实验四 功率方向电流保护实验

实验四 功率方向电流保护实验
实验四 功率方向电流保护实验

实验四功率方向电流保护实验

【实验名称】

功率方向电流保护实验

【实验目的】

1.熟悉相间短路功率方向电流保护的基本工作原理;

2.进一步了解功率方向继电器的结构及工作原理;

3.掌握功率方向电流保护的基本特性和整定实验方法。

【预习要点】

1.复习功率方向电流保护相关知识。

2.功率方向电流保护在多电源网络中什么情况下称为正方向?什

么情况下称为反方向?为什么它可以只按正方向保证选择性的

条件选择动作电流?

【实验仪器设备】

【实验原理】

1.方向电流保护的基本原理

随着电力系统的发展及用户对供电可靠性要求的提高,出现了两侧电源或单电源环网的输电线路。在这样的电网中,为切除线路上的故障,线路两侧都装有断路器和相应的保护,如装设前面讲过的电流保护,将不能保证动作的选择性性。

图4-1 两侧电源辐射电网

下面以图4-1两侧电源辐射形电网为例分析如下:

在图4-1中,以3号断路器QF3的电流保护为分析对象。在f1点短路时流过3号断路器QF3的电流从母线到线路;在f2点短路时流过3号断路器QF3的电流从线路到母线,f1点短路和f2点短路流过3号断路器的短路电流数值有可能达到保护的动作值。因为电流保护并不能判别电流的方向,所以在f1点和f2点短路,PQ线路的电流保护都有可能动作。但在f2点短路时,根据选择性的要求3号断路器的保护不应该动作,如若动作,这是无选择性的动作(图中其他断路器QF2、QF4、QF5存在同样的问题)。

要解决选择性问题,可在原来电流保护的基础上装设方向元件(功率方向继电器)。首先分析不同点短路时短路功率的方向。规定功率的方向。规定功率的方向由母线流向线路的为正,功率的方向由线路流向母线的为负,并由功率方向继电器加以判断,当功率方向为正时动作,反之不动作。在f1点短路时,流过保护3、4的功率方向是由母线流向线路的,方向为正,保护3、4动作,断开断路器QF3、QF4。在f2点短路时,流过断路器1、2的功率方向也是由母线流向线路的,方向为正,保护1、2动作,,断开断路器QF1、QF2,而f1点短路流过断路器QF3的功率是由线路流向母线,方向为负,保护3不动。这保证了选择性。借助功率方向继电器,就可以很好的解决继电保护用于双侧电源和单侧电源环网输电线路时的选择性问题。

从图4-1中不难看出,在f1短路通过断路器QF1的功率方向也是由母线指向线路;f1点故障断路器1的保护也满足动作条件。保护1 是保护3的上级,保护1能反应f1点故障的保护是带延时的保护,当f1点发生故障时,断路器QF3在断路器QF1之前动作切除故障,故障切除后,断路器1的保护就返回,可保证供电的持续性,根据以上分析,判别短路功率的方向,是解决电流保护用于双侧电源或单电源环网输电线路选择性问题的有效方法。这种附加判功率方向的电流保护,称为方向电流保护。其触点连接图如图4-2所示。

图4-2 方向电流保护原理图

在图中KW为功率方向继电器。由KW判别功率的方向,KA判别电流的大小。只有在正向范围内发生了短路故障,KW、KA均动作,断路器才断开切除故障。

2.方向电流保护的整定计算

当线路上某一点发生故障时,对任一断路器的保护装置,流过的短路电流都是单一方向的,所以,两端电流线路上电流保护的整定计算方法,与前面所讲的三段式电流保护的整定计算方法基本相同。所不同的是方向电流保护要注意正向电流,即方向电流保护的动作电流要按正向电流计算。在图4-3中,计算断路器QF1、QF3、QF5速断保护的动作电流时,可将QF6断开计算各自线路末端的短路电流,再根据短路电流计算速断保护的动作电流;过电流保护的动作电流应根据正常运行时的正负电流计算。同理,可将QF1断开计算另一方向的动作电流值。

图4-3 方向电流保护的整定计算网络图

对于方向过电流保护的时间整定,同方向的保护应按阶梯时限整定,在图4-3所示系统中,应满足

246531;t t t t t t >>>>

t t t t t t t t t t t t ?+=?+=?+=?+=24465331;;及

【实验内容】

1.功率方向保护各继电器的调试整定及控相 (1)实验接线见图4-4,按实验要求进行正确接线。

(2)根据继电器的调试整定要求将电流继电器动作值整定为0.9A (电流继电器采用DL -21C/3,整定范围为0.5~2A ),时间继电器动作时间整定为1秒(时间继电器采用DS -21),整定范围为0.25~1.25S ),功率方向继电器取-45°灵敏度。

图4-4功率方向保护实验接线图

2.正方向动作功率实验

(1)把各按钮、开关的初始位置设定如下:

系统运行方式切换开关置于“正常”,A站实验内容和B站实验内容切换开关置于“正常工作”,A相短路、B相短路、C相短路按钮处于弹出位置,并把EPL-03A和EPL-03B的线路故障点设置旋钮置于顺时针到底位置,三相调压器旋钮置于逆时针到底位置。

(2)合上漏电断路器和线路电源绿色按钮开关及直流电源船形开关,按下合闸按钮。

缓慢调节三相调压器旋钮,注意观察交流电压表的读数至100V;

(3)把B站实验内容切换开关置于“电流保护”,模拟BC线路末端短路,逆时针调节EPL-03B的线路故障点设置旋钮,使电流表的读数为0.8A,观察各继电器动作情况,作好动作记录,记入表4-1;

(4)继续逆时针调节EPL-03B的线路故障点设置旋钮,使电流表的读数为1.0A,观察各继电器动作情况,作好动作记录,记入表4-1;

