剩余问题的解法

剩余问题的解法
剩余问题的解法

剩余问题的解法:

1. 特殊情况

(1)余同(余数相同)加余

【例题1】某校二年级全部共3个班的学生排队,每排4人,5人或6人,最后一排都只有2人,这个学校二年级有( )名学生。

A.120

B.122

C.121

D.123

【答案】B

【解析】方法一:代入排除法(略)

方法二:由题意可知该校二年级的学生人数除以4、5、6均余2,余数相同,属于余同,因此该班学生人数满足通项公式N=60n+2 ,(n=0,1,2,3……),当n=2时,N=122,选择B项。

注:n前面的系数60是取4、5、6三个除数的最小公倍数。

(2)和同(除数和余数的和相同)加和

【例题2】某个数除以5余3,除以6余2,除以7余1,求在0至500内满足这样的自然数有多少个?

A.3

B.2

C.4

D.5

【答案】A

【解析】此题我们通过观察会发现除数与余数的和相加均为8,则该自然数应满足

N=210n+8(n=0,1,2……)因此在0至500以内满足题干条件的自然数有8,218,428三个数。

注:n前面的系数210是取5、6、7三个除数的最小公倍数。

(3)差同(除数与余数之差相同)减差

【例题3】三位运动员跨台阶,台阶总数在100-150级之间,第一位运动员每次跨3级台阶,最后一步还剩2级台阶。第二位运动员每次跨4级台阶,最后一步还剩3级台阶。第三位运动员每次跨5级台阶,最后一步还剩4级台阶。问:这些台阶总共有多少级?

A. 119

B. 121

C. 129

D. 131

【答案】A

【解析】方法一:代入排除法(略)。

方法二:通过观察我们会发现除数与余数的差均为1,因此台阶数满足:

N=60n-1(n=1,2,3……),可发现A项满足该通项公式。

2.一般情况

用同余特性解题

【例题4】三位数的自然数P满足:除以3余2,除以7余3,除以11余4,则符合条件的自然数P有多少个?

A.5

B. 4

C. 6

D. 7

【答案】B

【解析】此题不满足所给的条件不满足我们前面所讲的特殊情况,但是通过观察我们发现,P满足除以3余2,除以7余3两个条件时,在P的基础上加上4,即(P+4)这个数一定是能够被3整除以及被7整除的,因此(P+4)=21n,所以P=21n-4……①,得到的这个通项公式再与除以11余4进行找通项公式。该自然数P=21n-4=11a+4,等式左边都是被11除,等式左边的余数为10n-4,等式右边的余数为4,我们知道一个数被11除余4,也可以认为这个数被11除余15,或被11除余26等。根据同余特性可知,等式左边的余数10n-4应与等式右边的余数4,15,26等数值相等。因为n要取整数,所以取10n-4=26可以得到n=3代入①式得到P=59,所求的59这个数是满足题干三个条件的最小数,所以,满足题干三个条件的数P=231n+59(n=1,2,3……),所以在三位数以内的数有290,521,752,983四个数。选择B项。

【例题5】一个自然数P同时满足除以3余1,除以4余3,除以7余4,求满足这样条件的三位数共有多少个?

A.10

B.11

C.12

D.13

【答案】B

【解析】先取其中两个条件,除以3余1,除以4余3,即P=4n+3=3a+1,等式两边同时除以3,等式左边的余数为n,等式右边的余数为1,即n=1,代入上式可知满足上述两个条件的最小的数为7,则同时满足上述两条件的数的通项公式为P=12n+7……①,再将①式所得的条件与题干中除以7余4的条件组合成新的条件。即满足题干中三个条件的数

P=12n+7=7b+4,等式两边同时除以未知数较小的系数7,则左边余数为5n,等式右边的余数是4,也可认为余数是25,即5n=25,求解得n=5,代入到①式中,即同时满足题干中三个条件的最小的自然数P=67,则满足题干三个条件的数的通项公式为

P=84n+67(n=0,1,2,3……)即100≦84n+67≦999可求得1≦n≦11,即符合题意的数共有11-1+1=11个数。

中公教育专家认为,在中国剩余问题的解决过程中,遇到一些余数较为特殊的情况下用剩余定理能够很好的解决,但是对于出现的和不同,差不同,余不同的情况下,可以用同余特性得到很好的解决。主要思路是先找满足题干中两个条件的通项公式,将三者条件转化成二者条件,然后再次利用同余特性加以解决即可。希望广大考生在掌握方法的基础上,多加练习,一举成功。

基本不等式经典例题精讲

新课标人教A 版高中数学必修五典题精讲(3.4基本不等式) 典题精讲 例1(1)已知0<x <3 1,求函数y=x(1-3x)的最大值; (2)求函数y=x+ x 1的值域. 思路分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x 的系数变成互为相反数;(2)中,未指出x >0,因而不能直接使用基本不等式,需分x >0与x <0讨论. (1)解法一:∵0<x <3 1,∴1-3x >0. ∴y=x(1-3x)= 3 1·3x(1-3x)≤3 1[ 2) 31(3x x -+]2= 12 1,当且仅当3x=1-3x ,即x= 6 1时,等号成 立.∴x= 6 1时,函数取得最大值 12 1 . 解法二:∵0<x <3 1,∴ 3 1-x >0. ∴y=x(1-3x)=3x(3 1-x)≤3[ 23 1x x -+ ]2= 12 1,当且仅当x= 3 1-x,即x= 6 1时,等号成立. ∴x= 6 1时,函数取得最大值12 1. (2)解:当x >0时,由基本不等式,得y=x+x 1≥2x x 1? =2,当且仅当x=1时,等号成立. 当x <0时,y=x+ x 1=-[(-x)+ ) (1x -]. ∵-x >0,∴(-x)+ ) (1x -≥2,当且仅当-x= x -1,即x=-1时,等号成立. ∴y=x+x 1≤-2. 综上,可知函数y=x+x 1的值域为(-∞,-2]∪[2,+∞). 绿色通道:利用基本不等式求积的最大值,关键是构造和为定值,为使基本不等式成立创造条件,同时要注意等号成立的条件是否具备. 变式训练1当x >-1时,求f(x)=x+ 1 1+x 的最小值. 思路分析:x >-1?x+1>0,变x=x+1-1时x+1与1 1+x 的积为常数.

