关联挖掘

关联挖掘
关联挖掘

数据挖掘科技名词定义

中文名称:数据挖掘英文名称:data mining 定义:一种透过数理模式来分析企业内储存的大量资料,以找出不同的客户或市场划分,分析出消费者喜好和行为的方法。应用学科:通信科技(一级学科);服务与应用(二级学科)以上内容由全国科学技术名词审定委员会审定公布

求助编辑百科名片

数据挖掘(Data Mining)是通过分析每个数据,从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示3个步骤。数据挖掘的任务有关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析等。

目录

什么是数据挖掘

数据挖掘的起源

数据挖掘能做什么1)数据挖掘能做以下七种不同事情

2)数据挖掘分类

3)各种分析方法的简介

数据挖掘十大经典算法

数据挖掘中的关联规则

数据挖掘和在线分析处理(OLAP)

数据挖掘,机器学习和统计

软硬件发展对数据挖掘的影响

数据挖掘相关的10个问题NO.1 Data Mining 和统计分析有什么不同?

NO.2 数据仓库和数据挖掘的关系为何?

NO.3 OLAP 能不能代替Data Mining?

NO.4 完整的Data Mining 包含哪些步骤?

NO.5 Data Mining 运用了哪些理论与技术?

NO.6 Data Mining包含哪些主要功能?

NO.7 Data Mining在各领域的应用情形为何?

NO.8 Web Mining 和数据挖掘有什么不同?

NO.9 数据挖掘在CRM 中扮演的角色为何?

NO.10 目前业界常用的数据挖掘分析工具?

数据挖掘相关的权威期刊和会议[Journals]

[Conferences]

数据挖掘的发展前景什么是数据挖掘

数据挖掘的起源

数据挖掘能做什么1)数据挖掘能做以下七种不同事情

2)数据挖掘分类

3)各种分析方法的简介

数据挖掘十大经典算法

数据挖掘中的关联规则

数据挖掘和在线分析处理(OLAP)

数据挖掘,机器学习和统计

软硬件发展对数据挖掘的影响

数据挖掘相关的10个问题

NO.1 Data Mining 和统计分析有什么不同?NO.2 数据仓库和数据挖掘的关系为何?NO.3 OLAP 能不能代替Data Mining?NO.4 完整的Data Mining 包含哪些步骤?NO.5 Data Mining 运用了哪些理论与技术?NO.6 Data Mining包含哪些主要功能?NO.7 Data Mining 在各领域的应用情形为何?NO.8 Web Mining 和数据挖掘有什么不同?NO.9 数据挖掘在CRM 中扮演的角色为何?NO.10 目前业界常用的数据挖掘分析工具?数据挖掘相关的权威期刊和会议

[Journals] [Conferences]数据挖掘的发展前景展开编辑本段什么是数据挖掘

数据挖掘,在人工智能领域,习惯上又称为数据库中的知识发现(Knowledge Discovery in Database, KDD),也有人把数据挖掘视为数据库中知识发现过程的一个基本步骤。知识发现过程由以下三个阶段组成:(1)数据准备,(2)数据挖掘,(3)结果表达和解释。数据挖掘可以与用户或知识库交互。数据挖掘

数据挖掘是通过分析每个数据,从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示3个步骤。数据准备是从相关的数据源中选取所需的数据并整合成用于数据挖掘的数据集;规律寻找是用某种方法将数据集所含的规律找出来;规律表示是尽可能以用户可理解的方式(如可视化)将找出的规律表示出来。数据挖掘的任务有关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析,等等。并非所有的信息发现任务都被视为数据挖掘。例如,使用数据库管理系统查找个别的记录,或通过因特网的搜索引擎查找特定的Web页面,则是信息检索(information retrieval)领域的任务。虽然这些任务是重要的,可能涉及使用复杂的算法和数据结构,但是它们主要依赖传统的计算机科学技术和数据的明显特征来创建索引结构,从而有效地组织和检索信息。尽管如此,数据挖掘技术也已用来增强信息检索系统的能力。

编辑本段数据挖掘的起源

需要是发明之母。近年来,数据挖掘引起了信息产业界的极大关注,其主要原因是存在大量数据,可以广泛使用,并且迫切需要将这些数据转换成有用的信息和知识。获取的信息和知识可以广泛用于各种应用,包括商务管理,生产控制,市场分析,工程设计和科学探索等。数据挖掘利用了来自如下一些领域的思想:(1) 来自统计学的抽样、估计和假设检验,(2) 人工智能、模式识别和机器学习的搜索算法、建模技术和学习理论。数据挖掘也迅速地接纳了来自其他领域的思想,这些领域包括最优化、进化计算、信息论、信号处理、可视化和信息检索。一些其他领域也起到重要的支撑作用。特别地,需要数据库系统提供有效的存储、索引和查询处理支持。源于高性能(并行)计算的技术在处理海量数据集方面常常是重要的。分布式技术也能帮助处理海量数据,并且当数据不能集中到一起处理时更是至关重要。

编辑本段数据挖掘能做什么

1)数据挖掘能做以下七种不同事情

(分析方法):数据挖掘

·分类(Classification)·估计(Estimation)·预测(Prediction)·相关性分组或关联规则(Affinity grouping or association rules)·聚类(Clustering)·描述和可视化(Description and Visualization)·复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)

2)数据挖掘分类

以上七种数据挖掘的分析方法可以分为两类:直接数据挖掘;间接数据挖掘·直接数据挖掘目标是利用可用的数据建立一个模型,这个模型对剩余的数据,对一个特定的变量(可以理解成数据库中表的属性,即列)进行描述。·间接数据挖掘目标中没

有选出某一具体的变量,用模型进行描述;而是在所有的变量中建立起某种关系。·分类、估值、预言属于直接数据挖掘;后三种属于间接数据挖掘

3)各种分析方法的简介

·分类(Classification)首先从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术,建立分类模型,对于没有分类的数据进行分类。例子: a. 信用卡申请者,分类为低、中、高风险 b. 故障诊断:中国宝钢集团与上海天律信息技术有限公司合作,采用数据挖掘技术对钢材生产的全流程进行质量监控和分析,构建故障地图,实时分析产品出现瑕疵的原因,有效提高了产品的优良率。注意:类的个数是确定的,预先定义好的·估计(Estimation)估计与分类类似,不同之处在于,分类描述的是离散型变量的输出,而估值处理连续值的输出;分类数据挖掘

的类别是确定数目的,估值的量是不确定的。例子: a. 根据购买模式,估计一个家庭的孩子个数 b. 根据购买模式,估计一个家庭的收入 c. 估计real estate的价值一般来说,估值可以作为分类的前一步工作。给定一些输入数据,通过估值,得到未知的连续变量的值,然后,根据预先设定的阈值,进行分类。例如:银行对家庭贷款业务,运用估值,给各个客户记分(Score 0~1)。然后,根据阈值,将贷款级别分类。·预测(Prediction)通常,预测是通过分类或估值起作用的,也就是说,通过分类或估值得出模型,该模型用于对未知变量的预言。从这种意义上说,预言其实没有必要分为一个单独的类。预言其目的是对未来未知变量的预测,这种预测是需要时间来验证的,即必须经过一定时间后,才知道预言准确性是多少。·相关性分组或关联规则(Affinity grouping or association rules)决定哪些事情将一起发生。例子: a. 超市中客户在购买A的同时,经常会购买B,即A =>B(关联规则) b. 客户在购买A后,隔一段时间,会购买B (序列分析)·聚类(Clustering)聚类是对记录分组,把相似的记录在一个聚集里。聚类和分类的区别是聚集不依赖于预先定义好的类,不需要训练集。例子: a. 一些特定症状的聚集可能预示了一个特定的疾病 b. 租VCD类型不相似的客户聚集,可能暗示成员属于不同的亚文化群聚集通常作为数据挖掘的第一步。例如,"哪一种类的促销对客户响应最好?",对于这一类问题,首先对整个客户做聚集,将客户分组在各自的聚集里,然后对每个不同的聚集,回答问题,可能效果更好。·描述和可视化(Description and Visualization)是对数据挖掘结果的表示方式。

编辑本段数据挖掘十大经典算法

1。C4.5:是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法。 2. K-means算法:是一种聚类算法。 3.SVM:一种监督式学习的方法,广泛运用于统计分类以及回归分析中 4.Apriori :是一种最有影响的挖掘布尔关联规则频繁项集的算法。

5.EM:最大期望值法。

6.pagerank:是google算法的重要内容。

7. Adaboost:是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器然后把弱分类器集合起来,构成一个更强的最终分类器。

8.KNN:是一个理论上比较成熟的的方法,也是最简单的机器学习方法之一。

9.Naive Bayes:在众多分类方法中,应用最广泛的有决策树模型和朴素贝叶斯(Naive Bayes)10.Cart:分类与回归树,在分类树下面有两个关键的思想,第一个是关于递归地划分自变量空间的想法,第二个是用验证数据进行减枝。

编辑本段数据挖掘中的关联规则

1.什么是关联规则在描述有关关联规则的一些细节之前,我们先来看一个有趣的故事:"尿布与啤酒"的故事。在一家超市里,有一个有趣的现象:尿布和啤酒赫然摆在一起出售。但是这个奇怪的举措却使尿布和数据挖掘

啤酒的销量双双增加了。这不是一个笑话,而是发生在美国沃尔玛连锁店超市的真实案例,并一直为商家所津津乐道。沃尔玛拥有世界上最大的数据仓库系统,为了能够准确了解顾客

在其门店的购买习惯,沃尔玛对其顾客的购物行为进行购物篮分析,想知道顾客经常一起购买的商品有哪些。沃尔玛数据仓库里集中了其各门店的详细原始交易数据。在这些原始交易数据的基础上,沃尔玛利用数据挖掘方法对这些数据进行分析和挖掘。一个意外的发现是:"跟尿布一起购买最多的商品竟是啤酒!经过大量实际调查和分析,揭示了一个隐藏在"尿布与啤酒"背后的美国人的一种行为模式:在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,而他们中有30%~40%的人同时也为自己买一些啤酒。产生这一现象的原因是:美国的太太们常叮嘱她们的丈夫下班后为小孩买尿布,而丈夫们在买尿布后又随手带回了他们喜欢的啤酒。按常规思维,尿布与啤酒风马牛不相及,若不是借助数据挖掘技术对大量交易数据进行挖掘分析,沃尔玛是不可能发现数据内在这一有价值的规律的。数据关联是数据库中存在的一类重要的可被发现的知识。若两个或多个变量的取值之间存在某种规律性,就称为关联。关联可分为简单关联、时序关联、因果关联。关联分析的目的是找出数据库中隐藏的关联网。有时并不知道数据库中数据的关联函数,即使知道也是不确定的,因此关联分析生成的规则带有可信度。关联规则挖掘发现大量数据中项集之间有趣的关联或相关联系。Agrawal等于1993年首先提出了挖掘顾客交易数据库中项集间的关联规则问题,以后诸多的研究人员对关联规则的挖掘问题进行了大量的研究。他们的工作包括对原有的算法进行优化,如引入随机采样、并行的思想等,以提高算法挖掘规则的效率;对关联规则的应用进行推广。关联规则挖掘在数据挖掘中是一个重要的课题,最近几年已被业界所广泛研究。