(5)切断主电源,把EPL-03B的线路故障点设置旋钮置于顺时针到底位置。

3.反方向动作功率实验

将变压器输出端接至电流继电器和功率方向继电器电流回路的接线方式改变为模拟反方向动作功率方式,其余步骤同“正方向动作功率实验”,记入表4-1。

表4-1

【实验报告】

1.整理实验数据,填入对应的数据表格中。

2.问题与思考

1)方向电流保护是否存在死区?死区可能在什么位置发生?2)简述90°接线原理的三相功率方向保护标准接线要求。

附录:EPL-15相位仪测量相位方法

图4-5所示的EPL-15相位仪测试单元的平面布置图。

图4-5 相位仪单元布置图

(1)在EPL-15电秒表、相位仪的测量单元的电压输入端口端接入电压信号,在电流输入端口端接入电流信号。

(2)显示屏显示的数据即为引入的电压信号与引入的电流信号之间的相位差值。

(3)在进行相位测量时,电压信号与电流输入信号不要接错了位置,且电压信号是并联接入的,电流信号是串联在回路中的。

(4)要注意电压、电流输入信号的极性,极性不对,显示的相位差也不对。

(5)电压输入信号在(0~150V)之间,电流输入信号在(0~1A)之间。

实验三功率放大电路实验报告

实验三功率放大电路实验 报告 The following text is amended on 12 November 2020.

集成功率放大电路一. 实验目的 1.掌握功率放大电路的调试及输出功率、效率的测量方法; 2.了解集成功率放大器外围电路元件参数的选择和集成功率放大器的使用方法。 二. 实验仪器设备 1.实验箱 2. 示波器 3. 万用表 4. 电流表 有关试验方法的说明: (1)测量最大不失真功率:max O P 在放大器的输入端接入频率为1kHz的正弦频率信号;Vi置最小 (Vi<20mV);在放大器的输出端街上示波器和毫伏表,逐渐增大Vi, 使示波器显示出最大不失真波形,用毫伏表测出电压有效值mox O V,则最大不失真输出功率为: (2)测量功率放大器的效率 : 在保持Vo为最大不失真输出幅度的情况下,由电流表测量直流电源Vcc的输出电流E I,此时电源Vcc提供的直流输出功率为: 注:此处Vcc应为正负电源之差。 功率放大器的效率为:

集成功率放大器的实验电路 三. 实验内容及步骤 1、连接电路: 接入正负电源(+V CC、-V EE) 接入负载电阻R L 串入电流表 2、打开电源开关,记录电流表的读数,即为静态电流I E

3、将电流表换至较高档位,接入输入信号v i,按后面要求进行测量。 负载电阻R L=时, 按表分别用示波器测量输出电压峰值为2V和4V时的电流I E,计算输出功率P O、电源供给功率P E和效率η; 逐渐增大输入电压,用示波器监视输出波形,记录最大不失真时的输出电压的峰值v omax和电流I E,并计算此时的输出功率P O,电源供给功率P E 和效率η,填表。 实验需要测量的数值有I E和V omax ,P O,P E ,η由实验数据计算得到,计算公式如下: 实验注意事项: 功率放大器输出大电压大电流,工作在极限状态,产热较多,需要谨慎操作防止烧毁功放; I时刻监视电流表防止电流超过电流表在测量最大不失真电压时的E 量程; V时,一定使输入电压Vi置最小,然后逐渐测量最大不失真电压max O 慢慢增大输入Vi 。

方向阻抗继电器特性实验报告

实验三方向阻抗继电器特性实验 1.实验目的 (1)熟悉整流型LZ-21型方向阻抗继电器的原理接线图,了解其动作特性。 (2)测量方向阻抗继电器的静态()?f Z pu =特性,求取最大灵敏角。 (3)测量方向阻抗继电器的静态()r pu I f Z =特性,求取最小精工电流。 2.LZ-21型方向阻抗继电器简介 1)LZ-21型方向阻抗继电器构成原理及整定方法 距离保护能否正确动作,取决于保护能否正确地测量从短路点到保护安装处的阻抗,并使该阻抗与整定阻抗比较,这个任务由阻抗继电器来完成。 阻抗继电器的构成原理可以用图3-1来说明。图中,若K 点三相短路,短路电流为I K ,由PT 回路和CT 回路引至比较电路的电压分别为测量电压U 'm 和整 定电压set U ',那么 m m YB PT K K YB PT m Z I n n Z I n n U 1 1=='(3-1) 式中:n PT 、n YB —电压互感器和电压变换器的变比; Z K —母线至短路点的短路阻抗。 当认为比较回路的阻抗无穷大时,则: I m CT I K CT set Z I n Z I n U 1 1=='(3-2) 式中:Z I —人为给定的模拟阻抗。 比较式(3-1)和式(3-2)可见,若假设 CT YB PT n n n =?,则短路时,由于线路上流过同一电流K I ,因此在比较电路上比较set U '和m U '的大小,就等于比较I Z 和m Z 的大小。如果set m U U '>',则表明I m Z Z >,保护应不动作;如果set m U U '<',则表明I m Z Z <,保护应动作。阻抗继电器就是根据这一原理工作的。 电抗变压器DKB 的副方电势2E 与原方电流1 I 成线性关系,即,12I K E I =I K 是一个具有阻抗量纲的量,当改变DKB 原方绕组的匝数或其它参数时,可以改 图3-1 阻抗继电器的构成原理说明图 1—比较电路 2—输出

OTL功率放大器实验报告(DOC)

课程设计 课程名称模拟电子技术 题目名称功率放大器 专业班级12网络工程本2 学生姓名郭能 学号51202032019 指导教师孙艳孙长伟 二○一三年十二月二十三日 目录 引言 (2)

一、设计任务与要求 (2) 1.1 设计任务 (2) 1.2 设计要求 (2) 二、方案设计 (3) 三、总原理图及元器件清单 (4) 四、电路仿真与调试 (6) 五、性能测试与分析 (7) 六、总结 (8) 七、参考文献 (8)

