导数和微分产生的背景

导数和微分产生的背景
导数和微分产生的背景

从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产生了。公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。”这些都是朴素的、也是很典型的极限概念。

到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。

十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。

十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。

牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。

牛顿在1671年写了《流数法和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。他把连续变量叫做流动量,把这些流动量的导数叫做流数。牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。

德国的莱布尼茨是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。就是这样一片说理也颇含糊的文章,却有划时代的意义。他以含有现代的微分符号和基本微分法则。1686年,莱布尼茨发表了第一篇积分学的文献。他是历史上最伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。现在我们使用的微积分通用符号就是当时莱布尼茨精心选用的。

微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。

前面已经提到,一门科学的创立决不是某一个人的业绩,他必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的。微积分也是这样。

不幸的事,由于人们在欣赏微积分的宏伟功效之余,在提出谁是这门学科的创立者的时候,竟然引起了一场悍然大波,造成了欧洲大陆的数学家和英国数学家的长期对立。英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。

其实,牛顿和莱布尼茨分别是自己独立研究,在大体上相近的时间里先后完成的。比较特殊的是牛顿创立微积分要比莱布尼词早10年左右,但是整是公开发表微积分这一理论,莱布

尼茨却要比牛顿发表早三年。他们的研究各有长处,也都各有短处。那时候,由于民族偏见,关于发明优先权的争论竟从1699年始延续了一百多年。

应该指出,这是和历史上任何一项重大理论的完成都要经历一段时间一样,牛顿和莱布尼茨的工作也都是很不完善的。他们在无穷和无穷小量这个问题上,其说不一,十分含糊。牛顿的无穷小量,有时候是零,有时候不是零而是有限的小量;莱布尼茨的也不能自圆其说。这些基础方面的缺陷,最终导致了第二次数学危机的产生。

直到19世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认真研究,建立了极限理论,后来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为了微积分的坚定基础。才使微积分进一步的发展开来。

任何新兴的、具有无量前途的科学成就都吸引着广大的科学工作者。在微积分的历史上也闪烁着这样的一些明星:瑞士的雅科布·贝努利和他的兄弟约翰·贝努利、欧拉、法国的拉格朗日、科西……

欧氏几何也好,上古和中世纪的代数学也好,都是一种常量数学,微积分才是真正的变量数学,是数学中的大革命。微积分是高等数学的主要分支,不只是局限在解决力学中的变速问题,它驰骋在近代和现代科学技术园地里,建立了数不清的丰功伟绩。

导数和微分的概念

一元函数微分学 §1 导数和微分的概念 基本概念 1. 导数定义 00000)()(lim lim )()(lim 0x x x f x f x y x x f x x f x x x x --=??=?-?+→→?→? 0|)()(00x x dx dy x y x f =='='= 几种极限形式都要掌握 函数在某点可导即上述极限存在,极限存在?左右极限都存在且相等,左极限为左导,右极限为右导, )(lim 00x f x y x --→?'=??, )(lim 00x f x y x ++→?'=?? 导数定义是非常重要的概念,一定要灵活掌握。 2. 导函数)(x f ',dx dy . f (x )在(a , b )可导, f (x )在[a , b ]可导 3. 可导与连续的关系 可导一定连续,但连续不一定可导(如函数||x y =在x =0点处连续,但是不可导) 4. 导数的几何意义 切线方程:))((000x x x f y y -'=-; 法线方程:)() (1000x x x f y y -'- =- 0)(0≠'x f , 5. 微分的定义

微分的几何意义 6. 微分与导数的关系 )(x f 在x 处可微?)(x f 在x 处可导,且dx x f dy )('= 同时 dx x f dy x x )(|00'==。 §2 导数与微分的计算 基本概念 1. 基本初等函数的导数、微分公式(书159页,166页) 2. 导数(微分)四则运算公式 )()())()((x g x f x g x f '±'='±, )()()()())()((x g x f x g x f x g x f '+'=', 特别地 )())((x f k x kf '=', ) ()()()()())()((2x g x g x f x g x f x g x f '-'=' 特别地 ) ()())(1(2x f x f x f '-='。 后面两个公式不要记错。 3. 复合函数的求导法则 如何正确运用好复合函数求导法则(必须明确函数的复合过程),并且应到最后一层复合 4.高阶导数(计算同一阶导数)。

