0-1背包问题

0-1背包问题
0-1背包问题

0-1被背包问题

问题描述:

有n个物品,第i个物品价值为vi,重量为wi,其中vi和wi均为非负数,背包的容量为W,W为非负数。现需要考虑如何选择装入背包的物品,使装入背包的物品总价值最大。该问题以形式化描述如下:

目标函数为:

约束条件为:

满足约束条件的任一集合(x1,x2,...,xn)是问题的一个可行解,问题的目标是要求问题的一个最优解。考虑一个实例,假设n=5,W=17,每个物品的价值和重量如表9-1所示。可将物品1,2和5装入背包,背包未满,获得价值22,此时问题解为你(1,1,0,0,1)。也可以将物品4和5装入背包,背包装满,获得价值24,此时解为(0,0,0,1,1)。

下面根据动态规划的4个步骤求解该问题。

(1) 刻画0-1背包问题的最优解的结构。

可以将背包问题的求解过程看作是进行一系列的决策过程,即决定哪些物品应该放入背包,哪些物品不放入背包。如果一个问题的最优解包含了物品n,即xn=1,那么其余x1,x2,...,x(n-1)一定构成子问题1,2,...,n-1在容量W-wn时的最优解。如果这个最优解不包含物品n,即xn=0,那么其余x1,x2,...,x(n-1)一定构成子问题1,2,...,n-1在容量W时的最优解。

(2)递归定义最优解的值

根据上述分析的最优解的结构递归地定义问题最优解。设c[i,w]表示背包容量为w时,i个物品导致的最优解的总价值,得到下式。显然要求

c[n,w]。

(3)计算背包问题最优解的值

上代码:

回溯算法解决0-1背包问题(DOC)

《算法分析与设计》实验报告 2015-2016年第2学期 实验班级: 学生姓名: 学号: 指导老师: 信息工程学院

实验项目名称:回溯算法解决0-1背包问题 实验日期:2016年5 月18 日 一、实验类型:□√验证性□设计性 二、实验目的 掌握0—1背包问题的回溯算法 三、实验内容及要求 给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 四、实验步骤 #include using namespace std; class Knap { friend int Knapsack(int p[],int w[],int c,int n ); public: void print() { for(int m=1;m<=n;m++) { cout<

int cw;//当前重量 int cp;//当前价值 int bestp;//当前最优值 int *bestx;//当前最优解 int *x;//当前解 }; int Knap::Bound(int i) { //计算上界 int cleft=c-cw;//剩余容量 int b=cp; //以物品单位重量价值递减序装入物品while(i<=n&&w[i]<=cleft) { cleft-=w[i]; b+=p[i]; i++; } //装满背包 if(i<=n) b+=p[i]/w[i]*cleft; return b; } void Knap::Backtrack(int i) { if(i>n) { if(bestp

01背包问题动态规划详解

动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。 比如01背包问题。 因为背包最大容量M未知。所以,我们的程序要从1到M一个一个的试。比如,开始任选N件物品的一个。看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。怎么能保证总选择是最大价值呢?看下表。 测试数据: 10,3 3,4 4,5 5,6 c[i][j]数组保存了1,2,3号物品依次选择后的最大价值. 这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放4.这样,这一排背包容量为 4,5,6,....10的时候,最佳方案都是放4.假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为4.而背包容量为5的时候,则最佳方案为自己的重量5.背包容量为7的时候,很显然是5加上一个值了。加谁??很显然是7-4=3的时候.上一排c3的最佳方案是4.所以。 总的最佳方案是5+4为9.这样.一排一排推下去。最右下放的数据就是最大的价值了。(注意第3排的背包容量为7的时候,最佳方案不是本身的6.而是上一排的9.说明这时候3号物品没有被选.选的是1,2号物品.所以得9.) 从以上最大价值的构造过程中可以看出。 f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}这就是书本上写的动态规划方程.这回清楚了吗?

