环境地球化学

环境地球化学
环境地球化学

环境地球化学

当代人类正面临日益严峻的环境污染和生态体系平衡破坏的威胁,环境成为近代交叉学科发展的新的生长点。环境地球化学就是地球化学与环境科学结合衍生出来的边缘学科。

环境地球化学作为地球化学的一个分支学科,是主要研究人类赖以生存的地球环境的化学组成、化学作用、化学演化与人类相互关系的科学。随着它自身的发展以及社会经济发展对它的需求,环境地球化学的研究领域已逐渐从单纯研究环境与人体健康(主要是地方病)之间的关系发展为对区域环境污染以及全球环境变化的研究。由于全球环境变化对人类的巨大影响,对这一领域的研究已超出了一般学科研究的范围,成为国家政治、外交方面的重要内容之一。解决全球变化问题,需要多学科的协作研究。其中,环境地球化学是不可缺少的学科之一。

环境地球化学通过对生命圈层元素的分布、结合转化、集中分散和迁移循环规律的研究,揭示人类生存与环境之间的内在联系,参与解决环境问题。具体地说,环境地球化学通过对元素及其化合物在岩石-土壤-大气-水-植、动物-人这一系统中的含量分布和迁移转化规律的研究,揭示环境的历史演变规律,预测未来的全球环境变化;为评价环境质量提供基准,并为保持和改善这一系统的平衡、使人类与生态环境协调发展、建立最佳人类生存环境提供思路和方法。

1 环境地球化学的研究领域

环境地球化学自其形成以来的近30年间,得到了迅速发展,在环境污染的监测与防治、发展农业、保障人体健康等诸多方面作出了贡献。进入90年代以来,其研究领域不断扩大,研究程度不断深入,并以其学科的优势解决环境问题。就环境地球化学发展看,以下几方面是近代环境地球化学发展的主要领域。

1.1 全球环境变化的环境地球化学研究

为了把握当代全球环境,科学预测全球环境的未来,须开展全球环境历史演变的研究。1988年国际地圈一生物圈计划(IGBP)的确立,就是协调世界各国的科学家开展多学科的国际协作,对过去全球变化的海洋记录和陆地记录开展研究。具有行星尺度的全球变化大致可划分为以下的时间尺度:秒—数十小时;数天—数年;数十年—数百年;数千年—数百万年;数千万年—数亿年。从研究现状看,数十年—数百年尺度的全球变化记录研究是个薄弱环节。寻找并揭示不同尺度的

自然档案—地质地球化学记录及其意义,并为评价现今环境提供对照基准,已成为环境地球化学近年来一个重要的发展方向。

稳定同位素的地球化学分馏,使自然档案的δ13C、δ18O、δD等指标成为古气候、古温度及古环境变迁的见证;同位素地质年代学、磁性地层年龄法、氨基酸地层年代学等为直接测定自然档案的年龄,为历史变迁确立时间坐标提供了方法;自然档案中元素的分配、组合特征及赋存形式则是古环境的灵敏指示剂。

如树木年轮的稳定碳同位素序列广泛应用于环境气候变迁的研究,时间分辨率可以达到1年。树木年轮中微量金属的含量分布对其周围环境的污染状况及历史变迁则有着直接的指示作用。

冰岩芯的δ18O对气候变化的示踪使预测近百年来气候变化趋势有了依据。湖泊沉积物中210Pb、137Cs同位素,为确定沉积物的沉积时间和速率提供了条件,结合沉积物微量元素含量分布测定,可以分辨周围环境污染及变迁的历史。

黄土剖面是一种良好的自然档案,我国的华北、西北地区有广泛的分布,最厚的沉积剖面达400m,可提供2.5Ma以上的连续记录,剖面中的有机质、铁离子价态等对古气候和环境有良好的指示作用。

此外,我们通过地质历史时期记录下的、导致许多“生命爆炸”---生物多样性的出现(如5.3亿年前的澄江化石群的形成等)和生物物种灭绝(如恐龙灭绝等)的地球化学环境因素的研究,获取地球演化过程中出现影响生物生存的环境因素,以帮助人类制定相应的措施,减轻甚至避免重演类似的历史事件。

1.2 对于人体健康的环境地球化学研究

地球化学环境与人体健康是环境地球化学的一个重要研究领域,受到各国的重视,英国、美国、德国和日本研究较多,我国在环境Se,Mo,I,As等微量元素与地方人群健康关系方面作了许多的多学科联合的调查研究,获得了丰富的成果。而后的发展是环境地球化学与环境医学结合,探索地球化学环境因素的致病机制、微量元素与人体健康的有机联系,寻找疾病防治的有效方案。

人体组织元素含量研究表明,除生物物质主要元素(C,H,N,O)和地壳主要组分Si,Al外,人体血液所含60多种元素的丰度曲线与地壳元素的丰度曲线有着惊人的相似性。许多医学专家、学者认为,当今人类疾病90%以上与微量元素有关,许多疑难杂症和大面积的地方病都与人体微量元素失衡相关。地球化学研究表明,

地壳中元素的分布是不均一的,具有区域性差异的特征。当人群长期生活在某种微量元素过丰或缺乏的环境中,势必出现人体某组织器官的微量元素平衡失调,引发组织病变,这就是地方病、职业病的环境地球化学病因。众所周知,甲状腺肿是一种世界性的地方病,它是由于人体缺碘或长期吸入过量的碘引起甲状腺激素合成的紊乱所致,而人体缺碘或高碘则是因为环境碘元素分布的含量水平过低或过高,致使人体每天的吸入量不能满足或超过人体的必需量。

近年来,环境医学调查表明,癌症的高发区也具有区域分布特征,这说明地球化学环境因素也是致癌的重要因素之一。某些金属元素的致癌作用研究从另一角度作了佐证,如美国、新西兰肠癌高发区与环境中缺Se有关,我国河南林县食道癌高发区主要是环境缺Mo,医学研究认为该地区食管癌高发与饮用地下水类型和深度有关。尽管微量元素失衡致癌的医学机制尚不十分清楚,但研究已揭示了环境的地球化学因素的重要性。

1.3 环境污染的地球化学研究

所谓环境污染,从地球化学角度去看,无非是一些人为的金属和非金属元素及各种无机和有机化合物叠加在自然物质基础之上而已。因此,地球化学的基本原理、研究方法(如元素在地壳分散和富集的规律、地球化学区划的概念等)也可以用于环境科学问题。环境污染在一些地方已严重制约地方经济的发展,影响居住人群的健康。近年来,淮海水系的严重污染,给两岸工农业生产带来的损失,对两岸人们生活的严重影响便是一例。

大量资料表明,人类已破坏了全球的微量金属的稳态(工业技术发展前的)地球化学循环,并有大量有毒金属输入到生物圈,导致物种减少、危害人体健康。这种向大气的人为排放量或者超过或者相当于自然排放量,意味着人类活动已成为全球性或区域性微量元素大气循环中的一个关键因素。大气中的微量组分随着降水过程和飘尘的沉降,造成水体、土壤的二次污染,最终都将累及人类自身。因此,查明环境污染的性质、范围及污染源,开展环境综合治理已成为人类当前所面临的迫切任务。解决这一任务正是环境地球化学特长之所在,污染物质性质、污染范围及污染源的调查与地球化学中次生晕、水化学及气体地球化学找矿研究有着同样的思路和方法。对环境地球化学来说,更重要的是运用元素表与地球化学迁移的理论和地球化学手段,系统研究污染元素及其化合物在岩石圈表层(包