浅谈新课标全国卷导数命题背景

浅谈新课标全国卷导数命题背景. 近几年高考题的导数压轴经常以微积分里的重要定理作为背景,但纵观命题人给的答案,很多是所谓结合高中知识巧妙构造等等,颇有把考生玩弄于股掌之间的味道.结合高等数学部分容,我们来研究下近几年高考真题的本质: 例1.(2014卷)已知函数()cos sin ,[0,]2 f x x x x x π =-∈, (1)求证:()0f x ≤ (2)若sin x a b x < <在(0,)2π上恒成立,求a 的最大值与b 的最小值 第(1)问很简单,求导后容易得到结论 第(2)问我们令()sin π02x g x x x ?? =,∈, ??? , 则()2 cos sin x x x g x x ?-'=,由⑴知,()0g x '≤, 故()g x 在π02??, ??? 上单调递减,从而()g x 的最小值为π2 2πg ??= ???, 故2 π a ≤,a 的最大值为2π. 接下来b 最大值肯定在x 等于0处取到,代入x =0,我们发现出现了0 0的情况,只用初等数学我们无法求解,其实本题就用到了微积分里两个重要极限之一0sin x lim 1x x →=,接下来我 们来证明一下这个结论 令 ()f x =sinx ,由导数定义得()f x '=0sin lim x x x x x x →+Δ(+Δ) (Δ)-=cosx , 那么 ()0f '=0sin lim 0-0 x x x →+Δ(0+Δ)(Δ)=0sin x lim x x →=0lim x →cosx =1,那么显然第(2)小问里b 的最小值就是1 评注:本题结合了极限0sin x lim 1x x →=进行命制,并且它的证明过程就是高中数学课本里对导 数的定义,很多老师为了方便讲解直接跳过该定义讲解导数几何意义,笔者认为这是一个很 大的失误,所以在复习时以前没有着重讲解的定义需要额外关心,考场上遇到所谓冷门知识时才能应付自如,游刃有余.

最新导数和微分的概念

导数和微分的概念

一元函数微分学 §1 导数和微分的概念 基本概念 1.导数定义 ?Skip Record If...? ?Skip Record If...? 几种极限形式都要掌握 函数在某点可导即上述极限存在,极限存在?Skip Record If...?左右极限都存在且相等,左极限为左导,右极限为右导, ?Skip Record If...?, ?Skip Record If...? 导数定义是非常重要的概念,一定要灵活掌握。 2.导函数?Skip Record If...?,?Skip Record If...?. f(x)在(a, b)可导, f(x)在[a, b]可导 3.可导与连续的关系 可导一定连续,但连续不一定可导(如函数?Skip Record If...?在x=0点处连续,但是不可导) 4.导数的几何意义 切线方程:?Skip Record If...?; 法线方程:?Skip Record If...? ?Skip Record If...?, 5.微分的定义 微分的几何意义 6.微分与导数的关系

?Skip Record If...?在x处可微?Skip Record If...??Skip Record If...?在x处可导,且?Skip Record If...? 同时 ?Skip Record If...?。 §2 导数与微分的计算 基本概念 1.基本初等函数的导数、微分公式(书159页,166页) 2.导数(微分)四则运算公式 ?Skip Record If...?, ?Skip Record If...?, 特别地 ?Skip Record If...?, ?Skip Record If...? 特别地 ?Skip Record If...?。 后面两个公式不要记错。 3.复合函数的求导法则 如何正确运用好复合函数求导法则(必须明确函数的复合过程),并且应到最后一层复合 4.高阶导数(计算同一阶导数)。 §3 中值定理 基本概念

(完整版)导数有关知识点总结、经典例题及解析、近年高考题带答案

导数及其应用 【考纲说明】 1、了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。 2、熟记八个基本导数公式;掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数。 3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。 【知识梳理】 一、导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。如果当0→?x 时,x y ??有极限,我们 就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明:

(1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函数在点x 0处不可导, 或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 二、导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。 三、几种常见函数的导数 ①0;C '= ②() 1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '=⑥()ln x x a a a '=; ⑦ ()1ln x x '= ; ⑧()1 l g log a a o x e x '=. 四、两个函数的和、差、积的求导法则 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ( .)' ''v u v u ±=± 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数, 即: .)('''uv v u uv += 若C 为常数,则' ''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu = 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方: ? ?? ??v u ‘=2' 'v uv v u -(v ≠0)。 形如y=f [x (?])的函数称为复合函数。复合函数求导步骤:分解——求导——回代。法则:y '|x = y '|u ·u '|x 五、导数应用 1、单调区间: 一般地,设函数)(x f y =在某个区间可导,

高中数学总结导数知识梳理

导数 一、导数的概念 1.导数的背景 (1)切线的斜率;(2)瞬时速度;(3)边际成本。 如一物体的运动方程是,其中的单位是米,的单位是秒,那么物体在 时的瞬时速度为_____(答:5米/秒) 2.导数的定义 如果函数在开区间(a,b)内可导,对于开区间(a,b)内的每一个,都对应着一个导数,这样在开区间(a,b)内构成一个新的函数,这一新的函数叫做 在开区间(a,b)内的导函数,记作,导函数也简称为导数。 3、求在处的导数的步骤: (1)求函数的改变量; (2)求平均变化率; (3)取极限,得导数。 4、导数的几何意义: 函数在点处的导数的几何意义,就是曲线在点处的切线的斜率,即曲线在点处的切线的斜率是,相应地切线的 方程是。 特别提醒: (1)在求曲线的切线方程时,要注意区分所求切线是曲线上某点处的切线,还是过某 点的切线:曲线上某点处的切线只有一条,而过某点的切线不一定只有一条,即使此点在曲线上也不一定只有一条; (2)在求过某一点的切线方程时,要首先判断此点是在曲线上,还是不在曲线上,只 有当此点在曲线上时,此点处的切线的斜率才是。 比如:

(1)P 在曲线上移动,在点P 处的切线的倾斜角为α,则α的取值范围是 ______(答:); (2)直线是曲线的一条切线,则实数的值为_______(答:-3 或1); (3)已知函数(为常数)图像上处的切线与的夹角为,则点的横坐标为_____(答:0 或); (4)曲线在点处的切线方程是______________(答:);(5)已知函数,又导函数的图象与轴交于。①求的值;②求过点的曲线的切线方程 (答:①1;②或)。[1] 二、相关背景 从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产 生了。 公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。作为微分学基础的极限理 论来说,早在古代以有比较清楚的论述。比如我国的庄周所著的《庄子》一书的“天下篇” 中,记有“一尺之棰,日取其半,万世不竭”。三国时期的刘徽在他的割圆术中提到“割之 弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。”这些都是朴素的、也是很典型的极限概念。 到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。 归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求 即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最 小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一 个体积相当大的物体作用于另一物体上的引力。 十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的 研究工作,如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普 勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。 十七世纪下半叶,在前人工作的基础上,英国大科学家ㄈ牛顿和德国数学家莱布尼茨分 别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们

导数的背景

导数的背景(5月4日) 教学目标 理解函数的增量与自变量的增量的比的极限的具体意义 教学重点 瞬时速度、切线的斜率、边际成本 教学难点 极限思想 教学过程 一、导入新课 1. 瞬时速度 问题1:一个小球自由下落,它在下落3秒时的速度是多少? 析:大家知道,自由落体的运动公式是22 1gt s =(其中g 是重力加速度). 当时间增量t ?很小时,从3秒到(3+t ?)秒这段时间内,小球下落的快慢变化不大. 因此,可以用这段时间内的平均速度近似地反映小球在下落3秒时的速度. 从3秒到(3+t ?)秒这段时间内位移的增量: 222)(9.44.2939.4)3(9.4)3()3(t t t s t s s ?+?=?-?+=-?+=? 从而,t t s v ?+=??=- -9.44.29. 从上式可以看出,t ?越小,t s ??越接近29.4米/秒;当t ?无限趋近于0时,t s ??无限趋近于29.4米/秒. 此时我们说,当t ?趋向于0时,t s ??的极限是29.4. 当t ?趋向于0时,平均速度t s ??的极限就是小球下降3秒时的速度,也叫做瞬时速度. 一般地,设物体的运动规律是s =s (t ),则物体在t 到(t +t ?)这段时间内的平均速度为 t t s t t s t s ?-?+=??)()(. 如果t ?无限趋近于0时,t s ??无限趋近于某个常数a ,就说当t ?趋向于0时,t s ??的极限为a ,这时a 就是物体在时刻t

的瞬时速度. 2. 切线的斜率 问题2:P (1,1)是曲线2x y =上的一点,Q 是曲线上点P 附近的一个点,当点Q 沿曲线逐渐向点P 趋近时割线PQ 的斜率的变化情况. 析:设点Q 的横坐标为1+x ?,则点Q 的纵坐标为(1+x ?)2,点Q 对于点 P 的纵坐标的增量(即函数的增量)22)(21)1(x x x y ?+?=-?+=?, 所以,割线PQ 的斜率x x x x x y k PQ ?+=??+?=??=2)(22. 由此可知,当点Q 沿曲线逐渐向点P 接近时,x ?变得越来越小,PQ k 越来越接近2;当点Q 无限接近于点P 时,即x ?无限趋近于0时,PQ k 无限趋近于 2. 这表明,割线PQ 无限趋近于过点P 且斜率为2的直线. 我们把这条直线叫做曲线在点P 处的切线. 由点斜式,这条切线的方程为:12-=x y . 一般地,已知函数)(x f y =的图象是曲线C ,P (00,y x ),Q (y y x x ?+?+00,)是曲线C 上的两点,当点Q 沿曲线逐渐向点P 接近时,割线PQ 绕着点P 转动. 当点Q 沿着曲线无限接近点P ,即x ?趋向于0时,如果割线PQ 无限趋近于一个极限位置PT ,那么直线PT 叫做曲线在点P 处的切线. 此时,割线PQ 的斜率x y k PQ ??= 无限趋近于切线PT 的斜率k ,也就是说,当x ?趋向于0时,割线PQ 的斜率x y k PQ ??=的极限为k. 3. 边际成本 问题3:设成本为C ,产量为q ,成本与产量的函数关系式为103)(2+=q q C ,我们来研究当q =50时,产量变化q ?对成本的影响.在本问题中,成本的增量为:222)(3300)10503(10)50(3)50()50(q q q C q C C ?+?=+?-+?+=-?+=?.