2.关联规则挖掘过程、分类及其相关算法 2.1关联规则挖掘的过程关联规则挖掘过程主要包含两个阶段:第一阶段必须先从资料集合中找出所有的高频项目组(Frequent 数据挖掘

Itemsets),第二阶段再由这些高频项目组中产生关联规则(Association Rules)。关联规则挖掘的第一阶段必须从原始资料集合中,找出所有高频项目组(Large Itemsets)。高频的意思是指某一项目组出现的频率相对于所有记录而言,必须达到某一水平。一项目组出现的频率称为支持度(Support),以一个包含A与B两个项目的2-itemset为例,我们可以经由公式(1)求得包含{A,B}项目组的支持度,若支持度大于等于所设定的最小支持度(Minimum Support)门槛值时,则{A,B}称为高频项目组。一个满足最小支持度的k-itemset,则称为高频k-项目组(Frequent k-itemset),一般表示为Large k或Frequent k。算法并从Large k的项目组中再产生Large k+1,直到无法再找到更长的高频项目组为止。关联规则挖掘的第二阶段是要产生关联规则(Association Rules)。从高频项目组产生关联规则,是利用前一步骤的高频k-项目组来产生规则,在最小信赖度(Minimum Confidence)的条件门槛下,若一规则所求得的信赖度满足最小信赖度,称此规则为关联规则。例如:经由高频k-项目组{A,B}所产生的规则AB,其信赖度可经由公式(2)求得,若信赖度大于等于最小信赖度,则称AB为关联规则。就沃尔马案例而言,使用关联规则挖掘技术,对交易资料库中的纪录进行资料挖掘,首先必须要设定最小支持度与最小信赖度两个门槛值,在此假设最小支持度min_support=5% 且最小信赖度min_confidence=70%。因此符合此该超市需求的关联规则将必须同时满足以上两个条件。若经过挖掘过程所找到的关联规则「尿布,啤酒」,满足下列条件,将可接受「尿布,啤酒」的关联规则。用公式可以描述Support(尿布,啤酒)>=5%且Confidence(尿布,啤酒)>=70%。其中,Support(尿布,啤酒)>=5%于此应用范例中的意义为:在所有的交易纪录资料中,至少有5%的交易呈现尿布与啤酒这两项商品被同时购买的交易行为。Confidence(尿布,啤酒)>=70%于此应用范例中的意义为:在所有包含尿布的交易纪录资料中,至少有70%的交易会同时购买啤酒。因此,今后若有某消费者出现购买尿布的行为,超市将可推荐该消费者同时购买啤酒。这个商品推荐的行为则是根据「尿布,啤酒」关联规则,因为就该超市过去的交易纪录而言,支持了“大部份购买尿布的交易,会同时购买啤酒”的消费行为。从上面的介绍还可以看出,关联规则挖掘通常比较适用与记录中的指标取离散值的情况。如果原始数据库

中的指标值是取连续的数据,则在关联规则挖掘之前应该进行适当的数据离散化(实际上就是将某个区间的值对应于某个值),数据的离散化是数据挖掘前的重要环节,离散化的过程是否合理将直接影响关联规则的挖掘结果。 2.2关联规则的分类按照不同情况,关联规则可以进行分类如下: 1.基于规则中处理的变量的类别,关联规则可以分为布尔型和数值型。布尔型关联规则处理的值都是离散的、种类化的,它显示了这些变量之间的关系;而数值型关联规则可以和多维关联或多层关联规则结合起来,对数值型字段进行处理,将其进行动态的分割,或者直接对原始的数据进行处理,当然数值型关联规则中也可以包含种类变量。例如:性别=“女”=>职业=“秘书”,是布尔型关联规则;性别=“女”=>avg(收入)=2300,涉及的收入是数值类型,所以是一个数值型关联规则。 2.基于规则中数据的抽象层次,可以分为单层关联规则和多层关联规则。在单层的关联规则中,所有的变量都没有考虑到现实的数据是具有多个不同的层次的;而在多层的关数据挖掘

联规则中,对数据的多层性已经进行了充分的考虑。例如:IBM台式机=>Sony打印机,是一个细节数据上的单层关联规则;台式机=>Sony打印机,是一个较高层次和细节层次之间的多层关联规则。 3.基于规则中涉及到的数据的维数,关联规则可以分为单维的和多维的。在单维的关联规则中,我们只涉及到数据的一个维,如用户购买的物品;而在多维的关联规则中,要处理的数据将会涉及多个维。换成另一句话,单维关联规则是处理单个属性中的一些关系;多维关联规则是处理各个属性之间的某些关系。例如:啤酒=>尿布,这条规则只涉及到用户的购买的物品;性别=“女”=>职业=“秘书”,这条规则就涉及到两个字段的信息,是两个维上的一条关联规则。 2.3关联规则挖掘的相关算法 1.Apriori算法:使用候选项集找频繁项集Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。该算法的基本思想是:首先找出所有的频集,这些项集出现的频繁性至少和预定义的最小支持度一样。然后由频集产生强关联规则,这些规则必须满足最小支持度和最小可信度。然后使用第1步找到的频集产生期望的规则,产生只包含集合的项的所有规则,其中每一条规则的右部只有一项,这里采用的是中规则的定义。一旦这些规则被生成,那么只有那些大于用户给定的最小可信度的规则才被留下来。为了生成所有频集,使用了递推的方法。可能产生大量的候选集,以及可能需要重复扫描数据库,是Apriori算法的两大缺点。 2.基于划分的算法Savasere等设计了一个基于划分的算法。这个算法先把数据库从逻辑上分成几个互不相交的块,每次单独考虑一个分块并对它生成所有的频集,然后把产生的频集合并,用来生成所有可能的频集,最后计算这些项集的支持度。这里分块的大小选择要使得每个分块可以被放入主存,每个阶段只需被扫描一次。而算法的正确性是由每一个可能的频集至少在某一个分块中是频集保证的。该算法是可以高度并行的,可以把每一分块分别分配给某一个处理器生成频集。产生频集的每一个循环结束后,处理器之间进行通信来产生全局的候选k-项集。通常这里的通信过程是算法执行时间的主要瓶颈;而另一方面,每个独立的处理器生成频集的时间也是一个瓶颈。 3.FP-树频集算法针对Apriori算法的固有缺陷,J. Han 等提出了不产生候选挖掘频繁项集的方法:FP-树频集算法。采用分而治之的策略,在经过第一遍扫描之后,把数据库中的频集压缩进一棵频繁模式树(FP-tree),同时依然保留其中的关联信息,随后再将FP-tree分化成一些条件库,每个库和一个长度为1的频集相关,然后再对这些条件库分别进行挖掘。当原始数据量很大的时候,也可以结合划分的方法,使得一个FP-tree可以放入主存中。实验表明,FP-growth对不同长度的规则都有很好的适应性,同时在效率上较之Apriori算法有巨大的提高。 3.该领域在国内外的应用3.1关联规则发掘技术在国内外的应用就目前而言,关联规则挖掘技术已经被广泛应用在西方金融行业企业中,它可以成功预测银行客户需求。一旦获得了这些信息,银行就可以改善自身

营销。现在银行天天都在开发新的沟通客户的方法。各银行在自己的ATM机上就捆绑了顾客可能感兴趣的本行产品信息,供使用本行ATM机的用户了解。如果数据库中显示,某个高信用限额的客户更换了地址,这个客户很有可能新近购买了一栋更大的住宅,因此会有可能需要更高信用限额,更高端的新信用卡,或者需要一个住房改善贷款,这些产品都可以通过信用卡账单邮寄给客户。当客户打电话咨询的时候,数据库可以有力地帮助电话销售代表。销售代表的电脑屏幕上可以显示出客户的特点,同时也可以显示出顾客会对什么产品感兴趣。同时,一些知名的电子商务站点也从强大的关联规则挖掘中的受益。这些电子购物网站使用关联规则中规则进行挖掘,然后设置用户有意要一起购买的捆绑包。也有一些购物网站使用它们设置相应的交叉销售,也就是购买某种商品的顾客会看到相关的另外一种商品的广告。但是目前在我国,“数据海量,信息缺乏”是商业银行在数据大集中之后普遍所面对的尴尬。目前金融业实施的大多数数据库只能实现数据的录入、查询、统计等较低层次的功能,却无法发现数据中存在的各种有用的信息,譬如对这些数据进行分析,发现其数据模式及特征,然后可能发现某个客户、消费群体或组织的金融和商业兴趣,并可观察金融市场的变化趋势。可以说,关联规则挖掘的技术在我国的研究与应用并不是很广泛深入。3.2近年来关联规则发掘技术的一些研究由于许多应用问题往往比超市购买问题更复杂,大量研究从不同的角度对关联规则做了扩展,将更多的因素集成到关联规则挖掘方法之中,以此丰富关联规则的应用领域,拓宽支持管理决策的范围。如考虑属性之间的类别层次关系,时态关系,多表挖掘等。近年来围绕关联规则的研究主要集中于两个方面,即扩展经典关联规则能够解决问题的范围,改善经典关联规则挖掘算法效率和规则兴趣性。

编辑本段数据挖掘和在线分析处理(OLAP)

一个经常问的问题是,数据挖掘和OLAP到底有何不同。下面将会解释,他们是完全不同的工具,基于的技术也大相径庭。OLAP是决策支持领域的一部分。传统的查询和报表工具是告诉你数据库中都有什么(what happened),OLAP则更进一步告诉你下一步会怎么样(What next)、和如果我采取这样的措施又会怎么样(What if)。用户首先建立一个假设,然后用OLAP检索数据库来验证这个假设是否正确。比如,一个分析师想找到什么原因导致了贷款拖欠,他可能先做一个初始的假定,认为低收入的人信用度也低,然后用OLAP 来验证他这个假设。如果这个假设没有被证实,他可能去察看那些高负债的账户,如果还不行,他也许要把收入和负债一起考虑,一直进行下去,直到找到他想要的结果或放弃。也就是说,OLAP分析师是建立一系列的假设,然后通过OLAP来证实或推翻这些假设来最终得到自己的结论。OLAP分析过程在本质上是一个演绎推理的过程。但是如果分析的变量达到几十或上百个,那么再用OLAP手动分析验证这些假设将是一件非常困难和痛苦的事情。数据挖掘与OLAP不同的地方是,数据挖掘不是用于验证某个假定的模式(模型)的正确性,而是在数据库中自己寻找模型。他在本质上是一个归纳的过程。比如,一个用数据挖掘工具的分析师想找到引起贷款拖欠的风险因素。数据挖掘工具可能帮他找到高负债和低收入是引起这个问题的因素,甚至还可能发现一些分析师从来没有想过或试过的其他因素,比如年龄。数据挖掘和OLAP具有一定的互补性。在利用数据挖掘出来的结论采取行动之前,你也许要验证一下如果采取这样的行动会给公司带来什么样的影响,那么OLAP工具能回答你的这些问题。而且在知识发现的早期阶段,OLAP工具还有其他一些用途。可以帮你探索数据,找到哪些是对一个问题比较重要的变量,发现异常数据和互相影响的变量。这都能帮你更好的理解你的数据,加快知识发现的过程。