括土壤)、水圈、大气圈、生物圈内及各圈层之间的迁移和交换,从理论上阐明污染的规律及其环境效应,找出对策,在污染综合治理中发挥指导作用。

2 环境地球化学研究方法

环境地球化学的研究方法通常有两种:现场调查研究法和实验室模拟试验研究法.本文重点讨论现场调查研究法。

在现场调查研究方面,科学地确定取样地点最为重要。采样点必须有代表性和足够的数量。为查明化学物质在环境中的迁移转化特点,通常采用共扼布点法。所谓共扼布点法就是同时对各种有关联的环境要素进行对比取样分析。在研究土壤环境的化学成分时,同时采集与土壤环境关系密切的水系样品或生长在这种土壤上的植物样品进行分析,这样就能获得关于环境诸要素间存在着密切的地球化学联系的资料,从而了解所研究的化学物质在整个环境中的迁移状况。

2.1 环境分析样品的采集和处理

环境分析样品的采集和处理是获得环境地球化学信息的基础,采集的环境分析样品是否具有代表性,环境分析样品采集后处理是否适当,直接关系到分析数据的可靠性.因此,要真实地反映污染元素在环境构成各要素中的分布的迁移规律,环境样品的采集和处理是十分关键的。下面着重研究土壤和水样品的采集和处理方法。

2.1.1 土壤样品的采集和处理

土壤不像大气和水样那样均匀性好,土壤本身一般都具有不同层次,并含有许多砾石、粗沙、植物根茎等混合物,还受自然条件和耕作情况影响。所以,土壤的采样误差常比分析误差大得多。为取得有代表性的土坡样品,首先要调查了解自然条件,包括母质、地形、植被、水文和气候;其次是土地利用、耕作方式、肥料、农业、灌溉和作物生长情况;第三是土壤性状,包括土壤类型、层次特征、分布情况及污染和防治史等,然后制定取样方案.

由于土壤的不均匀性,通常采取多点取样,然后混合均匀的方法。在2一3亩(1334—2000平方米,1亩=667平方米)土地内选取5一10个点,点的安排视具体地块而定。

为提高取样的代表性,注意不要在田边、路边、化肥堆边取样。取样深度一般为15cm的耕作层和15-30cm深度的耕作层底层。在每一个采样点切一“V”形

缺口,在缺口的一侧取约1口的土片。各点所取土片应尽量相同,各点土样混合后,用四分之一法取约Ikg作为样品。

采集的土样。将样品倒在塑料薄膜或厚纸上摊开,趁半干状态把土样压碎,去掉大的植物根茎,摊成薄层,让其在阴凉处慢慢风干,并要经常翻动。风干后的土样用木棒或有机玻璃棒仔细碾细,过土壤筛取掉2mm以上的砂砾和植物残根。

3 环境地球化学的发展展望

展望未来,环境地球化学在环境领域中将发挥越来越重要的作用,并且在其发展过程中不断与其它学科交叉,提出问题、解决问题,又将促进诸如农学、环境科学、环境医学、分析测试技术领域等的发展,同时还会形成新的研究领域。如21世纪,海洋可能成为提供人类食物

的宝库,故海洋环境地球化学研究也应提上日程等等。积极采用高新技术,全面提高环境地球化学监测数据的质量和处理数据的能力,为更精细地刻画地质环境的化学特征、更真实地模拟环境地球化学过程和更准确地提取地质环境信息,奠定坚实的基础。其中特别值得指出的是:“3S”技术,尤其是GIS技术已经成为国外环境地球化学研究的常规手段;主要由水文地质工作者发展起来的定深取样技术揭示表层环境地球化学过程的三维动态特征方面具有独特的作用,开始受到环境地球化学工作者的重视;GC-MS(色谱-质谱联用仪)和ICP-MS(等离子光质谱仪)在环境样品分析中的作用正日益受到重视和广泛应用。

东华理工大学水文地球化学试卷

2006-2007第一学期《水文地球化学》期末试卷(B)-参考答案班级()学号()姓名() 一、名词解释(每题3分,共21分) 1、盐效应:矿物在纯水中的溶解度低于矿物在高含盐量水中的溶解度,这种含盐量升高而使矿物溶解度增大的现象。 2、阳离子交替吸附作用:在一定条件下,岩石颗粒吸附地下水中的某些阳离子,而将其原来吸附的某些阳离子转入水中,从而改变了地下水的化学成分,这一作用即为阳离子交替吸附作用。 3、氧化垒:在还原条件被氧化条件激烈交替的地段上所形成的地球化学垒。 4、侵蚀性CO2:当水中游离CO2大于平衡CO2时,水中剩余部分的CO2对碳酸盐和金属构件等具有侵蚀性,这部分即为侵蚀性CO2。 5、TDS:指水中溶解组分的总量,它包括溶于水中的离子、分子及络合物,但不包括悬浮物和溶解的气体。 6、硅质水与硅酸水:SiO2含量大于50mg/L的水称为硅质水(1.5分);在阴离子中,HSiO3-占阴离子首位(按mol%计算)的水称为硅酸水(1.5分)。 7、硬度:是以水中Ca2+和Mg2+来量度,其计算方法是以Ca2+和Mg2+的毫克当量总数乘以50,以CaCO3表示,其单位为mg/L。 二、填空(每题1分,共14分) 1、Fe2+在(酸)性中迁移强,而在(碱)性中迁移弱。 2、地球化学垒按成因可分为(机械)垒、(物理化学)垒、(生物)垒和(复合)垒。 3、碱度主要决定于水中的(HCO-3,CO2-3)的含量。硬度是以(Ca2+,Mg2+)的毫克当量总数乘以50,而暂时硬度是以(HCO-3,CO2-3)的毫克当量总数乘以 50。 4.大气CO2的δ13C平均值是(-7‰),而土壤CO2的δ13C平均值是( -25‰)。5.标型元素的标型程度取决于(元素的克拉克值)和(它的迁移能力)。 6.弥散作用包括(分子扩散),(对流扩散迁移)和(渗透分散)。 7、SiO2和Na/K地热温度计适用的温度范围分别为(0~250℃)和(150~350℃)。8.近代火山型浅部地下热水的水化学类型为(SO2-4SO2-4 -Cl),而深部地下热水的水化学类型为(Cl-HCO-3)。 9.海水的水化学类型为(Cl-Na),而海成存封水的水化学类型为(Cl-Na -Ca)。 10、水对离子化合物具有较强的溶解作用,是由于水分子具有较强的(介电)效应所致,水的沸点较高,是由于水分子间(氢键)的破坏需要较大的能量。 11、在35℃下,pH=7的地下水是(碱)性。在天然水化学成分的综合指标中,体现水的质量指标的有(TDS,硬度,含盐量或含盐度,电导率),而表征水体系氧化还原环境状态的指标有(COD,BOD,TOC,Eh)。 12、迪拜—休克尔公式的使用条件是离子强度小于(0.1mol/L),而戴维斯方程的使用条件是离子强度小于(0.5mol/L)。 13、空气迁移的标型元素主要决定环境的(氧化还原)条件,而水迁移的标型元素主要决定环境的(酸碱)条件 14、在氮的化合物中,(NO-2,NH4+)可作为地下水近期受到污染的标志,而(NO-3)可作为地下水很早以前受到污染的标志。