下面是实际程序: #include int c[10][100]; int knapsack(int m,int n) { int i,j,w[10],p[10]; for(i=1;ic[i-1][j]) c[i][j]=p[i]+c[i-1][j-w[i]]; else c[i][j]=c[i-1][j]; }

0-1背包问题四种不同算法的实现要点

兰州交通大学数理与软件工程学院 题目0-1背包问题算法实现 院系数理院 专业班级信计09 学生姓名雷雪艳 学号200905130 指导教师李秦 二O一二年六月五日

一、问题描述: 1、0—1背包问题:给定n 种物品和一个背包,背包最大容量为M ,物 品i 的重量是w i ,其价值是平P i ,问应当如何选择装入背包的物品,似的装入背包的物品的总价值最大? 背包问题的数学描述如下: 2、要求找到一个n 元向量(x1,x2…xn),在满足约束条件: ????? ≤≤≤∑1 0i i i x M w x 情况下,使得目标函数 p x i i ∑max ,其中,1≤i ≤n ;M>0; wi>0;pi>0。满足约束条件的任何向量都是一个可行解,而使得目标函数 达到最大的那个可行解则为最优解[1]。 给定n 种物品和1个背包。物品i 的重量是wi ,其价值为pi ,背包的容量为M 。问应如何装入背包中的物品,使得装人背包中物品的总价值最大?在选择装人背包的物品时,对每种物品i 只有两种选择,即装入背包、不装入背包。不能将物品i 装人背包多次,也不能只装入部分的物品i 。该问题称为0-1背包问题。 0-1背包问题的符号化表示是,给定M>0, w i >0, pi >0,1≤i ≤n ,要求找到一个n 元0-1向量向量(x1,x2…xn), X i =0 或1 , 1≤i ≤n, 使得 M w x i i ≤∑ ,而且 p x i i ∑达到最大[2]。 二、解决方案: 方案一:贪心算法 1、贪心算法的基本原理与分析 贪心算法总是作出在当前看来是最好的选择,即贪心算法并不从整体最优解上加以考虑,它所作出的选择只是在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,但对范围相当广的许多问题它能产生整体最优解。在一些情况下,即使贪心算法不能得到整体最优解,但其最终结果却是最优解的很好近似解。 贪心算法求解的问题一般具有两个重要性质:贪心选择性质和最优子结构性质。所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优解的选择,即贪心选择来达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。 2、0-1背包问题的实现 对于0-1背包问题,设A 是能装入容量为c 的背包的具有最大价值的物品集合,则Aj=A-{j}是n-1个物品1,2,...,j-1,j+1,...,n 可装入容量为c-wj 的背包的具有最大价值的物品集合。 用贪心算法求解0-1背包问题的步骤是,首先计算每种物品单位重量的价值vi/wi ;然后,将物品进行排序,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。若将这种物品全部装入背包后,背包内的物品总量未超过c ,则选择单位重量价值次高的物品并尽可能多地装入背包。

背包算法问题

背包问题贪心方法 实验日志 实验题目: 1)求以下情况背包问题的最优解:n=7,M=15,(71,,p p )=(10,5,15,7,6,18, 3)和(71,,w w )=(2,3,5,7,1,4,1)。 实验目的: 1. 掌握贪心方法算法思想; 2. 熟练使用贪心算法之背包问题解决相应的问题。 实验思想: 贪心方法是一种改进了的分级处理方法。它首先根据题意,选取一种量度标准。然后按这种量度标准对这n 个输入排序,并按排序一次输入一个量。如果这个输入和当前已构成在这种量度意义下的部分最优解加在一起不能产生一个可行解,则不把此解输入加到这部分解中。这种能够得到某种度量意义下的最优解的分级处理方法称为贪心方法。 1.背包问题 (1)背包问题的描述:已知有n 种物品和一个可容纳M 重量的背包,每种物 品i 的重量为i w 。假定将物品i 的一部分i x 放入背包就会得到i i x p 的效益,这里,10≤≤i x , 0>i p 。显然,由于背包容量是M ,因此,要求所有选中要装入背包的物品总重量不得超过M.。如果这n 件物品的总重量不超过M ,则把所有物品装入背包自然获得最大效益。现需解决的问题是,这些物品重量的和大于M ,该如何装包。由以上叙述,可将这个问题形式表述如下: 极 大 化 ∑≤≤n i i x p 1i 约束条件 M x w n i i ≤∑≤≤1i n i w p x i i i ≤≤>>≤≤1,0,0,10 (2)用贪心策略求解背包问题 首先需选出最优的量度标准。不妨先取目标函数作为量度标准,即每装 入一件物品就使背包获得最大可能的效益值增量。在这种量度标准下的贪心