什么是中国剩余定理

什么是中国剩余定理?

剩余定理详细解法 中国数学史书上记载:在两千多年前的我国古代算书《孙子算经》中,有这样一个问题及其解法:今有物不知其数,三三数之剩二;五五数之剩三:七七数之剩二。问物几何? 意思是说:现在有一堆东西,不知道它的数量,如果三个三个的数最后剩二个,如果五个五个的数最后剩三个,如果七个七个的数最后剩二个,问这堆东西有多少个?你知道这个数目吗? 《孙子算经》这道著名的数学题是我国古代数学思想“大衍求一术”的具体体现,针对这道题给出的解法是:N=70×2+21×3+15×2-2×105=23 如此巧妙的解法的关键是数字70、21和15的选择: 70是可以被5、7整除且被3除余1的最小正整数,当70×2时被3除余2 21是可以被3、7整除且被5除余1的最小正整数,当21×3时被5除余3 15是可以被3、5整除且被7除余1的最小正整数,当15×2时被7除余2 通过这种构造方法得到的N就可以满足题目的要求而减去2×105 后得到的是满足这一条件的最小正整数。 韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。 刘邦茫然而不知其数。 我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少? 首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。 中国有一本数学古书「孙子算经」也有类似的问题: 「今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?」答曰:「二十三」术曰:「三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则置十五,即得。」 孙子算经的作者及确实着作年代均不可考,不过根据考证,着作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。 中国剩余定理(Chinese Remainder Theorem)在近代抽象代数学中占有一席非常重要的地位。

二元一次方程及其解法

一、问题引入 问题一:如图,已知一个矩形的宽为3,周长为24,求矩形的长。如果我们设长为x ,则可 列方程为:x +3=12 ;如果把问题中矩形的宽改为y ,则可得到什么样的等量关系! 解:x +y =12 问题二:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何? 解:如果设鸡有x 只,兔有y 只,则可列方程为: x +y =35 2x +4y =94 1.二元一次方程的概念:含有两个未知数,且含未知数的项的次数为1的整式方程叫做二元一次方程。 例1.下列方程组中,哪些是二元一次方程组_______________ 判断一个一个方程时候为二元一次方程的三个要素: ①含有两个未知数 ②未知数的次数为1 ③整式方程 (与分式区分开来) 想一想:二元一次方程的解与一元一次方程的解有什么区别? ①二元一次方程的解是成对出现的; ②二元一次方程的解有无数个; ③一元一次方程的解只有一个。 例2 若方程 是二元一次方程,求m 、n 的值. 分析: 变式: 方程 是二元一次方程,试求a 的值. 注意: ①含未知项的次数为1; ②含有未知项的系数不能为0 2.二元一次方程组的解 二元一次方程组的解法,即解二元一次方程的方法;今天我们就一起探究一下有什么方法能解二元一次方程组。 2、把下列各对数代入二元一次方程3x+2y=10,哪些能使方程两边的值相等? (1)X=2,y=2 是 (2)x=3,y=1 否 (3)x=0,y=5 是 (4)x=2/3,y=6 是 2(1)3 x y y z +=?? +=?,5(2)6x y xy +=?? =?, 7(3)6 a b b -=??=?, 2(4)13x y x y +=-???-=??,52(5)122 y x x y =-?? ?+=??,25(6)312 x y -=?? +=?,213257m n x y --+=211 321 m n -=??-=?1(2)2a x a y -+-=

不等式及其解法练习题

不等式的练习题 一、填空题 1、不等式2654x x +<的解集是 . 2 不等式-4≤x 2-3x <18的整数解为 . 3、如果不等式21x 同时成立,则x 的取值范围是 4.不等式x x ->+512的解集是 5.不等式x x x x ->-11的解是 6.函数x x x y -+= )21 (的定义域是 7.不等式331≤--x x 的解集为 . 13、函数22--=x x y 的定义域 是 . 14.不等式:(1)x x 1 <的解为 . 15、321>++-x x 的解为 .