地球化学调查样品—三氧化二铁的测定—萃取光度法

FHZDZDQHX0065 地球化学调查样品三氧化二铁的测定萃取光度法 F-HZ-DZ-DQHX-0065 地球化学调查样品—三氧化二铁的测定—萃取光度法 1 范围 本方法适用于水系沉积物、土壤、岩石中三价铁的测定。 测定范围:质量百分数为2%~10%三氧化二铁。 2 原理 试样置于聚四氟乙烯坩埚中,以邻菲啰啉、硫酸(1+2)、氢氟酸低温加热分解。加入硼酸,用8-羟基喹啉-氯仿溶液萃取溶液中的Fe3+,所得氯仿萃取液用光度法测定Fe3+。 3 试剂 3.1 无水硫酸钠。 3.2 硫酸(1+1)。 3.3 硫酸(1+2)。 3.4 氢氟酸(ρ 1.15g/mL)。 3.5 邻菲啰啉(C12H8N2·H2O)溶液,8g/L。含8g/L的邻菲啰啉的硫酸(1+2)溶液。 3.6 饱和硼酸溶液。 3.7 8-羟基喹啉溶液于88mL水中加入1g 8-羟基喹啉、10g柠檬酸钠、12mL冰乙酸,搅匀。 3.8 氢氧化钠,c(NaOH)=7mol/L。 3.9 乙酸-乙酸钠缓冲溶液,pH 4 称取32g无水乙酸钠,加入120mL冰乙酸,加水溶解后稀释至1000mL。搅匀。 3.10 8-羟基喹啉-氯仿溶液,5g 8-羟基喹啉用500mL氯仿溶解。 3.11 三氧化二铁标准溶液 称取0.1000g预先经120℃烘干的光谱纯三氧化二铁于烧杯中,加20mL盐酸(1+1),温热溶解后,冷却,移入1000mL容量瓶中,用水稀释至刻度,摇匀。此溶液1mL含100μg Fe2O3。 4 仪器 分光光度计。 5 试样的制备 试样应粉碎至粒度小于74μm,在室温下自然风干,待用。 6 操作步骤 6.1 空白试验 随同试样的分析步骤进行多份空白试验,所用试剂须取自同一瓶试剂。 6.2 称样量 称取0.05g试样,精确至0.0001g。 6.3 试样的测定 称取50mg试样于聚四氟乙烯坩埚中,加5mL 8g/L的邻菲啰啉的硫酸(1+2)溶液,加15滴氢氟酸,盖上坩埚盖,低温加热至试样分解完全。取下稍冷,加入5mL饱和硼酸溶液,加热至沸。冷却后用棉花过滤入100mL容量瓶中,用热水洗净坩埚、漏斗,冷却至室温后稀释至刻度,摇匀。 吸取10mL溶液于60mL分液漏斗中,加入2mL 8-羟基喹啉溶液。以下分析手续同标准曲线的绘制。 注:按50mg称样计算,FeO含量为8%时对测定无影响。 6.4 标准曲线的绘制 1

环境地球化学知识点

概念题 绪论(1/6) 环境问题由于人类活动或自然活动作用于人们周围的环境所引起的环境质量变化,以及这种变化反过来对人类生产、生活和健康产生的影响。 环境容量人类生存和自然环境在不致受害的前提下,环境可能容纳污染物质的最大负荷量。 环境要素构成人类环境整体的各个独立的、性质不同的而又服从整体演化规律的基本因素。 环境背景值在未受人类活动干扰的情况下,各环境要素(大气、水、土壤、生物、光、热等)的物质组成或能量分布的正常值。 环境质量在一具体环境内,环境的某些要素或总体对人类或社会经济发展的适宜程度。 环境质量评价按照一定的评价标准和评价方法对一定区域范围内的环境质量进行说明、评定和预测。 第一章岩石圈环境地球化学(0/0) 第二章土壤环境地球化学(1/9) 土壤覆盖在地球陆地表面和浅水水域底部,具有肥力,能够生长植物的疏松物质表层。 土壤圈覆盖于地球陆地表面和浅水域底部土壤所构成的一种连续体或覆盖层及其相关的生态环境系统。 成土过程地壳表面的岩石风化体及其搬运的沉积体,受其所处环境因素的作用,形成具有一定剖面形态和肥力特征的土壤的历程。 土壤酸度土壤酸性表现的强弱程度,以pH表示。 植物营养植物体从外界环境中吸取其生长发育所需的养分,用以维持其生命活动。 土壤污染进入土壤的污染物积累到一定程度,引起土壤质量下降、性质恶化的现象。 土壤净化污染物在土壤中,通过挥发、扩散、吸附、分解等作用,使土壤污染物浓度逐渐降低,毒性减少的过程。 土壤质量评价单一环境要素的环境现状评价,是根据一定目的和原则,按照一定的方法和标准,对土壤是否污染及污染程度进行调查、评估的工作。

土壤中微量元素动植物体内含量很少、需要量很少的必需元素。 第三章水圈环境地球化学(2/11) 水圈地球表面或接近地球表面各类水体的总称。 水资源世界上一切水体,包括海洋、河流、湖泊、沼泽、冰川、土壤水、地下水及大气中的水分,都是人类宝贵的财富,即水资源。(广义)在一定时期内,能被人类直接或间接开发利用的那一部分动态水体。(狭义) 水矿化度天然水中各种元素的离子、分子与化合物(不包括游离状态的气体)的总量。 水硬度水中钙和镁含量。 化学需氧量(COD)水样在一定条件下,氧化1L水样中还原性物质所消耗的氧化剂的量,以氧的mg/L表示。 高锰酸钾指数法(COD Mn)在一定条件下,以高锰酸钾为氧化剂,氧化水样中的还原性物质,所消耗的量以氧的mg/L来表示。 重铬酸钾指数法(COD Cr)在一定条件下,以重铬酸钾为氧化剂,氧化水样中的还原性物质,所消耗的量以氧的mg/L来表示。 生化需氧量(BOD)在有溶解氧的条件下,好氧微生物在分解水中有机物的生物化学氧化过程中所消耗的溶解氧量。 水体污染进入水体中的污染物含量超过了水体的自净能力,就会导致水体的物理、化学及生物特性的改变和水质的恶化,从而影响水的有效利用,危害人类健康的现象。 水体自净污染物质进入天然水体后,通过一系列物理、化学和生物因素的共同作用,使水中污染物质的浓度降低的现象。 水环境质量评价按照评价目标,选择相应的水质参数、水质标准和评价方法,对水体的质量利用价值及水的处理要求作出评定。 第四章大气圈环境地球化学(1/11) 大气圈包围在地球最外面的圈层,是由气体和气溶胶颗粒物组成的复杂的流体系统。 同温层从对流层顶以上到25km以下气温不变或微有上升的圈层。 逆温层从25km以上到50-55km,温度随高度升高而升高的圈层。 臭氧层地球上空10-50km臭氧比较集中的大气层, 其最高浓度在20-25km处。

水文地球化学试卷

09031123 一、名词解释(每题3 分,共21 分) 1、BOD: 指用微生物降解水中有机物过程中所消耗的氧量,以mg/L 为单位。 2、脱硫酸作用: 在缺氧和有脱硫酸菌存在的情况下,SO4 2- 被还原成H2S 或S2-的过 程。 3、同离子效应: 一种矿物溶解于水溶液,如若水溶液中有与矿物溶解相同的离子,则这种矿物的溶解度就会降低,这种现象在化学上称为同离子效应 4、降水氢氧稳定同位素的高程效应: 大气降水中的18O 和D 含量随着海拔高程的增加而不断下降的现象。 5、酸性垒: 当中性或碱性条件转变为弱酸性和酸性条件或在pH 值急剧降低的地段所形成的地球化学垒。 6、水分子的缔合作用: 由单分子水结合成比较复杂的多分子水而不引起水的物理化学性质改变的现象。7、硅质水与硅酸水: SiO2 含量大于50mg/L 的水称为硅质水(1.5 分);在阴离子中,HSiO3 -占阴离子首位(按mol%计算)的水称为硅酸水(1.5 分)。 二、填空(每题1 分,共14 分) 1、水对离子化合物具有较强的溶解作用,是由于水分子具有较强的(介电)效应所致,水的沸点较高,是由于水分子间(氢键)的破坏需 要较大的能量。 2、在35℃下,pH=7 的地下水是(碱)性。在天然水化学成分的综 合指标中,体现水的质量指标的有(TDS,硬度,含盐量或含盐度, 电导率),而表征水体系氧化还原环境状态的指标有(COD,BOD,TOC,Eh )。 3、迪拜—休克尔公式的使用条件是离子强度小于(0.1 mol/L ),而 戴维斯方程的使用条件是离子强度小于(0.5 mol/L )。

