水下疏浚机器人基本资料简介

水下疏浚机器人基本资料简介
水下疏浚机器人基本资料简介

地下管道清淤机器人(水下疏浚机器人)

城市地下排水管道一旦堵塞,需要进行清淤疏通作业。近年来,各地在疏通地下排水管道的作业中,发生过多起作业人员中毒伤亡的事故,给人民的生命财产造成了很大的损失。我国域市地下排水管道的清淤工作还普遍处于人工作业的落后状态,不仅体力繁重,效率低,恶劣环境雨污水管道已经运行多年,多处地段严重淤积和破损。“地下管道在路面下,看不着摸不到,其清淤和修补成了一大难题。”“地下管道经常堵塞渗漏,无法查明原因,更无计可施?”地下管网工程技术人员普遍担忧的老大难问题。现在被地下管道清淤机器人(水下疏浚机器人)轻松搞定。

河北五星电力设备有限公司的地下管道清淤机器人(水下疏浚机器人)对淤积严重、人又无法进入的管道进行清淤,可通过计算机控制的视频探头对管道内壁的破损处进行探查,运用专业技术对淤积垃圾进行清除,短时间就可以全面完成,河北五星电力设备有限公司的地下管道清淤机器人(水下疏浚机器人)清淤效果显著。我国很多城市地下管道、地下雨污水管道和排水渠、暗渠都在使用河北五星电力设备有限公司的地下管道清淤机器人(水下疏浚机器人)清淤疏通和修补工程。

河北五星电力设备有限公司的地下管道清淤机器人(水下疏浚机器人)清淤优势:

1.清淤工作由河北五星电力设备有限公司的地下管道清淤机器人(水下疏浚机器人)、水下清淤机器人搭载淤泥吸泵,其前端装有高清摄像头和LED照明灯,从管道的一端缓缓前行,不断将淤泥吸入泵内,如淤泥硬度较大,搭载高压水枪设备或淤泥松动机构,这样将清理的更加彻底。

2.地下管道清淤机器人(水下疏浚机器人)、水下清淤机器人的尺寸规格可订制,在管道有正常流速、不截流不断流情况下,仍然可以作业。涵洞不需截流,也不会对涵洞造成堵塞。

3.地下管道清淤机器人(水下履带清淤机器人)、水下清淤机器人机体本身为不锈钢材质,不易产生火花,电器部分采用接零保护,可靠稳定。

4.地下管道清淤机器人(水下疏浚机器人)、水下清淤机器人机器人可24小时连续作业,大大缩短工期,提高了效率。有了水下清淤机器人这个得力帮手,市政地下管道工程人工成本及风险将大大降低!

地下管道清淤机器人(水下疏浚机器人)使用方式:

清淤工作时,河北五星电力设备有限公司的地下管道清淤机器人(水下履带清淤机器人)可以牵引吸污管,利用自身排污泵向后端输送泥沙,也可配合吸污车牵引其吸污管在水中进行清淤工作,以加大吸污量。清淤机器人进入涵洞,每前进100-150米更换一次观察井,即机器人只需开一个入口,便可持续在几公里的涵洞内连续工作。

河北五星电力设备有限公司的地下管道清淤机器人(水下履带清淤机器人)技术参数机器人尺寸3200×1330×1150mm,

控制箱尺寸重量560×480×220mm,15kg

框车身架不锈钢材料

最小工作宽度:1330mm

最小工作高度:1150mm

设备重量700kg

河北五星电力设备有限公司的地下管道清淤机器人(水下履带清淤机器人)水下相机参数:采用4×700线高清浑水相机,图像清晰、细腻,照度0.001lux,

水下照明:前端装有3*100W LED灯

下潜深度200m

动力:整体液压驱动

前行速度5~26m/min

机械臂:采用3轴液压不锈钢机械臂,机械臂安装150-200mm进水管,配液压驱动360度旋转搅拌棒,伸展长度1500mm,举升力量150kg

排水管口径:100mm

河北五星电力设备有限公司的地下管道清淤机器人(水下履带清淤机器人)可牵引吸污车吸污管口径:200mm

最大杂质颗粒100mm

输送距离150M

泵送能力:100m3/h

河北五星电力设备有限公司的地下管道清淤机器人(水下履带清淤机器人)显示器:显示器采用19寸LED高亮液晶显示器,亮度不低于800,屏显时间/日期,电脑主机电脑采用I5主机,硬盘容量1T,128GB SSD固态硬盘,路径生成,具有座标记录功能,记录取样GPS 坐标,并可生成行驶路径,有视频叠加功能,可叠加用户图标,日期时间,GPS参数,深度,温度

