Peculiar velocity effects in high-resolution microwave background experiments

Peculiar velocity effects in high-resolution microwave background experiments
Peculiar velocity effects in high-resolution microwave background experiments

a r X i v :a s t r o -p h /0112457v 1 19 D e c 2001Peculiar velocity e?ects in high-resolution microwave background experiments

Anthony Challinor 1,?and Floor van Leeuwen 2,?

1Astrophysics Group,Cavendish Laboratory,Madingley Road,Cambridge CB3OHE,UK.2Institute of Astronomy,Madingley Road,Cambridge,CB30HA,UK.

We investigate the impact of peculiar velocity e?ects due to the motion of the solar system relative to the microwave background (CMB)on high resolution CMB experiments.It is well known that on the largest angular scales the combined e?ects of Doppler shifts and aberration are important;the lowest Legendre multipoles of total intensity receive power from the large CMB monopole in transforming from the CMB frame.On small angular scales aberration dominates and is shown here to lead to signi?cant distortions of the total intensity and polarization multipoles in transforming from the rest frame of the CMB to the frame of the solar system.We provide convenient analytic results for the distortions as series expansions in the relative velocity of the two frames,but at the highest resolutions a numerical quadrature is required.Although many of the high resolution multipoles themselves are severely distorted by the frame transformations,we show that their statistical properties distort by only an insigni?cant amount.Therefore,cosmological parameter estimation is insensitive to the transformation from the CMB frame (where theoretical predictions are calculated)to the rest frame of the experiment.I.INTRODUCTION The impressive advances being made in sensitivity and resolution of microwave background (CMB)experiments demand that careful attention be paid to potential systematic e?ects in the analysis pipeline.Such e?ects can arise from imperfect modelling of the instrument,e.g.approximations in modelling the beam [1,2,3,4],or incomplete knowledge of the pointing,but also from more fundamental e?ects such as inaccurate separation of foregrounds (see e.g.Refs.[5,6]for reviews).In this paper we consider errors that may arise due to neglect of the peculiar motion of the experiment relative to the CMB rest frame (that frame in which the CMB dipole vanishes).For short duration experiments (e.g.balloon ?ights such as MAXIMA [7]and BOOMERANG [8])the relative velocity is constant over the timescale of the experiment,but for experiments conducted over a few months or longer,and particularly for satellite surveys [9,10,11],the variation in the relative velocity adds additional complications.In principle,the modulation of the aberration arising from any variation in the relative velocity must be accounted for with a more re?ned pointing model for the experiment [12,13]when making a map.For a relative speed of βc (where c is the speed of light and β~1.23×10?3for the solar-system barycenter relative to the CMB frame),the r.m.s.photon Doppler shifts and de?ection angles are β/√2/3βrespectively.Despite these small values,signi?cant distortions of the spherical multipoles of the total intensity and polarization ?elds do arise.A well known example is provided by the CMB dipole seen on earth,which,given the observed spectrum,arises from the transformation of the monopole in the CMB frame.More generally,on the largest angular scales

the combined e?ects of Doppler shifts and aberration couple the total intensity monopole and dipole into the l th multipoles at the level O (βl )and O (βl ?1)respectively.Given the size of the non-cosmological monopole,annual modulation of the dipole by the variation in the relative velocity of the earth in the CMB frame must be considered in long duration experiments.

In this paper we concentrate on the e?ects of peculiar velocities on small angular scale features in the microwave sky.On such scales,aberration dominates the distortions and becomes particularly acute when the angular scales of interest,O (1/l ),drop below the r.m.s.de?ection angle,i.e.l >~800for the transformation from the CMB frame to that of the solar system.We provide simple analytic results for these distortions to the total intensity and polarization ?elds as power series in the relative velocity β.The power series converge rather slowly at the highest multipoles for most values of the azimuthal index m [the leading-order corrections go like O (lβ)]but the distortions can still easily be found semi-analytically with a one-dimensional quadrature.If the transformations of the multipoles carried through to their statistical properties,theoretical power spectra computed in linear theory (e.g.with standard Boltzmann

codes [14,15])would not accurately

describe the statistics of the high resolution multipoles observed on earth.(The theoretical power spectra would still be accurate in the CMB frame.)It is straightforward to calculate the statistical correlations of the multipoles observed on earth.Fortunately,as we show here,the statistical corrections due to peculiar velocity e?ects turn out to be negligible despite the large corrections to the individual multipoles.It follows that for the purposes of high resolution power spectrum and parameter estimation,the transformation from the CMB frame can be neglected.

This paper is arranged as follows.In Sec.II we describe the transformation laws for the total intensity multipoles in speci?c intensity and frequency-integrated forms.Convenient series expansions in βof the transformations are provided,and their properties under rotations of the reference frames are described.The statistical poperties of the transformed multipoles are investigated by constructing rotationally-invariant power spectrum estimators and full correlation matrices.In Sec.III we discuss the geometry of the frame transformations for linear polarization,and present power series expansions for the transformations of the multipoles.The behaviour under rotations and parity are also outlined.Power spectra estimators and correlation matrices are constructed,and cross correlations with the total intensity are considered.Some implications of our results for survey missions are discussed in Sec.IV,which is followed by our conclusions in Sec.V.An appendix provides details of the evaluation of the multipole transformations as power series in β.

We use units with c =1.

II.TRANSFORMATION LA WS FOR TOTAL INTENSITY

We consider the microwave sky as seen by two observers at the same event.Observer S is equipped with a comoving tetrad {(e μ)a },μ={0,1,2,3},and observer S ′carries the Lorentz-boosted tetrad {(e ′μ)a }.The relative velocity of S ′as seen by S has components on {(e i )a },i ={1,2,3},which we denote by the spatial vector v ,which has magnitude β.The S observer receives a photon with four-momentum p a when their line of sight is along ?n ,so the photon propagation direction is ??n

.For S the photon frequency is νwhere hν=p a (e 0)a (h is Planck’s constant),while S ′observes frequency

ν′=νγ(1+?n

·v ),(1)where γ?2=1?β2.The line of sight in S ′is ?n ′= ?n ·?v +βγ(1+?n ·v ),(2)

where ?v

is a unit vector in the direction of the relative velocity.Denoting the sky brightness in total intensity seen by S as I (ν,?n

),the brightness seen by S ′is (e.g.Ref.[16])I ′(ν′,?n

′)=I (ν,?n ) ν′ν 4.(5)

Expanding I (?n )in spherical harmonics,we ?nd the multipole transformation law a I ′lm = l ′m ′

a I l ′m ′

d?n [γ(1+?n ·v )]2Y l ′m ′(?n )Y ?lm (?n ′),=

l ′m ′K (lm )(lm )′a I l ′m ′(6)

where a I lm= dνa I lm(ν).The second equality de?nes the kernel K(lm)(lm)′which relates the frequency-integrated multipoles in S and S′.Dividing a I lm by four times the average?ux per solid angle gives the multipoles of the gauge-invariant temperature anisotropy in linear theory(e.g.Refs.[17,18]).

If we choose the spacelike vectors of the tetrad{(eμ)a}so that the relative velocity is along(e3)a,the multipole transformation law becomes block-diagonal,K(lm)(lm)′∝δmm′,with no coupling between di?erent m modes.The kernel for a general con?guration can then be inferred from its transformation properties under rotations described in Sec.II A.In the appendix we evaluate Eq.(4)as a series expansion inβfor general spin-weight functions,including terms up to O(β2),for the case where v is aligned with(e3)a.The expression is cumbersome,partly due to the fact that the transformation law is non-local in frequency.For large l the aberration e?ect dominates Doppler shifts and the frequency spectrum of the multipoles is preserved by the transformation.We also give the result obtained by integrating over frequency;setting s=0in Eq.(A7)we?nd the series expansion of the kernel K(lm)(lm)′up to O(β2):

K(lm)(l′m)=δll′ 1+1

2(l+2)(l+3)+δl(l′?2)β2C(l+2)m C(l+1)m

1 (l2?m2)(l2?s2)

l).For lβ?1,the departures of the kernel from the identityδll′δmm′are very small,giving negligible distortions to the multipoles except for l close to unity when the non-zero coupling to the(large)monopole can give signi?cant distortions,as described in Sec.I.