4、空气迁移的标型元素主要决定环境的(氧化还原)条件,而水迁移的标型元素主要决定环境的(酸碱)条件 5、在氮的化合物中,(NO- 2,NH4 + )可作为地下水近期受到污染的 标志,而(NO- 3 )可作为地下水很早以前受到污染的标志。 6、Fe2+在(酸)性中迁移强,而在(碱)性中迁移弱。 7、地球化学垒按成因可分为(机械)垒、(物理化学)垒、(生 物)垒和(复合)垒。 8、碱度主要决定于水中的(HCO- 3,CO2- 3 )的含量。硬度是以 (Ca2+,Mg2+)的毫克当量总数乘以50,而暂时硬度是以(HCO- 3,CO2- 3 )的毫克当量总数乘以50。 9.大气CO2 的δ13C 平均值是(-7 ‰),而土壤CO2 的δ13C 平均值是(-25‰)。 10.标型元素的标型程度取决于(元素的克拉克值)和(它的迁移能力)。 11.弥散作用包括(分子扩散),(对流扩散迁移)和(渗透分 散)。 12、SiO2 和Na/K 地热温度计适用的温度范围分别为(0~250 ℃)和(150~350 ℃)。 13.近代火山型浅部地下热水的水化学类型为(SO2- 4 SO2- 4 Cl- ), 而深部地下热水的水化学类型为(Cl-HCO- 3 )。 14.海水的水化学类型为(Cl-Na ),而海成存封水的水化学类型为(Cl-Na -Ca)。 三.简答题(每题5 分,共30 分) 1、氧漂移及其影响因素?

环境地球化学

长江三角洲第一硬黏土与古环境 摘要:硬黏土形成在沿海和陆架相互作用的地带,受陆海交互作用的影响, 对气候及海平面变化尤为敏感,包含了复杂的古环境信息。本文从土壤形态和土壤剖面两个方面对硬黏土进行了描述,并进一步说明硬黏土是一种古土壤,同时以长江三角洲第一硬黏土为例,说明了它所蕴含的古气候信息及其与海平面的关系。 关键词:硬黏土古环境 硬黏土形成在沿海和陆架相互作用的地带,受陆海交互作用的影响, 对气候及海平面变化尤为敏感,包含了复杂的古环境信息。长江三角洲晚第四纪地层中普遍发育若干层厚度不等的暗绿色、黄绿色或黄褐色的硬质黏土层,在工程地质上俗称“硬质黏土”或“老黏土”。按其年代由新到老依次为第一、第二、第三……硬质黏土层。目前对第一硬黏土层研究较详。第一硬黏土是古土壤。 1硬黏土概述 1.1土壤形态 从颜色上看,硬黏土大致可以分为两类,一类是分上、下两层的暗绿色硬黏土层和黄褐色硬质黏土层;另一类为单一的黄褐色硬质黏土层。这跟海水的影响程度有关;硬黏土质地以细粉砂为主,其次是粗粉砂和黏土;呈块状构造;土壤中含有新生体。 1.2土壤剖面 第一硬黏土层分布在长江三角洲南北两翼,埋深3-25m,西部浅,东部深,总体上具有自西向东的自然坡度。西部硬黏土层的厚度最大,平均7.2 m,向东变薄,至上海市区平均为2.9 m。——这可能和暴露时间长短有关系。 上部含较多植物根屑, 具团粒结构, 中、下部淀积层内黏粒胶膜及铁锰质结核发育, 底部逐渐过渡到保留有原生沉积构造的母质层。 硬黏土与上下地层的关系:三角洲前缘古土壤层上覆滨浅海泥质沉积, 后缘上覆湖沼相泥质沉积,与上覆层呈突变接触关系。下伏黄色滨海、河流相粉细砂或黏土质粉砂, 呈渐变接触关系。 1.3硬黏土是古土壤 古土壤指过去气候与地貌环境相对稳定环境下形成的土壤,其发育或由于形成土壤的气候或地形环境的变化而中断,或在后来的地质过程中被其他沉积物掩埋。探讨并证明硬黏土是古土壤主要看硬黏土是否是经历了明显的成土改造。古土壤特征比较明显的层位在硬土层的上部:

环境地球化学考试复习重点

1. 环境背景值:指在不受污染的情况下,环境要素的平均化学成分。 2. 地球化学障:元素迁移过程中,物理-化学条件的急剧改变所引起的元素沉淀。 3. 等电pH值:当矿物颗粒不能带电荷时的PH值。 4. 生物地球化学循环:生物体所需要的营养元素在生物圈内不断地运转,他们沿着特定的途径,从非生物环境到生物有机体内,再从生物体回到非生物环境中去,从而构成元素的循环,这种循环叫做"生物地球化学循环", 5. 弥散现象:在多空的介质中,当两种流体相接触,某种物质从含量较高的物体中箱含量较低的物体迁移,是两种流体分界面处形成过度混合带,混合带不断扩大,趋向于成为均质的混合物质,这种现象称为弥散现象。 6.地下水的自净过程:污染物进入地下水,通过同周围的介质发生物理化学和生物化学等一系列的反应,使污染物质的组成发生变化,最终被净化,是地下水部分或完全恢复到原来的状态,这样的过程,称为地下水的自净过程。 7.浓缩作用:当水蒸发时,其中含盐分的量不减,则其浓度相对增大,这种作用称为浓缩作用 8.CO2的温室效应:二氧化碳可以让太阳辐射的可见光部分透过,但是能吸收地球在13-17um之间的再辐射,组织了热量向外层空间的散逸,保持了大气的温度,这就是所谓的CO2的温室效应。 9.化学需氧量(COD):在一定条件下,用一定的强氧化剂处理水样对所消耗的氧化剂量。 10.光化学烟雾:排入大气中的CO、NO等一次性污染物在光的作用下形成二次污染物,这两种的混合物所形成的烟雾污染现象。 11.混合作用:当两种或数种成分或矿化不同的地下水相遇时,新形成的地下水在成分与矿化度上与混合前不同,这种作用称为.混合作用。 12. 酸雨:是指PH值小于5.65的雨雪或其他形式的降水 13..生物半衰期:有毒物质降到最初摄入量一半所需要的时间 14. 溶质径流:地壳风化产物受水流溶蚀和冲刷并以真溶液和胶体溶液状态随水流前一的行为称为溶质径流。 1. 生命起源的前提条件有哪些?(8分) (1)在大气圈-水圈体系中必须没有游离的氧 (2)必须存在有对产生有机分子所必须的元素和催化剂 2. 在土壤样品采集中,一般采取哪几种方式? (8分) 答:(1)对角线法适用于污水灌溉或被废水污染的田块,由进水口倒出水口引对角线,按均匀间隔取3-5个点,并根据田块形状做适当修改。 (2)梅花形发适宜于面积较小、平坦、土质均匀的田块,取5-10个点。 (3)棋盘形法适宜于中等面积、平坦、形状完整,但土质较不均匀的田块,取10个以上的点。 (4)蛇形法适宜于面积大、地不太平坦、形状不规整的田块。 还可根据作物生长情况,结合土质、灌溉、施肥、施药等情况,划分为不同地段分别采样。 3. 地下水污染的主要途径是什么?(9分) (1)通过包气带渗入。这种途径是污染液从各种污染源地通过包气带想地下水面的渗透。这种污染途径的集体污染源包括:废水坑、污水池、沉淀池、污水渗坑、化粪池等;(2)从地表水体侧向渗入。由于大量未经处理的生活污水和工业废水排入河流,使许多河流收到