编辑本段数据挖掘,机器学习和统计

数据挖掘利用了人工智能(AI)和统计分析的进步所带来的好处。这两门学科都致力于模式发现和预测。数据挖掘不是为了替代传统的统计分析技术。相反,他是统计分析方法学的延伸和扩展。大多数的统计分析技术都基于完善的数学理论和高超的技巧,预测的准

确度还是令人满意的,但对使用者的要求很高。而随着计算机计算能力的不断增强,我们有可能利用计算机强大的计算能力只通过相对简单和固定的方法完成同样的功能。一些新兴的技术同样在知识发现领域取得了很好的效果,如神经元网络和决策树,在足够多的数据和计算能力下,他们几乎不用人的关照自动就能完成许多有价值的功能。数据挖掘就是利用了统计和人工智能技术的应用程序,他把这些高深复杂的技术封装起来,使人们不用自己掌握这些技术也能完成同样的功能,并且更专注于自己所要解决的问题。

编辑本段软硬件发展对数据挖掘的影响

使数据挖掘这件事情成为可能的关键一点是计算机性能价格比的巨大进步。在过去的几年里磁盘存储器的价格几乎降低了99%,这在很大程度上改变了企业界对数据收集和存储的态度。如果每兆的价格是¥10,那存放1TB的价格是¥10,000,000,但当每兆的价格降为1毛钱时,存储同样的数据只有¥100,000!计算机计算能力价格的降低同样非常显著。每一代芯片的诞生都会把CPU的计算能力提高一大步。内存RAM也同样降价迅速,几年之内每兆内存的价格由几百块钱降到现在只要几块钱。通常PC都有64M内存,工作站达到了256M,拥有上G内存的服务器已经不是什么新鲜事了。在单个CPU计算能力大幅提升的同时,基于多个CPU的并行系统也取得了很大的进步。目前几乎所有的服务器都支持多个CPU,这些SMP服务器簇甚至能让成百上千个CPU同时工作。基于并行系统的数据库管理系统也给数据挖掘技术的应用带来了便利。如果你有一个庞大而复杂的数据挖掘问题要求通过访问数据库取得数据,那么效率最高的办法就是利用一个本地的并行数据库。所有这些都为数据挖掘的实施扫清了道路,随着时间的延续,我们相信这条道路会越来越平坦。

编辑本段数据挖掘相关的10个问题

NO.1 Data Mining 和统计分析有什么不同?

硬要去区分Data Mining和Statistics的差异其实是没有太大意义的。一般将之定义为Data Mining技术的CART、CHAID或模糊计算等等理论方法,也都是由统计学者根据统计理论所发展衍生,换另一个角度看,Data Mining有相当大的比重是由高等统计学中的多变量分析所支撑。但是为什么Data Mining的出现会引发各领域的广泛注意呢?主要原因在相较于传统统计分析而言,Data Mining有下列几项特性: 1.处理大量实际数据更强势,且无须太专业的统计背景去使用Data Mining的工具; 2.数据分析趋势为从大型数据库抓取所需数据并使用专属计算机分析软件,Data Mining的工具更符合企业需求; 3. 纯就理论的基础点来看,Data Mining和统计分析有应用上的差别,毕竟Data Mining目的是方便企业终端用户使用而非给统计学家检测用的。

NO.2 数据仓库和数据挖掘的关系为何?

若将Data Warehousing(数据仓库)比喻作矿坑,Data Mining就是深入矿坑采矿的工作。毕竟Data Mining不是一种无中生有的魔术,也不是点石成金的炼金术,若没有够丰富完整的数据,是很难期待Data Mining能挖掘出什么有意义的信息的。要将庞大的数据转换成为有用的信息,必须先有效率地收集信息。随着科技的进步,功能完善的数据库系统就成了最好的收集数据的工具。数据仓库,简单地说,就是搜集来自其它系统的有用数据,存放在一整合的储存区内。所以其实就是一个经过处理整合,且容量特别大的关系型数据库,用以储存决策支持系统(Decision Support System)所需的数据,供决策支持或数据分析使用。从信息技术的角度来看,数据仓库的目标是在组织中,在正确的时间,将正确的数据交给正确的人。许多人对于Data Warehousing和Data Mining时常混淆,不知如何分辨。其实,数据仓库是数据库技术的一个新主题,利用计算机系统帮助我们操作、计算和思考,让作业方式改变,决策方式也跟着改变。数据仓库本身是一个非常大的数据库,它储存着由组织作业数据库中整合而来的数据,特别是指事务处理系统OLTP(On-Line Transactional

Processing)所得来的数据。将这些整合过的数据置放于数据仓库中,而公司的决策者则利用这些数据作决策;但是,这个转换及整合数据的过程,是建立一个数据仓库最大的挑战。因为将作业中的数据转换成有用的的策略性信息是整个数据仓库的重点。综上所述,数据仓库应该具有这些数据:整合性数据(integrated data)、详细和汇总性的数据(detailed and summarized data)、历史数据、解释数据的数据。从数据仓库挖掘出对决策有用的信息与知识,是建立数据仓库与使用Data Mining的最大目的,两者的本质与过程是两回事。换句话说,数据仓库应先行建立完成,Data mining才能有效率的进行,因为数据仓库本身所含数据是干净(不会有错误的数据参杂其中)、完备,且经过整合的。因此两者关系或许可解读为Data Mining是从巨大数据仓库中找出有用信息的一种过程与技术。

大部分情况下,数据挖掘都要先把数据从数据仓库中拿到数据挖掘库或数据集市中(见图1)。从数据仓库中直接得到进行数据挖掘的数据有许多好处。就如我们后面会讲到的,数据仓库的数据清理和数据挖掘的数据清理差不多,如果数据在导入数据仓库时已经清理过,那很可能在做数据挖掘时就没必要在清理一次了,而且所有的数据不一致的问题都已经被你解决了。

数据挖掘库可能是你的数据仓库的一个逻辑上的子集,而不一定非得是物理上单独的数据库。但如果你的数据仓库的计算资源已经很紧张,那你最好还是建立一个单独的数据挖掘库。当然为了数据挖掘你也不必非得建立一个数据仓库,数据仓库不是必需的。建立一个巨大的数据仓库,把各个不同源的数据统一在一起,解决所有的数据冲突问题,然后把所有的数据导到一个数据仓库内,是一项巨大的工程,可能要用几年的时间花上百万的钱才能完成。只是为了数据挖掘,你可以把一个或几个事务数据库导到一个只读的数据库中,就把它当作数据集市,然后在他上面进行数据挖掘。

NO.3 OLAP 能不能代替Data Mining?

所谓OLAP(Online Analytical Process)意指由数据库所连结出来的在线分析处理程序。有些人会说:「我已经有OLAP的工具了,所以我不需要Data Mining。」事实上两者间是截然不同的,主要差异在于Data Mining用在产生假设,OLAP则用于查证假设。简单来说,OLAP 是由使用者所主导,使用者先有一些假设,然后利用OLAP来查证假设是否成立;而Data Mining则是用来帮助使用者产生假设。所以在使用OLAP或其它Query的工具时,使用者是自己在做探索(Exploration),但Data Mining是用工具在帮助做探索。举个例子来看,一市场分析师在为超市规划货品架柜摆设时,可能会先假设婴儿尿布和婴儿奶粉会是常被一起购买的产品,接着便可利用OLAP的工具去验证此假设是否为真,又成立的证据有多明显;但Data Mining则不然,执行Data Mining的人将庞大的结帐数据整理后,并不需要假设或期待可能的结果,透过Mining技术可找出存在于数据中的潜在规则,于是我们可能得到例如尿布和啤酒常被同时购买的意料外之发现,这是OLAP所做不到的。Data Mining常能挖掘出超越归纳范围的关系,但OLAP仅能利用人工查询及可视化的报表来确认某些关系,是以Data Mining此种自动找出甚至不会被怀疑过的数据模型与关系的特性,事实上已超越了我们经验、教育、想象力的限制,OLAP可以和Data Mining互补,但这项特性是Data Mining 无法被OLAP取代的。

NO.4 完整的Data Mining 包含哪些步骤?

1、数据挖掘环境数据挖掘是指一个完整的过程,该过程从大型数据库中挖掘先前未知的,有效的,可实用的信息,并使用这些信息做出决策或丰富知识. 数据挖掘环境可示意如下图:

数据挖掘环境框图.gif 2、数据挖掘过程图下图描述了数据挖掘的基本过程和主要步骤数据挖掘的基本过程和主要步骤3、数据挖掘过程工作量在数据挖掘中被研究的业务对象是整个过程的基础,它驱动了整个数据挖掘过程,也是检验最后结果和指引分析人员完成数据挖掘的依据和顾问.图2各步骤是按一定顺序完成的,当然整个过程中还

会存在步骤间的反馈.数据挖掘的过程并不是自动的,绝大多数的工作需要人工完成.图3给出了各步骤在整个过程中的工作量之比.可以看到,60%的时间用在数据准备上,这说明了数据挖掘对数据的严格要求,而后挖掘工作仅占总工作量的10%.

图3数据挖掘过程工作量比例4、数据挖掘过程简介过程中各步骤的大体内容如下: (1). 确定业务对象清晰地定义出业务问题,认清数据挖掘的目的是数据挖掘的重要一步.挖掘的最后结构是不可预测的,但要探索的问题应是有预见的,为了数据挖掘而数据挖掘则带有盲目性,是不会成功的. (2). 数据准备1)、数据的选择搜索所有与业务对象有关的内部和外部数据信息,并从中选择出适用于数据挖掘应用的数据. 2)、数据的预处理研究数据的质量,为进一步的分析作准备.并确定将要进行的挖掘操作的类型. 3)、数据的转换将数据转换成一个分析模型.这个分析模型是针对挖掘算法建立的.建立一个真正适合挖掘算法的分析模型是数据挖掘成功的关键. (3). 数据挖掘对所得到的经过转换的数据进行挖掘.除了完善从选择合适的挖掘算法外,其余一切工作都能自动地完成. (4). 结果分析解释并评估结果.其使用的分析方法一般应作数据挖掘操作而定,通常会用到可视化技术. (5). 知识的同化将分析所得到的知识集成到业务信息系统的组织结构中去. 5、数据挖掘需要的人员数据挖掘过程的分步实现,不同的步会需要是有不同专长的人员,他们大体可以分为三类. 业务分析人员:要求精通业务,能够解释业务对象,并根据各业务对象确定出用于数据定义和挖掘算法的业务需求. 数据分析人员:精通数据分析技术,并对统计学有较熟练的掌握,有能力把业务需求转化为数据挖掘的各步操作,并为每步操作选择合适的技术. 数据管理人员:精通数据管理技术,并从数据库或数据仓库中收集数据. 从上可见,数据挖掘是一个多种专家合作的过程,也是一个在资金上和技术上高投入的过程.这一过程要反复进行牞在反复过程中,不断地趋近事物的本质,不断地优先问题的解决方案。数据重组和细分添加和拆分记录选取数据样本可视化数据探索聚类分析神经网络、决策树数理统计、时间序列结论综合解释评价数据知识数据取样数据探索数据调整模型化评价。

NO.5 Data Mining 运用了哪些理论与技术?