电压功耗系统输入电压380V;最大功耗20KW内

控制台:采用防水机箱设计,显示器装有可拆卸遮阳罩

控制手柄:采用工业级控制手柄

河北五星电力设备有限公司的地下管道清淤机器人(水下履带清淤机器人)可以有效解决市政、污水、供排水、工矿企业、居民小区地下管道疏通难的大问题!是推动地下管道清淤机械和技术的一场“革命”。

水下机器人设计概述

水下机器人设计概述 摘要:由于海洋开发利用越来越受到人们重视,水下机器人有着广阔的应用前景。但是目前为止,还没有成熟固定的水下机器人设计方法。本文通过论述水下机器人的构成、水下机器人的构成、排水量的初步估算、艇形选择、重量重心的计算、浮力浮心的计算、阻力的测定与计算、有效功率的计算等阐明了水下机器人基本的设计思路。此外探讨了计算机在水下机器人设计中的应用。 关键字:水下机器人、设计、计算机辅助设计 一.水下机器人的构成 水下机器人由控制系统、载体、观通系统三大系统组成。控制系统是处理和分析内部和外部各种信息的综合系统,根据这些信息形成对载体的控制功能。观通系统是利用摄像机、照相机、照明灯、声纳、及多种传感器收集有关外界和系统工作的所有信息的装置。而载体则是装载控制系统和观通系统的基础和构架。 二.根据选择设备,初步估算排水量 跟据水下机器人的用途不同,水下机器的设备也有很大的差别。通常是根据设计任务书,分析各种性能参数,确定出合适的设备。选择设备应该使水下机器人的重量最轻,因为无论是从使用还是从经济性角度讲,排水量越小是越有利的。由于潜水器要保持重量和浮力的平衡,所以可以分别从重量和浮力两个不同的角度研究排水量与各主要要素间的关系。三.艇型选择 潜水器根据使命任务和技术要求的不同,其外型尺寸、结构型式都有很大的差异。由于潜水器的航速不高,阻力性能对其外形要求不高,因而除采用水滴形和常规型艇型之外,更多的潜水器外型设计是出于使用维修方便、布置合理等方面考虑,因此其外型可能显得不规则,特别是无人带线遥控潜水器,其典型形式是框架式结构。 四.耐压壳材料选择 常用的耐压壳有高强度刚、铝合金、钛合金、复合材料(包括玻璃、陶瓷、丙烯酸朔料等等)。由于水下机器人主要受到静水压力的作用,所以选择耐压壳要综合考虑下潜的深度、耐压壳的形状、材料特性等因素。另外由于海水腐蚀性强,耐压壳还要有一定的抗腐蚀的能力。 四.潜水器推进与操纵方式选择 潜水器由于任务不同,对推进和操纵的要求也不同。但综合起来,潜水器主要要求巡航、搜索和悬停三种水下运行方式。由于在水下有海流存在,为满足潜水器的使命任务,一般要求潜水器在悬停或近乎悬停状态下作6个自由度或者至少5个自由度运动,在水流作用下也能够作相应的机动,因此在选择推力系统时,必须考虑在要求的方向发出推力和力矩。例如其搭配方式可以为:两个可在垂直面内作3600旋转的导管推力器加水平舵和首推力器、并联可旋转的喷水推进器等等。 五.阻力的确定。 由于水下机器人的主体上搭载的附体较多,且有些机器人的艇形是框架式的,所以用计算流体力学是很难得出其所受的阻力,即便算出也会因为误差太大而无法应用。所以阻力的确定主要是通过试验的方法。如果试验条件限制,或者机器人体积过大,则需要进行模型试验。根据相似理论,满足主要影响因素,保证模型和实体的弗罗德数或者雷洛数相等,测出水下机器人的摩擦阻力系数、形状阻力系数经过换算,得出实体的阻力。

AUV水下机器人运动控制系统设计方案(李思乐)

中国海洋大学工程学院 机械电子工程研究生课程考核论文 题目: AUV水下机器人运动控制系统研究报告课程名称:运动控制技术 姓名:李思乐 学号: 21100933077 院系:工程学院机电工程系 专业:机械电子工程 时间:2010-12-26 课程成绩: 任课老师:谭俊哲