偏导数与全导数-偏微分与全微分的关系

1。偏导数 代数意义 偏导数是对一个变量求导,另一个变量当做数 对x求偏导的话y就看作一个数,描述的是x方向上的变化率 对y求偏导的话x就看作一个数,描述的是y方向上的变化率 几何意义 对x求偏导是曲面z=f(x,y)在x方向上的切线 对y求偏导是曲面z=f(x,y)在x方向上的切线 这里在补充点。就是因为偏导数只能描述x方向或y方向上的变化情况,但是我们要了解各个方向上的情况,所以后面有方向导数的概念。 2。微分 偏增量:x增加时f(x,y)增量或y增加时f(x,y) 偏微分:在detax趋进于0时偏增量的线性主要部分 detaz=fx(x,y)detax+o(detax) 右边等式第一项就是线性主要部分,就叫做在(x,y)点对x的偏微分 这个等式也给出了求偏微分的方法,就是用求x的偏导数求偏微分 全增量:x,y都增加时f(x,y)的增量 全微分:根号(detax方+detay方)趋于0时,全增量的线性主要部分 同样也有求全微分公式,也建立了全微分和偏导数的关系 dz=Adx+Bdy 其中A就是对x求偏导,B就是对y求偏导 希望楼主注意的是导数和微分是两个概念,他们之间的关系就是上面所说的公式。概念上先有导数,再有微分,然后有了导数和微分的关系公式,公式同时也

指明了求微分的方法。 3.全导数 全导数是在复合函数中的概念,和上面的概念不是一个系统,要分开。 u=a(t),v=b(t) z=f[a(t),b(t)] dz/dt 就是全导数,这是复合函数求导中的一种情况,只有这时才有全导数的概念。 dz/dt=(偏z/偏u)(du/dt)+(偏z/偏v)(dv/dt) 建议楼主在复合函数求导这里好好看看书,这里分为3种情况。1.中间变量一元就是上面的情况,才有全导数的概念。2.中间变量有多元,只能求偏导 3.中间变两有一元也有多元,还是求偏导。 对于你的题能求对x的偏导数,对y的偏导数,z的全微分,不能求全导数 如果z=f(x^2,2^x) 只有这种情况下dz/dx才是全导数! 偏导数就是 在一个范围里导数,如在(x0,y0)处导数。 全导数就是定义域为R的导数,如在实数内都是可导的 在数学中,一个多变量的函数的偏导数是它关于其中一个变量的导数,而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏导数在向量分析和微分几何中是很有用的。 函数f关于变量x的偏导数写为或。偏导数符号是圆体字母,区别于全导数符号的正体d。这个符号是阿德里安-马里·勒让德介入的并在雅可比的重新介入后

导数与微分练习题答案

高等数学练习题 第二章 导数与微分 第一节 导数概念 一.填空题 1.若)(0x f '存在,则x x f x x f x ?-?-→?) ()(lim 000 = )(0x f '- 2. 若)(0x f '存在,h h x f h x f h ) ()(lim 000 --+→= )(20x f ' . 000 (3)() lim x f x x f x x ?→+?-?=03()f x '. 3.设20-=')(x f , 则=--→)()2(lim )000 x f x x f x x 4 1 4.已知物体的运动规律为2 t t s +=(米),则物体在2=t 秒时的瞬时速度为5(米/秒) 5.曲线x y cos =上点( 3π,2 1 )处的切线方程为03 123=- -+π y x ,法线方程为 03 22332=-+ -π y x 6.用箭头?或?表示在一点处函数极限存在、连续、可导、可微之间的关系, 可微 ? 可导 <≠ ? | 连续 <≠ ? 极限存在。 二、选择题 1.设0)0(=f ,且)0(f '存在,则x x f x ) (lim 0→= [ B ] (A ))(x f ' ( B) )0(f ' (C) )0(f (D) 2 1 )0(f 2. 设)(x f 在x 处可导,a ,b 为常数,则x x b x f x a x f x ??--?+→?) ()(lim 0 = [ B ] (A ))(x f ' ( B) )()(x f b a '+ (C) )()(x f b a '- (D) 2 b a +)(x f ' 3. 函数在点0x 处连续是在该点0x 处可导的条件 [ B ] (A )充分但不是必要 (B )必要但不是充分 (C )充分必要 (D )即非充分也非必要 4.设曲线22 -+=x x y 在点M 处的切线斜率为3,则点M 的坐标为 [ B ] (A )(0,1) ( B) (1, 0) (C) ( 0,0) (D) (1,1)

导数与微分的关系

导数与微分的关系 宁小青 我们知道一个函数在某点可导和可微是等价的,大部分高等数学、经济数学和数学分析课本中都是先引进导数的概念,再引进微分的概念,到底导数和微分这两个概念,哪个概念产生在前、哪个概念产生在后呢? 一、微分概念的导出背景 当一个函数的自变量有微小的改娈时,它的因变量一般说来也会有一个相应的改变。微分的原始思想在于去寻找一种方法,当因变量的改变也是很微小的时候,能够简便而又比较精确地估计出这个改变量。 我们来看一个简单的例子: 维持物体围绕地球作永不着地(理论上)的飞行所需要的最低速度称为第一宇宙速度。在中学里,利用计算向凡加速度的办法已经求出这种速度约为7.9千米/秒,现在我们改用另一种思路去推导它。 设卫星当前时刻在地球表面附近的A点沿着水平方向飞行,假如没有外力影响的话,那么它在一秒种后本应到达B点,但事实上它要受到地球的引力,因而实际到达的并非是B 点,而是C点,BC=4.9米是自由落体在重力加速度的作用下,第一秒中所走过的距离。 容易看出,若C点与地心O的距离与A事点到O的距离是相等的,那么由运动的独立性原理,就可以推断出卫星在沿地球的一个同心圆轨道运行,也就是作环绕地球的飞行了。因此,卫星应具有最小每秒飞行速度恰好在线段AB的长度。△OAB是直角三角形,OA和OC可近似的取为地球的平均半径6371千米,也就是6371000米,于是由勾股定理 显然就这样按上式去计算是不可取的——这将导致两个量级的数在直接相减,工作量大不说,在字长较短的计算机上,还可能产生较大的误差。 利用乘法公式 可将上式改为 由于,因此这一项与这一项想比可以忽略不计,于是可以把计算简化为 由此计算出千米。 这就是说,卫星的速度至少要达到每秒7.9千米才能维持其围绕地球的飞行,此即所要求的第一宇宙速度。 上面所计算的,实际上就是函数在处,自变量出现了一个微小的改变量之后,函数值的相应改变量4.9。然而在计算过程中,我们并没有完全精确地去算