Data Mining是近年来数据库应用技术中相当热门的议题,看似神奇、听来时髦,实际上却也不是什么新东西,因其所用之诸如预测模型、数据分割,连结分析(Link Analysis)、偏差侦测(Deviation Detection)等,美国早在二次世界大战前就已应用运用在人口普查及军事等方面。随着信息科技超乎想象的进展,许多新的计算机分析工具问世,例如关系型数据库、模糊计算理论、基因算法则以及类神经网络等,使得从数据中发掘宝藏成为一种系统性且可实行的程序。一般而言,Data Mining的理论技术可分为传统技术与改良技术两支。传统技术以统计分析为代表,统计学内所含序列统计、概率论、回归分析、类别数据分析等都属于传统数据挖掘技术,尤其Data Mining 对象多为变量繁多且样本数庞大的数据,是以高等统计学里所含括之多变量分析中用来精简变量的因素分析(Factor Analysis)、用来分类的判别分析(Discriminant Analysis),以及用来区隔群体的分群分析(Cluster Analysis)等,在Data Mining过程中特别常用。在改良技术方面,应用较普遍的有决策树理论(Decision Trees)、类神经网络(Neural Network)以及规则归纳法(Rules Induction)等。决策树是一种用树枝状展现数据受各变量的影响情形之预测模型,根据对目标变量产生之效应的不同而建构分类的规则,一般多运用在对客户数据的分析上,例如针对有回函与未回含的邮寄对象找出影响其分类结果的变量组合,常用分类方法为CART(Classification and Regression Trees)及CHAID(Chi-Square Automatic Interaction Detector)两种。类神经网络是一种仿真人脑思考结构的数据分析模式,由输入之变量与数值中自我学习并根据学习经验所得之知识不断调整参数以期建构数据的型样(patterns)。类神经网络为非线性的设计,与传统回归分析相比,好处是在进行分析时无须限定模式,特别当数据变量间存有交互效应时

可自动侦测出;缺点则在于其分析过程为一黑盒子,故常无法以可读之模型格式展现,每阶段的加权与转换亦不明确,是故类神经网络多利用于数据属于高度非线性且带有相当程度的变量交感效应时。规则归纳法是知识发掘的领域中最常用的格式,这是一种由一连串的「如果…/则…(If / Then)」之逻辑规则对数据进行细分的技术,在实际运用时如何界定规则为有效是最大的问题,通常需先将数据中发生数太少的项目先剔除,以避免产生无意义的逻辑规则。

NO.6 Data Mining包含哪些主要功能?

Data Mining实际应用功能可分为三大类六分项来说明:Classification和Clustering属于分类区隔类;Regression和Time-series属于推算预测类;Association和Sequence则属于序列规则类。Classification是根据一些变量的数值做计算,再依照结果作分类。(计算的结果最后会被分类为几个少数的离散数值,例如将一组数据分为"可能会响应" 或是"可能不会响应" 两类)。Classification常被用来处理如前所述之邮寄对象筛选的问题。我们会用一些根据历史经验已经分类好的数据来研究它们的特征,然后再根据这些特征对其他未经分类或是新的数据做预测。这些我们用来寻找特征的已分类数据可能是来自我们的现有的客户数据,或是将一个完整数据库做部份取样,再经由实际的运作来测试;譬如利用一个大型邮寄对象数据库的部份取样来建立一个Classification Model,再利用这个Model来对数据库的其它数据或是新的数据作分类预测。Clustering用在将数据分群,其目的在于将群间的差异找出来,同时也将群内成员的相似性找出来。Clustering与Classification不同的是,在分析前并不知道会以何种方式或根据来分类。所以必须要配合专业领域知识来解读这些分群的意义。Regression是使用一系列的现有数值来预测一个连续数值的可能值。若将范围扩大亦可利用Logistic Regression来预测类别变量,特别在广泛运用现代分析技术如类神经网络或决策树理论等分析工具,推估预测的模式已不在止于传统线性的局限,在预测的功能上大大增加了选择工具的弹性与应用范围的广度。Time-Series Forecasting与Regression功能类似,只是它是用现有的数值来预测未来的数值。两者最大差异在于Time-Series所分析的数值都与时间有关。Time-Series Forecasting的工具可以处理有关时间的一些特性,譬如时间的周期性、阶层性、季节性以及其它的一些特别因素(如过去与未来的关连性)。Association是要找出在某一事件或是数据中会同时出现的东西。举例而言,如果A是某一事件的一种选择,则B也出现在该事件中的机率有多少。(例如:如果顾客买了火腿和柳橙汁,那么这个顾客同时也会买牛奶的机率是85%。)Sequence Discovery与Association关系很密切,所不同的是Sequence Discovery中事件的相关是以时间因素来作区隔(例如:如果A股票在某一天上涨12%,而且当天股市加权指数下降,则B股票在两天之内上涨的机率是68%)。

NO.7 Data Mining在各领域的应用情形为何?

Data Mining在各领域的应用非常广泛,只要该产业拥有具分析价值与需求的数据仓储或数据库,皆可利用Mining工具进行有目的的挖掘分析。一般较常见的应用案例多发生在零售业、直效行销界、制造业、财务金融保险、通讯业以及医疗服务等。于销售数据中发掘顾客的消费习性,并可藉由交易纪录找出顾客偏好的产品组合,其它包括找出流失顾客的特征与推出新产品的时机点等等都是零售业常见的实例;直效行销强调的分众概念与数据库行销方式在导入Data Mining的技术后,使直效行销的发展性更为强大,例如利用Data Mining分析顾客群之消费行为与交易纪录,结合基本数据,并依其对品牌价值等级的高低来区隔顾客,进而达到差异化行销的目的;制造业对Data Mining的需求多运用在品质控管方面,由制造过程中找出影响产品品质最重要的因素,以期提高作业流程的效率。近来电话公司、信用卡公司、保险公司以及股票交易商对于诈欺行为的侦测(Fraud Detection)都很有兴趣,这些行业每年因为诈欺行为而造成的损失都非常可观,Data Mining可以从一些信用不良的客户数据中找出相似特征并预测可能的诈欺交易,达到减少损失的目的。财务

金融业可以利用Data Mining来分析市场动向,并预测个别公司的营运以及股价走向。Data Mining的另一个独特的用法是在医疗业,用来预测手术、用药、诊断、或是流程控制的效率。

NO.8 Web Mining 和数据挖掘有什么不同?

如果将Web视为CRM的一个新的Channel,则Web Mining便可单纯看做Data Mining 应用在网络数据的泛称。该如何测量一个网站是否成功?哪些内容、优惠、广告是人气最旺的?主要访客是哪些人?什么原因吸引他们前来?如何从堆积如山之大量由网络所得数据中找出让网站运作更有效率的操作因素?以上种种皆属Web Mining 分析之范畴。Web Mining 不仅只限于一般较为人所知的log file分析,除了计算网页浏览率以及访客人次外,举凡网络上的零售、财务服务、通讯服务、政府机关、医疗咨询、远距教学等等,只要由网络连结出的数据库够大够完整,所有Off-Line可进行的分析,Web Mining都可以做,甚或更可整合Off-Line及On-Line的数据库,实施更大规模的模型预测与推估,毕竟凭借网际网络的便利性与渗透力再配合网络行为的可追踪性与高互动特质,一对一行销的理念是最有机会在网络世界里完全落实的。整体而言,Web Mining具有以下特性:1. 数据收集容易且不引人注意,所谓凡走过必留下痕迹,当访客进入网站后的一切浏览行为与历程都是可以立即被纪录的;2. 以交互式个人化服务为终极目标,除了因应不同访客呈现专属设计的网页之外,不同的访客也会有不同的服务;3. 可整合外部来源数据让分析功能发挥地更深更广,除了log file、cookies、会员填表数据、线上调查数据、线上交易数据等由网络直接取得的资源外,结合实体世界累积时间更久、范围更广的资源,将使分析的结果更准确也更深入。利用Data Mining技术建立更深入的访客数据剖析,并赖以架构精准的预测模式,以期呈现真正智能型个人化的网络服务,是Web Mining努力的方向。

NO.9 数据挖掘在CRM 中扮演的角色为何?

CRM(Customer Relationship Management)是近来引起热烈讨论与高度关切的议题,尤其在直效行销的崛起与网络的快速发展带动下,跟不上CRM的脚步如同跟不上时代。事实上CRM并不算新发明,奥美直效行销推动十数年的CO(Customer Ownership)就是现在大家谈的CRM—客户关系管理。Data Mining应用在CRM的主要方式可对应在Gap Analysis 之三个部分:针对Acquisition Gap,可利用Customer Profiling找出客户的一些共同的特征,希望能藉此深入了解客户,藉由Cluster Analysis对客户进行分群后再透过Pattern Analysis 预测哪些人可能成为我们的客户,以帮助行销人员找到正确的行销对象,进而降低成本,也提高行销的成功率。针对Sales Gap,可利用Basket Analysis帮助了解客户的产品消费模式,找出哪些产品客户最容易一起购买,或是利用Sequence Discovery预测客户在买了某一样产品之后,在多久之内会买另一样产品等等。利用Data Mining可以更有效的决定产品组合、产品推荐、进货量或库存量,甚或是在店里要如何摆设货品等,同时也可以用来评估促销活动的成效。针对Retention Gap,可以由原客户后来却转成竞争对手的客户群中,分析其特征,再根据分析结果到现有客户数据中找出可能转向的客户,然后设计一些方法预防客户流失;更有系统的做法是藉由Neural Network根据客户的消费行为与交易纪录对客户忠诚度进行Scoring的排序,如此则可区隔流失率的等级进而配合不同的策略。CRM不是设一个(800)客服专线就算了,更不仅只是把一堆客户基本数据输入计算机就够,完整的CRM运作机制在相关的硬软件系统能健全的支持之前,有太多的数据准备工作与分析需要推动。企业透过Data Mining可以分别针对策略、目标定位、操作效能与测量评估等四个切面之相关问题,有效率地从市场与顾客所搜集累积之大量数据中挖掘出对消费者而言最关键、最重要的答案,并赖以建立真正由客户需求点出发的客户关系管理。

NO.10 目前业界常用的数据挖掘分析工具?