01背包问题不同算法设计、分析与对比报告

实验三01背包问题不同算法设计、分析与对比一.问题描述 给定n种物品和一背包。物品i的重量是w i ,其价值为v i ,背包的容量为c。 问题:应如何选择装入背包中的物品,使得装入背包中物品的总价值最大。 说明:在选择装入背包的物品时,对每种物品i只有两个选择,装入背包或不装入背包,也不能将物品装入背包多次。 二.实验内容与要求 实验内容: 1.分析该问题适合采用哪些算法求解(包括近似解)。 ^ 动态规划、贪心、回溯和分支限界算法。 2.分别给出不同算法求解该问题的思想与算法设计,并进行算法复杂性分析。 动态规划: 递推方程: m(i,j) = max{m(i-1,j),m(i-1,j-wi)+vi} j >= wi; m(i-1,j) j < wi; 时间复杂度为O(n). 贪心法: ^ 算法思想:贪心原则为单位价值最大且重量最小,不超过背包最大承重量为约束条件。也就是说,存在单位重量价值相等的两个包,则选取重量较小的那个背包。但是,贪心法当在只有在解决物品可以分割的背包问题时是正确的。贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。 用贪心法设计算法的特点是一步一步地进行,根据某个优化测度(可能是目标函数,也可能不是目标函数),每一步上都要保证能获得局部最优解。每一步只考虑一个数据,它的选取应满足局部优化条件。若下一个数据与部分最优解连在一起不再是可行解时,就不把该数据添加到部分解中, 直到把所有数据枚举完,或者不能再添加为止。 回溯法:

回溯法:为了避免生成那些不可能产生最佳解的问题状态,要不断地利用限界函数(bounding function)来处死那些实际上不可能产生所需解的活结点,以减少问题的计算量。这种具有限界函数的深度优先生成法称为回溯法。 对于有n种可选物品的0/1背包问题,其解空间由长度为n的0-1向量组成,可用子集数表示。在搜索解空间树时,只要其左儿子结点是一个可行结点,搜索就进入左子树。当右子树中有可能包含最优解时就进入右子树搜索。 时间复杂度为:O(2n) 空间复杂度为:O(n) : 分支限界算法: 首先,要对输入数据进行预处理,将各物品依其单位重量价值从大到小进行排列。在优先队列分支限界法中,节点的优先级由已装袋的物品价值加上剩下的最大单位重量价值的物品装满剩余容量的价值和。 算法首先检查当前扩展结点的左儿子结点的可行性。如果该左儿子结点是可行结点,则将它加入到子集树和活结点优先队列中。当前扩展结点的右儿子结点一定是可行结点,仅当右儿子结点满足上界约束时才将它加入子集树和活结点优先队列。当扩展到叶节点时为问题的最优值。 3.设计并实现所设计的算法。 4.对比不同算法求解该问题的优劣。 这动态规划算法和贪心算法是用来分别解决不同类型的背包问题的,当一件背包物品可以分割的时候,使用贪心算法,按物品的单位体积的价值排序,从大到小取即可。当一件背包物品不可分割的时候,(因为不可分割,所以就算按物品的单位体积的价值大的先取也不一定是最优解)此时使用贪心是不对的,应使用动态规划。 5.需要提交不同算法的实现代码和总结报告。 动态规划方法: public class Knapsack {

背包问题九讲(很详细)

P01: 01背包问题 题目 有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。 基本思路 这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。 用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是: f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]} 这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。 优化空间复杂度 以上方法的时间和空间复杂度均为O(VN),其中时间复杂度应该已经不能再优化了,但空间复杂度却可以优化到O。 先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。伪代码如下: for i=1..N for v=V..0 f[v]=max{f[v],f[v-c[i]]+w[i]}; 其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相当于我们的转移方程 f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]},因为现在的f[v-c[i]]就相当于原来的f[i-1][v-c[i]]。如果将v的循环顺序从上面的逆序改成顺序的话,那么