全国多目标区域地球化学调查进展与成果

国土资源大调查 全国多目标区域地球化学调查进展与成果 中国地质调查局 基础调查部 二〇一〇年七月

目 录 一、工作概况 (1) 二、完成情况 (1) 三、主要成果 (3)

一、工作概况 紧密围绕国民经济和社会发展需求,中国地质调查局于1999-2001年开始在广东、湖北、四川等省实施多目标区域地球化学调查试点工作。从2002年起,全国多目标区域地球化学调查工作正式启动。国土资源部先后与浙江、四川、湖南等18个省区采取部省政府间合作方式,共计投入经费67059.45万元,其中地方经费35809.45万元,占53.4%。2005-2008年,经由温家宝总理批示,财政部设立“全国土壤现状调查及污染防治专项”,由我部与环保部共同负责,目前我部到位经费27511万元,对多目标区域地球化学调查进行专项支持,调查工作扩大到全国31省(区、市)。 二、完成情况 全国多目标区域地球化学调查工作分为调查、评价和评估三个层次开展。 调查阶段:主要任务是掌握情况。全国共计部署450万平方公里调查面积,截至2009年底,已经完成160万平方公里,覆盖我国东、中部平原盆地、湖泊湿地、近海滩涂、丘陵草原及黄土高原等主要农业产区。全国投入地质科技人员500余人,采样人员十余万人,选定部级重点实验室23个,采用大型精密仪器测试地球化学样品60万件,分析3240

万个元素指标。基本查明我国土地有益和有害组分等54种元素指标组成、类型、含量、强度及其分布地区、范围和面积等,填补了我国长期以来土地各项元素指标的空白。 图1 全国多目标区域地球化学工作程度图 评价阶段:针对调查发现问题,按照长江流域、黄河流域、东北平原及沿海经济带等我国主要农业经济区域开展生态地球化学评价,对影响农业经济发展的肥力组分和重金属污染问题进行科学研究,旨在查清土地有益和有害组分成因来源、迁移转化、生态效应和变化趋势等,为土地质量评估提供科学依据。共计采集各类样品12万件,分析各项指标数以百万计。 评估阶段:依据调查和评价结果,根据各省区具体情况,

水文地球化学

水文地球化学研究现状、基本模型与进展 摘要:1938 年, “水文地球化学”术语提出, 至今水文地球化学作为一门 独立的学科得到长足的发展, 其服务领域不断扩大。当今水文地球化学研究的理论已经广泛地应用在油田水、海洋水、地热水、地下水质与地方病以及地下水微生物等诸多领域的研究。其研究方法也日臻完善。随着化学热力学和化学动力学方法及同位素方法的深入研究, 以及人类开发资源和保护生态的需要, 水文地球化学必将在多学科的交叉和渗透中拓展研究领域, 并在基础理论及定量化研究方面取得新的进展。 早期的水文地球化学工作主要围绕查明区域水文地质条件而展开, 在地下水的勘探开发利用方面取得了可喜的成果( 沈照理, 1985) 。水文地球化学在利用地下水化学成分资料, 特别是在查明地下水 的补给、迳流与排泄条件及阐明地下水成因与资源的性质上卓有成效。20 世纪60 年代后, 水文地球化学向更深更广的领域延伸, 更多地是注重地下水在地壳层中所起的地球化学作用( 任福弘, 1993) 。 1981 年, Stumm W 等出版了5水化学) ) ) 天然水化学平衡导论6 专著, 较系统地提供了定量处理天然水环境中各种化学过程的方法。1992 年, C P 克拉依诺夫等著5水文地球化学6分为理论水文地球化学及应用水文地球化学两部分, 全面论述了地下水地球化学成分的形成、迁移及化学热力学引入水文地球化学研究的理论问题, 以及水文地球化学在饮用水、矿水、地下热水、工业原料水、找矿、地震预报、防止地下水污染、水文地球化学预测及模拟中的应用等, 概括了20 世纪80 年代末期水文地球化学的研究水平。特别是近二十年来计算机科学的飞速发展使得水文地球化学研究中的一些非线性问题得到解答( 谭凯旋, 1998) , 逐渐构架起更为严密的科学体系。 1 应用水文地球化学学科的研究现状 1. 1 油田水研究 水文地球化学的研究在对油气资源的勘查和预测以及提高勘探成效和采收率等方面作出了重要的贡献。早期油田水地球化学的研究只是对单个盆地或单个坳陷, 甚至单个凹陷进行研究, 并且对于找油标志存在不同见解。此时油田水化学成分分类主要沿用B A 苏林于1946 年形成的分类。1965 年, E C加费里连科在其所著5根据地下水化学组分和同位素成分确定含油气性的水文地球化学指标6中系统论述了油气田水文地球化学特征及寻找油气田的水文地球化学方法。1975 年, A G Collins 在其5油田水地球化学6中论述了油田水中有机及无机组分形成的地球化学作用( 汪蕴璞, 1987) 。1994 年, 汪蕴璞等对中国典型盆地油田水进行了系统和完整的研究, 总结了中国油田水化学成分的形成分布和成藏规律性, 特别是总结了陆相油田水地球化学理论, 对油田水中宏量组分、微量组分、同位素等开展了研究, 并对油田水成分进行种类计算, 从水化学的整体上研究其聚散、共生规律和综合评价找油标志和形成机理。同时还开展了模拟实验、化学动力学和热力学计算, 从定量上探索油田水化学组分的地球化学行为和形成机理。 1. 2 洋底矿藏研究

环境地球化学答案

1、名词解释 Pm10:是指大气中直径小于或等于10微米的颗粒物称为PM10,又称为可吸入颗粒物或飘尘。 Pm2.5:PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物。 大气颗粒粒径:指大气颗粒的直径,粒径小于10微米的颗粒可以长期飘浮在空中,称为飘尘,其中10~0.25微米的又称为云尘,小于0.1微米的称为浮尘。而粒径大于10微米的颗粒,则能较快地沉降,因此称为降尘。 环境容量:环境容量(environment capacity)是在人类生存和自然生态系统不致受害的前提下,某一环境所能容纳的污染物的最大负荷量。或一个生态系统在维持生命机体的再生能力、适应能力和更新能力的前提下,承受有机体数量的最大限度。 生物吸附系数:是某元素在有机体(通常是植物)灰分中的含量与该元素在生长这种植物的土壤中的含量比例,它定量的反映了生物对环境中元素的吸收强度。 CO2温室效应:大气中的CO2浓度增加,允许太阳辐射能量穿透地球大气层,使地球表面变暖,当地球表面进行二次能量辐射时,温室气体CO2又将这些能量重新发射回地面,使地球发生可感觉到的温度升高,这就是CO2温室效应。 2、环境地球化学的特点及主要研究内容: 环境地球化学的重要任务之一就在于及时地研究现代环境化学变化的过程和趋势,在原来地球化学的基础上,更加深入地研究组成人类环境的各个系统的地球化学性质。人为散发的污染物在环境中不断发生空间位置的移动和存在形态的转化。这种迁移转化的结果,可以向着有利的方向发展,如污染物被稀释、扩散、分解,甚至消失;也可以向着不利的方向发展,如污染物在某些条件下积累起来,转变成为持久的次生污染物。污染物在环境中的存在形态可以通过各种化学作用不断发生变化,如溶解、沉淀、水解、络合与整合、氧化、还原、化学分解、光化学分解和生物化学分解等。

