清华大学微积分B(2)第7次习题课答案(非齐次方程的通解特解欧拉方程朗斯基行列式)

清华大学微积分B(2)第7次习题课答案(非齐次方程的通解特解欧拉方程朗斯基行列式)
清华大学微积分B(2)第7次习题课答案(非齐次方程的通解特解欧拉方程朗斯基行列式)

《图解刚体力学——欧拉运动学方程》

本科生毕业论文 论文题目:图解刚体力学——欧拉运动学方程 学生姓名:罗加宽 学号: 2008021152 专业名称:物理学 论文提交日期: 2012年05月17日 申请学位级别:理学学士 论文评审等级: 指导教师姓名:陈洛恩 职称:教授 工作单位:玉溪师范学院 学位授予单位:玉溪师范学院 玉溪师范学院理学院物理系 2012年05月

图解刚体力学—欧拉运动学方程 罗加宽 (玉溪师范学院理学院物理系 08级物理1班云南玉溪 653100) 指导教师:陈洛恩、杨春艳 摘要:本文阐述了描述刚体定点转动的欧拉角及欧拉运动学方程的图解,以期让复杂的问题转 化得简单清晰而易于学习者的理解,抽象的概念变得直观具体而易于学习者的掌握;并能在一 定程度上对提高学习者的空间思维能力、引导和培养学习者的创新思维能力有一定的帮助。 关键字:图解;刚体;欧拉角;欧拉运动学方程 1.引言 理论力学是研究物体机械运动一般规律的科学;依照牛顿的说法,理论力学“是关于力产生的运动和产生任何运动的力的理论,是精确的论述和证明” [1]。理论力学作为使用数学方法的自然知识的一部分,不仅研究实际物体,而且研究其模型—质点、质点系、刚体和连续介质。从研究次序来看,通常先研究描述机械运动现象的运动学,然后再进一步研究机械运动应当遵循哪些规律的动力学。至于研究平衡问题的静力学,对理科来讲可以作为动力学的一部分来处理,但在工程技术上,静力学却是十分的重要,因此,常把它和动力学分开,自成一个系统[2]。本文图解的内容为刚体力学运动学问题之一的刚体的绕定点的转动。 “图解”的方法,较早见于上海科学技术出版社1988年翻译出版的《图解量子力学》,原书名为The Picture Book of Quantum Mechanics,由Springer-Verlag 出版;类似的书还有Springer-Verlag出版的Visual Quantum Mechanics。其特点是通过将理论物理与数值计算相结合实现可视化来讲解物理知识。国外对物理的可视化教学十分重视,早在1995-1996年间Wiley出版社出版了9本有关物理多媒体教学的丛书,是由大学高等物理软件联盟(The Consortium for Upper-Level Physics Software,CUPS)编写该丛书及其所用的教学软件[3]。如今,图解法已经广泛应用于力学、电磁学、模拟电子技术等方面,理论力学方面同样也有不少人已经采用了图解法。如赵宗杰使用3dsmax建立质点外弹道运动规律的虚拟模型和场景[4];乐山师范学院王峰等利用Matlab分别对质点受力仅为位置、速度或时间的函数进行了图解,并说明了Matlab在理论力学中的应用[5];阜阳师范学院孙美娟、韩修林利用Mathematica进行编程作出了落体的位移—时间图像[6]。通过图解,使很多抽象繁难的物理问题在解析时达到空间立体直观,概念形成清晰,逻辑链路晓畅明朗,数式转换准确易见。 理论力学因理论性较强,与高等数学联系密切,一些概念的形成、公式的推导、逻辑推理等较抽象、繁难、复杂,往往使教授者感到教学很难达到预期的效果,学

微分方程数值解法

《微分方程数值解法》 【摘要】自然界与工程技术中的很多现象,可以归结为微分方程定解问题。其中,常微分方程求解是微分方程的重要基础内容。但是,对于许多的微分方程,往往很难得到甚至不存在精确的解析表达式,这时候,数值解提供了一个很好的解决思路。,针对于此,本文对常微分方程数值解法进行了简单研究,主要讨论了一些常用的数值解法,如欧拉法、改进的欧拉法、Runge —Kutta 方法、Adams 预估校正法以及勒让德谱方法等,通过具体的算例,结合MA TLAB 求解画图,初步给出了一般常微分方程数值解法的求解过程。同时,通过对各种方法的误差分析,让大家对各种方法的特点和适用范围有一个直观的感受。 【关键词】 常微分方程 数值解法 MA TLAB 误差分析 引言 在我国高校,《微分方程数值解法》作为对数学基础知识要求较高且应用非常广泛的一门课程,不仅 在数学专业,其他的理工科专业的本科及研究生教育中开设这门课程.近四十年来,《微分方程数值解法》不论在理论上还是在方法上都获得了很大的发展.同时,由于微分方程是描述物理、化学和生物现象的数学模型基础,且它的一些最新应用已经扩展到经济、金融预测、图像处理及其他领域 在实际应用中,通过相应的微分方程模型解决具体问题,采用数值方法求得方程的近似解,使具体问题迎刃而解。 2 欧拉法和改进的欧拉法 2.1 欧拉法 2.1.1 欧拉法介绍 首先,我们考虑如下的一阶常微分方程初值问题 ???==0 0)() ,('y x y y x f y (2--1) 事实上,对于更复杂的常微分方程组或者高阶常微分方程,只需要将x 看做向量,(2--1)就成了一个一阶常微分方程组,而高阶常微分方程也可以通过降阶化成一个一阶常微分方程组。 欧拉方法是解常微分方程初值问题最简单最古老的一种数值方法,其基本思路就是把(2--1)中的导数项'y 用差商逼近,从而将一个微分方程转化为一个代数方程,以便求解。 设在[]b a ,中取等距节点h ,因为在节点n x 点上,由(2--1)可得:

欧拉方程的求解教材

欧拉方程的求解 1.引言 在数学研究领域,我们经常会看到以数学家名字命名的概念、公式、定理等等,让人敬佩跟羡慕.但是,迄今为止,哪位数学家的名字出现得最多呢?他就是数学史上与阿基米德、牛顿、高斯齐名的“四杰”之一,人称“分析学的化身”的盲人数学家欧拉(Leonhard Euler,1707--1783). 几乎在每一个数学领域都可以看到他的名字,譬如我们熟悉的“欧拉线”、“欧拉圆”、“欧拉公式”、“欧拉定理”、“欧拉函数”、“欧拉积分”、“欧拉变换”、“欧拉常数” 欧拉还是许多数学符号的发明者,例如用π表示 圆周率、e 表示自然对数的底、()f x 表示函数、∑表示求和、i 表示虚数单位 以欧拉命名的数学名词有很多,本文主要讲解以欧拉命名的方程即“欧拉方程”. 在文献[1]中,关于欧拉方程的求解通常采用的是变量变换的方法.变量变换法就是将所求的欧拉方程化为常系数齐次线性微分方程,然后再来求解这个常系数齐次线性微分方程的解,亦即求其形如K y x =的解,进而求得欧拉方程的解. 但有些欧拉方程在用变量变换法求解时比较困难.本文在所学的欧拉方程的求解的基础上,对欧拉方程进行了简单的分类,并针对不同阶的欧拉方程的求解给出了不同的定理.最后在每类欧拉方程后面给出了典型的例题加以说明. 2.几类欧拉方程的求解 定义1 形状为 ()1(1)110n n n n n n y a x y a xy a y x ---'++++= (1) 的方程称为欧拉方程. (其中1a ,2a , ,1n a -,n a 为常数)

2.1二阶齐次欧拉方程的求解(求形如K y x =的解) 二阶齐次欧拉方程: 2120x y a xy a y '''++=. (2) (其中1a ,2a 为已知常数) 我们注意到,方程(2)的左边y ''、y '和y 的系数都是幂函数(分别是2x 、1a x 和02a x ) ,且其次依次降低一次.所以根据幂函数求导的性质,我们用幂函数K y x =来尝试,看能否选取适当的常数K ,使得K y x =满足方程(2). 对K y x =求一、二阶导数,并带入方程(2),得 212()0K K K K K x a Kx a x -++= 或 212[(1)]0K K a K a x +-+=, 消去K x ,有 212(1)0K a K a +-+=. (3) 定义2 以K 为未知数的一元二次方程(3)称为二阶齐次欧拉方程(2)的特征方程. 由此可见,只要常数K 满足特征方程(3),则幂函数K y x =就是方程(2)的解. 于是,对于方程(2)的通解,我们有如下结论: 定理1 方程(2)的通解为 (i) 1112ln K K y c x c x x =+, (12K K =是方程(3)的相等的实根) (ii)1212K K x c x y c +=, (12K K ≠是方程(3)的不等的实根) (iii)12cos(ln )sin(ln )x x c x x y c ααββ+=.(1,2K i αβ=±是方程(3)的一对共轭复根) (其中1c 、2c 为任意常数)

常微分方程作业欧拉法与改进欧拉法

P77 31.利用改进欧拉方法计算下列初值问题,并画出近似解的草图:dy + =t = t y y ≤ ≤ ,2 ;5.0 0,3 )0( )1(= ,1 ? dt 代码: %改进欧拉法 function Euler(t0,y0,inv,h) n=round(inv(2)-inv(1))/h; t(1)=t0; y(1)=y0; for i=1:n y1(i+1)=y(i)+h*fun(t(i),y(i)); t(i+1)=t(i)+h; y(i+1)=y(i)+1/2*h*(fun(t(i),y(i))+ fun(t(i+1),y1(i+1))) end plot(t,y,'*r') function y=fun(t,y); y=y+1; 调用:Euler(0,3,[0,2],0.5) 得到解析解:hold on; y=dsolve('Dy=y+1','(y(0)=3)','t'); ezplot(y,[0,2]) 图像:

dy y =t - t y ;2.0 t = ≤ )0( 0,5.0 ,4 )2(2= ≤ ? ,2 dt 代码: function Euler1(t0,y0,inv,h) n=round(inv(2)-inv(1))/h; t(1)=t0; y(1)=y0; for i=1:n y1(i+1)=y(i)+h*fun(t(i),y(i)); t(i+1)=t(i)+h; y(i+1)=y(i)+1/2*h*(fun(t(i),y(i))+ fun(t(i+1),y1(i+1))) end plot(t,y,'*r') function y=fun(t,y); y=y^2-4*t; 调用: Euler1(0,0.5,[0,2],0.2) 图像:

欧拉方程

泛函的欧拉方程(by zhengpin1390) (二)、泛函的欧拉方程 欧拉方程是泛函极值条件的微分表达式,求解泛函的欧拉方程,即可得到使泛函取极值的驻函数,将变分问题转化为微分问题。 (1)最简单的欧拉方程: 设函数F(x,y,y') 是三个变量的连续函数,且点(x,y)位于有界闭区域B 内,则对形如 的变分,若其满足以下条件: c) 在有界闭区域B内存在某条特定曲线y。(x) ,使泛函取极值,且此曲线具有二阶连续导数。 则函数y。(x) 满足微分方程: 上式即为泛函Q[y]的欧拉方程。 (2)含有自变函数高阶倒数的泛函的欧拉方程 一般来说,对于下述泛函: 在类似条件下,可以得到对应的欧拉方程为: (3)含有多个自变函数的泛函的欧拉方程

对于下述泛函: 其欧拉方程组为: (4)多元函数的泛函及其欧拉方程 此处仅考虑二元函数的情况,对如下所示多元函数的泛函: 其欧拉方程为: 泛函分析 泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和 代数条件的映射的分支学科。它是20世纪30年代形成的。从变分法、微分方程、积分方程、函数论以及量子物理等的研究中发展起来的,它运用几何学、代数学的观点和方法研究分析学的课题,可看作无限维的分析学。 泛函分析的产生 十九世纪以来,数学的发展进入了一个新的阶段。这就是,由于对欧几里得第五公设的研究,引出了非欧几何这门新的学科;对于代数方程求解的一般思考,最后建立并发展了群论;对数学分析的研究又建立了集合论。这些新的理论都为用统一的观点把古典分析的基本概念和方法一般化准备了条件。

本世纪初,瑞典数学家弗列特荷姆和法国数学家阿达玛发表的著作中,出现了把分析学一般化的萌芽。随后,希尔伯特和海令哲来创了“希尔伯特空间”的研究。到了二十年代,在数学界已经逐渐形成了一般分析学,也就是泛函分析的基本概念。 由于分析学中许多新部门的形成,揭示出分析、代数、集合的许多概念和方法常常存在相似的地方。比如,代数方程求根和微分方程求解都可以应用逐次逼近法,并且解的存在和唯一性条件也极其相似。这种相似在积分方程论中表现得就更为突出了。泛函分析的产生正是和这种情况有关,有些乍看起来很不相干的东西,都存在着类似的地方。因此它启发人们从这些类似的东西中探寻一般的真正属于本质的东西。 非欧几何的确立拓广了人们对空间的认知,n维空间几何的产生允许我们把多变函数用几何学的语言解释成多维空间的影响。这样,就显示出了分析和几何之间的相似的地方,同时存在着把分析几何化的一种可能性。这种可能性要求把几何概念进一步推广,以至最后把欧氏空间扩充成无穷维数的空间。 这时候,函数概念被赋予了更为一般的意义,古典分析中的函数概念是指两个数集之间所建立的一种对应关系。现代数学的发展却是要求建立两个任意集合之间的某种对应关系。 这里我们先介绍一下算子的概念。算子也叫算符,在数学上,把无限维空间到无限维空间的变换叫做算子。

微分方程常用的两种数值解法:欧拉方法与龙格—库塔法

四川师范大学本科毕业论文 微分方程常用的两种数值解法:欧拉方法与龙 格—库塔法 学生姓名XXX 院系名称数学与软件科学学院 专业名称信息与计算科学 班级2006级 4 班 学号20060640XX 指导教师Xxx 四川师范大学教务处 二○一○年五月