算法设计背包问题

算法实验报告 ---背包问题 实验目的 1.掌握动态规划算法的基本思想,包括最优子结构性质和基于表格的最优 值计算方法。 2.熟练掌握分阶段的和递推的最优子结构分析方法。 3.学会利用动态规划算法解决实际问题。 问题描述: 给定n种物品和一个背包。物品i的重量是wi,体积是bi,其价值为vi, 背包的容量为c,容积为d。问应如何选择装入背包中的物品,使得装入背包中 物品的总价值最大? 在选择装入背包的物品时,对每种物品只有两个选择:装入 或不装入,且不能重复装入。输入数据的第一行分别为:背包的容量c,背包的 容积d,物品的个数n。接下来的n行表示n个物品的重量、体积和价值。输出 为最大的总价值。 问题分析: 标准0-1背包问题,MaxV表示前i个物品装入容量为j的背包中时所能产生的最大价值,结构体objec表示每一个可装入物品,其中w表示物品的重量,v表示物品的价值。如果某物品超过了背包的容量,则该物品一定不能放入背包,问题就变成了剩余i-1个物品装入容量为j的背包中所能产生的最大价值;如果该物品能装入背包,问题就变成i-1个物品装入容量为j-objec[i].w的背包所能产生的最大价值加上物品i的价值objec[i].v. 复杂性分析 时间复杂度,最好情况下为0,最坏情况下为:(abc) 源程序 #include #include #include #include #include int V [200][200][200]; int max(int a,int b) {

算法 0-1背包问题

一、实验目的与要求 掌握回溯法、分支限界法的原理,并能够按其原理编程实现解决0-1背包问题,以加深对回溯法、分支限界法的理解。 1.要求分别用回溯法和分支限界法求解0-1背包问题; 2.要求交互输入背包容量,物品重量数组,物品价值数组; 3.要求显示结果。 二、实验方案 在选择装入背包的物品时,对每种物品i只有2种选择,即装入背包或不装入背包。不能将物品i装入背包多次,也不能只装入部分的物品i。 三、实验结果和数据处理 1.用回溯法解决0-1背包问题: 代码: import java.util.*; public class Knapsack { private double[] p,w;//分别代表价值和重量 private int n; private double c,bestp,cp,cw; private int x[]; //记录可选的物品 private int[] cx; public Knapsack (double pp[],double ww[],double cc) { this.p=pp;this.w=ww;this.n=pp.length-1; this.c=cc;this.cp=0;this.cw=0; this.bestp=0; x=new int[ww.length]; cx=new int[pp.length]; } void Knapsack() { backtrack(0); } void backtrack(int i) { if(i>n) { //判断是否到达了叶子节点 if(cp>bestp) { for(int j=0;j

背包问题题目及含义

背包 它是在1978年由Merkel和He llman提出的。它的主要思路是假定某人拥有大量物品,重量各不同。此人通过秘密地选择一部分物品并将它们放到背包中来加密消息。背包中的物品中重量是公开的,所有可能的物品也是公开的,但背包中的物品是保密的。附加一定的限制条件,给出重量,而要列出可能的物品,在计算上是不可实现的。背包问题是熟知的不可计算问题,背包体制以其加密,解密速度快而其人注目。但是,大多数一次背包体制均被破译了,因此现在很少有人使用它。 DD牛的背包九讲 P01: 01背包问题 题目 有N件物品和一个容量为V的背包。第i件物品的费用是c,价值是w。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。 基本思路 这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。 用子问题定义状态:即f[v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:f[v]=max{f[v],f[v-c]+w}。 这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i 件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”;如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c的背包中”,此时能获得的最大价值就是f [v-c]再加上通过放入第i件物品获得的价值w。 注意f[v]有意义当且仅当存在一个前i件物品的子集,其费用总和为v。所以按照这个方程递推完毕后,最终的答案并不一定是f[N] [V],而是f[N][0..V]的最大值。如果将状态的定义中的“恰”字去掉,在转移方程中就要再加入一项f[v-1],这样就可以保证f[N] [V]就是最后的答案。至于为什么这样就可以,由你自己来体会了。 优化空间复杂度 以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到O(V)。 先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[0..V]的所有值。那么,如果只用一个数组f [0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[v]呢?f[v]是由f[v]和f [v-c]两个子问题递推而来,能否保证在推f[v]时(也即在第i次主循环中推f[v]时)能够得到f[v]和f[v -c]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c]保存的是状态f[v-c]的值。伪代码如下: for i=1..N for v=V..0 f[v]=max{f[v],f[v-c]+w}; 其中的f[v]=max{f[v],f[v-c]}一句恰就相当于我们的转移方程f[v]=max{f[v],f[v-c]},因为现在的f[v-c]就相当于原来的f[v-c]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[v]由f[v-c]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。 总结 01背包问题是最基本的背包问题,它包含了背包问题中设计状态、方程的最基本思想,