Data Mining工具市场大致可分为三类: 1. 一般分析目的用的软件包TipDM(顶

尖数据挖掘平台) GDM(Geni-Sage Data Mining Analysis System,博通数据挖掘分析系统)SAS Enterprise Miner Markway Analysis System (马克威分析系统) KXEN(凯森) IBM Intelligent Miner Unica PRW SPSS Clementine SGI MineSet Oracle Darwin AngossKnowledgeSeeker 2. 针对特定功能或产业而研发的软件KD1(针对零售业)Options & Choices(针对保险业)HNC(针对信用卡诈欺或呆帐侦测)Unica Model 1(针对行销业)iEM System (针对流程行业的实时历史数据) 3. 整合DSS(Decision Support Systems)/OLAP/Data Mining的大型分析系统Cognos Scenario and Business Objects

编辑本段数据挖掘相关的权威期刊和会议

[Journals]

1.ACM Transactions on Knowledge Discovery from Data (TKDD)

2.IEEE Transactions on Knowledge and Data Engineering (TKDE)

3.Data Mining and Knowledge Discovery

4.Knowledge and Information Systems

5.Data & Knowledge Engineering [Conferences]

1.SIGMOD:ACM Conference on Management of Data (ACM)

2.VLDB:International Conference on Very Large Data Bases (Morgan Kaufmann/ACM)

3.ICDE:IEEE International Conference on Data Engineering (IEEE Computer Society)

4.SIGKDD:ACM Knowledge Discovery and Data Mining (ACM)

5.WWW:International World Wide Web Conferences (W3C)

6.CIKM:ACM International Conference on Information and Knowledge Management (ACM)

7.PKDD:European Conference on Principles and Practice of Knowledge Discovery in Databases (Springer-VerlagLNAI)

编辑本段数据挖掘的发展前景

当前数据挖掘应用主要集中在电信、零售、农业、网络日志、银行、电力、生物、天体、化工、医药等方面。看似广泛,实际应用还远没有普及。而据Gartner的报告也指出,数据挖掘会成为未来10年内重要的技术之一。而数据挖掘,也已经开始成为一门独立的专业学科。具体发展趋势和应用方向主要有:对知识发现方法的研究进一步发展,如对Bayes 和Boosting方法的研究和提高;商业工具软件不断产生和完善,注重建立解决问题的整体系统,例如Weka等软件。数据挖掘的发展应是挖掘工具在先进理论指导下的改进,而就国内情况而言,还有至少20年的发展空间。词条图册更多图册词条图片(10张)

扩展阅读:

1

中国域名网https://www.360docs.net/doc/b06468821.html,

2

《数据挖掘概念与技术》

3

https://www.360docs.net/doc/b06468821.html,/bookfiles/327/10032713183.shtml

4

https://www.360docs.net/doc/b06468821.html,/data/6838

5

https://www.360docs.net/doc/b06468821.html,/goshawk2008/blog/item/a0693cee6f10162c2df53436.html

6

https://www.360docs.net/doc/b06468821.html,/goshawk2008

7

职业交流https://www.360docs.net/doc/b06468821.html,

8

https://www.360docs.net/doc/b06468821.html,/view/1020556.htm

9

SIGMOD: https://www.360docs.net/doc/b06468821.html,

10

VLDB: https://www.360docs.net/doc/b06468821.html,

11

ICDE: https://www.360docs.net/doc/b06468821.html,/

12

SIGKDD: https://www.360docs.net/doc/b06468821.html,/sigkdd/

13

WWW: https://www.360docs.net/doc/b06468821.html,rmatik.uni-trier.de/~ley/db/conf/www/index.html

14

CIKM: https://www.360docs.net/doc/b06468821.html,/

15

PKDD: https://www.360docs.net/doc/b06468821.html,/

去网页搜索:数据挖掘

开放分类:

数据库,网络,电脑,计算机,知识发现

我来完善“数据挖掘”相关词条:

元数据数据库空间数据库模式识别面向对象技术企业内容管理计算机视觉并行计算分布式处理

自然语言处理数据仓库网格计算商业智能数据压缩数据转换人工智能分布式计算数据集市全文检索

数据库技术神经网络数据存储知识表示数据库管理语音识别数据可视化数据清理事务处理知识发现

关联规则挖掘算法的研究

Vol.29No.1 Jan.2013 赤峰学院学报(自然科学版)JournalofChifengUniversity(NaturalScienceEdition)第29卷第1期(下) 2013年1月关联规则挖掘算法的研究目前是数据挖掘领域的一个重要方向,其中,Apriori算法就是一个经典的挖掘关联规则算法.1993年,Agrawal等提出关联规则挖掘的相关概念,随后提出经典Apriori算法,它是一个采用两阶段挖掘思想的算法,且多次扫描事务数据库,直到寻找出给定数据集中数据项之间有趣的关联规则.1关联规则基本概念 1.1 关联规则 关联规则是形如A圯B的蕴含式,在关联规则中,有两 个重要的概念:支持度和置信度.支持度是对关联规则的重要性的衡量,置信度是对关联规则的准确度的衡量,一般情况下,用户根据实际挖掘需要,预先给定最小支持度和最小置信度,通常情况下,如果规则的置信度和支持度大于用户指定的最小置信度和支持度,那么这个规则就是一条有效规则.事实上,有效规则并不一定具有实用性,还要参照关联规则的其他指标. 定义1 设I={I1,I2,…,IM}是数据项的集合,D是全体事务 的集合,一个事务T有一个唯一的标识TID.如果项集A哿T,则称事务T支持项集A,也称事务T包含项集A. 定义2 关联规则是形如A圯B的蕴含式,其中A奂I,B奂I,且A∩B=Φ. 定义3 事务数据库D中有N条交易事务,关联规则 A圯B的支持度定义为: support(A圯B)=support(A∪B)×100%.定义4 置信度定义为: confidence(A圯B)=support(A∪B)×100%. 引理1 在数据库中若有一事务T其长度小于K+1,则 由K项频繁集生成K+1项频繁集时,事务T是没必要扫描的.1.2 Apriori算法的基本思想 Apriori算法是发现关联规则的经典算法.该算法分两个步骤发现关联规则:第一步通过迭代,找出事务数据库中的所有频繁项集,即支持度不低于最小支持度的项集;第二步利用频繁项集构造出满足用户最小可信度的规则.2 Apriori 算法的不足之处 Apriori算法最大的优点是算法思路比较简单,它以递归统计为基础,生成频繁项集,易于实现.Apriori算法虽然能够从海量数据中挖掘出关联规则,但是算法在执行速度和效率上有一定的局限性,表现如下:2.1 Apriori算法会产生大量的候选项集.该算法是由候选 集函数Apriori-Gen利用Lk-1项产生候选项集Ck,所产生的Ck由Ck Lk-1 项集组成.显然k越大产生的候选项集的数目就越多. 2.2I/O负载过大.Apriori算法需要多次扫描事务数据库, 需要很大的I/O负载.对每次k循环,候集Ck中的每个元素都必须扫描数据库1次来决定其是否加入Ck.例如,一个频繁大项目集包含12个项,那么就至少扫描事务数据库12遍.3 对Apriori 算法的改进 算法改进的思路 1.改变数据的存储结构,用二进制位存储各项目的事务集,矩阵的列代表频繁K-项集,矩阵的行代表事务,其中1表示该项目在某事务中出现,0表示该项目在某事务中没有出现. 2.生成频繁1-项集.首先扫描源数据库,生成矩阵.统计每列中包含1的数目,得到该项目的支持事务数,如果该项的支持事务数大于最小支持事务数,则该项是频繁项集,否则是非频繁项集.从矩阵中将该列删除,并根据引理1,在矩阵中删除第9行,得出频繁1-项集. 3.由频繁1-项集生成频繁2-项集.对频繁1-项集中的项两两连接得出候选2-项集,也就是对矩阵中第i列所代表的项集和第j列所代表的项集进行逻辑与操作.然后计 关联规则挖掘算法的研究 张 丽 (湖南文理学院 经济与管理学院,湖南 常德415000) 摘要:本文介绍了数据挖掘中的关联规则经典Ap r i or i 算法.针对Ap r i or i 算法在执行速度和效率上的缺点,提出了一种改进的Ap r i or i 算法. 关键词:Ap r i or i ;算法;关联规则中图分类号:TP311 文献标识码:A 文章编号:1673-260X(2013)01-0022-02 基金项目:湖南文理学院2010年度青年启动课题(QNQD1017) 22--

(整理)数据挖掘-关联

数据收集及处理 数据描述: 本文的所采用的数据集来源于网络数据中心数据堂所提供的,来自主要电商平台:京东,淘宝,天猫,亚马逊,一号店的2013年10月20日至2013年10月22日的爽肤水交易信息。数据集主要分为3个部分,第一部分为各平台上爽肤水的交易记录,单日的交易数据包含了19203条交易记录,14个变量,变了包括商品ID,电商名称,日期,商品名称,商品URL,促销价,商品销量销售额,店铺名称,店铺等级,品牌功效,适合皮肤,容量,如图所示为在EXCEL中打开的京东在2013年10月20日的交易数据。第二部分为买家购买后的评价,单日包含925条的评论信息,6个变量,变量包含商品ID,购买时间,评论时间,昵称,评分,评论内容,如图所示就是2013年10月20日京东的评论信息。第三部分为品牌数据集,一共51990条数据,7个变量,包括类目,品牌,电商平台,平均价格,日总销量,对应商品ID。如图所示就是2013年10月20日所有电商平台的评判信息。 本论文所采用的数据全部来自于知名网络数据中心数据堂,具有相当的可信度。经过对数据的观察,为了使得研究过程能够更加方便,我们选择数据较为完整并且有序的自于京东平台的交易信息。由于本文目的是建立如何选择商品的模型,因此不会对结果造成影响。 数据初步处理: 本轮问所有的数据都采用SAS中SQL语言与EXCEL相结合进行

处理。 先对对京东平台上爽肤水的交易记录进行处理。首先应该去掉与本文研究不相关的信息。由于电商名称,日期,店铺名称与本文研究目标不匹配,同时在京东平台上并没有店铺信息,商品名称内容包含于品牌名称等其他变量中。因此我们只选择其中的变量:商品ID,促销价,商品销量销售额,品牌功效,适合皮肤,容量。 将源数据导入SAS之后采用EM模块的InputData节点对销量变量进行描述性统计如图所示: 我们可以发现,其中大多数商品的销售额都为0,是因为这里仅仅采用3天的交易数据,所以大多都没有销量。因为没有销量的商品对本文的并无研究意义,因此我们只研究销售量大于0的商品。 采用SQL语言将3日的交易数据合并,并选取所需变量,并且将相同的商品进行合并。 Proc sql; CREATE table Homework.JD as select * FROM Homework.JINGD1 UNION ALL select * FROM Homework.JINGD2 UNION ALL select * FROM Homework.JINGD3;