导数与微分习题及答案

第二章 导数与微分 (A) 1.设函数()x f y =,当自变量x 由0x 改变到x x ?+0时,相应函数的改变量 =?y ( ) A .()x x f ?+0 B .()x x f ?+0 C .()()00x f x x f -?+ D .()x x f ?0 2.设()x f 在0x 处可,则()() =?-?-→?x x f x x f x 000 lim ( ) A .()0x f '- B .()0x f -' C .()0x f ' D .()02x f ' 3.函数()x f 在点0x 连续,是()x f 在点0x 可导的 ( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 4.设函数()u f y =是可导的,且2x u =,则 =dx dy ( ) A .()2x f ' B .()2x f x ' C .()22x f x ' D .()22x f x 5.若函数()x f 在点a 连续,则()x f 在点a ( ) A .左导数存在; B .右导数存在; C .左右导数都存在 D .有定义 6.()2-=x x f 在点2=x 处的导数是( ) A .1 B .0 C .-1 D .不存在 7.曲线545223-+-=x x x y 在点()1,2-处切线斜率等于( ) A .8 B .12 C .-6 D .6 8.设()x f e y =且()x f 二阶可导,则=''y ( ) A . ()x f e B .()()x f e x f '' C .()()()[]x f x f e x f ''' D .()()[](){} x f x f e x f ''+'2 9.若()???≥+<=0,2sin 0 ,x x b x e x f ax 在0=x 处可导,则a ,b 的值应为( ) A .2=a ,1=b B . 1=a ,2=b C .2-=a ,1=b D .2=a ,1-=b

导数与微分

导数和微分 问题 1.为什么用导数能研究函数的性态? 答:应用导数之所以研究函数的性态是因为函数 () f x 在点 0 x 导数 00 0 0 0 0 ()() '()lim lim x x x f x f x y f x x x x ?? - D == D - 本身蕴含了函数 () f x 在点 0 x 最本质的属性.为了说明这个事实,我们首先从比数 0 0 ()() f x f x y x x x - D = D - 说起,比数 y x D D 对研究函数 () f x 在点 0 x 的性态有什么意义呢? 我们知道,两个量a 与b 之比数 a k b = (或a kb = )是一个抽象的数,称为率。 在数学中有很多的率。例如,圆周率,离心率,斜率,曲率等。在社会科学中, “率”就更多了,例如,增长率,出生率,利率等。率这个抽象的数k 给出了两 个量a 与b 之间的倍数关系,即a 与b 的k 倍,它能刻划事物内在的规律和属性。 例如,椭圆 22 22 1 x y a b += 的离心率 22 (01) a b e e a - = £< 描绘了椭圆的扁圆的程度:e 愈大,椭圆愈扁;e 愈小,椭 圆愈近似于圆。 由此可见, 椭圆的离心率e 对认识椭圆的几何性态是十分必要的。 这就是几何性质定量化,是“以数表性”的实例。同样,导数这个“率”也能够 以数表性(函数的性态),而应用的范围更为广泛。 设函数 () y f x = 在点 0 x 可导,任取一点 x ,有自变量的改变量 0 , x x x D =- 相应函数 () y f x = 的改变量 0 ()(). y f x f x D =- 两者的比数为 0 0 ()() '. f x f x y k x x x - D == D - 用分析的语言说, ' k 是函数 () y f x = 在 0 x 附近的平均变化率。用几何的语言说, ' k 是曲线 () y f x = 过点 00 (,()) x f x 与 (,()) x f x 的割线斜率。 当 x 很靠近 0 x 时 (或 x D 很小时),平均变化率 ' k 能够近似地描绘函数 () y f x = 在点 0 x 附近的性态。例如,

导数与微分导数概念

第二章 导数与微分 第一节 导数概念 1.x x x y = ,求y ' 2.求函数y =2tan x +sec x -1的导数y ' 3. x x y 1010 +=,求y ' 4. 求曲线y =cos x 上点)2 1 ,3(π处的切线方程和法线方程式. 5.3ln ln +=x e y ,求y ' 6.已知? ??<-≥=0 0 )(2x x x x x f 求f +'(0)及f -'(0), 又f '(0)是否存在? 7.设????? =≠=0 ,00 ,1sin )(x x x x x f ,用定义证明)(x f 在点0=x 处连续,但不可导。