OTL功率放大器 引言:OTL(Output transformerless )电路是一种没有输出变压器的功率放大电路。过去大功率的功率放大器多采用变压器耦合方式,以解决阻抗变换问题,使电路得到最佳负载值。但是,这种电路有体积大、笨重、频率特性不好等缺点,目前已较少使用。OTL电路不再用输出变压器,而采用输出电容与负载连接的互补对称功率放大电路,使电路轻便、适于电路的集成化,只要输出电容的容量足够大,电路的频率特性也能保证,是目前常见的一种功率放大电路。它的特点是:采用互补对称电路(NPN、PNP参数一致,互补对称,均为射随组态,串联,中间两管子的射极作为输出),有输出电容,单电源供电,电路轻便可靠。两组串联的输出中点”可理解为采用互补对称电路(NPN、PNP参数一致,互补对称,均为射随组态,串联,中间两管子的射极作为输出)。 1:设计任务与要求 1.1设计任务: 1.学习基本理论在实践中综合运用的初步经验,掌握模拟电路设计的基本方法、设计步骤,培养综合设计与调试能力。 2.培养实践技能,提高分析和解决实际问题的能力。 3.掌握OTL音频功率放大器的设计方法,基本工作原理和性能指标测试方法。 4. 通过一个OTL功率放大器的设计、安装和调试,进一步加深对互补对称功率放大电路的理解,增强实际动手能力。 1.2 设计要求: 1.设计时要综合考虑实用,经济并满足性能指标的要求,合理选用元器件。 2.广泛查阅相关的资料,不懂的地方积极向老师同学请教,讨论。认真独立的完成课题的设计。 3.按时完成课程设计并提交设计报告。 2:方案设计 要求设计一个由二极管,三极管,电容,电阻等元件组合而成的OTL音频功

最新实验三功率方向继电器特性实验

实验三功率方向继电器特性实验

实验三功率方向继电器特性实验 一、实验目的 1.熟悉BG-10B系列功率方向继电器的实际结构、工作原理和基本特性。 2.掌握电气特性试验与整定方法。 二、实验仪器 三、实验原理 BG-10B系列功率方向继电器(包括BG-11B、12B、13B)应用于电力系统方向保护接线中,作为功率方向元件。其中BG-12B用于相间短路保护;BG-13B用于接地保护;BG-11B是具有双方向接点的功率元件,用于平行线路横联差动保护中。由于BG-12B型功率方向继电器应用较为广泛,因此本实验指导书以BG-12B型为例详细介绍其试验方法,今后在实际工程中需对其他型号的功率方向继电器进行试验,可参照进行,方法相同。 功率方向继电器利用比较绝对值的原理构成。它由比较回路、滤波回路和触发回路组成。方块图见图1-1、原理图见图1-6。

1.比较回路:绝对值比较构成原理,见图1-2。 图1-1 方块图 图1-2 绝对值比较回路 由互感器TA1和整流桥VD1~VD4组成的工作回路,由互感器TA2和整流桥VD5~VD8组成的制动回路。互感器TA1和TA2的初级分别接入电流I Y和 I L。由于TA1的电压线圈和TA2电压线圈同极性串联,TA1的电流线圈和TA2电流线圈反极性串联(如图1-2所示),I L为线路电流互感器TA的二次电流,它的值是不变的。TA1和TA2一次侧的电压绕组,通过移相回路,与电压互感器二次相接。因电压绕组的输入阻抗比移相阻抗小得多,所以电流I Y也可以看作近似不变。于是互感器TA1和TA2可按电流互感器分析,当互感器TA1和TA2的一次绕组分别通入电流I Y和I L时,它们产生的磁势在TA1是相加的,在TA2是相减的,于是在互感器TA1输出线圈以电流形式取出矢量和I Y+I L,在互感器TA2输出线圈以电流形式取出矢量和I Y- I L,二者分别经整流器VD1~VD4和VD5~VD8加以整流,然后进行绝对值比较。 从图1-3(a)中可看到φ=90°时,|?Y+ ?L|=|?Y-?L|; 从图1-3(b)中可看到φ>90°时,|?Y+ ?L|<|?Y-?L|;

音频功率放大器实验报告

一、实验目的 1)了解音频功率放大器的电路组成,多级放大器级联的特点与性能; 2)学会通过综合运用所学知识,设计符合要求的电路,分析并解决设计过程中遇到的问题,掌握设计的基本过程与分析方法; 3)学会使用Multisim、Pspice等软件对电路进行仿真测试,学会Altium Designer使用进行PCB制版,最后焊接做成实物,学会对实际功放的测试调试方法,达到理想的效果。 4)培养设计开发过程中分析处理问题的能力、团队合作的能力。 二、实验要求 1)设计要求 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 2)实物要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出;

(5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 三、实验内容与原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1)前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,

功率方向继电器实验(LG型功率方向继电器等)

实验七 功率方向继电器实验 一.实验目的 1.学会运用相位测试仪测量电流和电压之间相角的方法。 2.掌握功率方向继电器的动作特性,接线方式及动作特性的试验方法。 3.研究接入功率方向继电器的电流、电压的极性对功率方向继电器的动作特性的影响。 二.LG-11型功率方向继电器简介 1.LG-11整流型功率方向继电器的工作原理 LG-11型功率方向继电器是目前广泛应用的整流型功率方向继电器,其比较幅值的两电气量动作方程为: m y m K m y m K U K I K U K I K ????????-≥+ 继电器的接线图如图7-1所示,其中图(a )为继电器的交流回路图,也就是比较电气量的电压形成回路,加入继电器的电流为m I ?,电压为m U ?。电流m I ?通过电抗变压器DKB 的一次绕组W1,二次绕组W2和W3端钮获得电压分量m K I K ,它超前电流m I ?的相角就是转移阻抗R K 的阻抗角 k ,绕组W4用来调整k 的数值,以得到继电器的最大灵敏角。电压m U ?经电容C1接入中间变压器YB 的一次绕组W1,由两个二次绕组W2和W3获得电压分量m K U K ??,m U y K ??超前m U ?的相角为90度。DKB 和YB 标有W2的两个二次绕组的联接方式如图所示,得到动作电压m y m K U K I K ????+,加于整流桥BZ1输入端;DKB 和YB 标有W3的二次绕组的联接方式如图所示,得到制动电压m y m K U K I K ????-,加于整流桥BZ2输入端。图(b )为幅值比较回路, 它按循环电流式接线,执行元件采用极化继电器JJ 。 继电器最大灵敏度的调整是利用改变变压器DKB 第三个二次绕组W4所接的电阻值来实现的。继电器的内角=090- k ,当接入电阻R3时,阻抗角k =060,=030;当接入电阻R4时,k =045, =045。因此,继电器的最大灵敏度α?-=res ,并可以调整为两个数值,一个为-030,另一个为-045。 当在保护安装处于正向出口发生相间短路时,相间电压几乎将降为零值,这时功率方向继电器的输入电压0≈?m U ,动作方程为m K I K ??=m K I K ??,即B A U U ??=。由于整流型功率方向继电器的动作需克服执行继电器的机械反作用力矩,也就是说必须消耗一定功率(尽管这一功率的数值不大)。因此,要使继电器动作,必须满足A U ?>B U ?的条件。所以在0≈?m U 的情况下,功率方向继电器动作不了。因而产生了电压死区。