地球化学调查

地球化学调查 3.1地热资源勘查各阶段宜进行地球化学调查,采用多种地球化 学调查方法,包括地热流体特有组分(F、SiO2、B、H2S 等)调查分析、氡气测量等,确定地热异常分布范围。3.2 具代表性的地热流体,宜采集地球化学样品,并适当采用 部分常温地下水、地表水及大气降水样品作为对照,分析 彼此的差异和关系。样品采集方法、要求遵照本规范附录 B。 3.3 测定代表性地热流体,常温地下水、地表水、大气降水中 稳定同位素和放射性同位素,推断地热流体的成因与年龄。 3.4 计算地热流体中Na/K、CI/B、CI/F、CI/SiO2等组分的重量 克分于比率,并进行水岩平衡计算,分析地热流体中矿物 资源的来源及其形成的条件。 3.5 对地表岩石和地热钻井岩芯中的水热蚀变矿物进行取样鉴 定,分析推断地热活动特征及其演化历史。 3.6 地球化学调查图件比例尺与地质调查比例尺一致。 7.7.1地热流体与岩土试验分析 7.7.1 在地热勘查中,应系统采取水、气、岩土等样品进行分析 鉴定,获取热储及地热流体的有关参数,各类样品按下述 要求采取:

a) 地热流体全分析:各勘查阶段的全部地热井和代表性泉点 均应采取; b) 气体分析:凡有气体逸出的地热井(泉)均应采取;中高 温地热井应采用井下压力采样器取样; C) 微量元素、放射性元素(U、Ra、Rn)、毒性成分的分析:按 每个储层采样,预可行性勘查阶段各取(1-2)个,可行性勘查阶段各取(3-5)个,开采阶段各取(5-7)个; d) 稳定同位素:可行性勘查阶段可取(1-2)个,开采阶段可 取(2-3)个; e) 放射性同位素:可行性勘查阶段每层热储各取(3-5)个, 开采阶段每层热储各取(5-7)个; f) 岩土分析样:采集典型热储和盖层岩样及包含水热蚀变的岩 土样品。 7.7.2 地热流体化学成分全分析项目包括:主要阴离子(HCO3-1、 CI-1、SO4-2、CO3-2)、阳离子(K+1、Na+1、Ca+2、Mg+2)、微量元素和特殊组分(F、Br、I、SiO2、B、H2S、AI、Pb、Cs、Fe、Mn、Li、Sr、Cu、Zu等)、放射性元素(U、Ra、Rn)及总a、总β放射性、PH值、溶解性总固体、硬度、耗氧量等。对高温热田应增加Hg、As、Sb、Bi、的测试,对温泉和浅埋热储应视情况增加污染指标如酶、氰等的分析,并根据不同的用途增加相关分析项目。 7.73 同位素分析:一般测定稳定同位素D(H2、18O、34S)和放射

水文地球化学试卷B卷

一、名词解释(每题3分,共21分) 1、盐效应:矿物在纯水中的溶解度低于矿物在高含盐量水中的溶解度,这种含盐量升高而使矿物溶解度增大的现象。 2、阳离子交替吸附作用:在一定条件下,岩石颗粒吸附地下水中的某些阳离子,而将其原来吸附的某些阳离子转入水中,从而改变了地下水的化学成分,这一作用即为阳离子交替吸附作用。 3、氧化垒:在还原条件被氧化条件激烈交替的地段上所形成的地球化学垒。 4、侵蚀性CO2:当水中游离CO2大于平衡CO2时,水中剩余部分的CO2对碳酸盐和金属构件等具有侵蚀性,这部分即为侵蚀性CO2。 5、TDS:指水中溶解组分的总量,它包括溶于水中的离子、分子及络合物,但不包括悬浮物和溶解的气体。 6、硅质水与硅酸水: SiO2含量大于50mg/L的水称为硅质水(1.5分);在阴离子中,HSiO3-占阴离子首位(按mol%计算)的水称为硅酸水(1.5分)。 7、硬度:是以水中Ca2+和Mg2+来量度,其计算方法是以 Ca2+和Mg2+的毫克当量总数乘以50,以CaCO3表示,其单位为mg/L。二、填空(每题1分,共14分)1、Fe2+在(酸)性中迁移强,而在(碱)性中迁移弱。 2、地球化学垒按成因可分为(机械)垒、(物理化学)垒、(生物)垒和(复合)垒。 3、碱度主要决定于水中的(HCO-3,CO2-3 )的含量。硬度是以( Ca2+,Mg2+)的毫克当量总数乘以50,而暂时硬度是以( HCO-3,CO2-3 )的毫克当量总数乘以 50。 4.大气CO2的δ13C平均值是(-7 ‰),而土壤CO2的δ13C平均值是( -25‰)。 5.标型元素的标型程度取决于(元素的克拉克值)和(它的迁移能力)。 6.弥散作用包括(分子扩散),(对流扩散迁移)和(渗透分散)。7、SiO2 和Na/K地热温度计适用的温度范围分别为( 0~250 ℃)和( 150~350 ℃)。 8.近代火山型浅部地下热水的水化学类型为(SO2-4 SO2-4 -Cl ),而深部地下热水的水化学类型为(Cl-HCO-3 )。 9.海水的水化学类型为( Cl-Na ),而海成存封水的水化学类型为(Cl-Na -Ca )。 10、水对离子化合物具有较强的溶解作用,是由于水分子具有较强的(介电)效应所致,水的沸点较高,是由于水分子间(氢键)的破坏需要较大的能量。11、在35℃下,pH=7的地下水是(碱)性。在天然水化学成分的综合指标中,体现水的质量指标的有( TDS,硬度,含盐量或含盐度 , 电导率),而表征水体系氧化还原环境状态的指标有( COD,BOD,TOC,Eh )。 12、迪拜—休克尔公式的使用条件是离子强度小于( 0.1 mol/L ),而戴维斯方程的使用条件是离子强度小于( 0.5 mol/L )。 13、空气迁移的标型元素主要决定环境的(氧化还原)条件,而水迁移的标型元素主要决定环境的(酸碱)条件14、在氮的化合物中,( NO-2,NH4+ )可作为地下水近期受到污染的标志,而( NO-3 )可作为地下水很早以前受到污染的标志。 三.简答(每题5分,共30分) 1、水的酸度与pH值的区别? 答:酸度是表征水中和强碱能力的指标(1分)。它与水中的氢离子浓度并不是一回事,pH值仅表示呈离子状态的H+数量(1分),而酸度则表示中和过程中可以与强碱进行反应的全部H+数量,其中包括原已电离的和将会电离的部分(2分),已电离的H+数量称为离子酸度,它与pH值是一致的(1分)。 2、水分析结果是简分析,请问从那几方面检查分析数据可靠性。?答:(1)阴阳离子平衡的检查(1.5分)(2)碳酸平衡关系的检查(1.5分)(3)分析结果中一些计

环境地球化学

一、名词解释: 1.环境地球化学------是介于环境科学和地球化学之间的一门新兴边缘交叉学科,是研究化学元素和微量元素在人类赖以生存的周围环境中的含量、分布和迁移和循环规律的科学,并研究它们对人类健康造成的影响。同时,还研究人类生产和消费活动对自然环境的这些地球化学规律造成的影响。 2.一次污染物与二次污染物--------在污染物中,直接排放到大气中的称为一次污染物,有些一次污染物质在大气中通过与其它物质发生反应,化合成新的污染物质,这种污染物称为二次污染物。 3.水体富营养化--------指湖泊、河流、水库等水体中氮、磷等植物营养物质含量过多所引起的水质污染现象。 4.土壤环境容量----------土壤允许承纳污染物质的最大数量。 5.酸雨-------是指PH值小于5.6的雨雪或其他形式的降水。 6.光化学烟雾------汽车、工厂等污染源排入大气的碳氢化合物(CH)和氮氧化物(NOx)等一次污染物,在阳光的作用下发生化学反应,生成臭氧(O3)、醛、酮、酸、过氧乙酰硝酸酯(PAN)等二次污染物,参与光化学反应过程的一次污染物和二次污染物的混合物所形成的烟雾污染现象叫做光化学烟雾。 填空: 1.水体污染源和水体污染物:耗氧污染物、植物营养物、重金属、酚和氰类化合物、石油、农药、酸碱及无机盐类、放射性物质、病原微生物、热污染。 2.世界卫生组织根据现代医学、生物学和进化论的理论,把现代人的疾病分为四大类型,即遗传性疾病、先天性疾病、匮乏性疾病和现代病。 3.人体内元素分为四类:生命元素;毒性元素;无毒性稳定性元素;两性元素。 4.大气污染物的类型:SO2(二氧化硫)、氮氧化物(NOx)、一氧化碳(CO) 、碳氢化合物烃、醛等和颗粒物质。 选择: 1.几种重金属会导致哪些疾病? 汞Hg:水俣病;铬Cr6+:肺癌和鼻咽癌;镉Ge:骨痛病(痛痛病); 2.土壤的组成? 3.哪些属于一次或二次污染物?(有可能填空)

