魏桥创业集团滨州热电厂二期工程干式电力变压器进行试验,检 查设备结构性能是否符合标准要求,保证设备安全可靠投入运行。 2 试验依据 2.1 GB50150—91《电气装置安装工程电气设备交接试验标准》 2.2 GB311.2-83~GB311.6-83《高电压试验技术》 2.3 《火电工程调整试运质量检验及评定标准》 2.4 黑龙江省火电一公司企业标准《质量手册》 2.5 黑龙江省火电一公司企业标准《职业安全健康和环境管理手册》 2.6 《安全法》 2.7 《电力建设安全工作规程》 2.8 制造厂出厂试验报告及其它技术资料 2.9 施工设计图纸 3 人员资格要求和职责分工 3.1 试验负责人:取得助理工程师及以上的职称,具有五年以上的试验工作 经验,工作负责,身体健康。

3.2 试验工作人员:经安全规程考试合格的专业人员,熟悉试验工作,熟练 掌握各种试验仪器的正确使用方法。 3.3试验负责人负责试验与质量检查,对试验的技术和试验设备及试品的安全 负责。 3.4试验负责人在试验全过程中,对公司企业标准《质量手册》和《职业安全 健康和环境管理手册》及《安全法》和《电力建设安全工作规程》的具体运行和全面执行负责。 3.5试验工作人员对使用仪器、设备的完好状态负责,对原始记录负责,保证 原始记录的全面性和有效性。 4 试验准备工作和应具备的条件 4.1变压器安装结束,杂物清理完毕。并经检验合格。 4.2变压器绕组引出线与其它电气设备无任何连接,并有足够的空间距离。 4.3 安装于变压器出线端的过电压吸收器必须拆除。 4.4 中性点已引出的三相变压器,应将中性点引出线与外界的连接断开。4.5 绝缘试验应在良好天气条件下进行,被试品温度及环境温度不宜低于 5℃,空气相对湿度不宜高于80%。 4.6 试验仪器、设备应完好,满足试验要求。 4.7 试验场地应有良好的照明。 4.8 试验电源安全可靠 4.9 进行试验接线,将试验仪器、设备和放电棒用金属裸线可靠接地,工作 接地的接地线截面积不小于4mm2。

干式变压器试验指导

[键入公司名称] 变压器实验指导丛书 [键入文档副标题]

目录 1、编制说明------------------------------------------3 2、变压器试验项目的性质和程序------------------------3 2.1、变压器测量和联结组别标号检定--------------------4 2.2、绕组电阻测定规程--------------------------------4 2. 3、绝缘例行试验------------------------------------6 2. 4、外施耐压试验------------------------------------7 2. 5、短路阻抗和负载损耗测量规程----------------------8 2. 6、空载试验和空载损耗测量规程----------------------10 2. 7、感应耐压试验------------------------------------12 2. 8、局部放电测量规程--------------------------------13 2. 9、声级测量规程------------------------------------13 2.10、变压器零序阻抗测定规程-------------------------14 2.11、雷电冲击试验-----------------------------------16 2.12、温升试验---------------------------------------19 3、附录----------------------------------------------20

干式变压器试验步骤(精)

1. 绕组直流电阻测量 1.1确保变压器高、低压侧连接排线拆除。 1.2采用 QJ44双臂电桥进行测量。 1.3分别测量高压侧各绕组的直流电阻, 1600kVA及以下变压器,其线间电阻值差别一般不大于三相平均值的 2%,与以前相同部位测得值比较, 其变化不大于 2%。 1.4分别测量低压侧各绕组的直流电阻, 1600kVA 及以下变压器,其相间电阻值差别一般不大于三相平均值的 4%,与以前相同部位测得值比较,其变化不大于 2%。 1.5若直流电阻出现不合格情况,应查明原因 : 1、检查电桥接线(线头间是否有铜丝短接…… 2、检查夹的位置 (夹线钳的电压端要在电流端内侧、电压引线尽量夹在绕组引出铜排的根部…… 3、磨一磨(接触面是否有漆、氧化层 2. 绕组绝缘电阻、吸收比测量 2.1确保变压器高、低压侧绕组及中性点成拆开状态,并将低压绕组及中性点短路接地,将高压侧线圈短路。 2.2 采用 2500V 兆欧表测量高压绕组的绝缘电阻和吸收比。 2.3 测量完毕,先将兆欧表的 L 端引线脱开,再停止兆欧表,并对变压器的高压绕组对地进行充分放电。 2.4 将高压绕组短路接地,低压绕组短路,采用 1000V 兆欧表测量低压绕组的绝缘电阻和吸收比。

2.5 测试结果与前次测试结果相比应无明显的变化。其吸收比 (10℃ -30℃范围不低于 1.3。 2.6 大修后还要测量穿心螺栓、铁芯等的绝缘电阻。与前次测试结果相比应无明显的变化。 3. 交流耐压试验 3.1确保变压器高、低压侧线圈出线成拆开状态, 并将高压侧电缆接线头与变压器本体移开 50cm 以上的距离, 避免耐压过程中对电缆的闪络放电。 3.2 将变压器高压侧线圈短路接地,低压侧线圈三相短路,采用 2500V 兆欧表对低压侧线圈进行耐压试验。在加压的 1分钟时间内,变压器内应无放电声,其绝缘电阻值不应明显波动,应稳中有升,则耐压合格。 3.3 低压侧线圈测试完毕后,要对其充分放电,耐后使用1000V 兆欧表, 测量低压侧线圈的绝缘电阻, 其值与耐压前数值相比, 不应有较大变化。之后低压侧三相短路接地,将高压侧线圈三相短路,并接上加压引线。 3.4使用仪器 :50KV变压器、交直流数字千伏表、 GYD-5型交流耐压控制箱对干式变高压侧线圈进行交流耐压试验 3.5 确保做好现场安全的监护工作后,操作人员开始缓慢地将电压加至 17kV ,开始计时,同时密切观察变压器内部有无放电,闪络现象。试验电压、电流应无明显波动, 1分钟后将电压降至零。断开试验电源开关,放电。 3.6 使用 2500V 兆欧表,测量高压侧线圈的绝缘电阻,其值与交流耐压前数值相比,不应有较大变化。