最新数据挖掘考试题目——关联分析资料

数据挖掘考试题目——关联分析 一、10个选择 1.以下属于关联分析的是() A.CPU性能预测B.购物篮分析 C.自动判断鸢尾花类别D.股票趋势建模 2.维克托?迈尔-舍恩伯格在《大数据时代:生活、工作与思维的大变革》一书中,持续强调了一个观点:大数据时代的到来,使我们无法人为地去发现数据中的奥妙,与此同时,我们更应该注重数据中的相关关系,而不是因果关系。其中,数据之间的相关关系可以通过以下哪个算法直接挖掘() A.K-means B.Bayes Network C.C4.5 D.Apriori 3.置信度(confidence)是衡量兴趣度度量()的指标。 A.简洁性B.确定性 C.实用性D.新颖性 4.Apriori算法的加速过程依赖于以下哪个策略() A.抽样B.剪枝 C.缓冲D.并行 5.以下哪个会降低Apriori算法的挖掘效率() A.支持度阈值增大B.项数减少 C.事务数减少D.减小硬盘读写速率 6.Apriori算法使用到以下哪些东东() A.格结构、有向无环图B.二叉树、哈希树 C.格结构、哈希树D.多叉树、有向无环图 7.非频繁模式() A.其置信度小于阈值B.令人不感兴趣 C.包含负模式和负相关模式D.对异常数据项敏感 8.对频繁项集、频繁闭项集、极大频繁项集的关系描述正确的是()[注:分别以1、2、3代表之] A.3可以还原出无损的1 B.2可以还原出无损的1 C.3与2是完全等价的D.2与1是完全等价的 9.Hash tree在Apriori算法中所起的作用是() A.存储数据B.查找 C.加速查找D.剪枝 10.以下不属于数据挖掘软件的是() A.SPSS Modeler B.Weka C.Apache Spark D.Knime 二、10个填空 1.关联分析中表示关联关系的方法主要有:和。 2.关联规则的评价度量主要有:和。 3.关联规则挖掘的算法主要有:和。 4.购物篮分析中,数据是以的形式呈现。 5.一个项集满足最小支持度,我们称之为。 6.一个关联规则同时满足最小支持度和最小置信度,我们称之为。

关联规则挖掘的过程

关联规则挖掘的过程 关联规则挖掘过程主要包含两个阶段:第一阶段必须先从资料集合中找出所有的高频项目组(Frequentitemsets),第二阶段再由这些高频项目组中产生关联规则(Association Rules)。 关联规则挖掘的第一阶段必须从原始资料集合中,找出所有高频项目组(Large Itemsets)。高频的意思是指某一项目组出现的频率相对于所有记录而言,必须达到某一水平。一项目组出现的频率称为支持度(Support),以一个包含A与B两个项目的2-itemset为例,我们可以经由公式(1)求得包含{A,B}项目组的支持度,若支持度大于等于所设定的最小支持度(Minimum Support)门槛值时,则{A,B}称为高频项目组。一个满足最小支持度的k-itemset,则称为高频k-项目组(Frequent k-itemset),一般表示为Large k或Frequent k。算法并从Large k的项目组中再产生Large k+1,直到无法再找到更长的高频项目组为止。 关联规则挖掘的第二阶段是要产生关联规则(Association Rules)。从高频项目组产生关联规则,是利用前一步骤的高频k-项目组来产生规则,在最小信赖度(Minimum Confidence)的条件门槛下,若一规则所求得的信赖度满足最小信赖度,称此规则为关联规则。例如:经由高频k-项目组{A,B}所产生的规则AB,其信赖度可经由公式(2)求得,若信赖度大于等于最小信赖度,则称AB为关联规则。 就沃尔马案例而言,使用关联规则挖掘技术,对交易资料库中的纪录进行资料挖掘,首先必须要设定最小支持度与最小信赖度两个门槛值,在此假设最小支持度min_support=5% 且最小信赖度min_confidence=70%。因此符合此该超市需求的关联规则将必须同时满足以上两个条件。若经过挖掘过程所找到的关联规则「尿布,啤酒」,满足下列条件,将可接受「尿布,啤酒」的关联规则。用公式可以描述Support(尿布,啤酒)>=5%且Confidence(尿布,啤酒)>=70%。其中,Support(尿布,啤酒)>=5%于此应用范例中的意义为:在所有的交易纪录资料中,至少有5%的交易呈现尿布与啤酒这两项商品被同时购买的交易行为。Confidence(尿布,啤酒)>=70%于此应用范例中的意义为:在所有包含尿布的交易纪录资料中,至少有70%的交易会同时购买啤酒。因此,今后若有某消费者出现购买尿布的行为,超市将可推荐该消费者同时购买啤酒。这个商品推荐的行为则是根据「尿布,啤酒」关联规则,因为就该超市过去的交易纪录而言,支持了“大部份购买尿布的交易,会同时购买啤酒”的消费行为。 关联规则挖掘通常比较适用与记录中的指标取离散值的情况。如果原始数据库中的指标值是取连续的数据,则在关联规则挖掘之前应该进行适当的数据离散化(实际上就是将某个区间的值对应于某个值),数据的离散化是数据挖掘前的重要环节,离散化的过程是否合理将直接影响关联规则的挖掘结果。

聚类分析、数据挖掘、关联规则这几个概念的关系

聚类分析和关联规则属于数据挖掘这个大概念中的两类挖掘问题, 聚类分析是无监督的发现数据间的聚簇效应。 关联规则是从统计上发现数据间的潜在联系。 细分就是 聚类分析与关联规则是数据挖掘中的核心技术; 从统计学的观点看,聚类分析是通过数据建模简化数据的一种方法。传统的统计聚类分析方法包括系统聚类法、分解法、加入法、动态聚类法、有序样品聚类、有重叠聚类和模糊聚类等。采用k-均值、k-中心点等算法的聚类分析工具已被加入到许多著名的统计分析软件包中,如SPSS、SAS等。 从机器学习的角度讲,簇相当于隐藏模式。聚类是搜索簇的无监督学习过程。与分类不同,无监督学习不依赖预先定义的类或带类标记的训练实例,需要由聚类学习算法自动确定标记,而分类学习的实例或数据对象有类别标记。聚类是观察式学习,而不是示例式的学习。 聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。聚类分析所使用方法的不同,常常会得到不同的结论。不同研究者对于同一组数据进行聚类分析,所得到的聚类数未必一致。 从实际应用的角度看,聚类分析是数据挖掘的主要任务之一。而且聚类能够作为一个独立的工具获得数据的分布状况,观察每一簇数据的特征,集中对特定的聚簇集合作进一步地分析。聚类分析还可以作为其他算法(如分类和定性归纳算法)的预处理步骤。 关联规则挖掘过程主要包含两个阶段:第一阶段必须先从资料集合中找出所有的高频项目组(FrequentItemsets),第二阶段再由这些高频项目组中产生关联规则(AssociationRules)。 关联规则挖掘的第一阶段必须从原始资料集合中,找出所有高频项目组(LargeItemsets)。高频的意思是指某一项目组出现的频率相对于所有记录而言,必须达到某一水平。 关联规则挖掘的第二阶段是要产生关联规则(AssociationRules)。从高频项目组产生关联规则,是利用前一步骤的高频k-项目组来产生规则,在最小信赖度(MinimumConfidence)的条件门槛下,若一规则所求得的信赖度满足最小信赖度,称此规则为关联规则。

关联规则挖掘英文PPT

INFO411/911 Laboratory exercises on Association Rule Mining Overview: Association rule mining can help uncover relationships between seemingly unrelated data in a transactional database. In data mining, association rules are useful in discovering consequences of commonly observed patterns within a set of transactions. What you need: 1.R software package (already installed on the lab computers) 2.The file "laboratory_week5.zip" on Moodle. Preparation: 1.Work in a group of size two to three (minimum size of a group is two. But no more than three students are to work together). Penalties apply if a group exeeds these limits. 2.Boot computer into Windows mode. 3.Download laboratory_week5.zip then save to an arbitrary folder, say "C:\Users\yourname\Desktop" 4.Uncompress laboratory_week 5.zip into this folder 5.Start "R" 6.Change the working directory by entering: setwd("C:/Users/yourname/Desktop") (Note that R expects forward slashes rather than backwars slashes as used by Windows.) Your task: Your are to submit a PDF document which contains your answers of the questions in this laboratory exercise. One document is to be submitted by each group. The header of the document must list the name and student number of all students in the group. Clearly indicate which question you have answered. The following link provides a documentation of the association rule module in R (called arules). The link can help you develop a better understanding of the usage and parameters of the association rule package in R: https://www.360docs.net/doc/b06468821.html,/web/packages/arules/arules.pdf Work through the following step and answer given questions: Step1: Familiarize yourself with the arules package in R. Start R and type: library(arules) to load the package. We shall start from the analysis of a small file sample1.csv that contains some transactional data. To load data into R enter: sample1.transactions <- read.transactions("sample1.csv", sep=",") To get information about the total number of transactions in a file sample1.csv enter: sample1.transactions To get a summary of data set sample1.csv enter: summary(sample1.transactions) The data set is described as sparse matrix that consists of 10 rows and five columns. The density of

数据挖掘中关联规则挖掘的应用研究

数据挖掘中关联规则挖掘的应用研究 吴海玲,王志坚,许峰 河海大学计算机及信息工程学院,江苏南京(210098) 摘 要:本文首先介绍关联规则的基本原理,并简单概括其挖掘任务,然后说明关联规则的经典挖掘算法Apriori 算法,通过一个实例分析进一步明确关联规则在CRM 中的应用,最后展望了关联规则挖掘的研究方向。 关键词:数据挖掘,关联规则,Apriori 算法,CRM 引言 关联规则是表示数据库中一组对象之间的某种关联关系的规则,关联规则挖掘的主要对象是交易(Transaction)数据库。这种数据库的一个主要应用是零售业,比如超级市场的销售管理。条形码技术的发展使得数据的收集变得更容易、更完整,从而可以存储大量的交易资料。关联规则就是辨别这些交易项目之间是否存在某种关系。例如:关联规则可以表示“购买了商品A 和B 的顾客中有80%的人又购买了商品C 和D”。这种关联规则提供的信息可以用作商品目录设计、商场货架的布置、生产安排、具有针对性的市场营销等。 [1] 1 关联规则的基本原理 设I={i 1,i 2,……,i m }是项的集合,设任务相关的数据D 是数据库事务的集合,其中每个事务T 是项的集合,使得T I 。每一个事务有一个标识符,称作T ID 。设X 是一个项集,事务T 包含X 当且仅当X T 。关联规则是形如X Y 的蕴涵式,其中X I ,Y ?I ,并且X ∩Y =?。规则X Y 在事务集D 中成立,具有支持度s ,其中s 是D 中事务包含X ∪Y (即X 和Y 二者)的百分比,它是概率P (X ∪Y )。规则X Y 在事务集中具有可信度c ,如果D 中包含X 的事务同时也包含Y 的百分比c 。这是条件概率P (X Y ∣)。即是 ??????support(X ?Y)= P (X Y ∪) confidence(X ?Y)= P (X Y ∣) 同时满足最小支持度(minsup)和最小可信度阈值(minconf )的规则称作强规则[1]。 项的集合称为项集(itemset )。包含k 个项的项集成为k -项集,例如集合{computer, software }是一个2—项集。项集的出现频率是包含项集的事务数,简称为项集的频率。项集满足最小支持度minsup ,如果项集的出现频率大于或者等于minsup 与D 中事务总数的乘积。如果项集满足最小支持度,则称它为频繁项集(frequent itemset) [2]。 2 关联规则的发现任务 关联规则挖掘的问题就是要找出这样的一些规则,它们的支持度或可信度分别大于指定的最小支持度minsup 和最小可信度minconf 。因此,该问题可以分解成如下两个子问题[3]: 1.产生所有支持度大于或等于指定最小支持度的项集,这些项目集称为频繁项目集(frequent itemsets ),而其他的项目集则成为非频繁项目集(non-frequent itemsets ) 2.由频繁项集产生强关联规则。根据定义,这些规则必须满足最小支持度和最小可信度。 关联规则挖掘的问题的主要特征是数据量巨大,因此算法的效率很关键。目前研究的重点在第一步,即发现频繁项目集,因此第二步相对来说是很容易的。