背包问题(贪心算法)

算法分析与设计实验报告 第 4 次实验

}

附录:完整代码 #include #include #include struct node{ float value; float weight; }; float Value,curvalue=0; float Weight,curweight=0; //按价重比冒泡排序 void sort(node Node[],int M){ int i,j; node temp; for(i=0;i

算法背包问题

实验题目:背包问题 实验目的:掌握动态规划、贪心算法的原理,并能够按其原理编程实现解决背包问题,以加深对上述方法的理解。 实验内容:一个旅行者准备随身携带一个背包. 可以放入背包的物品有n 种, 每种物品的重量和价值分别为 wj , vj . 如果背包的最大重量限制是 b, 怎样选择放入背包的物品以使得背包 的价值最大? 目标函数: 约束条件: 线性规划问题 由线性条件约束的线性函数取最大或最小的问题整数规划问题 线性规划问题的变量 xj 都是非负整数 Fk(y):装前 k 种物品, 总重不超过 y, 背包的最大价值 i(k,y):装前 k 种物品, 总重不超过 y, 背包达最大价值时装入物品的最大标号 递推方程、边界条件、标记函数 实例计算:v1 = 1, v2 = 3, v3 = 5, v4 = 9, w1 = 2, w2 = 3, w3 = 4, w4 = 7, b = 10 Fk(y) 的计算表如下: K/y 1 2 3 4 5 6 7 8 9 10N ,max 11 ∈≤∑∑==j n j j j n j j j x b x w x v 0 )()(0,0)0(,0,0)(} )(),(max{)(11101<-∞=?? ????=≤≤=≤≤=+-=-y y F v w y y F n k F b y y F v w y F y F y F k k k k k k k

1 0 1 1 2 2 3 3 4 4 5 2 0 1 3 3 4 6 6 7 9 9 3 0 1 3 5 5 6 8 10 10 11 4 0 1 3 5 5 6 9 10 10 12 实验步骤:1、分析题目; 2、打开NetBeans软件,新建一个名叫Knapsackdxj的项目,并对其进行保存; 3在新建的项目下对我们所分析的题目进行编写; 4、调试所编写的程序; 5、运行文件,并对其进行测试,看是否正确。 实验结果:

用遗传算法求解多维背包问题

智能所“暑期学校”科研实习报告 题目:用遗传算法求解多维背包问题 姓名:吴逊专业:智能科学与技术指导老师姓名、职务:尚荣华副教授 日期:二零一一年八月

摘要 首先简单介绍了基本的遗传算法。然后将贪婪算法与简单遗传法相结合构成一种混合遗传算法,用该混合遗传算法求解背包问题。通过对标准测试集中的27个问题进行测试,发现用这种方法求解大规模背包问题, 其解的质量和求解性能较简单遗传算法和贪婪算法都有所改善。 关键词:遗传算法,多维背包问题

绪论 遗传算法是模拟生物界自然进化过程的一种计算模型,其思想主要来源于达尔文进化论、孟德尔遗传学说及现代生物学对生命遗传过程的研究。对它的研究起源于20世纪70年代,由美国Michigan大学的J.Holland教授于1975年正式提出。GA的主要特点是群体搜索策略和群体中个体之间的信息交换,搜索不依赖于梯度信息。尤其适用于处理传统搜索方法难于解决的复杂和非线性问题,可广泛用于组合优化、机器学习、自适应控制等领域。 本文将先就遗传算法介绍其思想来源及基本思路,并提出GA应用的5个关键点。接着对一类典型的组合优化问题——0-1背包问题分别进行简单遗传算法与混合遗传算法的求解,并将结果与贪婪算法进行对比。 第一章遗传算法概述 2.1达尔文进化论与孟德尔学说 19世纪中叶,达尔文创立了科学的生物进化学说,它第一次对整个生物界的发生、发展,作出了唯物的、规律性的解释,使生物学发生了一次革命性的变革。 达尔文进化论认为生物不是静止的,而是进化的。物种不断变异,旧物种消失,新物种产生。而且生物的进化是连续和逐渐,不会发生突变。生物之间存在一定的亲缘关系,他们具有共同的祖先;而另一方面,由于生物过渡繁殖,但是它们的生存空间和食物有限,从而面临生存斗争,包括:种内、种间以及生物与环境的斗争。总结起来为两部分内容:遗传变异与自然选择。其中自然选择是达尔文进化论的核心。 1857年,孟德尔通过对植物进行一系列仔细的实验。揭示了遗传学的两条基本定律:分离定律和独立分配定律,统称为孟德尔遗传定律。 分离定律是指基因作为独特的独立单位而代代相传。细胞中有成对的基本遗传单位,在杂交的生殖细胞中,一个来自雄性亲本,一个来自雌性亲本.独立分配定律则指出在一对染色体上的基因对中的等位基因能够独立遗传。 孟德尔的这两条遗传基本定律就是新遗传学的起点,孟德尔也因此被后人称为现代遗传学的奠基人。