A.Rotational properties

If we rotate the relative velocity v to D v1keeping the tetrad(eμ)a?xed,[thus inducing a transformation of the Lorentz-boosted tetrad(e′μ)a],the frequency-integrated multipoles continue to be given by Eq.(6),but with v replaced by D v in?n′[Eq.(2)]and in(1+?n·v).With the change of integration variable?n→D?n,the integral de?ning the transformed kernel K(lm)(lm)′(D v)becomes

d?nγ2(1+?n·v)Y l′m′(D?n)Y?lm(D?n′)= d?nγ2(1+?n·v)D?1Y l′m′(?n)[D?1Y lm(?n′)]?,(9)

where D?1Y l′m′(?n)= m′′D l?m′m′′Y lm′′(?n)with D l mm′a Wigner D-matrix.(Our conventions for D-matrices follow Refs.[19,20].)It follows that the transformed kernel is given by

K(lm)(lm)′(D v)= MM′D l mM K(lM)(lM)′(v)D l′?m′M′.(10)

Instead of rotating the(physical)relative velocity of S and S′,we could imagine rotating the spatial triad(e i)a→D(e i)a.Under this coordinate transformation,the Lorentz-boosted frame vectors transform similarly:(e′i)a→D(e′i)a.

FIG.1:Representative elements of the frequency-integrated kernel K(lm)(lm)′evaluated with the relative velocity(β=1.23×10?3)along(e3)a.The results of a numerical integration of Eq.(6)are shown in dark gray,while results based on the series expansion(7)are shown in light gray.The smaller(absolute values)of the two are shown in the foreground.Elements are shown for l=1500(left),l=700(middle),and l=50(right),with m=0(top)and m=l(bottom).

For a?xed sky,the multipoles seen by S and S′transform according to e.g.a I lm→ m′D l?m′m a I lm′(which is equivalent to rotating the sky with D?1leaving the tetrad?xed).It follows that under coordinate rotations,the kernel transforms as

K(lm)(lm)′→D l?Mm K(lM)(lM)′D l′M′m′.(11) Note that the(passive)rotation of the frame vectors by D?1has the same e?ect on the kernel as the(active)rotation of the relative velocity v by D,as expected.

Finally,we consider(active)parity transformations v→?v with the tetrad(eμ)a held?https://www.360docs.net/doc/bd8555995.html,ing Y lm(??n)= (?1)l Y lm(?n)it is straightforward to show that

K(lm)(lm)′(?v)=(?1)l+l′K(lm)(lm)′(v).(12) The behaviour of the kernel under parity ensures that if we simultaneously invert v and the sky[a I lm→(?1)l a I lm], the multipoles seen by S′transform to(?1)l a I′lm.

These transformation properties of the kernel under rotations allow one to generalise Eq.(7)easily to the case where v is not aligned with(e3)a.

B.Power spectrum estimators

We have seen how aberration e?ects lead to signi?cant distortions of some of the high-l multipoles in transforming from the CMB frame to the frame of the experiment.In the next two subsections we investigate the impact of these distortions on the statistical properties of the multipoles.

We assume that in the CMB frame(S)the second-order statistics of the anisotropies are summarised by

a I lm a I?l′m′ =C II lδll′δmm′,(13)

FIG.2:Representative elements of the kernel W ll′evaluated with relative velocityβ=1.23×10?3.The results of a numerical integration of are shown in dark gray,while results based on the series expansion(16)are shown in light gray.The smaller (absolute values)of the two are shown in the foreground.Elements are shown for l=1500(left),l=700(middle),and l=50 (right).

appropriate to a statistically-isotropic ensemble with power spectrum C II l.(The averaging is over an ensemble of CMB realizations.)It is this C l for l≥2that is computed with linear perturbation theory in standard Boltzmann codes(e.g.Refs.[14,15]).

We begin by considering the quadratic statistic

1

?C II′

l≡

2l+1 l′mm′|K(lm)(lm)′|2C II l′

≡ l′W ll′C II l′.(15)

The kernel W ll′depends only on the relative speedβand not the direction?v,so we can always evaluate it with v aligned with(e3)a.

The series expansion(7)of K(lm)(lm′)can be used to evaluate W ll′.Correct to O(β2)we?nd

W ll′=δll′ 1?13(2l+1)+δl(l′?1)β2(l?2)2(l+1)

using the integral expression(6)for K(lm)(lm)′.The result simpli?es to

l′W ll′=γ45β4 ,(18) on using the completeness relation

lm s Y lm(?n1)s Y?lm(?n2)=δ(?n1??n2),(19) and the addition theorem for the spherical harmonics.The series expansion of Eq.(18)agrees with Eq.(17).We

conclude that despite the fact that the multipoles themselves can be severely distorted by aberration for lβ>~1in passing from the CMB frame to that of the solar system,the quadratic power spectrum estimator is negligibly biased

since the e?ect of the velocity transformation is to convolve the power spectrum with a narrow kernel W ll′that sums to very nearly unity.

C.Signal covariance matrix

Assuming Gaussian statistics in the CMB frame,the multipoles a I′lm in S′will also be distributed according to a multivariate Gaussian since the transformation(6)is linear.In this case,the covariance matrix a I′lm a I′?l′m′ contains all statistical information about the anisotropies in S′,and as such is an essential element of optimal power spectrum estimation.

If we make use of Eq.(13),the covariance matrix in S′reduces to

a I′lm a I′?l′m′ = LM K(lm)(LM)K?(lm)′(LM)C II L.(20)

The presence of the preferred direction?v breaks statistical isotropy in S′,and the multipoles are correlated for l=l′and m=m′.The structure of the covariance matrix in S′depends on the choice of the spatial triad(e i)a with respect to the relative velocity of the two observers.Aligning(e3)a with v,the m-modes decouple in K(lm)(lm)′and so also in the covariance matrix.Furthermore,for the values ofβof interest here(β?1),the kernel K(lm)(lm)′falls rapidly to zero for l and l′di?ering by more than a few(see Fig.1),so the same will be true of the covariance matrix.It follows that we can approximate

a I′lm a I′?l′m′ ≈C II l LM K(lm)(LM)K?(lm)′(LM).(21)

(Pulling out C II l′instead will give essentially the same result for smooth power spectra.)The summation in Eq.(21) is most easily evaluated by substituting the integral representation(6)for K(lm)(LM)and using the completeness relation(19).We?nd that LM K(lm)(LM)K?(lm)′(LM)reduces to the integral

d?n[γ(1+?n·v)]4Y?lm(?n′)Y l′m′(?n′)= d?n′[γ(1??n′·v)]?6Y?lm(?n′)Y l′m′(?n′),(22)

where we changed the integration variable to?n′and usedγ(1+?n·v)=[γ(1??n′·v)]?1.Note that both spherical harmonics have the same argument in the integrand,so we don’t expect the same O(lβ)terms at high l that arise in the kernel K(lm)(lm)′.Eq.(22)can easily be evaluated for(e3)a along v(in which case there is no coupling between di?erent m)by expanding inβ:

LM K(lm)(LM)K?(l′m)(LM)=δll′[1+3β2(7C2(l+1)m+7C2lm?1)]+δl(l′+1)6βC lm+δl(l′?1)6βC(l+1)m

+δl(l′+2)21β2C lm C(l?1)m+δl(l′?2)21β2C(l+2)m C(l+1)m+O(β3).(23) This result for the covariance matrix in S′could easily be used in maximum-likelihood power spectrum estimation (see e.g.Ref.[21])to correct for the bias due to peculiar velocity e?ects.However,since the leading corrections are only O(β),even at high l,the e?ects will be negligible.

III.TRANSFORMATION LA WS FOR LINEAR POLARIZATION

The linearly polarized brightness in S is described by Stokes parameters Q (ν,?n

)and U (ν,?n ).The Stokes parameters depend on a speci?c choice of orthonormal basis vectors {m 1,m 2}for each line of sight ?n .If {m 1,m 2,??n }form a right-handed orthonormal set,the Stokes parameters are related to the linear polarization tensor by

P ab =1

ν 3,(25)

and similarly for U ,provided that the basis vectors are transformed according to

[22]m

i

=

m

i +(γ?1)m i ·?v ?v ?γm i ·v ?n ′,(26)

where i =1,2.It is straightforward to verify that this transformation law preserves orthonormality,and also that m ′i is obtained from m i by parallel transport on the unit sphere along the great circle through ?n

and ?n ′(and so through ?v

also).In terms of the polarization tensor,the frame transformation law can be written as P ′ab (ν′,?n ′)=P ab (ν,?n

;v ) ν′√

i √

2,so that Eq.(29)can be written as

(a E ′lm ±ia B ′lm )(ν′)= l ′m ′(a E l ′m ′±ia B l ′m ′)(ν)

d?n γ(1+?n ·v )±2Y l ′m ′(?n )±2Y ?lm (?n ′).(32)

2times the gradient (G )and curl (C )multipoles introduced in Refs.[23,24].With this convention the power

spectra of the electric and magnetic multipoles agree with those de?ned in the spin-weight formalism [25,26].