16.使不等式a x x <-+-34有解的条件是 . 17.已知关于x 的方程ax 2 +bx+c <0的解集为{x |x <-1或x >2}.则不等式ax 2 -bx+c >0的解集为 . 二、解不等式: 1、302x x -≥- 2、21 13 x x ->+ 3、22 32023x x x x -+≤-- 4、221 02x x x --<- 5、()()() 3 22 1603x x x x -++≤+ 6、()2 309x x x -≤- 7、 101x x <-< 8、 . 0)25)(-4-( 2 2<++x x x x

9 、 (2 1x -)(2 68x x -+)≤0 10 、 22 41 1372 x x x x -+≥-+ 11 、 12 、x x x 211322 +>+-

闭合复位空心钉治疗青壮年性股骨颈骨折120例

第21卷第1期 2013年1月 Vol.21 No.1 Jan,2013中国医学工程 China Medical Engineering 闭合复位空心钉治疗青壮年性股骨颈骨折120例 肖才平,曾凡林,饶 翔,高中伟,罗 方 (湖南省汉寿县人民医院 骨科,湖南 常德 415900) 摘要:目的 评价闭合复位空心加压螺纹钉治疗青壮年股骨颈骨折的临床疗效。方法 对120例年轻股骨颈骨折患者采用闭合复位经皮3枚空心加压螺纹钉技术治疗。结果 120例均获随访,随访时间15-62个月。按牛津髋关节评分的评定标准,优86例,良21例,可9例,差4例,优良率89.17%。116例骨折一期愈合,2例骨不连,2例股骨头坏死,行全髋置换,效果好,未发生其他并发症。结论 闭合复位经皮空心双头加压螺纹钉治疗股骨颈骨折具有创伤小,全身情况要求低,骨折愈合率高,感染率低,住院费用低等优点,是治疗青壮年股骨颈患者比较好的选择。 关键词:青壮年;闭合复位;双头加压空心钉;股骨颈骨折 中图分类号:R274.1 文献标识码:B Clinical efficacy of closed reduction and cannulated screw in the treatment of 120 cases femoral neck fractures XIAO Cai-ping,ZENG Fan-lin,RAO Xiang,et al (The People's Hospital of Hanshou,Changde,Hunan 415900,P.R.China) Abstract:【Objective】 To evaluate closed reduction and cannulated screw clinical efficacy for the treatment of femoral neck fractures.【Methods】The method of treatment of 120 cases of young patients with femoral neck fracture with closed reduction and percutaneous three hollow compression screw technology.【Resluts】120 cases were followed up for 15-62 months.Oxford hip score assessment standards, excellent in 86 cases, good in 21 cases, 9 cases, and poor in 4 cases, good rate of 89.17%.One of the 116 cases of fracture healing, two cases of nonunion, two cases of osteonecrosis of the femoral head, total hip replacement, good effect, no other complications occurred.【Conclusion】Closed reduction with less trauma and skin gold double head compression screw for femoral neck fracture, low requirements of the general condition, the treatment of patients with femoral neck fracture healing rate, low rate of infection, hospitalization costs low, good choice. Key words:young adults; closed reduction; pressurized hollow nail double-headed; femoral neck fracture 随着社会的高速发展,外伤引起青壮年股骨颈骨折越来越多[1],其治疗方法多样,并发症也较多,疗效不一。我院 2005年1月-2011年7月共收治的120例青壮年股骨颈骨折患者,均采用闭合复位经皮3枚双头中空心加压螺纹钉治疗随访15-62个月,平均33个月,疗效满意,现报告如下。 1 资料与方法 1.1 一般资料 本组120例中男 83例,女37例;年龄29-51岁,平均44.5岁,右侧58例,左侧62例,均为外伤,受伤时间5d以内。骨折按骨折线部位分类:头下型3例,头颈型15例,颈中型52例,基底型50例;按Garden分型[2]:I 型 12例,Ⅱ型 33例,Ⅲ型 43例,Ⅳ型 32例,其中5例患者分别患有糖尿病、高血压、多发性骨折。 1.2 治疗方法 1.2.1 术前准备与麻醉选择:入院后根据X片,Garden I 型、Ⅱ型均作皮肤牵引,Garden Ⅲ型、Ⅳ型均作胫骨结节牵引或股骨髁上牵引。牵引状态,患肢中立位外展15-30°,3-5d 后复查X片,未复位者根据X片再调整牵引状态并配合手法复位至复查X片示骨折基本对位。在牵引复位过程中,积极治疗伴发病。因手术术野小,操作简单,87例行局部麻醉,33例行连续硬膜外麻醉。术前根据X片选择长度合适的双头中空松质骨加压螺纹钉[3],简称空心钉。 1.2.2 手术操作 :本组患者均在2-5d内完成手术,手术采用持续硬膜外麻醉或局麻。患者平卧位,牵引状态下患肢中立位外展30°,在透视下检查骨折,位置不满意予手法复位,先外展牵引,再曲髋屈膝,再内收内旋慢慢伸直患肢,复位满意,在髋关节前放一支克氏针作指示针,使之与股骨颈中心轴线平行,根据指示针用紫色水作标记:在指示针上方0.5cm作一平行线。在指示钉下方0.5cm作一成角5°的夹角线,使之与股骨干成角略大于颈干角,保持135°左右,并靠近股骨颈之上缘 ,股骨距缘上。在大转子下方用1㎝的刻度导针插入皮内组织至骨质,前后活动使导针尖不偏前偏后,导针轴线与人体平面成15°角。这就与股骨颈前倾角相一致,沿髋关节前侧的标记方向钻入至股骨头软骨面下0.5cm处停止。在大转子下2cm、3cm处分别将第2、第3枚导针上下平行插入皮内组织至骨质后,前后活动使导针尖稍偏向股骨后侧、沿髋关节前侧的标记方向钻入至股骨头软骨面下 0.5cm处停止,与第一颗导针成5°夹角,经透视观察骨折复位及导针位置满意,在导针处皮肤作小切口,切开筋膜,钝性分离软组织至骨质 ,在套筒保护下分别沿导针拧入空心加压螺钉至股骨头软骨面下0.5cm,取下导针。透视下旋转髋关节90°,4字位,全面了解螺丝钉在股骨头的 位置,证实螺丝钉在股骨头内,钉纹过骨折线,缝合切口。 图1术前片 图2术后片 1.2.3 术后处理:术后均拆除牵引,应用抗生素1-3d,患足穿丁字鞋曲髋屈膝布朗架制动,避免患肢内外旋转。第2天行股四头肌功能练习,可半坐卧位。术后10d拆线。加强膝、髋关节功能锻炼。每月复片一次,连续3个月,3个月后扶双拐下地患肢逐渐部分负重,6个月后改用单拐,骨折骨性愈合后弃拐行走,半年内不做盘腿动作、不内翻下肢,不向患肢侧卧。 1.3 疗效评定标准采用牛津髋关节评分[4]。 1.4 结果 本组随访6-54个月,平均30个月,结果:优86例,良21例,可9例 ,差4例,其中差的4例均为GardenⅣ型。骨折愈合116例,不愈合2例,1年半后发生股骨头坏死2例,螺丝钉无松动现象。都给予髋关节置换,优良率89.17%,效果满意。无一例因为并发症死亡,全部患者平均住院时间7.3d,平均住院费用9215.2元。 收稿日期:2012-11-20 短篇论著? ?