关联规则挖掘综述

关联规则挖掘综述 摘要:近年来国内外学者对关联规则进行了大量的研究。为了更好地了解关联规则的挖掘技术,对研究现状有更深入的了解,首先本文对数据挖掘技术进行了介绍,接着介绍了关联数据挖掘的基本原理,最后对经典的挖掘算法进行分类介绍。 关键词:数据挖掘;关联规则;算法;综述 1.引言 数据挖掘是从海量的数据里寻找有价值的信息和数据。数据挖掘中常用的算法[1]有:关联规则分析法(解决事件之间的关联问题)、决策树分类法(对数据和信息进行归纳和分类)、遗传算法(基于生物进化论及分子遗传学理论提出的)、神经网络算法(模拟人的神经元功能)等。 数据挖掘最早使用的方法是关联分析,主要应用于零售业。其中最有名的是售货篮分析,帮助售货商制定销售策略。随着信息时代的到来,数据挖掘在金融[2]、医疗[3]、通信[4]等方面得到了广泛的应用。 2.关联规则基本原理 设项的集合I = { I1 ,I2 ,...,Im },数据库事务的集合为D,我们用|D|表示事务数据库所有事务的个数,其中用T

表示每个事务,使得T I。我们用TID作为每个事务的唯一标识符。用X表示一个项集,满足X T,那么交易T包含X。根据上述相关描述,给出关联规则的相关定义。 2.1项集支持度 用X表示数据库事务D中的项集,项集X的支持度表示项集X在D中事务数所占的比例,用概率P(X)表示,那么Support(X)=P(X)=COUNT(X)/|D| (1) 2.2关联规则置信度 X Y关联规则的置信度是数据库事务D中包含X Y的事务数与包含X的事务数之比,表示方法如下: confidence(X Y)= support(X Y)/support(X)= P(Y|X)(2) 3.关联规则算法 3.1经典的Apriori挖掘算法 大多数关联规则的算法是将关联规则挖掘任务分为两个子任务完成。一是频繁项集的产生,频繁项集的目的是找到大于等于给定的最小支持度阈值的所有项集,这些项集我们称之为频繁项集。二是规则的产生,即从频繁项集中找到置信度比较高的规则,我们称之为强规则。Apriori挖掘算法是众多挖掘关联规则中比较经典的算法,它采用布尔关联规则,是一种宽度优先算法。 3.2Apriori算法优化

数据挖掘关联规则分析报告

关联规则分析报告 2009年7月8日 目录 一前言 (1) 二数据预处理 (1) 三前7710条真实数据分析 (2) 1商品按小类分析 (2) 2商品按中类分析 (4) 3商品按大类分析 (4) 4分析比较 (5) 四后44904条随机数据分析 (5) 1商品按小类分析 (5) 2商品按中类分析 (7) 3商品按大类分析 (8) 4分析比较 (8) 五52614条混合数据分析 (8) 1商品按小类分析 (8) 2商品按中类分析 (11) 3商品按大类分析 (11) 4分析比较 (12) 六总结 (12)

一前言 使用关联规则挖掘算法分析购物清单时,会产生不止“啤酒→尿布”的单一关联规则,而将出现涉及多种商品的“纵横交错”的多条关联规则。针对这一实际问题,本文利用学生日常购物记录数据进行关联分析,通过概念分层从不同粒度上分析商品之间的关联性,从而找到商品之间的关联规则,实现优化超市货物摆放次序的目的。 二数据预处理 1)在SQL server 2000 查询分析器里执行下面的SQL语句 declare @sql varchar(8000) set @sql = 'select zid ,xh' select @sql = @sql + ' , max(case goodsid when ''' + goodsid + ''' then goodsid end) [' + 'n'+ goodsid + ']' from (select distinct goodsid from rcxfjl) as a set @sql = @sql + ' into table_a from rcxfjl group by zid,xh' exec(@sql) 2)在PB里将有购买记录的列改为”yes” for i=1 to dw_1.rowcount() for li_index=1 to long(dw_1.object.datawindow.column.count) if integer(dw_1.getitemstring(i,dw_1.describe('#' + string(li_index) + ".name")))>0 then dw_1.setitem(i,dw_1.describe('#' + string(li_index) + ".name"),"yes") end if next next 3)将处理好的数据直接导出到Excel中 4)将Excel表中的空格替换成”?”(在weka中?表示缺省值)

浅谈关联规则挖掘技术的研究与应用

浅谈关联规则挖掘技术的研究与应用 【摘要】数据挖掘技术是日前广泛研究的数据库技术,关联规则是表示数据库中一组对象之间某种关联关系的规则。本文简要介绍了关联规则挖掘的相关理论和概念、Apriori算法,最后介绍了关联规则数据挖掘的应用情况。 【关键词】关联规则数据挖掘Apriori算法应用 随着数据库技术的快速发展,全球范围内的数据存储量急骤上升,面对这一挑战,数据挖掘技术应运而生, 关联规则挖掘在数据挖掘中是一个重要的课题,最近几年已被业界所广泛研究。关联规则的目标是发现数据集中所有的频繁模式,关联规则挖掘发现大量数据中项集之间有趣的关联或相关联系。 一、关联规则的定义 关联规则挖掘的一个典型例子是购物篮分析。关联规则研究有助于发现交易数据库中不同商品(项)之间的联系,找出顾客购买行为模式,如购买了某一商品对购买其他商品的影响。分析结果可以应用于商品货架布局、货存安排以及根据购买模式对用户进行分类。 二、关联规则挖掘的过程 关联规则挖掘过程主要包含两个阶段:关联规则挖掘的第一阶段必须从原始资料集合中,找出所有高频项目组(Large Itemsets)。高频的意思是指某一项目组出现的频率相对于所有记录而言,必须达到某一水平。关联规则挖掘的第二阶段是要产生关联规则(Association Rules)。根据定义,这些规则必须满足最小支持度和最小可信度。 三、关联规则分类 1.基于规则中处理的变量的类别,关联规则可以分为布尔型和数值型。布尔型关联规则处理的值都是离散的、种类化的,它显示了这些变量之间的关系;而数值型关联规则可以和多维关联或多层关联规则结合起来,对数值型字段进行处理,将其进行动态的分割,或者直接对原始的数据进行处理。 2.基于规则中数据的抽象层次,可以分为单层关联规则和多层关联规则。在单层的关联规则中,所有的变量都没有考虑到现实的数据是具有多个不同的层次的;而在多层的关联规则中,对数据的多层性已经进行了充分的考虑。 3.基于规则中涉及到的数据的维数,关联规则可以分为单维的和多维的。在单维的关联规则中,我们只涉及到数据的一个维;而在多维的关联规则中,要处理的数据将会涉及多个维。

关联规则数据挖掘

关联规则数据挖掘 学习报告

目录 引言 2 案例 2 关联规则 3 (一)关联规则定义 (二)相关概念 (三)关联规则分类 数据 6 (一)小型数据 (二)大型数据 应用软件 7 (一)WEKA (二)IBM SPSS Modeler 数据挖掘 12 总结 27

一、引言 数据库与互联网技术在日益发展壮大,人们每天可以获得的信息量呈指数级增长。如何从这浩如瀚海的数据中找出我们需要的数据显得尤为重要。数据挖掘又为资料探勘、数据采矿。它是数据库知识发现中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。 数据挖掘大致分为以下几类:分类(Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)。 二、案例 "尿布与啤酒"的故事。 在一家超市里,有一个有趣的现象:尿布和啤酒赫然摆在一起出售。但是这个奇怪的举措却使尿布和啤酒的销量双双增加了。这不是一个笑话,而是发生在美国沃尔玛连锁店超市的真实案例,并一直为商家所津津乐道。沃尔玛拥有世界上最大的数据仓库系统,为了能够准确了解顾客在其门店的购买习惯,沃尔玛对其顾客的购物行为进行购物篮分析,想知道顾客经常一起购买的商品有哪些。沃尔玛数据仓库里集中了其各门店的详细原始交易数据。在这些原始交易数据的基础上,沃尔玛利用数据挖掘方法对这些数据进行分析和挖掘。一个意外的发现是:"跟尿布一起购买最多的商品竟是啤酒!经过大量实际调查和分析,揭示了一个隐藏在"尿布与啤酒"背后的美国人的一种行为模式:在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,而他们中有30%~40%的人同时也为自己买一些啤酒。产生这一现象的原因是:美国的太太们常叮嘱她们的丈夫下班后为小孩买尿布,而丈夫们在买尿布后又随手带回了他们喜欢的啤酒。 按常规思维,尿布与啤酒风马牛不相及,若不是借助数据挖掘技术对大量交易数据进行挖掘分析,沃尔玛是不可能发现数据内在这一有价值的规律的。