The integral on the right-hand side is evaluated as a power series inβfor general spin-weight s in the appendix. For our purposes it will be more convenient to consider the frequency-integrated multipoles,e.g.a E lm= dνa E lm(ν). Integrating Eq.(29)over frequency,we?nd

a E′lm= l′m′+K(lm)(lm)′a E l′m′+i?K(lm)(lm)′a B l′m′,(33)

a B′lm= l′m′+K(lm)(lm)′a B l′m′?i?K(lm)(lm)′a E l′m′,(34) where the kernels

+

K(lm)(lm)′= d?n[γ(1+?n·v)]2Y G ab (lm)′(?n;v)Y G?(lm)ab(?n′)= d?n[γ(1+?n·v)]2Y C ab (lm)′(?n;v)Y C?(lm)ab(?n′),(35)?

K(lm)(lm)′=?i d?n[γ(1+?n·v)]2Y C ab (lm)′(?n;v)Y G?(lm)ab(?n′)=i d?n[γ(1+?n·v)]2Y G ab (lm)′(?n;v)Y C?(lm)ab(?n′).(36)

The behaviour of±K(lm)(lm)′under rotations v→D v is the same as for the total intensity kernel,Eq.(10),since the tensor harmonics transform under rigid rotations with the same D-matrices as the scalar harmonics[1].This property of the tensor harmonics also ensures that under rotations of the coordinate system,(e i)a→D(e i)a,the electric and magnetic multipoles transform irreducibly to e.g. m′D l?m′m a E lm′.Under inversion of v with(eμ)a held ?xed,the kernels transform to

+

K(lm)(lm)′(?v)=(?1)l+l′+K(lm)(lm)′(v),(37)

?

K(lm)(lm)′(?v)=?(?1)l+l′?K(lm)(lm)′(v),(38) so that under simultaneous inversion of the sky in S,a E lm→(?1)l a E lm and a B lm→(?1)l+1a B lm,and inversion of v,the multipoles in S′transform like those in S.

The frequency-integrated kernels are most simply evaluated with v along(e3)a.In this case the m-modes decouple, as with the total intensity.Writing±K=(2K±?2K)/2,we can use Eq.(A7),which evaluates s K(lm)(lm)′as a series correct to O(β2),to show that

+

K(lm)(l′m)=δll′ 1+1l(l+1)+24m2

2(l+2)(l+3)+δl(l′?2)β22C(l+2)m2C(l+1)m

1

l(l+1)?δl(l′+1)2C lm(l+3)6β2m

l(l+2)

.(40)

(Equivalent results,correct to O(β),have already been worked out in1+3covariant form[22].)The kernel?K(lm)(lm)′is suppressed at high l.It receives comparable contributions from Doppler and aberration e?ects for all l[see Eq.(A6)]

in contrast to the+K(lm)(lm)′and the total intensity kernel K(lm)(lm)′which are dominated by aberration e?ects at high l.The series expansion of+K(lm)(lm)′is slow to converge for lβ>~1when|m|?l,and there are large distortions to the electric and magnetic multipoles for these indices.Electric multipoles nearby in l couple in strongly to distort

a E lm,and similarly for the magnetic multipoles.For l?1the kernel+K(lm)(lm)′is almost indistinguishable from the total intensity kernel K(lm)(lm)′.The cross contamination of e.g.B by E due to the frame transformation is much weaker,with the maximal e?ect~O(β/l)at leading order occuring for|m|≈l.[Note that,as with+K(lm)(lm)′,the convergence of of Eq.(40)is slow for lβ>~1when|m|?l.]The transfer of power from E to B is potentially the most interesting e?ect since in the absence of astrophysical foregrounds,in?ationary models predict that magnetic polarization in the CMB frame on scales larger than a degree or so arises only from gravitational waves.However,on these scales a gravity wave background comprising only one percent of the large-angle temperature anisotropy would have B power far in excess of that generated in the frame of the experiment by transforming E from the CMB frame. On sub-degrees scales,where any primordial B-polarization is expected to be very small,other non-linear e?ects, most notably weak lensing of E[28],will dominate the B signal produced by the velocity transformation.

A.Power spectrum estimators

The second-order statistics of the polarization multipoles in the CMB frame,assuming statistical isotropy and parity invariance,de?ne power spectra:

a E lm a E?l′m′ =δll′δmm′C EE l,(41)

a B lm a B?l′m′ =δll′δmm′C BB l,(42)

a E lm a I?l′m′ =δll′δmm′C IE l,(43) with no correlations between B and E or I.We can form estimators of these power spectra from the multipoles in S′by analogy with Eq.(14),e.g.

?C IE′l =

1

2l+1 l′m′m|+K(lm)(lm)′|2C EE l′+|?K(lm)(lm)′|2C BB l′,(45) ?C BB′l =1

2l+1 l′m′m+K(lm)(lm)′K?(lm)(lm)′C IE l′.(47) Substituting the power series expressions for the kernels and performing the summations over m and m′we?nd 1

3

β2(l+4)(l?3) +δl(l′+1)β2(l+3)2(l2?4)

3(l+1)(2l+1)

,(48) 1

l(l+1)

,(49) and

1

3

β2(l2+l?10) +δl(l′+1)β2 3(2l+1)

+δl(l′?1)β2 3(2l+1),(50)

correct to O(β2).For l?1the right-hand sides of Eqs.(48)and(50)are almost equal to each other and to the kernel W ll′which determines the bias in the total-intensity estimator?C II′l.As with the total intensity,the series in Eqs.(48–50)are slow to converge for lβ>~1.The bias of?C BB′l by E-polarization is controlled by mm′|?K(lm)(lm)′|2/(2l+1),

which falls o?rapidly with l.In Fig.3we compare this contribution to the expected ?C BB′

l with the B-polarization power spectrum due to primordial gravity waves and weak lensing of the E-polarization.The cosmological model is a Lambda,cold dark matter(ΛCDM)in which gravity waves contribute one percent to the large-angle temperature anisotropy.As remarked earlier,the contamination arising from the frame transformation is well below the expected C BB

l

in such a model.

The means of the estimators?C EB′

l and?C EB′

l

,de?ned by analogy with?C IE′

l

,would vanish in the absence of peculiar

velocity e?ects(and foregrounds)due to parity.The velocity transformations preserve these zero means since

mm′+K(lm)(lm)′?K?(lm)(lm)′= mm′?K(lm)(lm)′K?(lm)(lm)′=0.(51)

FIG.3:Contribution of C EE

l to the mean estimator ?C BB′

l in aΛCDM model with one percent contribution to the total-

intensity quadrupole from gravity waves.This velocity e?ect is compared with C BB

l(in the CMB frame)due to primordial gravity waves(solid line)and weak lensing of the E-polarization(dashed line).

These results are easily proved by choosing v along(e3)a so that all kernels are real,and using the general results

±K?

(lm)(lm)′

=±(?1)m+m′±K(l?m)(l′?m′)and K?

(lm)(lm)′

=(?1)m+m′K(l?m)(l′?m′).

The kernels represented by the left-hand sides of Eqs.(48)–(50)fall o?su?ciently rapidly with|l′?l|that they are

narrow compared to expected features in the primordial power spectra3.Following the analysis in Sec.II B we can

pull out C EE

l′,C BB

l′

,and C IE l′at l′=l from the summations in Eqs.(45)–(47).Performing the sums over l′,we?nd 1

l(l+1)

,(52) 1

l(l+1)

,(53)

1

3

β2 2l+1+ 2l+1?l2?l+10 ,(54)

correct to O(β2).For large l the right-hand sides of Eqs.(52)and(54)approach1+4β2;as with the total intensity, there is a negligible scaling of the amplitude of the power spectra estimated in the S′frame due to the frame transformation.Note that

1

2(2l+1) mm′l′[|2K(lm)(lm)′|2+|?2K(lm)(lm)′|2]

=γ4 1+2β2+1

3At low l the polarization power spectra vary rapidly(as power laws)with l.Over this part of the spectrum the approximation that the power is approximately constant over the width of the convolving kernel is still valid since the latter are essentially Kronecker deltas at low l.