变压器交接试验记录

电力变压器(交接)试验记录 工程名称南京六合文化城博物 馆10/0.4KV变电所 电压等级10kV 试验地点现场 主变编号1#变压器接法Dyn11 试验日期2016.12.26 型式SCB11-800/10 电压比10000/400V 天气晴 出厂编号201603270 电流比46.2/1155A 额定容量800kV A 制造厂家镇江天力变压器 有限公司 制造年月2016.4 温湿度10℃/50% 一、绝缘电阻:试验用仪器:兆欧表ZC11D-10; 接线/项目高压对其它接地低压对其它接地绝缘电阻(2500V)2500MΩ2500MΩ 二、直流电阻:试验用仪器:直流电阻测试仪3395; 抽头位置 高压相别 ⅠⅡⅢⅣⅤⅥⅦA-B(Ω)0.8855 0.8616 0.8380 0.8135 0.7894 / / B-C(Ω)0.8853 0.8613 0.8373 0.8133 0.7893 / / C-A(Ω)0.8856 0.8615 0.8375 0.8136 0.7896 / / 低压相别a-0 b-0 c-0 直流电阻0.0004962Ω0.0004996Ω0.0004940Ω三、变比:试验用仪器:变比测试仪6638; 抽头位置ⅠⅡⅢⅣⅤA-B +0.01 +0.02 +0.01 +0.01 +0.02 B-C +0.01 +0.02 +0.01 +0.01 +0.02 C-A +0.01 +0.01 +0.02 +0.01 +0.02 四、空载损耗、负载损耗 试验项目空载电流空载损耗负载损耗短路阻抗试验结果0.53% 1312W 7197W 6.09% 五、交流耐压:试验用仪器:高压试验变压器TSB; 接线/项目高压对其它接地低压对其它接地交流耐压(kV)28 1min 2.4 1min 六、结论(附注): 审核:李国东试验者:徐丽贺传斌日期:2016年12月26日 合格

干式变压器交接试验作业指导书

干式变压器交接试验作 业指导书 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

干式变压器交接试验作业指导书 1 适用范围 本作业指导书适用于干式变压器。 2 编写依据 表2-1 编写依据 图3-1 作业(工序)流程图 4安全风险辨析与预控 干式变压器交接试验前,施工项目部根据该项目作业任务、施工条件,参照《电网建设施工安全基准风险指南》(下简称《指南》)开展针对性安全风险评估工作,形成该任务的风险分析表。 按《指南》中与干式变压器交接试验相关联的《电网建设安全施工作业票》(编码:BDYCSY-ZW-14-01/01),结合现场实际情况进行差异化分析,确定风险等级,现场技术员填写安全施工作业票,安全员审核,施工负责人签发。 施工负责人核对风险控制措施,并在日站班会上对全体作业人员进行安全交底,接受交底的作业人员负责将安全措施落实到各作业任务和步骤中。 安全施工作业票由施工负责人现场持有,工作内容、地点不变时可连续使用10天,超过10天须重新办理作业票,在工作完成后上交项目部保存备查。 表4-1作业任务安全基准风险指南

人员配备 表5-1 作业人员配备 表5-2 主要工器具及仪器仪表配置 绝缘电阻测试 铁芯绝缘测试。按表6-1处理方式接线,选用绝缘电阻表2500V挡位测量铁芯对其紧固件及地的绝缘电阻1min;待绝缘电阻表显示数据稳定,记录试验结果及试验时环境的温湿度;单次试验结束,对被试品充分放电后拆换测试线或复线。

表6-1 铁芯绝缘测试 三相短接接地,铁芯和紧固件接地;将绝缘电阻表L 端子接被试绕组, E 端子接地;选用绝缘电阻表2500V 测量被试绕组对非被试绕组和地的绝缘电阻;根据实测变压器电压和容量要求,记录规定时间(15s 、60s 、10min )绝缘电阻值、吸收比、极化指数及试验环境的温湿度;单次试验结束,对被试品充分放电后拆换测试线或复线。 表6-2 绕组绝缘测试 把变比测试仪的6根测试线(高压3根A 、B 、C ,低压3根a 、b 、c )接在 高低压绕组的三相出线端子上,高低压不能接反,相序一一对应。所有分接都要测试。 根据铭牌参数计算每个分接的额定变压比,打开仪器电源,输入要测试分接的变比值和联结组别,检查测试接线和分接位置都准确无误后,打开仪器测试开关,开始测试检查;试验结束,记录测得的变比误差和联结组别检查结果,高压侧各挡与低压侧的变压比都要测试。 直流电阻测试 把直流电阻测试仪的四根测量线I +、U +、I 、U 接在变压器绕组任意两相 出线端子或中心线和任意一相出线上(三相Y 联结无中性点引出测线电阻,有中性点引出测相电阻;三相D 联结,首末端均引出测相电阻,封闭三角形试品测线电阻),I +、U +一组,I 、U 一组,用变压器直流电阻测试仪逐相测量高压侧绕组各挡或低压侧绕组的相电阻(即直流电阻),有分接的绕组所有分接位置都应测试。

相关文档
最新文档