英语文献翻译-环境科学-环境地球化学专业

第一作者:Peter J.Hernes 期刊:JOURNALOFGEOPHYSICAL RESEARCH 发表时间:2009年Fluorescence-based proxies for lignin in freshwaterdisso lved organic matter-溶解有机物中木质素基于荧光特性的替代 摘要 木质素酚已被证明是在环境研究中良好生物标志物。但是木质素分析的复杂性限制了每次研究的样品数量,从而限制了其时空分辨率。相反,用分光光度对溶解有机物进行表征的方法具有速度快、(对样品)无破坏性、价格便宜和只需小的样品量优点,该方法甚至能在现场测量精细尺度溶解有机物循环的时空详情。在本文中,我们提出了一系列交互验证的偏最小二乘模型,利用溶解有机物的荧光性质解释高达91%的样品中木质素的组成和浓度可变性(两年的样品分季度的取自美国加利福尼亚州萨卡拉门托河和圣华金河河口三角洲)。这些模型随后用来通过测得的荧光特性预测木质素的浓度和组成。经过昼夜循环,模拟的木质素的组成大致保持不变,而模型中的木质素浓度的改变大于预期,木质素基于荧光特性的替代的灵敏性可以作为选择最详实样本作为详细木质素表征的有用工具。经过足够的校准,类似的模型可以显著扩大我们研究复杂地表水系统溶解有机物的来源和转化过程。 前言 溶解有机物的生物地球化学特征已经成为全球碳循环的重要组成部分,它是水生环境中食物网的一部分,这同时也在全球水环境中转移了显著数量的碳损失。影响溶解有机物循环的进程与DOM结构和DOM库中单个分子结构的活性密切相关。生物标志物分析技术(比如木质素的氧化铜氧化法)是研究DOM 的重要工具,因为这些技术能够提供DOM的分子世界,这对理解DOM的反应性是至关重要的。 木质素能够提供维管植物和陆源有机物的重要来源信息,同时还有能力获取成岩历史。利用对溶解性木质素的测定表明陆源有机物只是海洋DOM库中的微小部分,尽管从河流流入到海洋中的DOM实际大于海洋DOM库的平均交换量。

环境水文地球化学 第一篇 第一次作业

1.地下水的主要组成成分是什么? 答:地下水是组成成分复杂的溶液,近八十种天然元素以离子、原子、分子、络合物和化合物等形式存在于地下水中,有些已溶解和活动于地下水中的有机质、气体、微生物和元素同位素的形式存在。这些可溶物质主要是岩石风化过程中,经过水文地球化学和生物地球化学的迁移、搬运到水中的地壳矿物质。 地下水中溶解的无机物主要组分(即浓度>5mg/L)为:HCO3-、Cl-、SO42-、Na+、K+、Ca+、Mg2+、SiO2。占地下水中无机物成分含量的90-95%,决定着地下水的化学类型。 地下水中有机组分种类繁多,主要有:氨基酸、蛋白质、糖(碳水化合物)、葡萄糖、有机酸、烃类、醇类、醚类、羧酸、苯酚衍生物、胺等。各种不同形式的有机物主要由C、H、O组成,这三种元素占全部有机物的98.5%,另外还存在有少量的N、P、K、Ca等元素。 地下水中常见溶解气体有:O2、CO2、CH4、N2、H2以及惰性气体Ar、Kr、He、Ne、Xe等。 微生物成分主要有三种类型:细菌、真菌和藻类。微生物在地下水化学成分的形成和演变过程中起着重要的作用。地下水中存在各种不同的细菌。有在氧化环境中的硝化菌、硫细菌、铁细菌等喜氧细菌;有在还原环境的脱氮菌、脱硫菌、甲烷生成菌、氨生成菌等。这些微生物活动可以发生脱硝酸作用、脱硫酸作用、甲烷生成作用和氨生成作用等还原作用,也可以发生硫酸根生成、硝酸根生成和铁的氧化等作用等,从而导致地下水化学成分的相应变化。 2.举例论述络合作用有何环境意义? 答:地下水中大多数金属能与配体形成各种各样的络合物,这些络合物可能是电中性的,也可能是带正电或者带负电。金属络合作用对环境的意义在于:络合物的溶解度是影响金属形态迁移的重要因素;重金属离子与不同配体的配位作用,改变其化学形态和生化毒性,如铝离子(毒性很强)、有机铝络合物(毒性很弱)的生物毒性相差很大;络合作用影响络合剂的性质,如配位体的氧化还原性、脱羧及水解等;有些络合物可以通过化学絮凝、活性炭吸附或离子交换等方法容易地从水中去除。但有些重金属形成螯合物后很难用常规办法去除,影响水处理中对重金属的排除效率;络合作用会加速金属的腐蚀,比如氯离子和氨的作用。 3.胶体的稳定性和ζ电位有什么关系?研究胶体的ζ电位有何环境意义? 答:ζ电位是胶体稳定性的一个重要指标,因为胶体稳定是与离子键的经典排斥力密切相关的。ζ电势的降低会使静电排斥力减小,致使粒子之间范德华力占优势,从而引起胶体的聚沉难和破坏。故研究ζ电势的变化规律是十分重要的。 4.地球化学垒和水文地球化学分带形成的原因是什么? 答:地球化学垒是正在表生带内,因为短间隔内化学元素迁徙环境显然变迁,迁徙强度突然削弱而招致某些化学元素浓集的地段;水文地球化学分带是地下水化学成分和水中总溶解固体沿着水平或者垂直方向呈现有规律的带状分布和变化的现象。故它们共同形成成因都是地下

环境地球化学知识点教程文件

环境地球化学知识点

概念题 绪论(1/6) 环境问题由于人类活动或自然活动作用于人们周围的环境所引起的环境质量变化,以及这种变化反过来对人类生产、生活和健康产生的影响。 环境容量人类生存和自然环境在不致受害的前提下,环境可能容纳污染物质的最大负荷量。 环境要素构成人类环境整体的各个独立的、性质不同的而又服从整体演化规律的基本因素。 环境背景值在未受人类活动干扰的情况下,各环境要素(大气、水、土壤、生物、光、热等)的物质组成或能量分布的正常值。 环境质量在一具体环境内,环境的某些要素或总体对人类或社会经济发展的适宜程度。 环境质量评价按照一定的评价标准和评价方法对一定区域范围内的环境质量进行说明、评定和预测。 第一章岩石圈环境地球化学(0/0) 第二章土壤环境地球化学(1/9) 土壤覆盖在地球陆地表面和浅水水域底部,具有肥力,能够生长植物的疏松物质表层。