音频功率放大电路实验报告分析

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 成绩:__________________ 实验名称: 音频功率放大电路 实验类型: 研究探索型实验 同组学生姓名:__________ 一、实验目的和要求 1、理解音频功率放大电路的工作原理。 2、学习手工焊接和电路布局组装方法。 3、提高电子电路的综合调试能力。 4、通过myDAQ 来分析理论数据和实际数据之间的关系。 二、实验内容和原理(必填) 音频功率放大电路,也即音响系统放大器,用于对音频信号的处理和放大。按其构成可分为前置放大级、音调控制级和功率放大级三部分。 作为音响系统中的放大设备,它接受的信号源有多种形式,通常有话筒输出、唱机输出、录音输出和调谐器输出。它们的输出信号差异很大,因此,音频功放电路中设置前置放大级以适应不同信号源的输入。 为了满足听众对频响的要求和弥补设置了音调控制放大器,希望能对高音、低音部分的频率特性进行调节扬声器系统的频率响应不足,。 为了充分地推动扬声器,通常音响系统中的功率放大器能输出数十瓦以上功率,而高级音响系统的功放最大输出功率可达几百瓦以上。 扩音机的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。 装 订 线

前置放大电路: 前置放大级输入阻抗较高,输出阻抗较低。前置放大级的性能对整个音频功放电路的影响很大,为了减小噪声,前置级通常要选用低噪声的运放。 由A1组成的前置放大电路是一个电压串联负反馈同相输入比例放大器。 理想闭环电压放大倍数为:23 1R R A vf + = 输入电阻:1R R if = 输出电阻:0of =R 功率放大级: 对于功率放大级,除了输出功率应满足技术指标外,还要求电路的效率高、非线性失真小、输出与音箱负载相匹配,否则将会影响放音效果。 集成功率放大器通常有OTL 和OCL 两种电路结构形式。OTL 功放的优点是只需单电源供电,缺点是输出要通过大电容与负载耦合,因此低频响应较差;OCL 功放的优点是输出与负载可直接耦合,频响特性较好,但需要用双电源供电。(实验室提供本功能模块) 本实验电路的功率放大级由集成功率器件TDA2030A 连成OCL 电路输出形式。 TDA2030A 功率集成电路具有转换速率高,失真小,输出功率大,外围电路简单等特点,采用5脚塑料封装结构。其中1脚为同相输入端;2脚为反相输入端;3脚为负电源;4脚为输出端; 5脚为正电源。 功放级电路中,电容C15、C16用作电源滤波。D1和D2为防止输出端的瞬时过电压损坏芯片的保护二极管。R11、C10为输出端校正网络以补偿感性负载,其作用是把扬声器的电感性负载补偿接近纯电阻性,避免自激和过电压。 图中通过R10、R9、C9引入了深度交直流电压串联负反馈。由于接入C9,直流反馈系数F ′=1。对于交流信号而言,

功率方向继电器实验讲稿

实验2:功率方向继电器实验讲稿 一、 实验目的 1、学会运用相位测试仪测量电流电压之间的相角方法。 2、掌握功率方向继电器的动作特性,接线方式及动作特性的实验方法。 二、 LG-11型功率方向继电器简介 1、 LG-11型功率方向继电器的工作原理 LG-11型功率方向继电器是目前广泛应用的整流型功率方向继电器,其比较幅值的两电气量动作方程: k m y m k m y m k I k U k I k U ?+?≥?-? 继电器的接线如图2-1所示,其中图A 为继电器的交流回路图,也就是比较电气量的电压形成回路,加入继电器的的电流为m I ,电压 为m U ,电流m I 通过电抗变压器DKB 的一次绕组W1,二次绕组W2和W3端获得电压分量m k I K ,它超前电流m I 的相角就是转移阻抗k K 的阻抗角k ?,绕组W4用来调整k ?的数值,以得到继电器的最灵敏 角。电压m U 经过电容C1接入中间变压器YB 的一次绕组W1,由两个二次绕组W2和W3获得电压分量m y U K 。m y U K 超前m U 的相角90度。DKB 和YB 标有W2的两个二次绕组的联接方式如图所示,得到动作电压? ???+m y m K U K I K ,加于整流BZ1输入端;DKB 和YB 标有 W3的两个二次绕组的联接方式如图所示,得到制动电压

? ???-m y m K U K I K ,加于整流桥BZ2端。图(b )为幅值比较回路,它按循环电流式接下,执行元件采用极化继电器JJ 。 继电器的最大灵敏角的调整是利用改变变压器DKB 第三个二次绕组W4所接的电阻值来实现的,继电器的角k ?α-=090,当接入电 阻R3时,阻抗角 ;0030,60==α?k 当接入电阻R4时 ;0045,45==α?k 。因此,继电器的最大灵敏角sen φα=-,并可以调整为两个数字,一个为-30°,另一个为-45°。 当在保护安装处于正向出楼发生相间短路时,相间电压几乎降为 0值,这时功率方向继电器的输入电压0≈m U ,由于功率方向继电器的动作需克服执行的机械反作用力矩,也就是说必须消耗一定的功率 (尽管这一功率消耗不大)。因此必须满足条件B A U U >。所以在m U =0的情况下,功率方向继电器动作不了。因而产生了电压死区。为了消除电压死区,功率方向继电器的电压回路需要加设记忆回路,就是需要电容C1与中间变压器YB 的绕组电感构成对50Hz 串联谐 振电路。这样当电压突然降低为m U =0时,该回路中的电流并不立即消失,而是按50HZ 谐振电路的频率,经过几个周波后,逐渐衰减为0。而这个电流与故障前的电压同相,并且在谐振衰减过程中维持相位不变化。因此,相当于记住了短路前的电压的相位,所以称为记忆回路。 由于电压回路有了记忆回路的存在,相当于继电器的电压为m U =0时,在一定的时间YB 的二次绕组端纽有电压分量的存在,就可以继续进行幅值的比较,因而消除了在正方向的出口短路时继电器