微分方程常用的两种数值解法:欧拉方法与龙格—库塔法 学生姓名:xxx 指导教师:xx 【内容摘要】微分方程是最有生命力的数学分支,在自然科学的许多领域中,都 会遇到常微分方程的求解问题。当前计算机的发展为常微分方程的应用及理论研究提供了非常有力的工具,利用计算机解微分方程主要使用数值方法,欧拉方法和龙格——库塔方法是求解微分方程最典型常用的数值方法。本文详细研究了这两类数值计算方法的构造过程,分析了它们的优缺点,以及它们的收敛性,相容性,及稳定性。讨论了步长的变化对数值方法的影响和系数不同的同阶龙格—库塔方法的差别。通过编制C程序在计算机上实现这两类方法及对一些典型算例的结果分析比较,能更深切体会它们的功能,优缺点及适用场合,从而在实际应用中能对不同类型和不同要求的常微分方程会选取适当的求解方法。 关键词:显式单步法欧拉(Euler)方法龙格—库塔(Runge—Kutta)方法截断误差收敛性 Two commonly used numerical solution of differential equations:Euler method and Runge - Kutta method Student Name: Xiong Shiying Tutor:Zhang Li 【Abstract】The differential equation is the most vitality branch in mathematics. In many domains of natural science, we can meet the ordinary differential equation solution question. Currently, the development of computer has provided the extremely powerful tool for the ordinary differential equation application and the fundamental research, the computer solving differential equation mainly uses value method. The Euler method and the Runge—Kutta method are the most typical commonly value method to solve the differential equation. This article dissects the structure process of these two kinds of values commonly value method to solve the analyses their good and bad points, to their astringency, the compatibility, and the stability has made the proof. At the same time, the article discuss the length of stride to the numerical method changing influence and the difference of the coefficient different same step Runge—kutta method. Through establishing C program on the computer can realize these two kind of methods, Anglicizing some models of calculate example result can sincerely realize their function, the advantage and disadvantage points and the suitable situation, thus the suitable solution method can be selected to solve the different type and the

对于欧拉方程的理解

关于欧拉方程的理解 1755年,瑞士数学家L.欧拉在《流体运动的一般原理》一书中首先提出这个方程。 形如:)(1)1(11)(x f y x p y x p y x n n n n n ='+++--- (1) 的方程称为欧拉方程, 其中n p p p ,,,21 为常数。 欧拉方程的特点是: 方程中各项未知函数导数的阶数与其乘积因子自变量的幂次相同。 现阶段欧拉方程的应用领域很广,现只结合流体力学来探讨我对于欧拉方程的理解。 欧拉方程提出采用了连续介质的概念,把静力学中压力的概念推广到了运动流体中。 流体静力学着重研究流体在外力作用下处于平衡状态的规律及其在工程实际中的应用。 这里所指的静止包括绝对静止和相对静止两种。以地球作为惯性参考坐标系,当流体相对于惯性坐标系静止时,称流体处于绝对静止状态;当流体相对于非惯性参考坐标系静止时,称流体处于相对静止状态。 流体处于静止或相对静止状态,两者都表现不出黏性作用,即切向应力都等于零。所以,流体静力学中所得的结论,无论对实际流体还是理想流体都是适用的。 流体静压强的特性 1静压强的方向—沿作用面的内法线方向 2任一点的流体静压强的大小与作用面的方向无关,只与该点的位置有关

由上图可以推到出流体平衡微分方程式,即欧拉平衡方程 x y z p f x p f y p f z ρρρ??=?????=?????=??? 当流体处于平衡状态时,单位体积质量力在某一轴向上的分力,与压强沿该轴的递增率相平衡。 这里的fx 、fy 、fz 是流体质量力在x 、y 、z 轴上的投影,且质量力中包含以下两项:重力和惯性力。在这里如果假定fx 、fy 、fz 仅仅是重力在三个坐标轴上的投影,那么惯性力在x 、y 、z 轴上的投影分别为:-du/dt ,-dv/dt 和-dw/dt 。于是,上式便可写成 d d d d d d x y z u p f t x v p f t y w p f t z ρρρ????-= ???? ??????-=? ??? ??????-=? ??? ?? 上式整理后可得:

欧拉及改进的欧拉法求解常微分方程

生物信息技术0801 徐聪U200812594 #include #include void f1(double *y,double *x,double *yy) { y[0]=2.0; x[0]=0.0; yy[0]=2.0; for(int i=1;i<=9;i++) { x[i]=x[i-1]+0.2; y[i]=y[i-1]+0.2*(y[i-1]-x[i-1]); yy[i]=x[i]+1+exp(x[i]); printf("若x=%f,计算值是%f,真实值是%f,截断误差是%f\n ",x[i],y[i],yy[i],y[i]-yy[i]); } }; void f2(double *y,double *x,double *yy) { y[0]=1.0; x[0]=0.0; yy[0]=1.0; for(int i=1;i<=9;i++) { x[i]=x[i-1]+0.2; y[i]=y[i-1]+0.2*(2*y[i-1]+x[i-1]*x[i-1]); yy[i]=-0.5*(x[i]*x[i]+x[i]+0.5)+1.25*exp(2*x[i]); printf("若x=%f,计算值是%f,真实值是%f,截断误差是%f\n ",x[i],y[i],yy[i],y[i]-yy[i]); } }; void f3(double *y,double *x,double *yy,double *y0) { y[0]=2.0; x[0]=0.0; yy[0]=2.0; for(int i=1;i<=9;i++) { x[i]=x[i-1]+0.2; y0[i]=y[i-1]+0.2*(y[i-1]-x[i-1]); y[i]=y[i-1]+0.1*(y[i-1]-x[i-1]+y0[i-1]-x[i-1]);