8. 证明: 双曲线xy =a 2上任一点处的切线与两坐标轴构成的三角形的面积都等于2a 2 . 9.讨论函数y =|sin x |在x =0处的连续性与可导性: 10.设函数? ??>+≤=1 1 )(2x b ax x x x f ,为了使函数f (x )在x =1处连续且可导, a , b 应取什么值? 第二节 函数的求导法则 1.设()22arcsin x y =,求y ' 2.求函数y =sin x ?cos x 的导数y ' 3.求函数y =x 2ln x 的导数y '

4.求函数x x y ln =的导数y ' 5.求函数3ln 2+=x e y x 的导数y ' 6. )(cos )(sin 2 2x f x f y +=,求y ' 7. n b ax f y )]([+=,求y ' 8. ) ()(x f x e e f y =,求y ' 9. x x x y arcsin 12 +-=,求y ' 10.求函数y =x 2ln x cos x 的导数y ' 第三节 高阶导数 1. x x x y ln 1 arctan +=,求y ''

导数与微分知识点

第二章 导数与微分 一、导数 1.导数的定义: 由“变速直线运动的瞬时速度”、“平面曲线的切线斜率”引出 设函数()x f y =在点0x 的某领域内有定义,自变量x 在0x 处有增量x ?,相应地函数增量()()00x f x x f y -?+=?。如果极限 ()()x x f x x f x y x x ?-?+=??→?→?0000lim lim 存在,则称此极限值为函数()x f 在0x 处的导数(也称微商),记作()0x f ',或0 x x y =' , 0x x dx dy =,()0 x x dx x df =等,并称函数()x f y =在点0x 处可导。如果上面的极限不存在, 则称函数()x f y =在点0x 处不可导。 注:函数()x f 在0x 处的导数,就是导函数f ’(x)在点在0x 处的函数值,即()0x f '=f ’(x)|x=x0。 多数情况下用求导法则,有时用定义求导更方便。如题中函有f(x),而不是具体的方程时。 2、单侧导数 右导数:()()()()() x x f x x f x x x f x f x f x x x ?-?+=--='++ →?→+000000lim lim 0 左导数:()()()()()x x f x x f x x x f x f x f x x x ?-?+=--='-- →?→-000000lim lim 0 则有 ()x f 在点0x 处可导()x f ?在点0x 处左、右导数皆存在且相等。 3、导数的几何意义 如果函数()x f y =在点0x 处导数()0x f '存在,则在几何上()0x f '表示曲线 ()x f y =在点()()00,x f x 处的切线的斜率,即:()0x f '=K=tan a 。 切线方程:()()()000x x x f x f y -'=- 法线方程:()() ()()()01 0000≠'-'- =-x f x x x f x f y 注:切线与法线垂直,切线的斜率与法线的斜率乘积为负1,即:K 切 * K 法 = -1。 设物体作直线运动时路程S 与时间t 的函数关系为()t f S =,如果()0t f '存在,则

导数与微分单元归纳

学科:数学 教学内容:导数与微分单元达纲检测 【知识结构】 【内容提要】 1.本章主要内容是导数与微分的概念,求导数与求微分的方法,以及导数的应用. 2.导数的概念. 函数y=f(x)的导数f ′(x),就是当△x →0时,函数的增量△y 与自变量△x 的比x y ??的极限,即 x x f x x f x y x f x x ?-?+=??=→?→?) ()(lim lim )('00 函数y=f(x)在点0x 处的导数的几何意义,就是曲线y=f(x)在点))(,(00x f x P 处的切线的斜率. 3.函数的微分

函数y=f(x)的微分,即dy=f ′(x)dx . 微分和导数的关系:微分是由导数来定义的,导数也可用函数的微分与自变量的微分的商来表示,即dx dy x f = )('. 函数值的增量△y 也可以用y 的微分近似表示,即△y ≈dy 或△y ≈f ′(x)dx 。 4.求导数的方法 (1)常用的导数公式 c ′=0(c 为常数); )()'(1 Q m mx x m m ∈=-; (sinx)′=cosx ; (cosx)′=-sinx ; x x e e =)'(, a a a x x ln )'(=; x x 1)'(ln = , e x a x a log 1)'(log =。 (2)两个函数四则运算的导数: (u ±v)′=u ′±v ′; (uv)′=u ′v+uv ′ )0(' ''2 ≠-= ?? ? ??v v uv v u v u 。 (3)复合函数的导数 设y=f(u),)(x u ?=, 则)(')(''''x u f u y y x u x ??=?=. 5.导数的应用