贪心算法背包问题

算法设计与分析实验报告 题目:贪心算法背包问题 专业:JA V A技术xx——xxx班 学号: 姓名: 指导老师:

实验三:贪心算法背包问题 一、实验目的与要求 1、掌握背包问题的算法 2、初步掌握贪心算法 二、实验题: 问题描述:与0-1背包问题相似,给定n种物品和一个背包。物品i的重量是wi,其价值为vi,背包的容量为c。与0-1背包问题不同的是,在选择物品i装入背包时,背包问题的解决可以选择物品i的一部分,而不一定要全部装入背包,1< i < n。 三、实验代码 import java.awt.*; import java.awt.event.*; import javax.swing.*; public class er extends JFrame { private static final long serialVersionUID = -1508220487443708466L; private static final int width = 360;// 面板的宽度 private static final int height = 300;// 面板的高度 public int M; public int[] w; public int[] p; public int length; er() { // 初始Frame参数设置 this.setTitle("贪心算法"); setDefaultCloseOperation(EXIT_ON_CLOSE); setSize(width, height); Container c = getContentPane(); c.setLayout(new BoxLayout(c, BoxLayout.Y_AXIS)); setLocation(350, 150); // 声明一些字体样式 Font topF1 = new Font("宋体", Font.BOLD, 28); Font black15 = new Font("宋体", Font.PLAIN, 20); Font bold10 = new Font("宋体", Font.BOLD, 15); // 声明工具栏及属性设置 JPanel barPanel = new JPanel(); JMenuBar topBar = new JMenuBar(); topBar.setLocation(1, 1); barPanel.add(topBar); // 面板1和顶部标签属性设置 JPanel p1 = new JPanel(); JLabel topLabel = new JLabel("背包问题");

(完整版)01背包问题

01背包问题,是用来介绍动态规划算法最经典的例子,网上关于01背包问题的讲解也很多,我写这篇文章力争做到用最简单的方式,最少的公式把01背包问题讲解透彻。 01背包的状态转换方程f[i,j] = Max{ f[i-1,j-Wi]+Pi( j >= Wi ), f[i-1,j] } 只要你能通过找规律手工填写出上面这张表就算理解了01背包的动态规划算法。 首先要明确这张表是至底向上,从左到右生成的。 为了叙述方便,用e2单元格表示e行2列的单元格,这个单元格的意义是用来表示只有物品e时,有个承重为2的背包,那么这个背包的最大价值是0,因为e物品的重量是4,背包装不了。 对于d2单元格,表示只有物品e,d时,承重为2的背包,所能装入的最大价值,仍然是0,因为物品e,d都不是这个背包能装的。 同理,c2=0,b2=3,a2=6。 对于承重为8的背包,a8=15,是怎么得出的呢? 根据01背包的状态转换方程,需要考察两个值, 一个是f[i-1,j],对于这个例子来说就是b8的值9,另一个是f[i-1,j-Wi]+Pi; 在这里, f[i-1,j]表示我有一个承重为8的背包,当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值 f[i-1,j-Wi]表示我有一个承重为6的背包(等于当前背包承重减去物品a的重量),当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值 f[i-1,j-Wi]就是指单元格b6,值为9,Pi指的是a物品的价值,即6 由于f[i-1,j-Wi]+Pi = 9 + 6 = 15 大于f[i-1,j] = 9,所以物品a应该放入承重为8的背包

noip背包问题教程(背包九讲)