中国剩余定理问题的解题技巧

【问题】有1个数,除以7余2.除以8余4,除以9余3,这个数至少是多少? 这种问题称为“中国剩余定理”问题。 我一般用两种方法解决这类问题。 第一种是逐步满足法,方法麻烦一点,但适合所有这类题目。 第二种是最小共倍法,方法简单,但只适合特殊类型的题目。 还有“中国剩余定理”的方法,但它不完善且解法较为复杂,普及应用有一定难度,还不稳定。所以一般不用。 下面分别介绍一下常用的两种方法。 通用的方法:逐步满足法 【问题】一个数,除以5余1,除以3余2。问这个数最小是多少? 把除以5余1的数从小到大排列:1,6,11,16,21,26,…… 然后从小到大找除以3余2的,发现最小的是11. 所以11就是所求的数。 先满足一个条件,再满足另一个条件,所以称之为“逐步满足法”。 好多数学题目都可以用逐步满足的思想解决。 特殊的方法:最小公倍法 情况一 【问题】一个数除以5余1,除以3也余1。问这个数最小是多少?(1除外) 除以5余1:说明这个数减去1后是5的倍数。 除以3余1:说明这个数减去1后也是3的倍数。 所以,这个数减去1后是3和5的公倍数。要求最小,所以这个数减去1后就是3和5的最小公倍数。即这个数减去1后是15,所以这个数是15+1=16. 情况二

【问题】一个数除以5余4,除以3余2。问这个数最小是多少? 这种情况也可以用特殊法。 数除以5余4,说明这个数加上1后是5的倍数。 数除以3余2,说明这个数加上1后也是3的倍数。 所以,这个数加上1后是3和5的公倍数。要求最小,所以这个数加上1后就是3和5的最小公倍数。即这个数加上1后是15,所以这个数是15-1=14. 多个数的,比如3个数的,有时候其中两个可以用特殊法,那就先用特殊法,用特殊法求出满足两个条件的数后再用通用的方法求满足最后一个条件的数。 所以有时候特殊法和通用法混合使用。在使用的过程中如果能灵活运用余数问题的技巧,会非常有利于解题。 我们接下来分析最开始的那个问题。 【问题】有1个数,除以7余2.除以8余4,除以9余3,这个数至少是多少? 这道题目不能用特殊法,我们用通用法,解题过程中注意余数知识的运用。 除以7余2的数可以写成7n+2。 7n+2这样的数除以8余4,由于2除以8余2,所以要求7n除以8余2。(余数知识) 7n除以8余2,7除以8余7,要求n除以8余6(余数知识),则n最小取6。 所以满足“除以7余2,除以8余4”的最小的数是7×6+2=44. 所有满足“除以7余2,除以8余4”的数都可以写成44+56×m。(想想为什么?) 要求44+56×m除以9余3,由于44除以9余8,所以要求56×m除以9余4。(余数知识) 56×m除以9余4,由于56除以9余2,所以要求m除以9余2(余数知识),则m最小取2。 所以满足“除以7余2,除以8余4,除以9余3”的最小的数是44+56×2=156.

一元一次不等式及其解法常考题型讲解

一元一次不等式及其解法 一、知识点复习 1.一元一次不等式的概念: 只含有一个未知数,且未知数的次数是1且系数不为0的不等式,称为一 元一次不等式。 2.解一元一次不等式的一般步骤: 去分母、去括号、移项、合并同类项、系数化为1. 3. 注意事项: ①去分母时各项都要乘各分母的最小公倍数,去分母后分子是多项式时,分子要加括号。 ②系数化为1时,注意系数的正负情况。 二、经典题型分类讲解 题型1:考察一元一次不等式的概念 1. (2017春昭通期末)下列各式:①5≥-x ;②03<-x y ;③05<+πx ;④ 32≠+x x ; ⑤x x 333≤+;⑥02<+x 是一元一次不等式的有( ) A 、2个 B 、3个 C 、4个 D 、5个 2.(2017春启东市校级月考)下列不等式是一元一次不等式的是( ) A 、 67922-+≥-x x x x B 、01=+x C 、0>+y x D 、092≥++x x 3.(2017春寿光市期中)若03)1(2>-+m x m 是关于x 的一元一次不等式,则m 的值为( ) A 、1± B 、1 C 、1- D 、0 题型2:考察一元一次不等式的解法 4. (2016秋太仓市校级期末)解不等式,并把解集在数轴上表示出来: (1))21(3)35(2x x x --≤+ (2)2 2531-->+ x x