AUV水下机器人运动控制系统设计 摘要:以主推加舵控制的小型自治水下机器人为研究对象,建立了水下机器人的数学模型并进行了分析。根据机器人结构的特点,对模型进行了必要的简化。设计了机器人的运动控制系统。以成功研制的无缆自治水下机器人(AUV) 为基础,对其航行控制和定位控制方法进行了较详细的分析. 同时介绍了它的推进器布置、控制系统结构、推力分配等方法。最后展示了它的运行实验结果。 关键词:水下机器人;总体设计方案;运动控制系统;电机仿真 1 引言 近年来国外水下机器人技术发展迅速,技术水平较高。其中,具有代表性的产品有:美国Video Ray 公司开发出的Scout、Explorer、Pro 等系列遥控式水下机器人,美国Seabotix公司研发的LBV-ROV 系列,英国AC-CESS 公司的AC-ROV系列。 随着海洋开发、探测的需求越来越强,水下机器人成为全世界研究的热门课题。小型自治水下机器人具有低成本、小型化、操作灵活等特点成为近年来国内外研究的热点。自治水下机器人(Autonomous Underwater Vehicles, AUV),载体采用模块化设计思想, 可根据需要适当增减作业或传感器模块, 载体采用鱼雷状流线外形, 总长约2 m, 外径25 cm, 基本模块包括推进器模块、能源模块、电子舱模块、传感器模块以及GPS、无线电通讯模块, 基本传感器有姿态传感器、高度计、深度计和视觉传感器, 支持光纤通讯, 载体可外挂声学设备, 通过光纤系统进行遥控操作可实现其半自主作业, 也可在预编程指令下实现自主作业。系统基本模块组成设计如图1-1所示[1]。它具有开放式、模块化的体系结构和多种控制方式(自主/半自主/遥控),自带能源。这种小型水下机器人可在大范围、大深度和复杂海洋环境下进行海洋科学研究和深海资源调查,具有更广泛的应用前景。在控制系统的设计过程中充分考虑了系统的稳定性和操纵性。控制器具有足够的鲁棒性来克服建模误差,以及水动力参数变化。 图1-1 系统基本模块组成设计 2机器人物理模型 2.1 AUV 物理模型 为了研究AUV 的运动规律,确定运行过程中AUV 的位置和姿态,需要建立AUV 的动力学模型。为了便于分析,建立适合于描述AUV 运动的两种参考坐标系,即固定坐标系Eξηζ 和运动坐标系Oxyz,如图2-1 所示:包含5 个推进器,分别是艉部的2 个主推进器、艉部的1 个垂向推进器和艏部的2 个垂向推进器。左右对称于纵中

自动机器人平台使用说明手册

2011年全国职业院校技能大赛高职组机器人赛项 自动机器人平台说明

目录 第一章自动机器人平台概述 (3) 1.1 自动机器人平台的总体构成 (3) 1.2 自动机器人平台按键部分 (4) 1.3 机器人平台的充电 (4) 第二章自动机器人平台系统结构 (4) 2.1自动机器人平台机械部分 (4) 2.1.1 机器人平台机械部分组成 (4) 2.1.2 机器人平台运动详解 (5) 2.2 自动机器人平台控制系统 (5) 2.2.1 概述 (5) 2.2.2 主控制板 (5) 2.2.3 巡线传感器 (9) 2.2.4 传感器信号处理板 (10) 2.2.5 电机驱动板 (12) 2.3 机器人平台控制程序 (14) 2.3.1 控制程序流程图 (15) 2.3.2 软件函数说明 (17) 第三章自动机器人平台的装配和调试 (18) 3.1 机器人装配过程 (18) 3.1.1 主动轮电机装配 (18) 3.1.2 电机安装至铝合金架板 (18) 3.1.3 从动轮及传感器安装 (19) 3.1.4 电路板的安装 (19) 3.2 机器人平台的调试 (21)

第一章自动机器人平台概述 自动机器人平台是专门为高职类机器人大赛提供的一个统一的机器人底盘,可以实现在比赛场地全场范围内的运动、定位;并提供了充足的I/O接口,参赛队可以根据大赛任务的要求,在此平台上进一步设计制作各种抓取、投放机构,利用机器人平台提供的主控制板和编程算法实现整体机器人的控制。 1.1 自动机器人平台的总体构成 机器人平台的总体构成参见图1-1和图1-2所示,由包括主动车轮、从动车轮、铝合金框架、直流电机、电池、电路板以及安装在底部的16路传感器组成。 图1-1 自动机器人平台的总体构成 图1-2 自动机器人平台的侧面图