B.Signal covariance matrices

The calculation of the covariance matrix of the polarization multipoles in S′follows that for the total intensity given in Sec.II C.For smooth power spectra we can approximate

a E′lm a E′?l′m′ ≈C EE l LM+K(lm)(LM)+K?(lm)′(LM)+C BB l LM?K(lm)(LM)?K?(lm)′(LM),(56)

a B′lm a B′?l′m′ ≈C BB l LM+K(lm)(LM)+K?(lm)′(LM)+C EE l LM?K(lm)(LM)?K?(lm)′(LM),(57)

a E′lm a I′?l′m′ ≈C IE l LM+K(lm)(LM)K?(lm)′(LM).(58) The remaining correlators would vanish for v=0due to parity invariance.For non-zero v we can approximate

a E′lm a B′?l′m′ ≈iC EE l LM+K(lm)(LM)?K?(lm)′(LM)+iC BB l LM?K(lm)(LM)+K?(lm)′(LM),(59)

a B′lm a I′?l′m′ ≈?iC IE l LM?K(lm)(LM)K?(lm)′(LM).(60)

If we align v with(e3)a we can evaluate these expressions by substituting for the series expansions of the kernels from Eqs.(39)and(40).The m modes decouple and we?nd

LM+K(lm)(LM)+K?(l′m)(LM)=δll′ 1+3β2 72C2(l+1)m+72C2lm+16m2

l2(l+1)2

,(62) and

LM+K(lm)(LM)K?(l′m)(LM)=δll′ 1+1

2

δl(l′+2)β2[(l+2)(l+3)2C lm2C(l?1)m+(l?3)(l?4)C lm C(l?1)m

?2(l+3)(l?4)2C(l?1)m C lm]+1

2?155+84m2

l?

3(7+4m2)

l?29+12m2

4?

5

16l2

+δl(l′?2)β2 212l?223+84m2

It is worth noting that

LM(+K(lm)(LM)+K?(l′m)(LM)+?K(lm)(LM)?K?(l′m)(LM))

=

1

l(l+1)?δl(l′+1)2C lm(7l+3)

6β2m

l(l+1)(l+2)

,(66) LM?K(lm)(LM)K?(l′m)(LM)=?δll′6βm l(l+1)(l?1)

+δl(l′?1)[(l+1)(l?2)2C(l+1)m?(l+4)(l+2)C(l+1)m]6β2m

2 d?n[γ(1??n·v)]?6[2Y?lm(?n)2Y l′m(?n)??2Y?lm(?n)?2Y l′m(?n)].(69)

This result is easily shown to be consistent with Eqs.(66)and(68).

IV.IMPLICATIONS FOR SUR VEY MISSIONS

For experiments which observe for less than a month or so the velocity of the instrument relative to the CMB frame can reasonably be considered constant.In this case a map in the frame of the instrument can be made with no account of the e?ects considered in this paper.Accounting for the peculiar velocity relative to the CMB frame can be deferred until the statistical properties of the map are considered.As we have shown here,peculiar velocity e?ects can safely be ignored when estimating smooth power spectra since the estimated power spectra are essentially convolutions of the spectra in the CMB frame(which we can reliably compute with linear perturbation theory)with narrow kernels that integrates to unity.

For survey experiments that observe for the order of a year or more the variation in the orbital velocity of the instrument adds another potential complication.Modulation of the dipole by the orbital velocity of the earth was visible in the COBE DMR data[29];here we are interested in e?ects at small angular scales.To estimate the importance of the e?ect we consider a toy model of the Planck High Frequency Instrument(HFI).We approximate the orbit of the satellite relative to the sun as a linear motion withβ=10?4for six months,after which the direction of motion is reversed for the next six months of observation.Clearly,this toy model will over estimate the e?ects of the variation in orbital velocity.Planck will cover the full sky in six months,so for each six month period we could make a map and extract the spherical multipoles.In our toy model these two maps are produced in frames with a relative velocity of2β=2×10?4.In the l-range relevant to Planck we need only retain the O(β)corrections in Eq.(7),so the di?erence between the multipoles measured from the two maps can be approximated as

?a I lm≈βl

for large l.Here,a I lm are the total intensity multipoles in the rest frame of the solar system.The r.m.s.di?erence in the multipoles is

|?a I lm|2 1/2≈√1?m2/l2 2βl

2.A comparison of the noise on the recovered multipoles with the r.m.s.error due to the di?erence in orbital velocity shows that the latter is just above the noise in the region of the?rst acoustic peak in C II l(at l~200)for|m|small compared to https://www.360docs.net/doc/bd8555995.html,bining maps at di?erent frequency would reduce the noise while preserving the peculiar velocity e?ect.However,since we have certainly over estimated the importance of the variation in orbital velocity,it is likely that the variation in aberration due to the orbital motion of the earth need not be considered beyond the dipole(which is modulated by the large CMB monopole).In principle,the modulation of the high l multipoles could easily be accounted for during map-making by including the aberration corrections in the pointing model of the instrument[12,13].

V.CONCLUSION

We have shown that for total intensity the e?ect of the frame transformation from the CMB frame to that of the solar system produces large distortions in certain multipoles at high l.These e?ects arise principally from aberration rather than Doppler shifts.The linear polarization multipoles are similarly distorted at high l,but with the additional complication that there is some transfer of power between E and B polarization.This transfer is suppressed at large l,and receives comparable contributions from aberration and Doppler shifts on all scales.Although the power in B polarization is expected to be much smaller than that in E in the absence of foregrounds,the B polarization generated from E is well below the primordial level even if gravity waves contribute only one percent of the large-angle temperature anisotropies.If the gravity wave background is much below this level,weak gravitational lensing will dominate the primordial signal on all scales.This lensing signal is expected to be an order of magnitude larger than the B polarization generated from the frame transformation on large scales.

Despite signi?cant O(βl)distortions of certain multipoles at large l,peculiar velocity e?ects are suppressed in power spectrum estimators and the covariance matrices for the CMB signals.The e?ect of the frame transformation on the mean of the simplest power spectrum estimator is to convolve the spectrum in the CMB frame(which we can compute reliably with linear perturbation theory)with a narrow kernel that integrates to unity.For smooth spectra there is negligible bias introduced by such a convolution.For linear polarization,the bias of e.g.the B-polarization power spectrum by E is suppressed at large l,and is expected to be negligible on all scales.We also showed that the frame transformation has only a negligible e?ect[O(β)as opposed to O(βl)]on the signal covariance matrices for smooth underlying power spectra.The leading order e?ect is a coupling to the adjacent l values,l±1.For linear polarization additional correlations are induced between B and E polarization,and B and total intensity I,since the frame transformation does not preserve parity invariance,but their level is negligible.

If the CMB?uctuations are Gaussian in the CMB frame,the multipoles will remain Gaussian distributed in any other frame since the transformation is linear in the signal.The transformation does break rotational and parity invariance,however,and so the aberration e?ects described here may be important when searching for weak lensing e?ects in the microwave background(using small patches of the sky over a coherence area of the weak shear),or the e?ects of non-trivial topologies.

Acknowledgments

AC thanks the Theoretical Astrophysics Group at Caltech for hospitality while some of this work was completed, and Marc Kamionkowski for useful discussions.AC acknowledges a PPARC Postdoctoral Fellowship;FvL is supported by PPARC.

APPENDIX A:SERIES EXPANSION OF THE MULTIPOLE TRANSFORMATION LA WS

In this appendix we outline the evaluation of the transformation law for the brightness multipoles as a power series inβ.We align the relative velocity with the vector(e3)a so that there is no coupling between di?erent m modes.To

allow us to discuss both total intensity and linear polarization,we consider the integral

a ′lm

(ν′)= l ′

d?n ν′d ν′a l ′m (ν′) βμ?β2μ2+12

d 2d μ

s Y l ′m (?n )+β2(μ2?1)2

d μ2s Y l ′m (?n )+O (β3).(A3)Th

e derivatives with respect to μcan be eliminated with repeated use o

f the identity [20](μ2?1)d l (l +1)s Y lm ?(l +1)s C lms Y (l ?1)m ,(A4)

where s C lm is de?ned in Eq.(8),and residual factors of μcan be absorbed with the identity [20]

μs Y lm =s C (l +1)m s Y (l +1)m ?

sm l (l +1) 2?ν′

d 2s C 2(l +1)m l (l ?1)+2lν′d d ν′2

+1d ν′+ν′2d 22 m 2+s 2?l (l +1)+1?ν′d 2l (l +1)+s 2m 2

d ν′+ν′2d ν′2 a lm (ν′)?βs C (l +1)m (l ?1)+ν′d l (l +2) 2(l ?1)?(l ?2)ν′d d ν′2 a (l +1)m (ν′)?βs C lm ?(l +2)+ν′d (l +1)(l ?1) ?2(l +2)+(l +3)ν′d d ν

′2 a (l ?1)m (ν′)+1d ν′

+ν′2d 22β2s C lms C (l ?1)m (l +1)(l +2)?2(l +1)ν′

d d ν′2 a (l ?2)m (ν′)+O (β3).(A6)Integrating this result with respect to ν′,th

e kernel s K (lm )(lm )′introduced in Sec.II (s =0)and Sec.III (s =±2)evaluates to s K (lm )(l ′m )=δll ′ 1?3βsm 2β2 s C 2(l +1)m (l ?1)(l ?2)+s C 2lm (l +2)(l +3)+m 2+s 2?l (l +1)+2?s 2m 2l 2(l +1)2 +δl (l ′+1)βs C lm (l +3) 1?3βsm l (l +2)

+δl (l ′+2)β2s C lms C (l ?1)m 12

(l ?1)(l ?2)+O (β3),(A7)with K (lm )(lm )′=0for m =m ′in the con?guration with v along (e 3)a .