关于欧拉方程变量代换后系数递推关系的一点总结

关于欧拉方程变量代换后系数递推关系的一点总结 光信1104 李号 ) (0' 1) 1(1 1) (x f y a xy a y x a y x a n n n n n n =++++--- 程我们知道,对于欧拉方 不全为0 ,,,(32n a a a 可以通过变量代换x t e x t ln ==或化简。本文主要介绍如何用 低阶导数来表示高阶导数以及线性表示时的系数递推关系。 先用一个例子来说明我们要探讨的问题。 已知:' ''''2'3 3 22 ,,,,,,xy y x xy dt y d dt y d dt dy e x t 求=(此处均为对x 的导数)。 显然,由x dx dt x t e x t 1,ln = ==则可知 dt dy xy dt dy x dx dt dt dy dx dy y = ?? = ? = = ' ' 1 dt dy dt y d y x dt dy dt y d x dx dt dt y d x dt dy x dt dy x dx d dx dy dx d dx y d y -=?-=??+?-=?=== 2 2 ' '22222222 2 ' ')(111)1()()1 1(1 )( 2)]( 1 [ )(2 2 3322 2 3 2 2 2 22 ' ''x dt y d x dt y d x dt dy dt y d x dt dy dt y d x dx d dx y d dx d y ?-?+-- =- = = dt dy dt y d dt y d y x dt dy dt y d dt y d x 2 3)23( 122 3 3 ' ''322 3 33+-= ?+-= 同理可求出dt dy dt y d dt y d dt y d y x 6 11 6 2 2 3 3 4 4 ) 4(4 -+-= 我们把系数提出,如下排列: n=1 1 n=2 1 -1 n=3 1 -3 2 n=4 1 -6 11 -6 为了方便讨论,我们作出以下两点规定: i) 用“m n B ”表示第n 排第m 列的数(显然m n ≥); ii) !n -!n 1-)!1()!1() 1(n 1 )()即(=-=---n n n 由上文中的迭代求导不难得出下面三点规律: i) 11 =n B ; ii) 1 1)1(---=n n n n B n B ; iii) ()1)1(1 11+≥-+=---m n B n B B m n m n m n

第8章 常微分方程数值解法 本章主要内容: 1.欧拉法

第8章 常微分方程数值解法 本章主要内容: 1.欧拉法、改进欧拉法. 2.龙格-库塔法。 3.单步法的收敛性与稳定性。 重点、难点 一、微分方程的数值解法 在工程技术或自然科学中,我们会遇到的许多微分方程的问题,而我们只能对其中具有较简单形式的微分方程才能够求出它们的精确解。对于大量的微分方程问题我们需要考虑求它们的满足一定精度要求的近似解的方法,称为微分方程的数值解法。本章我们主要 讨论常微分方程初值问题?????==00 )() ,(y x y y x f dx dy 的数值解法。 数值解法的基本思想是:在常微分方程初值问题解的存在区间[a,b]内,取n+1个节点a=x 0<x 1<…<x N =b (其中差h n = x n –x n-1称为步长,一般取h 为常数,即等步长),在这些节点上把常微分方程的初值问题离散化为差分方程的相应问题,再求出这些点的上的差分方程值作为相应的微分方程的近似值(满足精度要求)。 二、欧拉法与改进欧拉法 欧拉法与改进欧拉法是用数值积分方法对微分方程进行离散化的一种方法。 将常微分方程),(y x f y ='变为() *+=?++1 1))(,()()(n x n x n n dt t y t f x y x y 1.欧拉法(欧拉折线法) 欧拉法是求解常微分方程初值问题的一种最简单的数值解法。 欧拉法的基本思想:用左矩阵公式计算(*)式右端积分,则得欧拉法的计算公式为:N a b h N n y x hf y y n n n n -= -=+=+)1,...,1,0(),(1 欧拉法局部截断误差 11121 )(2 ++++≤≤''=n n n n n x x y h R ξξ或简记为O (h 2)。

微分方程数值解

微 分方程数值解及其应用 绪论 自然界中的许多事物的运动和变化规律都可以用微分方程来描述,因此对工程和科学技术中的实际问题的研究中, 常常需要求解微分方程.但往往只有少数较简单和典型的微分方程可求出其解析解,在大多数情况下,只能用近似法求解,数值解法是一类重要的近似方法.本文主要讨论一阶常微分方程的初值问题的数值解法,探讨这些算法在处理来自生活实际问题中的应用,并结合MATLAB 软件,动手编程予以解决. 1 微分方程的初值问题[1] 1.1 预备知识 在对生活实际问题的研究中,通常需要考虑一阶微分方程的初值问题 00(,)()dy f x y dx y x y ?=???=? (1) 这里(),f x y 是矩形区域R :00,x x a y y b -≤-≤上的连续函数. 对初值问题(1)需要考虑以下问题:方程是否一定有解呢?若有解,有多少个解呢?下面给出相关的概念与定理. 定义1 Lipschitz 条件[1][2]:矩形区域R :00,x x a y y b -≤-≤上的连续函数(),f x y 若满足:存在常数0L >,使得不等式()()1212,,f x y f x y L y y -≤-对所有()()12,,,x y x y R ∈都成立,则称(),f x y 在R 上关于y 满足Lipschitz 条件. 定理 1 解的存在唯一性定理[1][3]:设f 在区域()}{,,D x y a x b y R =≤≤∈上连续,关于y 满足Lipschitz 条件,则对任意的[]00,,∈∈x a b y R ,常微分方程初值问题(1)当[],x a b ∈时存在唯一的连续解()y x . 该定理保证若一个函数(),f x y 关于y 满足Lipschitz 条件,它所对应的微分方程的初值问题就有唯一解.在解的存在唯一性得到保证的前提下,自然要考虑方程的求