【经营计划书】水下机器人创业策划书(终稿)

低成本水下机器人 策 划 书 申报项目: 低成本水下机器人 申报人: 孟永志 项目负责人: 孟永志 申报日期: 年4月17日

低成本水下机器人策划书 机器人项目创业计划执行概要 水下机器人从20世纪后半叶诞生,是工作于水下的极限作业机器人,能潜入水中代替人完成某些操作,又称无人遥控潜水器,主要运用在海上救援。由于水下环境恶劣危险,人的潜水深度有限,所以水下机器人日益成为开发海洋的重要工具。在军事斗争中,无人化作战平台将在未来现代化战争中发挥重要的作用,无人舰艇将与无人地面战车、无人飞机一起在战场上进行高效卓越地作战。另外,无论战争期间还是和平时期,水下机器人还可以定期对航道、训练场、舰艇机动区实施定期或不定期检查,保障这些水域的作业安全。 载人潜水器由人工输入信号操控各种动作,由潜水员和科学家通过观察窗直接观察外部环境。其优点是由人工亲自做出各种核心决策,便于处理各种复杂问题,但是人生命安全的危险性增大,由于载人需要足够的耐压空间、可靠的生命安全保障和生命维持系统,这将为潜水器带来体积庞大、系统复杂、造价高昂、工作环境受限等不利因素。 有缆水下机器人(ROV)需要由电缆从母船接受动力,并且ROV不是完全自主的,它需要人为的干预。主要由水面设备(包括操纵控制台、电缆绞车、吊放设备、供电系统等)和水下设备(包括中继器和潜水器本体)组成。潜水器本体在水下靠推进器运动,本体上装有观测设备(摄像机、照相机、照明灯等)和作业设备(机械手、切割器、清洗器等)。潜水器的 水下运动和作业,是由操作员在水面母舰上控制和监视,电缆向本体提供动力和交换信息,中继器可减少电缆对本体运动的干扰。由于人们通过电缆对ROV进行遥控操作,电缆对ROV像“脐带”对于胎儿一样至关重要,但是由于细长的电缆悬在海中成为ROV最脆弱的部分,大大限制了机器人的活动范围和工作效率。 无缆水下机器人(AUV)又称自治水下机器人、智能水下机器人,是将人工智能、探测识别、信息融合、智能控制、系统集成等多方面的技术集中应用于同一水下载体上,在没有人工实时控制的情况下,自主决策、控制完成复杂海洋环境中的预定任务使命的机器人。是从简单的遥控式向监控式发展,即由母舰计算机和潜水器本体计算机实行递阶控制,它能对观测信息进行加工,建立环境和内部状态模型。操作人员通过人机交互系统以面向过程的抽象符号或语言下达命令,并接受经计算机加工处理的信息,对潜水器的运行和动作过程进行