[1]A.Challinor,P.Fosalba,D.Mortlock,M.Ashdown,B.Wandelt,and K.G′o rski,Phys.Rev.D 62,123002(2000).

[2]J.H.P.Wu,A.Balbi,J.Borrill,P.G.Ferreira,S.Hanany,A.H.Ja?e,A.T.Lee,S.Oh,B.Rabii,P.L.Richards,et al.,

Astrophys.J.Suppl.Ser.132,1(2001).

[3]T.Souradeep and B.Ratra,Astrophys.J.560,28(2001).

[4]P.Fosalba,O.Dor′e,and F.R.Bouchet(2001),astro-ph/0107346.

[5]F.R.Bouchet and R.Gispert,New.Astron.4,443(1999).

[6]M.P.Hobson,A.W.Jones,https://www.360docs.net/doc/bd8555995.html,senby,and F.R.Bouchet,Mon.Not.R.Astron.Soc.300,1(1999).

[7]https://www.360docs.net/doc/bd8555995.html,/group/cmb/index.html.

[8]https://www.360docs.net/doc/bd8555995.html,/~boomerang.

[9]https://www.360docs.net/doc/bd8555995.html,/astro/cobe/.

[10]https://www.360docs.net/doc/bd8555995.html,.

[11]http://astro.estec.esa.nl/Planck.

[12]F.van Leeuwen,A.D.Challinor,D.J.Mortlock,M.A.J.Ashdown,M.P.Hobson,https://www.360docs.net/doc/bd8555995.html,senby,G.P.Efstathiou,

E.P.S.Shellard,D.Munshi,and V.Stolyarov(2001),astro-ph/0112276.

[13]A.D.Challinor,D.J.Mortlock,F.van Leeuwen,https://www.360docs.net/doc/bd8555995.html,senby,M.P.Hobson,M.A.J.Ashdown,and G.P.Efstathiou

(2001),astro-ph/0112277.

[14]U.Seljak and M.Zaldarriaga,Astrophys.J.469,437(1996).

[15]A.Lewis,A.Challinor,and https://www.360docs.net/doc/bd8555995.html,senby,Astrophys.J.538,473(2000).

[16]C.W.Misner,K.S.Thorne,and J.A.Wheeler,Gravitation(W.H.Freeman and Company,San Francisco,1973).

[17]W.R.Stoeger,R.Maartens,and G.F.R.Ellis,Astrophys.J.443,1(1995).

[18]R.Maartens,G.F.R.Ellis,and W.R.Stoeger,Phys.Rev.D51,1525(1995).

[19]D.M.Brink and G.R.Satchler,Angular Momentum(Clarendon Press,Oxford,1993),3rd ed.

[20]D.A.Varshalovich,A.N.Moskalev,and V.K.Khersonskii,Quantum Theory of Angular Momentum(World Scienti?c,

Singapore,1988).

[21]J.R.Bond,A.H.Ja?e,and L.Knox,Phys.Rev.D57,2117(1998).

[22]A.Challinor,Phys.Rev.D62,043004(2000).

[23]M.Kamionkowski,A.Kosowsky,and A.Stebbins,Phys.Rev.D55,7368(1997).

[24]M.Kamionkowski,A.Kosowsky,and A.Stebbins,Phys.Rev.Lett.78,2058(1997).

[25]U.Seljak and M.Zaldarriaga,Phys.Rev.Lett.78,2054(1997).

[26]M.Zaldarriaga and U.Seljak,Phys.Rev.D55,1830(1997).

[27]K.Ng and G.Liu,Int.J.Mod.Phys.D8,61(1999).

[28]M.Zaldarriaga and U.Seljak,Phys.Rev.D58,023003(1998).

[29]G.F.Smoot,C.L.Bennett,A.Kogut,J.Aymon,C.Backus,G.de Amici,K.Galuk,P.D.Jackson,P.Keegstra,L.Rokke,

et al.,Astrophys.J.Lett.371,1(1991).

自动化英语单词

后验估计 a posteriori estimate 先验估计 a priori estimate 交流电子传动AC (alternating current) electric drive 验收测试acceptance testing 可及性accessibility 累积误差accumulated error 交-直-交变频器AC-DC-AC frequency converter 主动姿态稳定active attitude stabilization 驱动器,执行机构actuator 线性适应元adaline 适应层adaptation layer 适应遥测系统adaptive telemeter system 伴随算子adjoint operator 容许误差admissible error 集结矩阵aggregation matrix 层次分析法AHP (analytic hierarchy process) 放大环节amplifying element 模数转换analog-digital conversion 信号器annunciator 天线指向控制antenna pointing control 抗积分饱卷anti-integral windup 姿态轨道控制系统AOCS (attritude and orbit control system) 非周期分解aperiodic decomposition 近似推理approximate reasoning 关节型机器人articulated robot 配置问题,分配问题assignment problem 联想记忆模型associative memory model 联想机associatron 渐进稳定性asymptotic stability 实际位姿漂移attained pose drift 姿态捕获attitude acquisition 姿态角速度attitude angular velocity 姿态扰动attitude disturbance 姿态机动attitude maneuver 吸引子attractor 可扩充性augment ability 增广系统augmented system 自动-手动操作器automatic manual station 自动机automaton 自治系统autonomous system 间隙特性backlash characteristics 基座坐标系base coordinate system 贝叶斯分类器Bayes classifier 方位对准bearing alignment 波纹管压力表bellows pressure gauge 收益成本分析benefit-cost analysis 双线性系统bilinear system 生物控制论biocybernetics 生物反馈系统biological feedback system 黑箱测试法black box testing approach 盲目搜索blind search 块对角化block diagonalization 玻耳兹曼机Boltzman machine 自下而上开发bottom-up development 边界值分析boundary value analysis 头脑风暴法brainstorming method 广度优先搜索breadth-first search 蝶阀butterfly valve 计算机辅助工程CAE (computer aided engineering) 清晰性calrity 计算机辅助制造CAM (computer aided manufacturing) 偏心旋转阀Camflex valve 规范化状态变量canonical state variable 电容式位移传感器capacitive displacement transducer 膜盒压力表capsule pressure gauge 计算机辅助研究开发CARD 直角坐标型机器人Cartesian robot 串联补偿cascade compensation 突变论catastrophe theory 集中性centrality 链式集结chained aggregation 混沌chaos 特征轨迹characteristic locus 化学推进chemical propulsion 经典信息模式classical information pattern 分类器classifier 临床控制系统clinical control system 闭环极点closed loop pole 闭环传递函数closed loop transfer function 聚类分析cluster analysis 粗-精控制coarse-fine control 蛛网模型cobweb model 系数矩阵coefficient matrix 认知科学cognitive science 认知机cognitron 单调关联系统coherent system 组合决策combination decision 组合爆炸combinatorial explosion 压力真空表combined pressure and vacuum gauge 指令位姿command pose 相伴矩阵companion matrix 房室模型compartmental model 相容性,兼容性compatibility 补偿网络compensating network 补偿,矫正compensation

velocity入门使用教程

V elocity入门使用教程 一、使用velocity的好处: 1.不用像jsp那样编译成servlet(.Class)文件,直接装载后就可以运行了,装载的过程在web.xml里面配置。【后缀名为.vhtml是我们自己的命名方式。也只有在这里配置了哪种类型的文件,那么这种类型的文件才能解析velocity语法】 2.web页面上可以很方便的调用java后台的方法,不管方法是静态的还是非静态的。只需要在toolbox.xml里面把类配置进去就可以咯。【调用的方法$class.method()】即可。 3.可以使用模版生成静态文档html【特殊情况下才用】 二、使用 1、下载velocity-1.7.zip 、velocity-tools-2.0.zip 2、解压后引用3个jar文件velocity-1.7.jar、velocity-tools-2.0.jar、velocity-tools-view-2.0.jar 还有几个commons-…..jar 开头的jar包 三、配置文件: Web.xml velocity org.apache.velocity.tools.view.VelocityViewServlet 1 velocity *.vm velocity *.jsp velocity *.html