实验三 功率方向继电器特性实验

实验三功率方向继电器特性实验 一、实验目的 1.熟悉BG-10B系列功率方向继电器的实际结构、工作原理和基本特性。 2.掌握电气特性试验与整定方法。 三、实验原理 BG-10B系列功率方向继电器(包括BG-11B、12B、13B)应用于电力系统方向保护接线中,作为功率方向元件。其中BG-12B用于相间短路保护;BG-13B 用于接地保护;BG-11B是具有双方向接点的功率元件,用于平行线路横联差动保护中。由于BG-12B型功率方向继电器应用较为广泛,因此本实验指导书以BG-12B型为例详细介绍其试验方法,今后在实际工程中需对其他型号的功率方向继电器进行试验,可参照进行,方法相同。 功率方向继电器利用比较绝对值的原理构成。它由比较回路、滤波回路和触发回路组成。方块图见图1-1、原理图见图1-6。 1.比较回路:绝对值比较构成原理,见图1-2。

图1-1 方块图 图1-2 绝对值比较回路 由互感器TA1和整流桥VD1~VD4组成的工作回路,由互感器TA2和整流桥VD5~VD8组成的制动回路。互感器TA1和TA2的初级分别接入电流I Y和I L。由于TA1的电压线圈和TA2电压线圈同极性串联,TA1的电流线圈和TA2电流线圈反极性串联(如图1-2所示),I L为线路电流互感器TA的二次电流,它的值是不变的。TA1和TA2一次侧的电压绕组,通过移相回路,与电压互感器二次相接。因电压绕组的输入阻抗比移相阻抗小得多,所以电流I Y也可以看作近似不变。于是互感器TA1和TA2可按电流互感器分析,当互感器TA1和TA2的一次绕组分别通入电流I Y和I L时,它们产生的磁势在TA1是相加的,在TA2是相减的,于是在互感器TA1输出线圈以电流形式取出矢量和I Y+I L,在互感器TA2输出线圈以电流形式取出矢量和I Y- I L,二者分别经整流器VD1~VD4和VD5~VD8加以整流,然后进行绝对值比较。 从图1-3(a)中可看到φ=90°时,|?Y+ ?L|=|?Y-?L|; 从图1-3(b)中可看到φ>90°时,|?Y+ ?L|<|?Y-?L|; 从图1-3(c)中可看到φ<90°时,|?Y+ ?L|>|?Y-?L|。 当φ=90°或φ=-90°时,|?Y+ ?L|=|?Y-?L|,继电器处于边界动作状态。

实验三功率放大电路实验报告

集成功率放大电路 一. 实验目的 1.掌握功率放大电路的调试及输出功率、效率的测量方法; 2.了解集成功率放大器外围电路元件参数的选择和集成功 率放大器的使用方法。 二. 实验仪器设备 1.实验箱 2. 示波器 3. 万用表 4. 电流表 有关试验方法的说明: (1) 测量最大不失真功率:max O P 在放大器的输入端接入频率为1kHz 的正弦频率信号;Vi 置最小(Vi<20mV );在放大器的输出端街上示波器和毫伏表,逐渐增大Vi ,使示波器显示出最大不失真波形,用毫伏表测出电压有效值 mox O V ,则最大不失真输出功率为: 2max max O O L V P R = (2)测量功率放大器的效率 η: 在保持Vo 为最大不失真输出幅度的情况下,由电流表测量直流电源Vcc 的输出电流E I ,此时电源Vcc 提供的直流输出功率为: ×E E CC P I V = 注:此处Vcc 应为正负电源之差。

功率放大器的效率为: max = O E P P 集成功率放大器的实验电路 三. 实验内容及步骤 1、连接电路: 接入正负电源(+V CC 、-V EE ) 接入负载电阻R L 串入电流表 2、打开电源开关,记录电流表的读数,即为静态电流I E 3、将电流表换至较高档位,接入输入信号v i ,按后面要求进行测量。 负载电阻R L = 时, 按表分别用示波器测量输出电压峰值为2V 和4V 时的电流I E ,计算输出功率P O 、电源供给功率P E 和效率η; 逐渐增大输入电压,用示波器监视输出波形,记录最大不失真时的输出电压的峰值v omax 和电流I E ,并计算此时的输出功率P O ,电源供给功率P E 和效率η,填表。 峰值 I E P O P E η

6低频功率放大器实验报告1

实验报告 姓名: 学号: 日期: 成绩 : 课程名称 模拟电子实验 实验室名称 模电实验室 实验 名称 低频功率放大器 同组 同学 指导 老师 一、实验目的 1、进一步理解OTL 功率放大器的工作原理 2、学会OTL 电路的调试及主要性能指标的测试方法 二、实验原理 图7-1所示为OTL 低频功率放大器。其中由晶体三极管T 1组成推动级(也称前置放大级),T 2、T 3是一对参数对称的NPN 和PNP 型晶体三极管,它们组成互补推挽OTL 功放电路。由于每一个管子都接成射极输出器形式,因此具 图7-1 OTL 功率放大器实验电路 有输出电阻低,负载能力强等优点,适合于作功率输出级。T 1管工作于甲类状态,它的集电极电流I C1由电位器R W1进行调节。I C1 的一部分流经电位器R W2及二极管