导数教材分析

导数教材分析 一、内容安排 本章大体上分为导数的初步知识、导数的应用、微积分建立的时代背景和历史意义部分 导数的初步知识关键是导数概念的建立这部分首先以光滑曲线的斜率与非匀速直线运动的瞬时速度为背景,引出导数的概念,给出按定义求导数的方法,说明导数的几何意义然后讲述初等函数的求导方法,先根据导数的定义求出几种常见函数的导数、导数的四则运算法则,再进一步给出指数函数和对数函数的导数 这部分的末尾安排了两篇阅读材料,一篇是结合导数概念的“变化率举例”,另一篇是介绍导数应用的“近似计算” 导数的应用,这部分首先在高一学过的函数单调性的基础上,给出判定可导函数增减性的方法论函数的极值,由极值的意义,结合图象,得到利用导数判别可导函数极值的方法最后在可以确定函数极值的前提下,给出求可导函数的最大值与最小值的方法 微积分是数学的重要分支,导数是微积分的一个重要的组成部分一方面,不但数学的许多分支以及物理、化学、计算机、机械、建筑等领域将微积分视为基本数学工具,而且,在社会、经济等领域中也得到越来越广泛的应用另一方面,微积分所反映的数学思想也是日常生活与工作中认识问题、研究问题所难以或缺的 本章共9小节,教学课时约需18节(仅供参考) 3.1导数的概念 约3课时 3.2几种常见函数的导数 约1课时 3.3函数的和、差、积、商的导数 约2课时 3.4复合函数的导数 约2课时 3.5对数函数与指数函数的导数 约2课时 3.6函数的单调性 约1课时 3.7函数的极值 约2课时 3.8函数的最大值与最小值 约2课时 3.9微积分建立的时代背景和历史意义 约1课时 小结与复习 约2课时 二、教学目标 1.了解导数概念的某些实际背景(例如瞬时速度,加速度,光滑曲线的切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念2.熟记基本导数公式: 0='c ,(c 为常数),1)(-='n n nx x ,x x cos )(sin =',x sin )(cos -=' 3.掌握两个函数和、差、积、商的求导法则4.了解复合函数的求导法则,会求简单函数的导数 5.会求指数函数和对数函数的导数e x ,a x ,lnx ,log a x 的导数公式) 6.会从几何直观了解可导函数的单调性与其导数的关系;了解可导函数在某点取极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般是指单峰函数)的最大值与最小值7.通过介绍微积分建立的时代背景和过程,了解微积分的科学价值,文化价值和基本思想 三、重点与难点 从教学角度考虑本章的重点之一是:根据导数定义求简单函数导数的方法一方面,按导数的定义求导数可以帮助学生进一步理解导数的概念;另一方面,像两个函数四则运算的求导法则,复合函数的求导法则等,都是由导数的定义导出的,要掌握这些法则,须在理解的基础上熟记基本导数公式,从而会求简单初等函数的导数 从学生掌握知识的角度考虑本章的重点之二是:掌握利用导数判别可导函数极值的方法教材关于导数

第二章导数与微分总结

第二章 导数与微分总结 一、导数与微分概念 1.导数的定义 设函数()x f y =在点0x 的某领域内有定义,自变量x 在0x 处有增量x ?,相应地函数增量()()00x f x x f y -?+=?。如果极限 ()()x x f x x f x y x x ?-?+=??→?→?0000lim lim 存在,则称此极限值为函数()x f 在0x 处的导数(也称微商),记作()0x f ',或0 x x y =' , 0x x dx dy =,()0 x x dx x df =等,并称函数()x f y =在点0x 处可导。如果上面的极限不存在, 则称函数()x f y =在点0x 处不可导。 导数定义的另一等价形式,令x x x ?+=0,0x x x -=?,则 ()()() 000 lim x x x f x f x f x x --='→ 我们也引进单侧导数概念。 右导数:()()()()() x x f x x f x x x f x f x f x x x ?-?+=--='++ →?→+000000lim lim 0 左导数:()()()()()x x f x x f x x x f x f x f x x x ?-?+=--='-- →?→-000000lim lim 0 则有 ()x f 在点0x 处可导()x f ?在点0x 处左、右导数皆存在且相等。 2.导数的几何意义与物理意义 如果函数()x f y =在点0x 处导数()0x f '存在,则在几何上()0x f '表示曲线 ()x f y =在点()()00,x f x 处的切线的斜率。 切线方程:()()()000x x x f x f y -'=- 法线方程:()() ()()()01 0000≠'-'- =-x f x x x f x f y