欧拉方程的求解

欧拉方程的求解 1、引言 在数学研究领域,我们经常会瞧到以数学家名字命名的概念、公式、定理等等,让人敬佩跟羡慕、但就是,迄今为止,哪位数学家的名字出现得最多呢?她就就是数学史上与阿基米德、牛顿、高斯齐名的“四杰”之一,人称“分析学的化身”的盲人数学家欧拉(Leonhard Euler,1707--1783)、 几乎在每一个数学领域都可以瞧到她的名字,譬如我们熟悉的“欧拉线”、“欧拉圆”、“欧拉公式”、“欧拉定理”、“欧拉函数”、“欧拉积分”、“欧拉变换”、“欧拉常数”L L 欧拉还就是许多数学符号的发明者,例如用π表示圆周率、e 表示自然对数的底、()f x 表示函数、∑表示求与、i 表示虚数单位L L 以欧拉命名的数学名词有很多,本文主要讲解以欧拉命名的方程即“欧拉方程”、 在文献[1]中,关于欧拉方程的求解通常采用的就是变量变换的方法、变量变换法就就是将所求的欧拉方程化为常系数齐次线性微分方程,然后再来求解这个常系数齐次线性微分方程的解,亦即求其形如K y x =的解,进而求得欧拉方程的解、 但有些欧拉方程在用变量变换法求解时比较困难、本文在所学的欧拉方程的求解的基础上,对欧拉方程进行了简单的分类,并针对不同阶的欧拉方程的求解给出了不同的定理、最后在每类欧拉方程后面给出了典型的例题加以说明、 2、几类欧拉方程的求解 定义1 形状为 ()1(1)110n n n n n n y a x y a xy a y x ---'++++=L (1) 的方程称为欧拉方程、 (其中1a ,2a ,L ,1n a -,n a 为常数)

2、1二阶齐次欧拉方程的求解(求形如K y x =的解) 二阶齐次欧拉方程: 2120x y a xy a y '''++=、 (2) (其中1a ,2a 为已知常数) 我们注意到,方程(2)的左边y ''、y '与y 的系数都就是幂函数(分别就是 2x 、1a x 与02a x ),且其次依次降低一次、 所以根据幂函数求导的性质,我们用幂函数K y x =来尝试,瞧能否选取适当的常数K ,使得K y x =满足方程(2)、 对K y x =求一、二阶导数,并带入方程(2),得 212()0K K K K K x a Kx a x -++= 或 212[(1)]0K K a K a x +-+=, 消去K x ,有 212(1)0K a K a +-+=、 (3) 定义 2 以K 为未知数的一元二次方程(3)称为二阶齐次欧拉方程(2)的特征方程、 由此可见,只要常数K 满足特征方程(3),则幂函数K y x =就就是方程(2)的解、 于就是,对于方程(2)的通解,我们有如下结论: 定理1 方程(2)的通解为 (i) 1112ln K K y c x c x x =+, (12K K =就是方程(3)的相等的实根) (ii)1212K K x c x y c +=, (12K K ≠就是方程(3)的不等的实根) (iii)12cos(ln )sin(ln )x x c x x y c ααββ+=、(1,2K i αβ=±就是方程(3)的一对

MATLAB求解常微分方程数值解

利用MATLAB求解常微分方程数值解

目录 1. 内容简介 (1) 2. Euler Method(欧拉法)求解 (1) 2.1. 显式Euler法和隐式Euler法 (2) 2.2. 梯形公式和改进Euler法 (3) 2.3. Euler法实用性 (4) 3. Runge-Kutta Method(龙格库塔法)求解 (5) 3.1. Runge-Kutta基本原理 (5) 3.2. MATLAB中使用Runge-Kutta法的函数 (7) 4. 使用MATLAB求解常微分方程 (7) 4.1. 使用ode45函数求解非刚性常微分方程 (8) 4.2. 刚性常微分方程 (9) 5. 总结 (9) 参考文献 (11) 附录 (12) 1. 显式Euler法数值求解 (12) 2. 改进Euler法数值求解 (12) 3. 四阶四级Runge-Kutta法数值求解 (13) 4.使用ode45求解 (14)