D , 给T 2、T 3提供偏压。调节R W2,可以使T 2、T 3得到合适的静态电流而工作于甲、 乙类状态,以克服交越失真。静态时要求输出端中点A 的电位CC A U 21 U =,可以 通过调节R W1来实现,又由于R W1的一端接在A 点,因此在电路中引入交、直流电压并联负反馈,一方面能够稳定放大器的静态工作点,同时也改善了非线性失真。 当输入正弦交流信号u i 时,经T 1放大、倒相后同时作用于T 2、T 3的基极,u i 的负半周使T 2管导通(T 3管截止),有电流通过负载R L ,同时向电容C 0充电,在u i 的正半周,T 3导通(T 2截止),则已充好电的电容器C 0起着电源的作用,通过负载R L 放电,这样在R L 上就得到完整的正弦波。 C 2和R 构成自举电路,用于提高输出电压正半周的幅度,以得到大的动态范围。 OTL 电路的主要性能指标 1、最大不失真输出功率P 0m 理想情况下,L 2CC om R U 81P =,在实验中可通过测量R L 两端的电压有效值,来 求得实际的L 2 O om R U P =。 2、 效率η 100%P P ηE om = P E —直流电源供给的平均功率 理想情况下,ηmax = 78.5% 。在实验中,可测量电源供给的平均电流I dC , 从而求得P E =U CC ·I dC ,负载上的交流功率已用上述方法求出,因而也就可以计算实际效率了。 3、 频率响应 详见实验二有关部分内容 4、 输入灵敏度 输入灵敏度是指输出最大不失真功率时,输入信号U i 之值。 三、实验设备与器件 1、 +5V 直流电源 5、 直流电压表 2、 函数信号发生器 6、 直流毫安表

音频功率放大电路实验报告

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 成绩:__________________ 实验名称: 音频功率放大电路 实验类型: 研究探索型实验 同组学生姓名:__________ 一、实验目的和要求 1、理解音频功率放大电路的工作原理。 2、学习手工焊接和电路布局组装方法。 3、提高电子电路的综合调试能力。 4、通过myDAQ 来分析理论数据和实际数据之间的关系。 二、实验内容和原理(必填) 音频功率放大电路,也即音响系统放大器,用于对音频信号的处理和放大。按其构成可分为前置放大级、音调控制级和功率放大级三部分。 作为音响系统中的放大设备,它接受的信号源有多种形式,通常有话筒输出、唱机输出、录音输出和调谐器输出。它们的输出信号差异很大,因此,音频功放电路中设置前置放大级以适应不同信号源的输入。 为了满足听众对频响的要求和弥补设置了音调控制放大器,希望能对高音、低音部分的频率特性进行调节扬声器系统的频率响应不足,。 为了充分地推动扬声器,通常音响系统中的功率放大器能输出数十瓦以上功率,而高级音响系统的功放最大输出功率可达几百瓦以上。 扩音机的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。 专业: 姓名: 学号: 日期: 地点: 桌号 装 订 线 点名册上的序号 前置 放大级 音调控制 放大级 功率 放大级

前置放大电路: 前置放大级输入阻抗较高,输出阻抗较低。前置放大级的性能对整个音频功放电路的影响很大,为了减小噪声,前置级通常要选用低噪声的运放。 由A1组成的前置放大电路是一个电压串联负反馈同相输入比例放大器。 理想闭环电压放大倍数为:23 1R R A vf + = 输入电阻:1R R if = 输出电阻:0of =R 功率放大级: 对于功率放大级,除了输出功率应满足技术指标外,还要求电路的效率高、非线性失真小、输出与音箱负载相匹配,否则将会影响放音效果。 集成功率放大器通常有OTL 和OCL 两种电路结构形式。OTL 功放的优点是只需单电源供电,缺点是输出要通过大电容与负载耦合,因此低频响应较差;OCL 功放的优点是输出与负载可直接耦合,频响特性较好,但需要用双电源供电。(实验室提供本功能模块) 本实验电路的功率放大级由集成功率器件TDA2030A 连成OCL 电路输出形式。 TDA2030A 功率集成电路具有转换速率高,失真小,输出功率大,外围电路简单等特点,采用5脚塑料封装结构。其中1脚为同相输入端;2脚为反相输入端;3脚为负电源;4脚为输出端;5脚为正电源。 功放级电路中,电容C15、C16用作电源滤波。D1和D2

LG-11型功率方向继电器特性实验报告

实验二LG-11型功率方向继电器特性实验 1.实验目的 (1)学会运用相位测试仪器测量电流和电压之间相角的方法。 (2)掌握功率方向继电器的动作特性、接线方式及动作特性的试验方法。 (3)研究接入功率方向继电器的电流、电压的极性对功率方向继电器的动作特性的影响。 2.实验内容 1)功率方向继电器电压潜动现象检查实验 LG-11功率方向继电器实验原理接线如图2-1所示。图中,380V交流电源经移相器和调压器调整后,由bc相分别输入功率方向继电器的电压线圈,A相电流输入至继电器的电流线圈,注意同名端方向。 图2-1 LG-11功率方向继电器实验原理接线图 图2-2LG-11功率方向继电器实验原理接线图 实验步骤如下: (1)熟悉LG-11功率方向继电器的原理接线及试验原理。

(2)按实验原理线路图2-1接线,将电流回路开路。 (3)调节三相调压器和单相调压器,使其输出电压为0V。 (4)合上三相电源开关,调节三相调压器对电压回路加入110V电压。 (5)测量极化继电器JJ两端之间电压,若小于0.1V,则说明无电压潜动。 检查功率继电器是否有潜动现象。电压潜动测量:将电流回路开路,对电压回路加入110V电压;测量极化继电器JJ两端之间电压,若小于0.1V,则说明无电压潜动。 2)用实验法测LG-11整流型功率方向继电器角度特性U pu= f(?),并找出继电器的最大灵敏角和最小动作电压。 实验步骤如下: (1)按图2-2所示原理接线图接线。 (2)检查线路无误后,合上三相电源开关、单相电源开关、直流电源开关和移相器电源开关。 (3)调节单相调压器的输出电压使电流表的读数为1A,并保护此电流值不变。 (4)在操作开关断开状态下,调节三相调压器的输出电压约为20V左右,按下移相器开机按钮,继续调节调压器输出,使电压表读数为20V。 (5)调节移相器,在电压表为给定值的条件下找到使继电器动作(动作信号灯由不亮变亮)的两个临界角度?1,、?2,,将测量数据记录于表2-1中。 (6)保持电流为1A不变,调节三相调压器,依次降低电压值,重复步骤(5)的过程,在给定电压的情况下,使继电器动作的?1,、?2,,并记录在表2-1中。 当所需电压很小时,如2V、1.5V、1.0V时,用下面方法来进行调节。 (7)将两个滑线电阻的滑动触点移到靠近移相器输出bc接线端,调节三相调压器使其输出电压为5V。 (8)合上操作开关K1,调节两个滑线电阻的滑动触点使电压表读数为所需电压。 (9)调节移相器角度,找到?1,、?2,,将数据记录于表2-1。 (10)当电压值达到很小时,继电器不再动作,此电压范围内就是电压死区。此动作电压临界值就是最小动作电压。 表2-1角度特性U pu= f(?)实验数据记录表 (11)实验完成后,使调压器输出为0,断开所有电源开关。