高等数学考研大总结之四导数与微分知识讲解

第四章 导数与微分 第一讲 导数 一,导数的定义: 1函数在某一点0x 处的导数:设()x f y = 在某个()δ,0x U 内有定义,如果极限 ()()0 lim 00→??-?+x x x f x x f (其中()() x x f x x f ?-?+00称为函数()x f 在(0x ,0x +x ?)上的平均变化率(或差商)称此极限值为函数()x f 在0x 处的变化率)存在则称函数()x f 在0x 点可导.并称该极限值为()x f 在0x 点的导数记为()0/ x f ,若记()()00,x f x f y x x x -=?-=?则 ()0/ x f =()()0 00lim x x x x x f x f →--=0lim →???x x y 解析:⑴导数的实质是两个无穷小的比。 即:函数相对于自变量变化快慢的程度,其绝对值 越大,则函数在该点附近变化的速度越快。 ⑵导数就是平均变化率(或差商)的极限,常用记法: ()0/ x f ,0/x x y =,0x x dx dy =。 ⑶函数()x f 在某一点0x 处的导数是研究函数()x f 在点0x 处函数的性质。 ⑷导数定义给出了求函数()x f 在点0x 处的导数的具体方法,即:①对于点0x 处的自变量增量x ?,求出函数的增量(差分)y ?=()()00x f x x f -?+②求函数增量y ?与自变量增 量x ?之比x y ??③求极限0 lim →???x x y 若存在,则极限值就是函数()x f 在点0x 处的导数,若极限不 存在,则称函数()x f 在0x 处不可导。 ⑸在求极限的过程中, 0x 是常数, x ?是变量, 求出的极限值一般依赖于0x ⑹导数是由极限定义的但两者仍有不同,我们称当极限值为∞时通常叫做极限不存在,而导数则不同,因其具有实在的几何意义,故当在某点处左,右导数存在且为同一个广义实数值时我们称函数在某点可导。实质是给导数的定义做了一个推广。 ⑺注意: 若函数()x f 在点0x 处无定义,则函数在0x 点处必无导数,但若函数在点0x 处有定义,则函数在点0x 处未必可导。 2 单侧导数:设函数()x f 在某个(]00,x x δ-(或[)δ+00,x x )有定义,并且极限

导数概念背景

对中学微分学采用哪两个实例?确需认真考虑。应考虑到学生的知识程度、理解能力,我们主张采用牛顿、莱布尼兹创立微积分时分别用过的两个经典实例“瞬时速度”和“切线斜率”。从直观的角度来讲,极限是我们观察运动细节的方式,运用这种方式,可以很自然地描述我们关于运 动的细节的任何概念。关于运动变化发展的一个很基本的观念,就是变化率的观念。应该说这个观念的起 源并不是以极限的观念为前提的,但是要清楚地表述变化率的概念,则非使用极限作为工具不可。在实际问题当中,变化率的概念总是两个变量的比值,甚至一般是两个取确定大小的变量的比值,但 这种作法从严格的意义上讲,是一种近似。 导数的概念可以用几何图形得到非常直观的表达,因为本来微积分的概念就有很强的几何直观性质, 而我们学习微积分,从几何直观的角度来理解与把握抽象概念,则是一个不二法门,希望同学们认真对待。 应用导数概念描述物理量。 导数概念具有很强的实际问题的背景,而我们在实际问题当中总是能够遇到大量的需要应用导数概念 来加以刻划的概念,甚至可以说,导数的概念构成一种思路,当我们在处理真实世界的问题时,常常遵循 这个思路来获得对于实际对象的性质的刻划。 前面我们已经讨论了导数的几何意义,其实完全可以反过来说,正是由于当初在几何学问题中,为了 要描述斜率这个概念,才启发人们建立了抽象的一般的导数的概念。而在其他的领域,这种相互发明的情 况是屡见不鲜的。 比方说在物理学领域,需要大量地应用导数的概念,来刻划属于变化率,增长率,强度,通量,流量 等等一大类的物理量。例如速度,加速度,电流强度,热容,等等。而我们在实际问题当中,更是应该善 于提取复杂现象当中所蕴涵的导数概念。 小结: 瞬时速度是平均速度当?t趋近于0时的极限;切线是割线的极限位置;切线斜率是割线斜率?y ?x 当?t趋近于0时的极限; 这个准确的说是微积分的产生背景,导数其实就是微商,即f'(x)=dy/dx。 从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产生了。 公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。三国时

第2章 导数与微分总结

1基础总结 1、极限的实质是:动而不达 导数的实质是:一个有规律商的极限。规律就是:0lim x y x ?→?? 2、导数的多种变式定义: 00000()()()() lim =lim lim x x x x f x f x y f x x f x x x x x ?→?→→-?+?-=??- 要注意细心观察发现,0 ()() lim x f x x f x x ?→+?-?是描述趋近任意x 时的斜率。而 00 ()() lim x x f x f x x x →--可以刻画趋近具体x0时的斜率。 3、 若x 没趋近到x0,那么除法得到的值是这段的平均斜率,如果趋近到了x0,得到的就是这点的斜率——导数。 4、可导与连续的关系:

导数的实质是定义在某点的左右极限。既然定义在了某点上,该点自然存在,而且还得等于左右极限。因此,可导一定是连续的。反之,如果连续,不一定可导。不多说。同理,如果不连续,肯定某点要么无定义,要么定义点跳跃跑了,肯定极限有可能存在,但是导数绝不会存在。 同理要注意左右导数的问题。如果存在左或者右导数,那么在左侧该点一定是存在的。如: (),0f x x x =< 这个函数,在0点就不存在左导数,只存在右导数。为什么嫩?看定义: 0()()()(0) lim lim x x f x x f x f x x f x x ?→?→+?-+?-=??。定义里面需要用到f(0)啊!因此,千万不要以为导数是一种简单的极限,极限是可以在某点无定义的,而导数却是该点必须存在! 由此引发了一些容易误判的血案: 例如: 定义解决时候一定要注意0 00 ()() lim x x f x f x x x →--中的0()f x 到底是神马。比如求上图 中01 ()() lim x f x f x x x + →-- ,这个f(x0)千万要等于2/3,而不是1!

相关文档
最新文档