科技英语语法_同位语从句_名词性从句_定语从句

2015/12/2 Wednesday
西安电子科技大学
西安电子科技大学
§5. 2 同位语从句
1、一般情况 (1)公式
§5. 2 同位语从句 The latter(后一)form has the advantage that it can be extended(扩展) to complex quantities .
+ 某些抽象名词 +
the this a/an O no
形容词 物主代词
that从句[“that”在
从句中无词义、无 成分]
③ “动宾译法”:这时该“抽象名词” 来自于可带有宾语从句的及物动词。
西安电子科技大学
西安电子科技大学
§5. 2 同位语从句
(2)译法 ① “~ 这一 ……” 的
§5. 2 同位语从句 During the past several years, there has been an increasing [a growing] recognition [realization; awareness] within business(商务)and academic(学术的) circles(界)that certain nations have evolved(发展)into information societies .
The assumption that β = constant is often made to simplify analysis. R = r is the condition that power delivered(提供)by a given source is a maximum .
西安电子科技大学
西安电子科技大学
§5. 2 同位语从句 Here we have used the definition (定义)that acceleration(加速度)is the rate(速率)of change of velocity .
② 这一 ……:~ 以下的
§5. 2 同位语从句 The main theoretical development in this decade(十年)has been in the recognition that material properties should be included in analytical models . This is equivalent to a statement that everything is attracted by the earth.
This account for(解释)the observation(观察到的情况)that the resistivity of a metal increases with temperature .
1

VRay中文使用手册

VRay中文使用手册 9030 目录 1. license 协议 2. VRay的特征 3. VRay软件的安装 4. VRay的渲染参数 5. VRay 灯光 6. VRay 材质 7. VRay 贴图 8. VRay 阴影 9. VRay的分布式渲染 10. Terminology术语 11. Frequently Asked Questions常见问题 VRay的特征 VRay光影追踪渲染器有Basic Package 和 Advanced Package两种包装形式。Basic Package具有适当的功能和较低的价格,适合学生和业余艺术家使用。Advanced Package 包含有几种特殊功能,适用于专业人员使用。 Basic Package的软件包提供的功能特点

·真正的光影追踪反射和折射。(See: VRayMap) ·平滑的反射和折射。(See: VRayMap) ·半透明材质用于创建石蜡、大理石、磨砂玻璃。(See: VRayMap) ·面阴影(柔和阴影)。包括方体和球体发射器。(See: VRayShadow) ·间接照明系统(全局照明系统)。可采取直接光照 (brute force), 和光照贴图方式(HDRi)。(See: Indirect illumination) ·运动模糊。包括类似Monte Carlo 采样方法。(See: Motion blur) ·摄像机景深效果。(See: DOF) ·抗锯齿功能。包括 fixed, simple 2-level 和 adaptive approaches等采样方法。(See: Image sampler) ·散焦功能。(See: Caustics ) ·G-缓冲(RGBA, material/object ID, Z-buffer, velocity etc.) (See: G-Buffer ) Advanced Package软件包提供的功能特点 除包含所有基本功能外,还包括下列功能: ·基于G-缓冲的抗锯齿功能。(See: Image sampler) ·可重复使用光照贴图 (save and load support)。对于fly-through 动画可增加采样。(See: Indirect illumination) ·可重复使用光子贴图 (save and load support)。(See: Caustics) ·带有分析采样的运动模糊。(See: Motion blur ) ·真正支持 HDRI贴图。包含 *.hdr, *.rad 图片装载器,可处理立方体贴图和角贴图贴图坐标。可直接贴图而不会产生变形或切片。

fluent 使用基本步骤

fluent 使用基本步骤 步骤一:网格 读入网格(*.msh) File →Read →Case 读入网格后,在窗口显示进程 检查网格 Grid →Check Fluent对网格进行多种检查,并显示结果。注意最小容积,确保最小容积值为正。 显示网格 Display →Grid 以默认格式显示网格 能够用鼠标右键检查边界区域、数量、名称、类型将在窗口显示,本操作关于同样类型的多个区域情形专门有用,以便快速区不它们。 网格显示操作 Display →Views 在Mirror Planes面板下,axis 点击Apply,将显示整个网格 点击Auto scale, 自动调整比例,并放在视窗中间 点击Camera,调整目标物体位置 用鼠标左键拖动指标钟,使目标位置为正 点击Apply,并关闭Camera Parameters 和Views窗口 步骤二:模型 1. 定义瞬时、轴对称模型 Define →models→Solver 保留默认的,Segregated解法设置,该项设置,在多相运算时使用。

在Space面板下,选择Axisymmetric 在Time面板下,选择Unsteady 2. 采纳欧拉多相模型 Define→Models→Multiphase (a) 选择Eulerian作为模型 (b)如果两相速度差较大,则需解滑移速度方程 (c)如果Body force比粘性力和对流力大得多,则需选择implicit b ody force 通过考虑压力梯度和体力,加快收敛 (d)保留设置不变 3. 采纳K-ε湍流模型(采纳标准壁面函数) Define →Models →Viscous (a) 选择K-ε( 2 eqn 模型) (b) 保留Near wall Treatment面板下的Standard Wall Function设置 在K-εMultiphase Model面板下,采纳Dispersed模型,dispersed湍流模型在一相为连续相,而材料密度较大情形下采纳,而且Stocks数远小于1,颗粒动能意义不大。 4.设置重力加速度 Define →Operating Conditions 选择Gravity 在Gravitational Acceleration下x或y方向填上-9.81m/s2 步骤三:材料 Define →Materials 复制液相数据作为差不多相 在Material面板。点击Database, 在Fluid Materials 清单中,选Water -Liquid (h2o(1))

词缀在英语词汇中的运用

词缀在英语词汇中的运用—— 浅淡构词法中的后缀 The Application of Affixes in English Vocabulary Memorization— A Brief Study on suffix of English Word Formation 摘要:词汇是英语学习者的主要障碍之一。它在运用语言进行交际过程中至关重要,它直接影响听、说、读、写各项能力的发挥,好么对于语言学习者来说,首先就要克服这个障碍。英语构词法可以帮助我们正确辩认单词的词形,词性和理解词意,并迅速扩大词汇量,有助于提高英语的阅读速度和理解能力,是学习英语和提高学习质量的有效的方法,被誉为“学习英语的最短最佳的途径”。而构词法中的后缀是构词能力最强的一种,也是英语扩充词汇的最主要的方法之一。后缀是加在词根或单词后面的部分,通常把它们的词性改变为名词、形容词、动词和副词[4]。一旦掌握这些规律,对词汇的获得就不再是那么困难了,而且还会大大激发学习兴趣,也就解决了学习者对词汇的习得的困难了,从而就能更有效地学习和掌握英语了。 关键词:英语词汇;英语构词法;后缀。 Abstract:Vocabulary is one of the main obstacles to the English learners.It is extremely crucial in the process of communication by using language,it directly influences the development of the ability of listening,speaking,reading,writing ect.therefore we must overcome the obstacle first as language learners. English Word Formation can help us distinguish the form and nature of word and apprehend the maening of word correctly,and enlarge our vocabulary quickly .It can help us enhance the velocity of reading English and the ability of apprehension.It is an efficient way and powerful weapon for English study ,and it is claimed to be one of the shortest and best way of English study.Affixation is one of the efficient ways of learning

LAMMPS手册-中文版讲解

L A M M P S手册-中文版 讲解 https://www.360docs.net/doc/bd8555995.html,work Information Technology Company.2020YEAR