【国家电网 继电保护】5方向电流保护习题

1 方向电流保护 一、选择题 1. 方向电流保护是在电流保护的基础上,加装一个(C ) A :负荷电压元件 B :复合电流继电器 C :方向元件 D :复合电压元件 2、相间短路保护功率方向继电器采用90°接线的目的是(B ) A 、消除三相短路时方向元件的动作死区 B 、消除出口两相短路时方向元件的动作死区 C 、消除反方向短路时保护误动作 D 、消除正向和反向出口三相短路保护拒动或误动 3、功率方向继电器的电流和电压为a bc ca ab U ,U ,U b c I I I 、、、时,称为(A ) A :90°接线 B :60°接线 C :30°接线 D :0°接线 4、所谓功率方向继电器的潜动,是指(B )的现象。 A :只给继电器加入电流或电压时,继电器不动作; B :只给继电器加入电流或电压时,继电器动作; C :加入继电器的电流与电压反相时,继电器动作; D :与电流、电压无关。 5、相间方向过电流的按相启动接线方式是将(B ) A :各相的电流元件触点并联后,再串入各功率方向继电器的触点; B :同名相的电流和功率方向继电器的触点串联后再并联; C :非同名相的电流元件触点和方向元件的触点串联后再并联; D :各相功率方向继电器的触点和各相电流元件触点分别并联后再串联

二、判断题 1. 方向过流保护动作的正方向是短路功率从母线流向线路。(√) 2、双电源幅射形网络中,输电线路的电流保护均应加方向元件才能保证选择性。(×) 3.功率方向继电器采用900接线方式时,接入电压和电流的组合为相电压和相电流。(×) 三、填空题 1.在两电气量之间进行比较的继电器可归纳为(幅值)比较和(相位)比较两类。 2.在电网中装带有方向元件的过流保护是为保证动作的(选择性)。 3.为了确保方向过流保护在反向两相短路时不受(非故障)相电流的影响,保护装置应采用(按相)起动的接线方式。 4.90度接线功率方向元件在(保护安装处)附近发生(三相)短路时存在“死区”。 5.功率方向继电器采用90度接线的优点在于(两相短路时无死区)。 6.方向电流保护主要用于(双电源辐射形)和(单电源环网)线路上。 7.LG-11功率方向继电器采用90o接线方式,C相方向元件电压接( U), AB 电流接( I)。 C 8.按900接线的相间功率方向继电器,当线路发生正向故障时,若短路阻抗角φk为300,为使继电器动作最灵敏,其内角α值应是(30°)。 9.功率方向继电器按90o接线时,当输入电流 I 时,输入的电压为 B ( U)。 C A 10. 按900接线的相间功率方向继电器,内角α值为(30°或45°) 1

音频功率放大电路实验报告

. . . . 实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 成绩:__________________ 实验名称: 音频功率放大电路 实验类型: 研究探索型实验 同组学生:__________ 一、实验目的和要求 1、理解音频功率放大电路的工作原理。 2、学习手工焊接和电路布局组装方法。 3、提高电子电路的综合调试能力。 4、通过myDAQ 来分析理论数据和实际数据之间的关系。 二、实验容和原理(必填) 音频功率放大电路,也即音响系统放大器,用于对音频信号的处理和放大。按其构成可分为前置放大级、音调控制级和功率放大级三部分。 作为音响系统中的放大设备,它接受的信号源有多种形式,通常有话筒输出、唱机输出、录音输出和调谐器输出。它们的输出信号差异很大,因此,音频功放电路中设置前置放大级以适应不同信号源的输入。 为了满足听众对频响的要求和弥补设置了音调控制放大器,希望能对高音、低音部分的频率特性进行调节扬声器系统的频率响应不足,。 为了充分地推动扬声器,通常音响系统中的功率放大器能输出数十瓦以上功率,而高级音响系统的功放最大输出功率可达几百瓦以上。 扩音机的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。 专业: 姓名: 学号: 日期: 地点: 桌号 装 订 线 点名册上的序号 前置 放大级 音调控制 放大级 功率 放大级

前置放大电路: 前置放大级输入阻抗较高,输出阻抗较低。前置放大级的性能对整个音频功放电路的影响很大,为了减小噪声,前置级通常要选用低噪声的运放。 由A1组成的前置放大电路是一个电压串联负反馈同相输入比例放大器。 理想闭环电压放大倍数为:23 1R R A vf + = 输入电阻:1R R if = 输出电阻:0of =R 功率放大级: 对于功率放大级,除了输出功率应满足技术指标外,还要求电路的效率高、非线性失真小、输出与音箱负载相匹配,否则将会影响放音效果。 集成功率放大器通常有OTL 和OCL 两种电路结构形式。OTL 功放的优点是只需单电源供电,缺点是输出要通过大电容与负载耦合,因此低频响应较差;OCL 功放的优点是输出与负载可直接耦合,频响特性较好,但需要用双电源供电。(实验室提供本功能模块) 本实验电路的功率放大级由集成功率器件TDA2030A 连成OCL 电路输出形式。 TDA2030A 功率集成电路具有转换速率高,失真小,输出功率大,外围电路简单等特点,采用5脚塑料封装结构。其中1脚为同相输入端;2脚为反相输入端;3脚为负电源;4脚为输出端;5脚为正电源。 功放级电路中,电容C15、C16用作电源滤波。D1和D2为防止输出端的瞬时过电压损坏芯片的保护二极管。R11、C10为输出端校正网络以补偿感性负载,其作用是把