数据挖掘考试题目——关联分析

数据挖掘考试题目一一关联分析 一、10个选择 1. 以下属于关联分析的是( ) A. CPU 性能预测 B .购物篮分析 C.自动判断鸢尾花类别 D.股票趋势建模 2. 维克托?迈尔-舍恩伯格在《大数据时代:生活、工作与思维的大变革》一书中,持续强 调了一个观点:大数据时代的到来, 们更应该注重数据中的相关关系, 下哪个算法直接挖掘( ) A. K-means C. 3. 置信度(confidence )是衡量兴趣度度量( A.简洁性 C.实用性 算法的加速过程依赖于以下哪个策略( A 抽样 C.缓冲 使我们无法人为地去发现数据中的奥妙,与此同时,我 而不是因果关系。其中,数据之间的相关关系可以通过以 Bayes Network Ap riori )的指标。 B .确定性 D.新颖性 ) B .剪枝 D.并行 ) B . D. 5.以下哪个会降低 Apriori 算法的挖掘效率( A 支持度阈值增大 C.事务数减少 算法使用到以下哪些东东( ) A.格结构、有向无环图 C.格结构、哈希树 7. 非频繁模式() A 其置信度小于阈值 C.包含负模式和负相关模式 B .项数减少 D.减小硬盘读写速率 B .二叉树、哈希树 D.多叉树、有向无环图 B .令人不感兴趣 D.对异常数据项敏感 8. 对频繁项集、频繁闭项集、极大频繁项集的关系描述正确的是( A. 3可以还原出无损的 1 C. 3与2是完全等价的 tree 在Apriori 算法中所起的作用是( A 存储数据 C.加速查找 10.以下不属于数据挖掘软件的是( A. SPSS Modeler C. Apache Spark B . D. ) B . D. )[注:分别以1、2、3代表之] 2可以还原出无损的1 2与1是完全等价的 查找 剪枝 B . D. Weka Knime 二、10个填空 1. 关联分析中表示关联关系的方法主要 有: 2. 关联规则的评价度量主要有: _______ 3. 关联规则挖掘的算法主要有: _______ 4. 购物篮分析中,数据是以 ___________ ____ 禾n _ ____ 禾n _ 的形式呈现。 5.一个项集满足最小支持度,我们称之为 _____________ o 6?—个关联规则同时满足最小支持度和最小置信度,我们称之为

数据挖掘算法之关联规则

数据挖掘算法之-关联规则挖掘(Association Rule) (2009-09-20 21:59:23) 转载 标签: 分类:DM dm 在数据挖掘的知识模式中,关联规则模式是比较重要的一种。关联规则的概念由Agrawal、Imielinski、Swami 提出,是数据中一种简单但很实用的规则。关联规则模式属于描述型模式,发现关联规则的算法属于无监督学习的方法。 一、关联规则的定义和属性 考察一些涉及许多物品的事务:事务1 中出现了物品甲,事务2 中出现了物品乙,事务3 中则同时出现了物品甲和乙。那么,物品甲和乙在事务中的出现相互之间是否有规律可循呢?在数据库的知识发现中,关联规则就是描述这种在一个事务中物品之间同时出现的规律的知识模式。更确切的说,关联规则通过量化的数字描述物品甲的出现对物品乙的出现有多大的影响。 现实中,这样的例子很多。例如超级市场利用前端收款机收集存储了大量的售货数据,这些数据是一条条的购买事务记录,每条记录存储了事务处理时间,顾客购买的物品、物品的数量及金额等。这些数据中常常隐含形式如下的关联规则:在购买铁锤的顾客当中,有70 %的人同时购买了铁钉。这些关联规则很有价值,商场管理人员可以根据这些关联规则更好地规划商场,如把铁锤和铁钉这样的商品摆放在一起,能够促进销售。 有些数据不像售货数据那样很容易就能看出一个事务是许多物品的集合,但稍微转换一下思考角度,仍然可以像售货数据一样处理。比如人寿保险,一份保单就是一个事务。保险公司在接受保险前,往往需要记录投保人详尽的信息,有时还要到医院做身体检查。保单上记录有投保人的年龄、性别、健康状况、工作单位、工作地址、工资水平等。这些投保人的个人信息就可以看作事务中的物品。通过分析这些数据,可以得到类似以下这样的关联规则:年龄在40 岁以上,工作在A 区的投保人当中,有45 %的人曾经向保险公司索赔过。在这条规则中,

关联规则挖掘基本概念和算法--张令杰10121084

研究生课程论文 关联规则挖掘基本概念和算法 课程名称:数据仓库与数据挖掘 学院:交通运输 专业:交通运输规划与管理 年级:硕1003班 姓名:张令杰 学号:10121084 指导教师:徐维祥

摘要 (Ⅰ) 一、引言 (1) 二、关联规则的基本描述 (1) 三、经典频繁项集挖掘的Apriori算法 (3) 四、提高Apriori算法的效率 (6) 五、由频繁项集产生关联规则 (8) 六、总结 (9) 参考文献 (9)

目前,数据挖掘已经成为一个研究热点。关联规则数据挖掘是数据挖掘的一个主要研究内容,关联规则是数据中存在的一类重要的可被发现的知识。其核心问题是如何提高挖掘算法的效率。本文介绍了经典的关联规则挖掘算法Apriori并分析了其优缺点。针对该算法的局限性,结合Apriori性质,本文对Apriori中连接的步骤进行了改进。通过该方法,可以有效地减少连接步产生的大量无用项集并减少判断项集子集是否是频繁项集的次数。 关键词:Apriori算法;关联规则;频繁项集;候选集

一、 引言 关联规则挖掘发现大量数据中项集之间有趣的关联或相关联系。如果两项或多项属性之间存在关联,那么其中一项的属性就可以依据其他属性值进行预测。它在数据挖掘中是一个重要的课题,最近几年已被业界所广泛研究。 关联规则挖掘的一个典型例子是购物篮分析[1] 。关联规则研究有助于发现交易数据库中不同商品(项)之间的联系,找出顾客购买行为模式,如购买了某一商品对购买其他商品的影响。分析结果可以应用于商品货架布局、货存安排以及根据购买模式对用户进行分类。 最著名的关联规则发现方法是R. Agrawal 提出的Apriori 算法。关联规则挖掘问题可以分为两个子问题:第一步是找出事务数据库中所有大于等于用户指定的最小支持度的数据项集;第二步是利用频繁项集生成所需要的关联规则,根据用户设定的最小置信度进行取舍,最后得到强关联规则。识别或发现所有频繁项目集市关联规则发现算法的核心。 二、关联规则的基本描述 定义1. 项与项集 数据库中不可分割的最小单位信息,称为项目,用符号i 表示。项的集合称为项集。设集合{}k i i i I ,,,21 =是项集,I 中项目的个数为k ,则集合I 称为k -项集。例如,集合{啤 酒,尿布,牛奶}是一个3-项集。 定义2. 事务 设{}k i i i I ,,,21 =是由数据库中所有项目构成的集合,一次处理所含项目的集合用T 表示,{}n t t t T ,,,21 =。每一个i t 包含的的项集都是I 子集。 例如,如果顾客在商场里同一次购买多种商品,这些购物信息在数据库中有一个唯一的标识,用以表示这些商品是同一顾客同一次购买的。我们称该用户的本次购物活动对应一个数据库事务。 定义3. 项集的频数(支持度计数) 包括项集的事务数称为项集的频数(支持度计数)。 定义4. 关联规则 关联规则是形如Y X ?的蕴含式,其中X ,Y 分别是I 的真子集,并且φ=?Y X 。 X 称为规则的前提,Y 称为规则的结果。关联规则反映X 中的项目出现时,Y 中的项目也 跟着出现的规律

数据挖掘考试题目——关联分析

一、10个选择 1.以下属于关联分析的是() A.CPU性能预测B.购物篮分析 C.自动判断鸢尾花类别D.股票趋势建模 2.维克托?迈尔-舍恩伯格在《大数据时代:生活、工作与思维的大变革》一书中,持续强调了一个观点:大数据时代的到来,使我们无法人为地去发现数据中的奥妙,与此同时,我们更应该注重数据中的相关关系,而不是因果关系。其中,数据之间的相关关系可以通过以下哪个算法直接挖掘() A.K-means B.Bayes Network C.D.Apriori 3.置信度(confidence)是衡量兴趣度度量()的指标。 A.简洁性B.确定性 C.实用性D.新颖性 算法的加速过程依赖于以下哪个策略() A.抽样B.剪枝 C.缓冲D.并行 5.以下哪个会降低Apriori算法的挖掘效率() A.支持度阈值增大B.项数减少 C.事务数减少D.减小硬盘读写速率 算法使用到以下哪些东东() A.格结构、有向无环图B.二叉树、哈希树 C.格结构、哈希树D.多叉树、有向无环图 7.非频繁模式() A.其置信度小于阈值B.令人不感兴趣 C.包含负模式和负相关模式D.对异常数据项敏感 8.对频繁项集、频繁闭项集、极大频繁项集的关系描述正确的是()[注:分别以1、2、3代表之] A.3可以还原出无损的1 B.2可以还原出无损的1 C.3与2是完全等价的D.2与1是完全等价的 tree在Apriori算法中所起的作用是() A.存储数据B.查找 C.加速查找D.剪枝 10.以下不属于数据挖掘软件的是() A.SPSS Modeler B.Weka C.Apache Spark D.Knime 二、10个填空 1.关联分析中表示关联关系的方法主要有:和。 2.关联规则的评价度量主要有:和。 3.关联规则挖掘的算法主要有:和。 4.购物篮分析中,数据是以的形式呈现。 5.一个项集满足最小支持度,我们称之为。 6.一个关联规则同时满足最小支持度和最小置信度,我们称之为。

关联规则挖掘

数据挖掘的其他基本功能介绍 一、关联规则挖掘 关联规则挖掘是挖掘数据库中和指标(项)之间有趣的关联规则或相关关系。关联规则挖掘具有很多应用领域,如一些研究者发现,超市交易记录中的关联规则挖掘对超市的经营决策是十分重要的。 1、 基本概念 设},,,{21m i i i I =是项组合的记录,D 为项组合的一个集合。如超市的每一张购物小票为一个项的组合(一个维数很大的记录),而超市一段时间内的购物记录就形成集合D 。我们现在关心这样一个问题,组合中项的出现之间是否存在一定的规则,如A 游泳衣,B 太阳镜,B A ?,但是A B ?得不到足够支持。 在规则挖掘中涉及到两个重要的指标: ①、支持度 支持度n B A n B A )()(?=?,显然,只有支持度较大的规则才是较有价值的规则。 ②、置信度 置信度) ()()(A n B A n B A ?=?,显然只有置信度比较高的规则才是比较可靠的规则。

因此,只有支持度与置信度均较大的规则才是比较有价值的规则。 ③、一般地,关联规则可以提供给我们许多有价值的信息,在关联规则挖掘时,往往需要事先指定最小支持度与最小置信度。关联规则挖掘实际上真正体现了数据中的知识发现。 如果一个规则满足最小支持度,则称这个规则是一个频繁规则; 如果一个规则同时满足最小支持度与最小置信度,则通常称这个规则是一个强规则。 关联规则挖掘的通常方法是:首先挖掘出所有的频繁规则,再从得到的频繁规则中挖掘强规则。 在少量数据中进行规则挖掘我们可以采用采用简单的编程方法,而在大量数据中挖掘关联规则需要使用专门的数据挖掘软件。关联规则挖掘可以使我们得到一些原来我们所不知道的知识。 应用的例子: * 日本超市对交易数据库进行关联规则挖掘,发现规则:尿片→啤酒,重新安排啤酒柜台位置,销量上升75%。 * 英国超市的例子:大额消费者与某种乳酪。 那么,证券市场上、期货市场上、或者上市公司中存在存在哪些关联规则,这些关联规则究竟说明了什么?

相关文档
最新文档