LAMMPS手册-中文解析 一、简介 本部分大至介绍了LAMMPS的一些功能和缺陷。 1.什么是LAMMPS? 2. LAMMPS是一个经典的分子动力学代码,他可以模拟液体中的粒子,固体和汽体的系综。他可以采用不同的力场和边界条件来模拟全原子,聚合物,生物,金属,粒状和粗料化体系。LAMMPS可以计算的体系小至几个粒子,大到上百万甚至是上亿个粒子。 LAMMPS可以在单个处理器的台式机和笔记本本上运行且有较高的计算效率,但是它是专门为并行计算机设计的。他可以在任何一个按装了C++编译器和MPI的平台上运算,这其中当然包括分布式和共享式并行机和Beowulf型的集群机。 LAMMPS是一可以修改和扩展的计算程序,比如,可以加上一些新的力场,原子模型,边界条件和诊断功能等。 通常意义上来讲,LAMMPS是根据不同的边界条件和初始条件对通过短程和长程力相互作用的分子,原子和宏观粒子集合对它们的牛顿运动方程进行积分。高效率计算的LAMMPS通过采用相邻清单来跟踪他们邻近的粒子。这些清单是根据粒子间的短程互拆力的大小进行优化过的,目的是防止局部粒子密度过高。在并行机上,LAMMPS采用的是空间分解技术来分配模拟的区域,把整个模拟空间分成较小的三维小空间,其中每一个小空间可以分配在一个处理器上。各个处理器之间相互通信并且存储每一个小空间边界上的”ghost”原子的信息。LAMMPS(并行情况)在模拟3维矩行盒子并且具有近均一密度的体系时效率最高。 3.L AMMPS的功能 总体功能: 可以串行和并行计算 分布式MPI策略 模拟空间的分解并行机制 开源 高移植性C++语言编写 MPI和单处理器串行FFT的可选性(自定义) 可以方便的为之扩展上新特征和功能 只需一个输入脚本就可运行 有定义和使用变量和方程完备语法规则 在运行过程中循环的控制都有严格的规则

LAMMPS手册中文讲解

LAMMPS手册-中文解析 一、简介 本部分大至介绍了LAMMPS的一些功能和缺陷。 1.什么是LAMMPS? LAMMPS是一个经典的分子动力学代码,他可以模拟液体中的粒子,固体和汽体的系综。他可以采用不同的力场和边界条件来模拟全原子,聚合物,生物,金属,粒状和粗料化体系。LAMMPS可以计算的体系小至几个粒子,大到上百万甚至是上亿个粒子。 LAMMPS可以在单个处理器的台式机和笔记本本上运行且有较高的计算效率,但是它是专门为并行计算机设计的。他可以在任何一个按装了C++编译器和MPI的平台上运算,这其中当然包括分布式和共享式并行机和Beowulf型的集群机。 LAMMPS是一可以修改和扩展的计算程序,比如,可以加上一些新的力场,原子模型,边界条件和诊断功能等。 通常意义上来讲,LAMMPS是根据不同的边界条件和初始条件对通过短程和长程力相互作用的分子,原子和宏观粒子集合对它们的牛顿运动方程进行积分。高效率计算的LAMMPS通过采用相邻清单来跟踪他们邻近的粒子。这些清单是根据粒子间的短程互拆力的大小进行优化过的,目的是防止局部粒子密度过高。在并行机上,LAMMPS采用的是空间分解技术来分配模拟的区域,把整个模拟空间分成较小的三维小空间,其中每一个小空间可以分配在一个处理器上。各个处理器之间相互通信并且存储每一个小空间边界上的”ghost”原子的信息。LAMMPS(并行情况)在模拟3维矩行盒子并且具有近均一密度的体系时效率最高。 2.LAMMPS的功能 总体功能:

可以串行和并行计算 分布式MPI策略 模拟空间的分解并行机制 开源 高移植性C++语言编写 MPI和单处理器串行FFT的可选性(自定义) 可以方便的为之扩展上新特征和功能 只需一个输入脚本就可运行 有定义和使用变量和方程完备语法规则 在运行过程中循环的控制都有严格的规则 只要一个输入脚本试就可以同时实现一个或多个模拟任务粒子和模拟的类型: (atom style命令) 原子 粗粒化粒子 全原子聚合物,有机分子,蛋白质,DNA 联合原子聚合物或有机分子 金属 粒子材料 粗粒化介观模型 延伸球形与椭圆形粒子 点偶极粒子

Velocity教程

Velocity教程 关键字: velocity教程 Velocity是一个基于java的模板引擎(template engine)。它允许任何人仅仅简单的使用模板语言(template language)来引用由java代码定义的对象。当Velocity应用于web开发时,界面设计人员可以和java程序开发人员同步开发一个遵循MVC架构的web站点,也就是说,页面设计人员可以只关注页面的显示效果,而由java程序开发人员关注业务逻辑编码。Velocity将java代码从web页面中分离出来,这样为web站点的长期维护提供了便利,同时也为我们在JSP和PHP之外又提供了一种可选的方案。 官方网站:https://www.360docs.net/doc/bd8555995.html,/velocity/ Velocity脚本摘要 1、声明:#set ($var=XXX) 左边可以是以下的内容 Variable reference String literal Property reference Method reference Number literal #set ($i=1) ArrayList #set ($arr=["yt1","t2"]) 技持算术运算符 2、注释: 单行## XXX 多行#* xxx xxxx xxxxxxxxxxxx*# References 引用的类型 3、变量Variables 以"$" 开头,第一个字符必须为字母。character followed by a VTL Identifier. (a .. z or A .. Z). 变量可以包含的字符有以下内容: alphabetic (a .. z, A .. Z) numeric (0 .. 9) hyphen ("-") underscore ("_") 4、Properties $Identifier.Identifier $https://www.360docs.net/doc/bd8555995.html,

从句语法知识及真题解析

从句语法知识及真题解析 ●复合句——形容词性(定语)从句 1.尤其要注意whose的用法 whose在从句中做定语,修饰名词。所以,如果关系代词后面紧接的是名词,且关系代词又不在从句中做主语或宾语,那么,这个关系代词就应该是whose。如: 2.介词+ which的用法 如果从句中主宾成分齐全,考生便可考虑关系代词是否在从句中做状语,而状语通常用介词短语充当,于是可以得知,关系代词前面应有介词,再分析所给的选项,根据与名词的搭配作出正确选择。如: We are not conscious of the extent to which work provides the psychological satisfaction that can make the difference between a full and an empty life. 3.as 与which用作关系代词的区别 (1)as与the same, such, so, as等关联使用。如:As the forest goes, so goes its animal life. (2)as和which都可以引导非限定性定语从句,但as在句中的位置比较灵活,可出现在句首、句中、句末,而which只能出现在句末,尤其是当先行词是整个句子时。如: As is true in all institutions, juries are capable of making mistakes. As is generally accepted, economic growth is determined by the smooth development of production. 常见的这类结构有:as has been said before, as has been mentioned above, as can be imagined, as is known to all, as has been announced, as can be seen from these figures, as might/could be expected, as is often the case, as has been pointed out, as often happens, as will be shown等。 4.关系代词that与which用于引导定语从句的区别 (1)如果关系代词在从句中做宾语,用that, which都可以,而且可以省略; (2)先行词是不定代词anything, nothing, little, all, everything时,关系代词用that; (3)先行词由形容词最高级或序数词修饰或由next,last, only, very修饰时,用that; (4)非限定性定语从句只能用which引导; (5)关系代词前面如果有介词,只能用which。 5.but做关系代词,用于否定句,相当于who…not, that…n ot 这个结构的特点是主句中常有否定词或含有否定意义的词。如: There are few teachers but know how to use a computer. There is no complicated problem but can be solved by a computer. ●二、复合句——名词性从句 一个句子起名词的作用,在句中做主语、宾语/介词宾语、表语、同位语,那么这个句子就是名词性从句。 1.what/whatever的用法 考生应把握:what是关系代词,它起着引导从句并在从句中担当一个成分这两个作用。如: They lost their way in the forest, and what made matters worse was that night began to fall. (what既引导主语从句又在从句中做主语) Water will continue to be what it is today—next in importance to oxygen. (what既引导表语从句又在从句中做表语) 2.whoever和whomever的区别 whoever和whomever相当于anyone who,用主格与宾格取决于其在从句中做主语还是做宾语。如: They always give the vacant seats to whoever comes first. (whoever在从句中做主语) 3.有关同位语从句的问题 (1)引导词通常为that, 但有时因名词内容的需要,也可由whether及连接副词why, when, where, how引导。that不表示任何意义,其他词表示时间、地点、原因等。如: The problem, where I will have my college education, at home or abroad, remains untouched.

GOCAD中文手册

GOCAD综合地质与储层建模软件 简易操作手册 美国PST油藏技术公司 PetroSolution Tech,Inc.