非线性丙类功率放大器实验报告讲解

非线性丙类功率放大器实验报告 姓名: 学号: 班级: 日期: 37 38 非线性丙类功率放大器实验 一、实验目的 1. 了解丙类功率放大器的基本工作原理, 掌握丙类放大器的调谐特性以及负载改变时的动态特性。 2. 了解高频功率放大器丙类工作的物理过程以及当激励信号变化对功率放大器工作状态的影响。 3. 比较甲类功率放大器与丙类功率放大器的功率、效率与特点。 二、实验基本原理 非线性丙类功率放大器的电流导通角 o 90<θ, 效率可达到 80%,通常作为发射机末级功放以获得较大的输出功率和较高的效率。特点:非线性丙类功率放大器通常用来放大窄带高频信号 (信号的通带宽度只有其中心频率的 1%或更小 ,基极偏置为负值,电流导通角o 90<θ,为了不失真地放大信号,它的负载必须是 LC 谐振回路。 丙类功率放大器

丙类功率放大器的基极偏置电压 V BE 是利用发射极电流的直流分量 I EO (≈ I CO 在射极电阻上产生的压降来提供的,故称为自给偏压电路。当放大器的输入信号 ' i v 为正弦波时,集电极的输出电流 i C 为余弦脉冲波。利用谐振回路 LC 的选频作用可输出基波谐振电压 v c1, 电流 i c1。图 8-3画出了丙类功率放大器的基极与集电极间的电流、电压波形关系。分析可得下列基本关系式: 011R I V m c m c = 式中, m c V 1为集电极输出的谐振电压及基波电压的振幅; m c I 1为集电极基波电流振幅; 0R 为集电极回路的谐振阻抗。 2102111212121R V R I I V P m c m c m c m c C === 39 式中, P C 为集电极输出功率 CO CC D I V P = 式中, P D 为电源 V CC 供给的直流功率; I CO 为集电极电流脉冲 i C 的直流分量。 放大器的效率η为 CO m c CC m c I I V V 1121? ?

实验二:常规功率方向继电器测试

实验:常规功率方向继电器测试 一、实验目的 1、掌握常规功率方向继电器的工作原理及动作特性试验方法。 2、测试LG-11型功率方向继电器的最大灵敏角、动作范围和角度特性。 3、掌握方向性过电流保护基本原理。 二、实验设备及器材 1、TQXDB-IB 多功能继电保护实验培训系统 2、DL-31电流继电器、LG-11功率方向继电器、DS-32时间继电器和DZY-202中间继电器 三、实验原理 LG-11型功率方向继电器是一种反映所接入的电流和电压之间的相位关系的继电器。当电流和电压之间的相位差为锐角时,继电器的动作转矩为正,使继电器动作,控制接点闭合,继电器跳闸;当电流和电压之间的相位差为钝角时,继电器的动作转矩为负,继电器不动作,从而达到判别相位的要求。 ? A I lm A ? 功率方向继电器动作范围示意图 LG-11型功率方向继电器一般用于相间短路保护。这种继电器是根据绝对值比较原理构成的,由电压形成回路、比较回路和执行元件三部分组成.动作条件是工作电压大于制动电压,其动作方程为: ? ???????-≥+r i r u r i r u I K U K I K U K 功率方向继电器灵敏角的调整可通过更换面板上连接片的位置来实现。 四、实验内容及步骤 1、测试LG-11功率方向继电器的最大灵敏角 (1)实验接线。如图所示,,将特性实验信号源的电压输出分别与功率方向继电器的U ,n U 端子连接,特性实验信号源的I1电流输出与功率方向继电器I ,n I 端子连接。继电器的动作接点连接到信号灯的控制回路中。 功率方向 继电器 I In A K U Un 24V+ 24V- 电压输出电压表I1电流输出 电流表 特性实验信号源 相角表 I2 I2n U1 U1n 功率方向继电器特性测试接线图

第六节 方向性电流保护

第六节方向性电流保护 本节主要讲方向性电流保护工作原理以及中性点直接接地电网中接地短路的零序电流及方向保护。 一、方向性电流保护工作原理 前面所讲的三段式电流保护是以单侧电源网络为基础进行分析的,各保护都安装在被保护线路靠近电源的一侧,在发生故障时,它们都是在短路功率从母线流向被保护线路的情况下,按照选择性的条件和灵敏性的配合来协调工作的。 短路功率:一般指短路时某点电压与电流相乘所得到的感性功率,在无串联电容也不考虑分布电容的线路上短路时,认为短路功率从电源流向短路点。 目前双侧电源供电较为普遍。 在下图的双侧电源网络接线中,由于两侧都有电源,则在每条线路的两侧均需装设断路器和保护装置。假设断路器8断开,电源不存在,则发生短路时,保护1、2、3、4的动作情况和由电源单独供电是一样的,它们之间的选择性是能够保证的。 如果电源不存在,则保护5、6、7、8由电源单独供电,此时它们之间也同能够保证动作的选择性。 图2-29 双侧电源网络接线 如果两个电源同时存在,当点短路时,按照选择性的要求,应该由距故障点最近的保护2、 6动作切除故障。但由电源供给的短路电流也将通过保护1,如果保护1采用电流速断且 大于保护装置的起动电流,则保护1的电流速断就要误动作;如果保护1采用过电流保护且其动作时限,则保护1的过电流保护也将误动作。 (b)中k2点短路时,本应由保护1和7动作切除故障,但是由电源供给的短路电流将通 过保护6,如果,则保护6的电源速断要误动作;如果过电流保护的动作时限,则保护6的过电流保护也要误动作。其他亦如此。

图2-30 方向过电流保护的原理接线图 方向性继电保护的主要特点就是在原有保护的基础上增加一个功率方向判别元件,以在反方向故障时保证保护不致误动作。 原理图如上图所示,主要由方向元件、电流元件和时间元件组成,方向元件和电流元件必须都动作之后,才能去起动时间元件,再经过预定的延时后动作于跳闸。 二、中性点直接接地电网中接地短路的零序电流及方向保护

相关文档
最新文档