1.内容简介 把《高等工程数学》看了一遍,增加对数学内容的了解,对其中数值解法比较感兴趣,这大概是因为在其它各方面的学习和研究中经常会遇到数值解法的问题。理解模型然后列出微分方程,却对着方程无从下手,无法得出精确结果实在是让人难受的一件事情。 实际问题中更多遇到的是利用数值法求解偏微分方程问题,但考虑到先从常微分方程下手更为简单有效率,所以本文只研究常微分方程的数值解法。把一个工程实际问题弄出精确结果远比弄清楚各种细枝末节更有意思,因此文章中不追求非常严格地证明,而是偏向如何利用工具实际求解出常微分方程的数值解,力求将课程上所学的知识真正地运用到实际方程的求解中去,在以后遇到微分方程的时候能够熟练运用MATLAB得到能够在工程上运用的结果。 文中求解过程中用到MATLAB进行数值求解,主要目的是弄清楚各个函数本质上是如何对常微分方程进行求解的,对各种方法进行MATLAB编程求解,并将求得的数值解与精确解对比,其中源程序在附录中。最后考察MATLAB中各个函数的适用范围,当遇到实际工程问题时能够正确地得到问题的数值解。 2.Euler Method(欧拉法)求解 Euler法求解常微分方程主要包括3种形式,即显式Euler法、隐式Euler法、梯形公式法,本节内容分别介绍这3种方法的具体内容,并在最后对3种方法精度进行对比,讨论Euler法的实用性。 本节考虑实际初值问题 使用解析法,对方程两边同乘以得到下式

微分方程数值解欧拉法

1.1、求解初值问题()?????=-=-1 0y y xe dx dy x ,已知精确解为 ()()x x x x y -+=22 12 当h=0.1时,解为: n x n y ()n x y ()n n y x y - 0 1 1 0 0.1 0.900000 0.909362 9.3616E-03 0.2 0.819048 0.835105 1.6057E-02 0.3 0.753518 0.774155 2.0637E-02 0.4 0.700391 0.723946 2.3555E-02 0.5 0.657165 0.682347 2.5182E-02 0.6 0.621775 0.647598 2.5823E-02 0.7 0.592526 0.618249 2.5723E-02 0.8 0.568034 0.593114 2.5080E-02 0.9 0.547177 0.571230 2.4053E-02 1.0 0.529051 0.551819 2.2768E-02 0.1 0.2 0.30.40.50.60.70.80.91 当h=0.05时,解为:

n x n y ()n x y ()n n y x y - 0 1 1 0 0.05 0.950000 0.952418 2.4185E-03 0.10 0.904878 0.909362 4.4835E-03 0.15 0.864158 0.870391 6.2326E-03 0.20 0.827406 0.835105 7.6996E-03 0.25 0.794223 0.803138 8.9155E-03 0.30 0.764247 0.774155 9.9084E-03 0.35 0.737147 0.747850 1.0704E-02 0.40 0.712621 0.723946 1.1324E-02 0.45 0.690397 0.702188 1.1791E-02 0.50 0.670223 0.682347 1.2124E-02 0.55 0.651876 0.664213 1.2338E-02 0.60 0.635148 0.647598 1.2450E-02 0.65 0.619855 0.632328 1.2473E-02 0.70 0.605829 0.618249 1.2420E-02 0.75 0.592918 0.605220 1.2302E-02 0.80 0.580985 0.593114 1.2129E-02 0.85 0.569909 0.581819 1.1909E-02 0.90 0.559579 0.571230 1.1651E-02 0.95 0.549896 0.561258 1.1362E-02 1.00 0.540771 0.551819 1.1048E-02 0.1 0.2 0.30.40.50.60.70.80.91

欧拉方程的求解

欧拉方程的求解 1. 引言 在数学研究领域,我们经常会看到以数学家名字命名的概念、公式、定理等等,让人敬佩跟羡慕. 但是,迄今为止,哪位数学家的名字出现得最多呢?他就是数学史上与阿基米德、牛顿、高斯齐名的“四杰”之一,人称“分析学的化身”的盲人数学家欧拉( Leonhard Euler,1707--1783 ) . 几乎在每一个数学领域都可以看到他的名字,譬如我们熟悉的“欧拉线”、“欧拉圆”、“欧拉公式”、“欧拉定理”、“欧拉函数”、“欧拉积分”、“欧拉变换”、“欧拉常数” L L 欧拉还是许多数学符号的发明者,例如用表示圆周率、e表示自然对数的底、f(x)表示函数、表示求和、i表示虚数单位L L 以欧拉命名的数学名词有很多,本文主要讲解以欧拉命名的方程即“欧拉方程”. 在文献[1] 中,关于欧拉方程的求解通常采用的是变量变换的方法. 变量变换法就是将所求的欧拉方程化为常系数齐次线性微分方程,然后再来求解这个常系数齐次线性微分方程的解,亦即求其形如y x K的解,进而求得欧拉方程的解. 但有些欧拉方程在用变量变换法求解时比较困难. 本文在所学的欧拉方程的求解的基础上,对欧拉方程进行了简单的分类,并针对不同阶的欧拉方程的求解给出了不同的定理. 最后在每类欧拉方程后面给出了典型的例题加以说明. 2. 几类欧拉方程的求解 定义 1 形状为 n (n) n 1 ( n 1) n y(n)a1x n 1y(n 1)L a n 1xy a n y 0 (1) x 的方程称为欧拉方程. (其中a i, a2, L , a ni, a.为常数)