5.解不等式 10 1.0)39.1(10 2.06.035.05.12?->---x x x 。 6.(2016秋相城区期末)若代数式 123-+x 的值不大于6 34+x 的值时,求x 的取值范围。 7. (2017春开江县期末)请阅读求绝对值不等式3x 的解集的过程: 因为3x ,从如图2所示的数轴上看:小于3-的数和大于3的数的绝对值是大于3,所以3>x 的解集是3-x 。 解答下列问题: (1)不等式a x <(0>a )的解集为, 不等式a x >(0>a )的解集为; (2)解不等式42<-x ; (3)解不等式75>-x 。

闭合复位空心钉内固定治疗股骨颈骨折

闭合复位空心钉内固定治疗股骨颈骨折 目的评价用空心钉内固定治疗股骨颈骨折的疗效。方法对26例股骨颈骨折患者应用空心钉内固定,对股骨颈骨折愈合疗效进行评价。结果骨折愈合23例,不愈合2例,股骨头坏死1例。骨折愈合时间6~12月,平均7.5月。结论空心钉内固定治疗股骨颈骨折操作容易、创伤小、骨折愈合率高、髋关节功能恢复理想,是一种较好的治疗措施。 标签:股骨颈骨折;闭合复位;空心钉内固定 股骨颈骨折是中老年人常见的骨折,随着交通的发达和建筑等高空作业的增多,发生在青壮年的股骨颈骨折也在逐渐上升。因为股骨颈骨折发生骨折不愈合和股骨头坏死的概率较高,故在临床引起高度的重视。选取2006年1月~2013年8月在我院骨科住院的股骨颈骨折的患者为研究对象,对其行闭合复位空心钉内固定来治疗骨折,效果显著,先报到如下: 1资料与方法 1.1一般资料本组股骨颈骨折26例,男9例,女17例,年龄32~80岁,平均57.5岁,左侧12例,右侧14例,高处坠落伤6例,车祸伤5例,跌伤15例。骨折分型:Garden分型,Ⅰ型8例,Ⅱ型10例,Ⅲ型6例,Ⅳ型2例。按骨折部位分型:头下型4例,经颈型8例,基底型14例。受伤到手术时间2~14例,平均4.5d。 1.2方法采用硬膜外麻醉或全麻,取患者平卧位于手术床上,略垫高患侧臀部。在C型X线光机透视下将骨折牵引复位。复位满意后,持续牵引,标记大粗隆位置,皮肤常规消毒后铺巾。在透视引导下,于大粗隆下2~3cm处沿股骨颈方向打入3枚克氏针(克氏针呈倒立的三角形,远端克氏针紧贴股骨距进入。)透视确认骨折对位、对线良好,克氏针在股骨颈内的位置稳妥。以克氏针为中心,切开约1cm的切口,钝性分离肌肉致骨皮质,空心钻套入克氏针,钻入股骨颈。钻头致软骨下1cm,再用空心螺纹钉加压固定骨折。取出克氏针,常规缝合包扎[1]。 1.3术后处理术后给予抗生素3~5d,患肢中立位外展20°~30°,穿”丁”字鞋。患肢早期行股四头肌功能锻炼、踝关节及各足趾的活动,以预防下肢静脉血栓形成。术后14d拆线,6~8月扶拐患肢部分负重活动。门诊每月复查X线片,以观察骨折愈合情况。 2结果 手术时间30~90min,平均50min,出血量月30~60ml。术后无1例切口感染及下肢静脉血栓形成。26例患者获得18~30月(平均22月)的随访。骨折愈合23例,不愈合2例,股骨头坏死1例。骨折愈合时间6~12月,平均7.5