f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]} 第一讲 01背包问题 题目 有N 件物品和一个容量为V 的背包。第i 件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价 值总和最大。 基本思路 这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。 用子问题定义状态:即f[i][v]表示前i 件物品恰放入一个容量为v 的背包可以获得的最大价值。则其状态转移方程便是: 这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i 件物品放入容量为v 的背包中”这个子问题,若只考虑第i 件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i 件物品,那么问题就转化为“前i-1件物品放入容量为v 的背包中”,价值为f[i-1][v];如果放第i 件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i 件物品获得的价值 w[i]。 优化空间复杂度 以上方法的时间和空间复杂度均为O(VN),其中时间复杂度应该已经不能再优化了,但空间复杂度却可以 优化到O 。 先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N ,每次算出来二维数组f[i][0..V]的所有 值。那么,如果只用一个数组f[0..V],能不能保证第i 次循环结束后f[v]中表示的就是我们定义的状态f[i][v] 呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i 次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推 f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。伪代码如下: 其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相当于我们的转移方程 因为现在的f[v-c[i]]就相当于原来的f[i-1][v-c[i]]。如果将v 的循环顺序从上面的逆序改成顺序的话,那么则成了f[i][v]由f[i][v-c[i]]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。 f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]} for i=1..N for v=V..0 f[v]=max{f[v],f[v-c[i]]+w[i]};

回溯算法之0-1背包问题

1、实验目的 (1)掌握回溯法设计策略。 (2)通过0-1背包问学习回溯法法设计技巧2.实验内容 源程序: #include using namespace std; double c;//背包容量 int n; //物品数 double w[100];//物品重量数组 double p[100];//物品价值数组 double cw=0;//当前重量 double cp=0;//当前价值 double bestp=0;//当前最优值 double bound(int i) { double cleft,b; //计算上界 cleft=c-cw;//剩余容量 b=cp; //以物品单位重量价值递减序装入物品 while(i<=n&&w[i]<=cleft) { cleft-=w[i]; b+=p[i]; i++; } //装满背包 if(i<=n) b+=p[i]*cleft/w[i]; return b; } void Backtrack(int i) { if(i>n) { if(cp>bestp) bestp=cp; return;

} if(cw+w[i]<=c) //搜索左子树 { cw+=w[i]; cp+=p[i]; Backtrack(i+1); cp-=p[i]; cw-=w[i]; } if(bound(i+1)>bestp)//搜索右子树 Backtrack(i+1); } double Knapsack (double pp[],double ww[],double d) { int i; double TP=0,TW=0; cw=0.0;cp=0.0;bestp=0.0;//计算所有物品的重量及价值 for(i=1;i<=n;i++) { TP=TP+pp[i]; TW=TW+ww[i]; } if(TW<=d)//所有物品装入背包 bestp=TP; else { Backtrack(1); } return bestp; }; int main() {

数学建模_四大模型总结材料

四类基本模型 1优化模型 1.1数学规划模型 线性规划、整数线性规划、非线性规划、多目标规划、动态规划。 1.2微分方程组模型 阻滞增长模型、SARS传播模型。 1.3图论与网络优化问题 最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。 1.4概率模型 决策模型、随机存储模型、随机人口模型、报童问题、Markov链模型。 1.5组合优化经典问题 多维背包问题(MKP) 背包问题:n个物品,对物品i,体积为W i,背包容量为W。如何将尽可能多的物品装入背包。 多维背包问题:n个物品,对物品i,价值为P i,体积为W i,背包容量为W。如何选取物品装入背包,是背包中物品的总价值最大。 多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。该问题属于NP难问题。 二维指派问题(QAP) 工作指派问题:n个工作可以由n个工人分别完成。工人i完成工作j的时间 为d j。如何安排使总工作时间最小。 二维指派问题(常以机器布局问题为例):n台机器要布置在n个地方,机器i 与k之间的物流量为f ik,位置j与l之间的距离为d jl,如何布置使费用最小。

二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。 旅行商问题(TSP) 旅行商问题:有n个城市,城市i与j之间的距离为d ij,找一条经过n个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。 车辆路径问题(VRP) 车辆路径问题(也称车辆计划):已知n个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。 TSP问题是VRP问题的特例。 车间作业调度问题(JSP) 车间调度问题:存在j个工作和m台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。如何求得从第一个操作开始到最后一个操作结束的最小时间间隔。 2分类模型 判别分析是在已知研究对象分成若干类型并已经取得各种类型的一批已知样本的观测数据,在此基础上根据某些准则建立判别式,然后对未知类型的样品进行判别分析。 聚类分析则是给定的一批样品,要划分的类型实现并不知道,正需要通过局分析来给以确定类型的。 2.1判别分析 距离判别法 基本思想:首先根据已知分类的数据,分别计算各类的重心即分组(类)的均 值,判别准则是对任给的一次观测,若它与第i类的重心距离最近,就认为它来自第i类。 至于距离的测定,可以根据实际需要采用欧氏距离、马氏距离、明科夫距离