土壤圈覆盖于地球陆地表面和浅水域底部土壤所构成的一种连续体或覆盖层及其相关的生态环境系统。 成土过程地壳表面的岩石风化体及其搬运的沉积体,受其所处环境因素的作用,形成具有一定剖面形态和肥力特征的土壤的历程。 土壤酸度土壤酸性表现的强弱程度,以pH表示。 植物营养植物体从外界环境中吸取其生长发育所需的养分,用以维持其生命活动。 土壤污染进入土壤的污染物积累到一定程度,引起土壤质量下降、性质恶化的现象。 土壤净化污染物在土壤中,通过挥发、扩散、吸附、分解等作用,使土壤污染物浓度逐渐降低,毒性减少的过程。 土壤质量评价单一环境要素的环境现状评价,是根据一定目的和原则,按照一定的方法和标准,对土壤是否污染及污染程度进行调查、评估的工作。土壤中微量元素动植物体内含量很少、需要量很少的必需元素。 第三章水圈环境地球化学(2/11) 水圈地球表面或接近地球表面各类水体的总称。

水文地球化学分析

地下水受到污染后的修复技术研究 概况 我国的环境污染问题比较突出,生态环境脆弱,经济的发展使废物的排放量不断增大,使土壤和地下水的污染日益加重。如废水的排放、工业废渣和城市垃圾填埋场的泄漏、石油和化工原料的传输管线、储存罐的破损、农业灌溉等都有可能造成土壤和地下水的污染,使本来就紧张的水资源短缺问题更加严重。特别是北方城市,地下水在供水中占有很重要的地位,地下水的污染加剧了水资源的短缺,所以地下水污染的研究工作迫在眉睫。随着经济的快速发展,经济实力的不断提升,对地下水污染开展调查、进行污染控制甚至治理已经逐渐成为可能。地下水污染的控制与修复是我们面临的新的、极具挑战性的重要课题,需要进行多学科交叉和联合攻关。水的污染问题已经引起了人们的普遍关注,长期以来,我国把主要的注意力和研究、治理工作集中在地表水的污染,国家投入了大量的人力和物力进行地表水污染的防治,取得了一定的成效。而地下水污染由于其隐蔽性、复杂性、难以控制和治理的特性,以及治理、修复费用巨大,地下水污染的修复在我国尚未展开。近年来,随着一些突发地下水污染事件的发生,地下水污染问题也越来越引起人们的关注,国家有关部门也开始把地下水污染研究列为工作内容。如国土资源部已开始进行全国地下水污染的大调查;国家环保总局和国土资源部联合开展了“全国地下水污染防治规划”;在不同层次的科研项目中也出现了地下水污染控制和治理方面的课题。含水层的污染是一个缓慢的过程,污染具有累积和滞后效应,有

时在泄漏发生数年、甚至数十年后才会发现,如大多数的垃圾填埋场渗滤液泄漏导致的地下水污染等。所以,首先需要进行污染源的辨析、污染途径的分析、污染物在地下的迁移转化机理研究。在此基础上,开展地下水污染的控制、污染的修复工作。 地下水污染源成因分析 按照污染物产生的类型,可以将地下水污染源分为:工业污染源、农业污染源、生活污染源和自然污染源。 工业污染源 工业污染源主要指未经处理的工业“三废”,即废气、废水和废渣。工业废气如二氧化硫、二氧化碳、氮氧化物等物质会对大气产生严重的一次污染,而这些污染物又会随降雨落到地面,随地表径流下渗对地下水造成二次污染,未经处理的工业废水如电镀工业废水、工业酸洗污水、冶炼工业废水、石油化工有机废水等有毒有害废水直接流入或渗入地下水中,造成地下水污染;工业废渣如高炉矿渣、钢渣、粉煤灰、硫铁渣、电石渣、赤泥、洗煤泥、硅铁渣、矿场尾矿及污水处理厂的淤泥等,由于露天堆放或地下填埋隔水处理不合格,经风吹、雨水淋滤,其中的有毒有害物质随降水直接渗入地下水,或随地表径流往下游迁移过程下渗至地下水中,形成地下水污染。 农业污染源 农业用水占全部用水量的70%以上,污染的影响面广泛。一是过量

地球化学调查样品分析

FHZDZDQHX0001 地球化学调查样品分析 F-HZ-DZ-DQHX-0001 地球化学调查样品分析 地球化学是研究化学元素在矿物、岩石、土壤、水和大气圈中的分布和含量以及这些元素在自然界的转移规律。勘查地球化学是地球化学在地质找矿工作中的具体运用,目前地球化学调查已成为地质勘查的重要组成部分。地球化学调查主要采用岩石、土壤、水系沉积物、水化学、生物(植被)、气体等地球化学调查方法,当前广泛应用的是岩石、土壤和水系沉积物三种地球化学调查方法。 我国属于发展中国家,除内地和沿海地区外,地质工作程度较低。内地和沿海地区除冲积平原和黄土覆盖区外,一般水系较发育,因此采用水系沉积物调查方法,可以低成本、高效率地扫视大面积范围内元素地球化学分布情况,从而发现潜在的矿化异常,取得区域地球化学填图和地质勘查效果。边远地区由于地质条件较复杂,常根据不同地球化学景观,综合应用相适应的地球化学调查方法。结合我国的实际情况,为便于资料对比和元素地球化学拼图,常使用水系沉积物为主,岩石和土壤为辅的地球化学调查方法。 我国勘查地球化学调查工作,五十年代开始以土壤的1/20万金属量测量方式开展,由于剖面间距大(2km),对矿床的遥测能力差,而且元素受雨淋流失严重,再加上当时分析技术水平不高,因此难以取得良好效果。1978年地质矿产部确定在全国开展水系沉积物的1/20万区域地球化学调查(区域化探扫面),由于水系沉积物采样点的均匀布置及其形成特征,调查方式较能适应地质和表生环境条件的变化,可反映上游汇水盆地中元素的平均含量,再加上分析化学技术的进步,元素分析方法的检出限、精密度和准确度有较大提高,因此地质效果较显著,特别是包含潜水的运移,对寻找隐伏矿体有明显效果。在1/20万区域地球化学调查基础上,全国发现了大量的元素地球化学异常,通过筛选,选择有利地段开展1/5万区域地球化学调查(普查化探),缩小靶区,对异常进行验证和检查,直接取得地质找矿效果。进入21世纪后,人口、资源、环境的可持续发展已成为全球的发展主题,因此在新一轮国土资源大调查中,提出在全国平原覆盖区(黄土覆盖区)开展多目标区域地球化学调查,为农业、环境、国土规划、生态和基础地质等研究提供综合性基础地球化学资料。 元素在自然界中的活动规律与其本身的原子结构有密切关系,研究元素的化学特性及其在自然界中的共生组合关系,对发现元素在不同区域内的分布规律以及与区域成矿研究密切相关的区域地球化学研究具有一定的相关性,因此合理选择地球化学元素将反映区域地球化学调查的成果特征。1/20万区域地球化学调查的第一批39个元素,是在权衡当前勘查地球化学阶段性地质勘查的作用大小和研究深度,结合当前分析化学技术水平,并参照国外研究现状而作出的适当选择。1/5万区域地球化学调查的元素,一般选择与异常有关的几种或十几种特定元素,可根据地质体的岩性、矿性和元素的地球化学组合性等因素确定。平原覆盖区(黄土覆盖区)多目标区域地球化学调查,根据农业、环境、生态、地质等领域的需求,规定54个必测元素(项目),并参照地区特征,提出21项元素有效态分析、14项元素有机结合态分析以及6项有机污染物分析,是一项化学元素在土壤中的物理、化学和生物迁移转化过程的综合性研究,为国民经济和社会的可持续发展服务。随着分析化学技术和现代分析仪器的发展,许多痕量、次痕量元素分析方法的检出限、精密度和准确度近年来有极大的提高,中国地质调查局于1999年组织76个元素的区域地球化学调查(1/5万组合样),已在西南四省区开始试点,为地球化学填图、资源评估、环境监控、生命演化等研究提供基础资料。 区域地球化学调查样品分析的特点是要求分析元素多、样品数量多,要求分析方法检测限低、精密度好、准确度高,还要求分析周期短、分析效率高、分析成本低。因此在分析方法的 1

相关文档
最新文档