六下奥数1中国剩余定理

六下奥数1 论述中国剩余定理的形成及对教育的影响 摘要:“中国剩余定理”是由秦九韶从“孙子定理”的基础上推广而来的,本文从论述中国剩余定理的形成到中国剩余定理的主要方法和对现代教育的影响来写。中国剩余定理在高中有初步的基础应用,在大学中的初等数论中该定理得到了仔细的讲解。中国剩余定理的思想方法和原则不仅有光辉的历史意义,而且在近代数学中仍然有着重大影响和作用。 引言 随着数学学科的发展,数学方面的知识得到了不断的更新和强化。 在数学发展史上,剩余问题(即:在整数除法里,一个数同时除以几个数,整数商后,均有剩余;已知各除数及其对应的余数,要求适合条件的这个被除数。这类问题统称剩余问题)曾经困扰过人们很长一段时间。这个问题的解决,是我们中国人迈出了开拓性的第一步。 如果说,一部中国数学发展史像一条源远流长的河流,那么几千年来祖先们取得的辉煌成就,就是这河流中耀眼的浪花。在祖先取得的成就中有一个“中国剩余定理”。大家都知道,“勾股定理”最早是由我国西周时期的商高发现的,但国外却称其为“毕达哥拉斯定理”,法国称为“驴桥定理”,埃及称为“埃及三角形”等。还有“增乘开方法”,最早是由我国宋代的贾宪发明的,但现代数学却称其为“霍纳法”,贾宪的发明比霍纳早了800年。而中国剩余定理则是唯一一个以我国国名命名的定理,大家一定对这个定理很感兴趣,很想知道关于这个定理的故事。现在我就为大家简单介绍一下“中国剩余定理”。 1、中国剩余定理的简介及形成 在我国古代劳动人民中,长期流传着“隔墙算”、“剪管术”、“秦王暗点兵”等数学游戏。有一首“孙子歌”,甚至远渡重洋,输入日本:“三人同行七十稀,五树梅花廿一枝,七子团圆正半月,除百零五便得知。”这些饶有趣味的数学游戏,以各种不同形式,介绍世界闻名的“孙子问题”的解法,通俗地反映了中国古代数学一项卓越的成就。“孙子问题”在现代数论中是一个一次同余问题,它最早出现在我国公元四世纪的数学著作《孙子算经》中。《孙子算经》是算经十书之一,又作《孙子算术》。现有传本《孙子算经》分上、中、下共3卷。该书作者和确切成书年代均无法考证,大约成书于公元400年前后。中国古代求解一次同余式组(见同余)的方法。是数论中一个重要定理。又称中国剩余定理。 一千多年前的《孙子算经》中,有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”按照今天的话来说:一个数除以三余二,除以五余三,除以七余二,求这个数。《孙子算经》给出了一个非常有效的巧妙解法。术曰:“三、三数之剩二,置一百四十;五、五数之剩三,置六十三;七、七数之剩二,置三十,并之,得二百三十三。以二百一十减之,即得。凡三、三数之剩一,则置七十;五、五数之剩一,则置二十一;七、七数之剩一,则置十五。一百六以上,一百五减之,即得。 在中国数学史上,广泛流传着一个“韩信点兵”的故事:韩信是汉高祖刘邦手下的大将,他英勇善战,智谋超群,为汉朝的建立立下了卓绝的功劳。据说韩信的数学水平也非常高超,他在点兵的时候,为了保住军事机密,不让敌人知道自己部队的实力,先令士兵从1至3报数,然后记下最后一个士兵所报之数;再令士兵从1至5报数,也记下最后一个士兵所报之数;最后令士兵从1至7报数,又记下最后一个士兵所报之数;这样,他很快就算出了自己部队士兵的总人数,而敌人则始终无法弄清他的部队究竟有多少名士兵?因为《孙子算经》对这类问题的研究只是初具雏形,还远远谈不上完整,其不足之处在于: (1 )没有把解法总结成文,致使后人研究多凭猜测;

二元一次方程组知识点归纳、解题技巧汇总、练习题及答案

二元一次方程组知识点归纳、解题技巧汇总、练习题及答案 把两个一次方程联立在一起,那么这两个方程就组成了一个二元一次方程组。 有几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。 二元一次方程定义:一个含有两个未知数,并且未知数的都指数是1的整式方程,叫二元一次方程。二元一次方程组定义:两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。 二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。 二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。 一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。 消元的方法有两种: 代入消元法 例:解方程组x+y=5① 6x+13y=89② 解:由①得x=5-y③ 把③带入②,得6(5-y)+13y=89 y=59/7 把y=59/7带入③,x=5-59/7 即x=-24/7 ∴x=-24/7 y=59/7 为方程组的解 我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法(elim ination by substitution),简称代入法。 加减消元法 例:解方程组x+y=9① x-y=5② 解:①+②2x=14 即x=7 把x=7带入①得7+y=9 解得y=-2 ∴x=7 y=-2 为方程组的解

像这种解二元一次方程组的方法叫做加减消元法(elimination by addition-subtraction),简称加减法。二元一次方程组的解有三种情况: 1.有一组解如方程组x+y=5①6x+13y=89②x=-24/7 y=59/7 为方程组的解 2.有无数组解如方程组x+y=6①2x+2y=12②因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。 3.无解如方程组x+y=4①2x+2y=10②,因为方程②化简后为x+y=5 这与方程①相矛盾,所以此类方程组无解。 注意:用加减法或者用代入消元法解决问题时,应注意用哪种方法简单,避免计算麻烦或导致计算错误。 教科书中没有的几种解法 (一)加减-代入混合使用的方法. 例1, 13x+14y=41 (1) 14x+13y=40 (2) 解:(2)-(1)得x-y=-1 x=y-1 (3) 把(3)代入(1)得13(y-1)+14y=41 13y-13+14y=41 27y=54 y=2 把y=2代入(3)得x=1 所以:x=1, y=2 特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元. (二)换元法 例2,(x+5)+(y-4)=8 (x+5)-(y-4)=4 令x+5=m,y-4=n 原方程可写为m+n=8 m-n=4 解得m=6, n=2 所以x+5=6, y-4=2 所以x=1, y=6 特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因。 (三)另类换元 例3,x:y=1:4 5x+6y=29 令x=t, y=4t 方程2可写为:5t+6*4t=29 29t=29 t=1 所以x=1,y=4 二元一次方程组的解 一般地,使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。

基本不等式应用-解题技巧归纳

基本不等式应用解题技巧归纳 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x 技巧一:凑项 例1:已知54x <,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 技巧三: 分离 例3. 求2710(1)1 x x y x x ++=>-+的值域。 技巧四:换元 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。例:求函数2 y = 练习.求下列函数的最小值,并求取得最小值时,x 的值. (1)231,(0)x x y x x ++=> (2)12,33y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈

2.已知01x <<,求函数y = 的最大值.;3.203x <<,求函数y =. 条件求最值 1.若实数满足2=+b a ,则b a 33+的最小值是 . 变式:若44log log 2x y +=,求11x y +的最小值.并求x ,y 的值 技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。 2:已知0,0x y >>,且 191x y +=,求x y +的最小值。 变式: (1)若+∈R y x ,且12=+ y x ,求y x 11+的最小值 (2)已知+∈R y x b a ,,,且1=+y b x a ,求y x +的最小值 技巧七、已知x ,y 为正实数,且x 2 +y 22 =1,求x 1+y 2 的最大值. 技巧八:已知a ,b 为正实数,2b +ab +a =30,求函数y =1ab 的最小值. 变式:1.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值。 2.若直角三角形周长为1,求它的面积最大值。

(小学奥数)5-5-6 中国剩余定理及余数性质拓展.学生版

1. 系统学习中国剩余定理和新中国剩余定理 2. 掌握中国剩余定理的核心思想,并灵活运用 一、中国剩余定理——中国古代趣题 (1)趣题一 中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。” 此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。 韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。刘邦茫然而不知其数。 我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少? 首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。 孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。中国剩余定理(Chinese Remainder Theorem )在近代抽象代数学中占有一席非常重要的地位。 (2)趣题二 我国明朝有位大数学家叫程大位,他在解答“物不知其数”问题(即:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?)时用四句诗概括出这类问题的优秀解法: “三人同行七十稀,五树梅花廿一枝,七子团圆正月半,除百零五便得知.” 这首诗就是解答此类问题的金钥匙,它被世界各国称为“中国剩余定理”(Chinese Remainder Theorem ),是我国古代数学的一项辉煌成果.诗中的每一句话都表示一个步骤: 三人同行七十稀,是说除以3所得的余数用70乘. 五树梅花廿一枝,是说除以5所得的余数用21乘. 七子团圆正月半,是说除以7所得的余数用15乘. 除百零五便得知,是说把上面乘得的3个积加起来,减去105的倍数,减得差就是所求的数. 此题的中国剩余定理的解法是:用70乘3除所得的余数,21乘5除所得的余数,15乘7除所得的余数,把这3个结果加起来,如果它大于105,则减去105,所得的差如果仍比105大,则继续减去105,最后所得的整数就是所求.也就是270321215233?+?+?=,233105128-=,12810523-= 为什么70,21,15,105有此神奇效用?70,21,15,105是从何而来? 先看70,21,15,105的性质:70被3除余1,被5,7整除,所以70a 是一个被3除余a 而被5与7整除的数;21是5除余1,被3与7整除的数,因此21b 是被5除余b ,被3与7整除的数;同理15c 是被7除余c ,被3、5整除的数,105是3,5,7的最小公倍数.也就是说,702115a b c ++是被3除余a ,被5除余b ,被7除余c 的数,这个数可能是解答,但不一定是最小的,因此还要减去它们的公倍数. 了解了“剩余定理”的秘密后,对类似于上面的题目,我们都可以用中国剩余定理来解答. 二、核心思想和方法 对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以《孙子算经》知识点拨 教学目标 5-5-4.中国剩余定理 及余数性质拓展

二元一次方程组解法练习题精选(含答案)精选

解下列方程组 (1)(2)(3)(4). 考点:解二元一次方程组. 分析:(1)(2)用代入消元法或加减消元法均可; (3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解. 解答:解:(1)①﹣②得,﹣x=﹣2, 解得x=2, 把x=2代入①得,2+y=1, 解得y=﹣1. 故原方程组的解为. (2)①×3﹣②×2得,﹣13y=﹣39, 解得,y=3, 把y=3代入①得,2x﹣3×3=﹣5, 解得x=2. 故原方程组的解为. (3)原方程组可化为, ①+②得,6x=36, x=6, ①﹣②得,8y=﹣4, y=﹣.所以原方程组的解为. (4)原方程组可化为:, ①×2+②得,x=, 把x=代入②得,3×﹣4y=6, y=﹣. 所以原方程组的解为. 点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法: ①相同未知数的系数相同或互为相反数时,宜用加减法; ②其中一个未知数的系数为1时,宜用代入法.

3.解方程组: 考点:解二元一次方程组. 专题:计算题. 分析:先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法. 解答: 解:原方程组可化为, ①×4﹣②×3,得 7x=42, 解得x=6. 把x=6代入①,得y=4. 所以方程组的解为. 点评:;二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法. 4.解方程组: 考点:解二元一次方程组. 专题:计算题. 分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单. 解答: 解:(1)原方程组化为, ①+②得:6x=18, ∴x=3. 代入①得:y=. 所以原方程组的解为. 点评:要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法. 5.解方程组: 考点:解二元一次方程组. 专题:计算题;换元法. 分析:本题用加减消元法即可或运用换元法求解. 解答: 解:, ①﹣②,得s+t=4, ①+②,得s﹣t=6, 即, 解得.