2.1 二阶齐次欧拉方程的求解(求形如 y x K 的解) 二阶齐次欧拉方程: x 2y a i xy a 2y 0. ( 其中 a 1, a 2 为已知常数) 我们注意到,方程(2)的左边y 、y 和y 的系数都是幕函数(分别是x 2 a i x 和a 2X °),且其次依次降低一次.所以根据幕函数求导的性质,我们用幕 函数y x K 来尝试,看能否选取适当的常数 K ,使得y x K 满足方程(2). x K 求一、二阶导数,并带入方程(2),得 由此可见,只要常数K 满足特征方程(3),则幕函数y x K 就是方程(2) 共轭复根) (其中C i 、c 为任意常数) 证明(i )若特征方程(3)有两个相等的实根:? K 2,贝U 2) 消去 x K ,有 (K 2 [K 2 K 2 定义 2 以 K 为未知数的 的特征方程. K)X K (a 1 (a 1 KK a i Kx a 2 x 0 K i)K a 2]x K 0, 1)K a 2 0. 3) 元二次方程( 3)称为二阶齐次欧拉方程( 2) 的解. 于是,对于方程( 2)的通解, 定理 i 方程( 2)的通解为 y c i x Ki 我们有如下结论: (i) c 2X K1 ln X , (K i K 2是方程(3)的相等的实根) (ii) K 1 y c 1X 1 c2X K2 K i K 2是方程(3)的不等的实根) (iii) y c 1 X cos( ln X) c 2X sin( ln X). (K 1,2 i 是方程( 3)的一对

fortran下欧拉法求解常微分方程(实例)

1. Euler 公式 100(,)() i i i i y y hf x y y y x +=+??=? 实例: ,00(,),0,1,01f x y x y x y x =-==≤≤ 精确解为:1x y x e -=+- 程序代码: DIMENSION x(0:20),y(0:20),z(0:20),k(0:21) DOUBLE PRECISION x,y,z,k,h,x0,y0,z0,k0,n f(x,y)=x-y n=20 h=1/n x(0)=0 y(0)=0 DO i=0,n-1 y(i+1)=y(i)+f(x(i),y(i))*h x(i+1)=x(i)+h ENDDO k(0)=0 DO i=0,n z(i)=k(i)+exp(-k(i))-1 k(i+1)=k(i)+h END DO open(10,file='1.txt') WRITE(10,10) (x(i),y(i),z(i),i=0,20) WRITE(*,10) (x(i),y(i),z(i),i=0,20) 10 FORMAT(1x,f10.8,2x,f10.8,2x,f10.8/) END 输出结果: 0.00000000 0.00000000 0.00000000 0.05000000 0.00000000 0.00122942 0.10000000 0.00250000 0.00483742 0.15000000 0.00737500 0.01070798 0.20000000 0.01450625 0.01873075 0.25000000 0.02378094 0.02880078 ???=='00)(),(y x y y x f y ???=='0 0)(),(y x y y x f y

一类含对数函数的欧拉方程的解法

一类含对数函数的欧拉方程的解法 车茂林 (内江师范学院 数学与信息科学学院,四川 内江 641112)1 摘 要:利用变量代换,将一类含对数函数的欧拉方程转化成可求解的常系数非齐次微分方程,从而可以得到所讨论的方程的通解. 关键词:对数函数;欧拉方程;特殊解. 引言与引理说明 在文献[1] 中,论述了六类初等函数的基本形式.而且在解决某些问题时,通常用到如下的变量代换: t e x =,x t ln =,0>x 在文献[2] 中,讨论了常系数齐次线性微分方程 A x a dt dx a dt x d a dt x d a dt x d n n n n n n n n 01222111=+++++----- 与对应的常系数非齐次线性微分方程 B t f x a dt dx a dt x d a dt x d a dt x d n n n n n n n n )(1222111=+++++----- 的通解的求法问题.其中)(t f 满足下列两种形式: t m m m m k e b t b t b t b t t f λ)()(1110++++=-- t k e t t B t t A t t f βαα]sin )(cos )([)(+= )(t A ,)(t B 为带实系数的t 的多项式.且为次数为有限次. 由文献[3]中,有非齐次线性微分方程的叠加原理:设)(1t x ,)(2t x 分别是非齐次线性微分方程 )()()()()(11222111t f x t a dt dx t a dt x d t a dt x d t a dt x d n n n n n n n n =+++++----- , )()()()()(21222111t f x t a dt dx t a dt x d t a dt x d t a dt x d n n n n n n n n =+++++----- 的解,则)()(21t x t x +是方程 1 车茂林(1989-),男,汉,四川达州人,内江师范学院数学与信息科学学院本科生.

相关文档
最新文档