目录 第一节 GOCAD综合地质与储层建模软件简介┉┉┉┉┉┉┉┉┉┉┉┉┉┉1 一、GOCAD特点┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉1 二、GOCAD主要模块┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉1 第二节 GOCAD安装、启动操作┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉2 一、GOCAD的安装┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉2 二、GOCAD的启动┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉3 第三节 GOCAD数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉5 一、井数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉5 二、层数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉11 三、断层数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉11 四、层面、断层面加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉12 五、地震数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉12 第四节 GOCAD构造建模┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉13 一、准备工作┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉13 二、构造建模操作流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉14 三、构造建模流程总结┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉40 第五节建立GOCAD三维地质模型网格┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉41 一、新建三维地质模型网格流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉41 二、三维地质模型网格流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉41 三、三维地质模型网格流程总结┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉47 第六节 GOCAD储层属性建模┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉48 一、建立属性建模新流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉48 二、属性建模操作流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉48 三、属性建模后期处理┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉66 四、网格粗化┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉74 第七节 GOCAD地质解释和分析┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉78

AVL-FIRE中文入门教程+AVL-FIRE软件的使用方法

A VL-FIRE中文入门教程+A VL-FIRE软件的使用方法 流场分析的基本流程(FIRE软件) ID:qxlqixinliang 一、网格自动生成 (2) 二、网格划分工具的使用 (5) 1、Mesh tools (5) 2、surface tools (7) 3、edge tools (7) 三、网格和几何信息工具 (8) 1、网格check (8) 2、Geo info (9) 四、流场求解求解器的设置 (9) AVL Fire 软件的使用方法 .................................................................错误!未定义书签。

一、网格自动生成 根据电池包内部流场的特点,我们一般使用fame的网格自动生成和手动划分网格,两者相结合基本上能完成网格划分。对于电池数量较少的模型(如下图)完全可以用网格自动生成功能来实现网格划分。 下面介绍网格自动生成的流程: 1)准备面surface mesh和线edge mesh:要求:面必须是封闭曲面,一般FIRE中可以应用的是.stl的文件,在PRO/E,CATIA 等三维的造型软件中都可以生成;与面的处理相似的还要准备边界的线数据 2)Hybrid assistant,选择start new meshing,分别定义表面网格define surface mesh和线网格define edge mesh 3)然后进入高级选项fame advanced hybrid,在这里定义最大网格尺寸和最小网格尺寸,最大网格尺寸是最小网格尺寸的2^n倍 4)选择connecting edge,一般在计算域的进出口表面建立face selection,这样可保证edge 处的网格贴体,否则网格在几何的边角会被圆滑掉,另外还可以保证进出口面的网格方向与气流方向正交,有利于计算的精确性和收敛性。通过add添加上进出口的selection 即可。

sph-常用关键字手册

sph-常用关键字手册

1.*CONSTRAINED_GLOBAL 全局约束 Purpose: Define a global boundary constraint plane.定义一个全局平面边界约束 TC Translational Constraint: 平动约束 EQ.1: constrained x translation, EQ.2: constrained y translation, EQ.3: constrained z translation, EQ.4: constrained x and y translations, EQ.5: constrained y and z translations, EQ.6: constrained x and z translations, EQ.7: constrained x, y, and z translations, RC Rotational Constraint: 转动约束 EQ.1: constrained x-rotation, EQ.2: constrained y-rotation, EQ.3: constrained z-rotation, EQ.4: constrained x and y rotations, EQ.5: constrained y and z rotations, EQ.6: constrained z and x rotations, EQ.7: constrained x, y, and z rotations. DIR Direction of normal 正常的方向 EQ.1: global x, EQ.2: global y, EQ.3: global z. X x-offset coordinate x方向偏移坐标 Y y-offset coordinate y方向偏移坐标 Z z-offset coordinate z方向偏移坐标 Remarks: Nodes within a mesh-size-dependent tolerance are constrained on a global plane. This

vr中文手册

VR中文手册 目录 1. VRay的特征 2. VRay的渲染参数 3. VRay 灯光 4. VRay 材质 5. VRay 贴图 6. VRay 阴影 一、VRay的特征 VRay光影追踪渲染器有Basic Package 和Advanced Package两种包装形式。Basic Package具有适当的功能和较低的价格,适合学生和业余艺 术家使用。Advanced Package 包含有几种特殊功能,适用于专业人员使用。 Basic Package的软件包提供的功能特点 ·真正的光影追踪反射和折射。(See: VRayMap) ·平滑的反射和折射。(See: VRayMap) ·半透明材质用于创建石蜡、大理石、磨砂玻璃。(See: VRayMap) ·面阴影(柔和阴影)。包括方体和球体发射器。(See: VRayShadow) ·间接照明系统(全局照明系统)。可采取直接光照(brute force), 和光照贴图方式(HDRi)。(See: Indirect illumination) ·运动模糊。包括类似Monte Carlo 采样方法。(See: Motion blur) ·摄像机景深效果。(See: DOF) ·抗锯齿功能。包括fixed, simple 2-level 和adaptive approaches等采样方法。(See: Image sampler) ·散焦功能。(See: Caustics ) · G-缓冲(RGBA, material/object ID, Z-buffer, velocity etc.) (See: G-Buffer ) Advanced Package软件包提供的功能特点 除包含所有基本功能外,还包括下列功能: ·基于G-缓冲的抗锯齿功能。(See: Image sampler) ·可重复使用光照贴图(save and load support)。对于fly-through 动画可增加采样。(See: Indirect illumination) ·可重复使用光子贴图(save and load support)。(See: Caustics) ·带有分析采样的运动模糊。(See: Motion blur ) ·真正支持HDRI贴图。包含*.hdr, *.rad 图片装载器,可处理立方体贴图和角贴图贴图坐标。可直接贴图而不会产生变形或切片。 ·可产生正确物理照明的自然面光源。(See: VRayLight) ·能够更准确并更快计算的自然材质。(See: VRay material) ·基于TCP/IP协议的分布式渲染。(See: Distributed rendering) ·不同的摄像机镜头:fish-eye, spherical, cylindrical and cubic cameras (See: Camera)

一个简单的XNA3D游戏教程

这也是https://www.360docs.net/doc/bd8555995.html,上的一个示例。 新建一个XNA(Windowsgame)工程,取名为Windows3DGame。 右击解决方案资源管理器中的Content节点,添加两个文件夹,分别命名为Audio和Models,然后向这两个文件夹里分别添加所需资源。(h ttp://https://www.360docs.net/doc/bd8555995.html,上可下载,也可从我的源码中获得,地址在下面。)注意添加Model资源时,项目中只添加后缀名为.fbx的文件。 添加一个新类,命名为GameObject.cs,其代码如下: https://www.360docs.net/doc/bd8555995.html,ing System; https://www.360docs.net/doc/bd8555995.html,ing System.Collections.Generic; https://www.360docs.net/doc/bd8555995.html,ing Microsoft.Xna.Framework; https://www.360docs.net/doc/bd8555995.html,ing Microsoft.Xna.Framework.Audio; https://www.360docs.net/doc/bd8555995.html,ing Microsoft.Xna.Framework.Content; https://www.360docs.net/doc/bd8555995.html,ing Microsoft.Xna.Framework.GamerServices; https://www.360docs.net/doc/bd8555995.html,ing Microsoft.Xna.Framework.Graphics; https://www.360docs.net/doc/bd8555995.html,ing Microsoft.Xna.Framework.Input; https://www.360docs.net/doc/bd8555995.html,ing https://www.360docs.net/doc/bd8555995.html,; 10.u sing Microsoft.Xna.Framework.Storage; 11. 12.n amespace Windows3DGame 13.{ 14. class GameObject 15. { 16. public Model model = null; 17. public Vector3 position = Vector3.Zero; //位置参数 18. public Vector3 rotation = Vector3.Zero; //旋转参数 19. public float scale = 1.0f; //缩放参数 20. } 21.} 一、绘制背景,载入地形。 1. 在Game.cs中添加几个变量 1. GameObject terrain = new GameObject(); //地形 2. 3. Vector3 cameraPosition = new Vector3( //摄像机位置 4. 0.0f, 60.0f, 160.0f); 5. Vector3 cameraLookAt = new Vector3( //观察方向 6. 0.0f, 50.0f, 0.0f); 7. 8. Matrix cameraProjectionMatrix; //Projection矩阵 9. Matrix cameraViewMatrix; //View矩阵 2. 在LoadContent()函数中添加如下代码: 1. //设置View矩阵 2. cameraViewMatrix = Matrix.CreateLookAt(

相关文档
最新文档