不等式的解法及其应用

综合滚动练习:不等式的解法及其应用 一、选择题(每小题3分,共24分) 1.若a >b ,则下列不等式一定成立的是( ) A.b a <1 B.b a >1 C.-a >-b D.a -b >0 2.不等式x 2-x -13 ≤1的解集是( ) A.x ≤4 B.x ≥4 C.x ≤-1 D.x ≥-1 3.关于x 的不等式2x -a ≤-1的解集是x ≤-1,则a 的值是( ) A.0 B.-3 C.-2 D.-1 4.(2017·遵义中考)不等式6-4x ≥3x -8的非负整数解有( ) A.2个 B.3个 C.4个 D.5个 5.要使4x -3 2 的值不大于3x +5的值,则x 的最大值是( ) A.4 B.6.5 C.7 D.不存在 6.用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C 含量及购买这两种原 现配制这种饮料10千克,要求至少含有4200单位的维生素C.若所需甲种原料的质量为x 千克,则x 应满足的不等式为( ) A.600x +100(10-x )≥4200 B.8x +4(100-x )≤4200 C.600x +100(10-x )≤4200 D.8x +4(100-x )≥4200 7.若关于x 的方程3m (x +1)+1=m (3-x )-5x 的解是负数,则m 的取值范围是( ) A.m >-54 B.m <-54 C.m >54 D.m <5 4 8.某商店老板销售一种商品,他要以不低于进价20%的利润出售,但为了获得更多的利 润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,商店老板让价的最大限度为( ) A.82元 B.100元 C.120元 D.160元 二、填空题(每小题4分,共24分) 9.(2017·海南中考)不等式2x +1>0的解集是 . 10.如果关于x 的不等式2(x -1)

必修5--基本不等式几种解题技巧及典型例题

均值不等式应用(技巧)技巧一:凑项 1、求y = 2x+ 1 x - 3 (x > 3)的最小值 2、已知x > 3 2 ,求y = 2 2x - 3 的最小值 3、已知x < 5 4 ,求函数y = 4x – 2 + 1 4x - 5 的最大值。 技巧二:凑系数 4、当0 < x < 4时,求y = x(8 - 2x)的最大值。 5、设0 < x < 3 2 时,求y = 4x(3 - 2x)的最大值,并求此时x的值。 6、已知0 < x < 1时,求y = 2x(1 - x) 的最大值。 7、设0 < x < 2 3 时,求y = x(2 - 3x) 的最大值 技巧三:分离 8、求y = x2 + 7x + 10 x + 1 (x > -1)的值域; 9、求y = x2 + 3x + 1 x (x > 0)

的值域 10、已知x > 2,求y = x2 - 3x + 6 x - 2 的最小值 11、已知a > b > c,求y = a - c a - b + a - c b - c 的最小值 12、已知x > -1,求y = x + 1 x2 + 5x + 8 的最大值 技巧四:应用最值定理取不到等号时利用函数单调性 13、求函数y = x2 + 5 x2 + 4 的值域。 14、若实数满足a + b = 2,则3a + 3b的最小值是。 15、若 + = 2,求1 x + 1 y 的最小值,并求x、y的值。 技巧六:整体代换 16、已知x > 0,y > 0,且1 x + 9 y = 1,求x + y的最小值。

17、若x、y∈R+且2x + y = 1,求1 x + 1 y 的最小值 18、已知a,b,x,y∈R+ 且a x + b y = 1,求x + y的最小值。 19、已知正实数x,y满足2x + y = 1,求1 x + 2 y 的最小值 20、已知正实数x,y,z满足x + y + z = 1,求1 x + 4 y + 9 z 的最小值 技巧七:取平方 21、已知x,y为正实数,且x2 + y2 2 = 1,求x 1 + y2的最大值。 22、已知x,y为正实数,3x + 2y = 10,求函数y = 3x + 2y的最值。 23、求函数y = 2x - 1 + 5 - 2x(1 2 < x < 5 2 )的最大值。 技巧八:已知条件既有和又有积,放缩后解不等式 24、已知a,b为正实数,2b + ab + a = 30,求函数y = 1 ab 的最小值。

不等式及解法典型题目

七年级下册不等式专题测练 训练一 不等式及其解集 1.下列式子中,不等式的个数为( ) ①20-<;②34x y +>;③21x +=;④x y +;⑤6a ≠. A 、2个 B 、3个 C 、4个 D 、5个 2.当3x =-时,下列不等式成立的是( ) A 、58x ->- B 、1303 x +> C 、3(3)3x ->- D 、32x x > 3.用不等式表示图1中的不等式的解集,其中正确的是( ) A 、2x >- B 、2x <- C 、22x -<< D 、2x > 4.哥哥今年6岁,弟弟今年4岁,以下说法正确的是( ) A 、比弟弟大的人,一定比哥哥大; B 、比哥哥小的人,一定比弟弟小; C 、比哥哥大的人可能比弟弟小; D 、比弟弟小的人决不会比哥哥大. 5.设“●”、“▲”表示两种不同的物体,现用天平称(如图),若用x 、?y 分别表示“●”、“▲”的重量,写出符合题意的不等式是_________. 6.先根据文字语言列出不等式,并想出不等式的解集,然后再在数轴上表示出其解集. (1)x 减去4-的差是正数; (2)a 的3倍小于6-. 训练二 不等式的性质 1.如果x y >,那么下列结论错误的是( ) A 、33x y ->- B 、44x y > C 、2255 x y > D 、x y ->- 2.若0m n >>,那么下列各式中正确的是( ) A 、mp np > B 、2n mn < C 、 11m n > D 、()()m p n p -->+- 3.如果(3)3a x a +>+的解集为1x <,那么a 必须满足( ) A 、0a < B 、3a > C 、3a >- D 、3a <- 4.设0x y <<,用不等号连接下列各项中的式子:2x - 2 y -, 2x 2y . 5.式子22x -,当x 时,该式子的值是正数;当x 时,该式子的值是负数;当x 时,该式子的值小于2.

相关文档
最新文档