水下清洁机器人运动控制系统设计研究

? 117 ? ELECTRONICS WORLD? 技术交流 本文主要结合相关的研究背景设计了一种水下清洁机器人,作为一种水下设备的清洁维护的机器人,保障水下设备的正常运行。文章首先在引言部分对本文的研究背景及意义进行阐述,然后重点提出了水下清洁机器人运动控制系统的总体设计方案,并对其运动模型进行设计和仿真。 1 引言 海洋开发逐渐向特殊领域以及高深度领域转变,难度越来越大,人力开发已经完全不能够满足开发的需求,机器人开发已经成为了新趋势。本文主要在此背景下分析和研究水下清洁机器人的运动控制系统的设计。本文设计的水下清洁机器人主要是用于对水下的一些大型设备,例如海底搜救设备、勘测设备、取样设备等进行水下维护和修复等,能够在水下特殊环境中对海底设备进行维护和处理,能够较大程度上的促进海底开发技术的发展。 2 水下清洁机器人运动控制系统总体设计 2.1 水下清洁机器人运动控制流程 本文设计的水下清洁机器人的控制系统主要由主机、控制算法、控制电路、指令转换、机器人载体、采样设备等组成,具体的控制流程为:主机控制算法进行水下机器人的动力分配,并结合指令转换算法进行整理转换,结合控制电路开启操控箱,下达操作指令,机器人载体接到命令驱动机器人进行采样,采集样本之后将样本信息传递到主机处理系统当中,进行处理。 2.2 模拟运动控制平台结构设计 水下机器人的运动控制平台主要包括六个部分:步进电机、云台、安装板、推进器、U型板以及轴承等。其中云台主要实现的是2自由度的运动,包括水平和横向两个方向。本文模拟的控制平台主要实现的是3自由度的运动控制,除了上述2自由度之外,还包括前后摇摆自由度。由于多了一个自由度,因此需要对运动进行定位,该运动平台的定位主要由带套轴承和法兰轴组成固定左侧,由带套轴承和电机轴固定右侧,右侧的电机由法兰固定,由此就设计出了一个6自由度的模拟运动控制平台(边宇枢,高志慧,贠超,6自由度水下机器人动力学分析与运动控制:机械工程学报,2007)。 2.3 地面操控台结构设计 地面操控台主要是对上述的模拟运动控制平台进行控制,地面操控台主要包括显示器、操纵杆、按钮以及指示灯等。其中操纵杆有2个,一个用来控制云台的摄像机,一个用来控制模拟运动平台,面板主要是结合人体舒适度进行设计,角度定为70°(裴文良,郭映言,陈金山,申龙,水下机器人的研发及其应用:制造业自动化,2018)。 3 水下机器人运动模型及仿真分析 该部分主要对上述设计的水下机器人的运动模型以及仿真进行分析: 3.1 水下机器人的运动学建模 为了便于我们对机器人参数和变量的统一管理,可以定义以下 状态变量: 其中 ,,即用η1和η2分别表示稳定系下水下机器人的位置向量和方向向量,用v1和v2分别表示动态系下水下机器人的线速度和角度,用τ1和τ2表示在动态系下作用于水下机器人的力和力矩向量。 水下机器人的速度变量由稳定系转换成为动态系,从而通过动态控制器实现对运动的控制,同时要获得水下机器人的静态位置和姿态就必须要将水下机器人的速度变量由动态系转换成为稳定系,从而得到水下机器人的位置矢量。由此可知,在研究水下机器人状态时,需要分析和研究机器人速度变量的动态和静态的转变。 3.2 基于神经网络的轨迹控制器 本文主要设计了基于神经网络模型的水下机器人的运动轨迹控制器,具体的控制流程如下:当机体接收到信号后,传递到控制器,再通过执行器作用于机体,做出相应的动作,机器人本身还具有抗干扰的功能。输出与控制器之间用RBF网络连接。(朱大奇,陈亮,刘乾,一种水下机器人传感器故障诊断与容错控制方法:控制与决策,2009) 3.3 水下机器人神经网络轨迹控制的仿真 结合上述设计的基于神经网络模型的水下机器人的运动轨迹控制器,采用MATLAB进行仿真如下。该控制器设计的目的是实现对水下机器人运动状态的识别和跟踪,通过分析水下机器人的水下运动情况,结合轨迹参考实现了未知动力学的局部精确逼近和部分神经网络权值的收敛,从而奠定一定的学习控制器基础。 结合神经网络的训练实验得到,在神经网络权值的训练过程中,一些神经网络的权值最终收敛,可以作为神经网络的常数权值存储。在自适应神经网络控制器的作用下,将被控系统未知动态分量的局部精确逼近。 水下清洁机器人运动控制系统设计研究 (下转第121页)

AI机器人系统使用说明书

智营呼叫中心系统 使用说明书 目录 目录 (1) 前言 (3) 功能说明 (4) 1. 登陆 (4) 2. 客户管理 (4) 2.1客户列表 (4)

2.2跟进记录 (6) 3. 坐席管理 (6) 3.1坐席列表 (6) 3.2分机管理(软电话或语音网关登录的账号) (7) 3.3主叫号码 (7) 3.4坐席统计 (8) 3.5班组管理 (8) 3.6分机统计 (9) 4. 通话记录 (9) 5. 财务管理 (9) 6. 企业管理 (9) 6.1添加企业 (9) 6.2企业管理 (10) 7. 大数据 (10) 8. AI机器人 (11) 8.1纠正列表 (11) 8.2数据列表 (11) 8.3呼叫队列 (12) 8.4呼叫记录 (12) 8.5模板列表 (13) 9. 知识库 (15) 9.1分类管理 (15) 9.2问题列表 (16) 10. 短信管理 (17) 11. 系统设置 (17) 11.1修改密码 (17) 11.2系统配置 (17) 11.3定义字段 (18)

前言 本手册针对的用户需要具备一定的后台管理系统操作常识。本手册从使用者的角度,充分地描述系统所具有的特点、功能及使用方法并配截图页面说明,从而使用户通过说明书能够了解系统的操作及用途,并且能够确定在何种情况下,如何使用它;同时向用户提供系统每一个运行的具体过程及相关知识。