算法设计与分析实验报告—01背包问题

算法设计与分析 实验报告 —0/1背包问题 -

【问题描述】 给定n 种物品和一个背包。物品i 的重量是i w ,其价值为i v ,背包容量为C 。问应该如何选择装入背包的物品,使得装入背包中物品的总价值最大? 【问题分析】 0/1背包问题的可形式化描述为:给定C>0, i w >0, i v >0,1i n ≤≤,要求找出n 元0/1向量{}12(,,...,),0,1,1n i x x x x i n ∈≤≤,使得n 1i i i w x c =≤∑,而且 n 1 i i i v x =∑达到最大。因此0/1背包问题是一个特殊的整数规划问题。 0n k w ≤≤1 max n i i i v x =∑ n 1 i i i w x c =≤∑ {}0,1,1i x i n ∈≤≤ 【算法设计】 设0/1背包问题的最优值为m( i, j ),即背包容量是j ,可选择物品为i,i+1,…,n 时0/1背包问题的最优值。由0/1背包问题的最优子结构性质,可以建立计算m( i, j )的递归式如下:

max{m( i+1, j ), m( i+1, j-i w )+i v } i j w ≥ m( i, j )= m(i+1,j) n v n j w > m(n,j)= 0 0n k w ≤≤ 【算法实现】 #include #include #include int min(int w, int c) { int temp; if (w < c) temp = w; else temp = c; return temp; } Int max(int w, int c) { int temp; if (w > c) temp = w; else temp = c; return temp; } void knapsack(int v[], int w[], int** m, int c, int n) //求最优值 {

背包问题九讲

背包问题九讲2.0RC1 崔添翼(Tianyi Cui)* 2011-09-28? 本文题为《背包问题九讲》,从属于《动态规划的思考艺术》系列。 这系列文章的第一版于2007年下半年使用EmacsMuse制作,以HTML格式发布到网上,转载众多,有一定影响力。 2011年9月,本系列文章由原作者用L A T E X重新制作并全面修订,您现在看到的是2.0alpha版本,修订历史及最新版本请访问https://https://www.360docs.net/doc/b15513017.html,/tianyicui/pack查阅。 本文版权归原作者所有,采用CC BY-NC-SA协议发布。 Contents 101背包问题3 1.1题目 (3) 1.2基本思路 (3) 1.3优化空间复杂度 (3) 1.4初始化的细节问题 (4) 1.5一个常数优化 (4) 1.6小结 (5) 2完全背包问题5 2.1题目 (5) 2.2基本思路 (5) 2.3一个简单有效的优化 (5) 2.4转化为01背包问题求解 (6) 2.5O(V N)的算法 (6) 2.6小结 (7) 3多重背包问题7 3.1题目 (7) 3.2基本算法 (7) 3.3转化为01背包问题 (7) 3.4可行性问题O(V N)的算法 (8) *a.k.a.dd_engi ?Build20110928183800 1

3.5小结 (9) 4混合三种背包问题9 4.1问题 (9) 4.201背包与完全背包的混合 (9) 4.3再加上多重背包 (9) 4.4小结 (10) 5二维费用的背包问题10 5.1问题 (10) 5.2算法 (10) 5.3物品总个数的限制 (10) 5.4二维整数域N2上的背包问题 (11) 5.5小结 (11) 6分组的背包问题11 6.1问题 (11) 6.2算法 (11) 6.3小结 (12) 7有依赖的背包问题12 7.1简化的问题 (12) 7.2算法 (12) 7.3较一般的问题 (12) 7.4小结 (13) 8泛化物品13 8.1定义 (13) 8.2泛化物品的和 (13) 8.3背包问题的泛化物品 (14) 8.4小结 (14) 9背包问题问法的变化14 9.1输出方案 (15) 9.2输出字典序最小的最优方案 (15) 9.3求方案总数 (15) 9.4最优方案的总数 (16) 9.5求次优解、第K优解 (16) 9.6小结 (17) 2

相关文档
最新文档