功能说明 1.登陆 用户在浏览器输入后台http地址,按回车键,跳转到登录页面,输入用户名、密码,点击“登陆”按钮进入系统,如图1。 图1 注意: 企业登录,直接用企业账号+密码. 坐席登录坐席工号@企业账号+密码. 或者坐席绑定的主叫号码+密码登录. 2.客户管理 2.1客户列表 1)客户管理:查看和编辑客户的详细信息。(如图2) ①添加客户:手动添加单个客户。(如图3) ②导入:下载导入模板,并按模板编排好客户资料,成批导入客户。(如 图4) ③分配:可将客户分配至坐席进行人工拨打。(图5)

水下机器人智能控制技术

水下机器人智能控制技术 机械工程学院张杰189020008 智能水下机器人作为一个复杂的系统集成了人工智能水下目标的探测和识别、数据融蛤智能控制以及导航和通信各子系统是一个可以在复杂海洋环境中执行各种军用和民用任务的智能化无人平台。目前主要采用的智能控制方法有:模糊控制、神经网络控制、专家控制、自适应控制、PID调节器、滑模控制等。本文比较全面地查阅了水下机器人运动控制理论相关的文献,阐述了几种主要控制方法的基本原理,给出了控制器结构的设计方法,对水下机 器人运行控制方法的选取、控制器的设计具有较好的参考意义。 水下机器人的运动控制是其完成特定任务的前提和保障,是水下机器人关键技术之一。 随着水下机器人应用范围的扩大,对其自主性,运动控制的精度和稳定性的要求都随之增 加,如何提高其运动控制性能就成了研究的一个重要课题。导致AUV难于控制的主要因素包括:①水下机器人高度的非线性和时变的水动力学性能;②负载的变化引起重心和浮心的改变;③附加质量较大,运动惯性较大,不能产生急剧的运动变化;④难于获得精确的水动力系数;⑤海流的干扰。这些因素使得AUV的动力学模型难以准确,而且具有强耦合和非线性的特点。目前已被采用的控制方法有:模糊控制、神经网络控制、专家控制、PID控制、自适应控制、S面控制等。 智能控制是一个由人工智能自动控制和运筹学的交叉构成的交叉学科近年来,智能控制技术成为水下机器人发展的一个重要技术水下机器人难于控制的原因有几个方面,水下机器人在运行中收到海流等外界极不稳定环境因素的干扰,使其控制变得更加困难;水下机器人各项参数的高度的非线性的特点;水下机器人的水动力性能在不同的海洋环境下会改变较明显;海底水下机器人水动力系数难以测量,不能获得一个较为准确的数据;水下机器人体积大质量大,因此所受惯性大,运动变化难以在较短的时间内实现;水下机器人在运动过程中重心和浮心易改变会引起控制较为困难等智能控制如果能用在水下机器人,可以更好的使其适应复杂的海洋环境。 智能控制系统的类型

川崎机器人E控系列基本操作培训手册 系统设置篇

佛山隆深机器人有限公司内部技术培训教程 川崎机器人应用参数设置

川崎机器人E控系列基础操作培训教程 系统设置篇 教程编制:佛山隆深机器人有限公司 川崎机器人中国华南区S级代理商

如何进入设置面板界面 第一步:按示教器的,在弹出的菜单内选择[辅助功能],然后按示教器的 .

主菜单的设置分类 第一步:按示教器的,在弹出的菜单内选择[辅助功能],然后按示教器的 示教器的方向键↑↓可选择需要修改的项目按【登陆】键进入子菜单. 常用设置菜单为: 2.保存/加载(用来保存和加载程序) 4.基本设定(设定机器人基础数据) 5.高级设定(系统开关/核心参数设定) 6.输入/输出信号(专用信号/信号编号设定) 7.显示器功能(履历/机器人运行数据) 8.系统(核心控制/设置参数.

程序的保存/加载 .保存/加载功能提供程序/参数等数据的导入/导出操作,我们可以把外部存储设备的数据导入机器人,也可以把机器人内部的数据导出来进行分析/编辑. 保存:把机器人内部的数据按所选类型导出到USB存储设备中. 加载:将USB存储设备中的数据按所选类型导入机器人内部存储. 注:正在使用/打开的程序无法加载到机器人内部(提示程序正在运行,加载错误).

机器人内部数据的导出 保存(导出)数据:(R码0201) 首先:进入机器人数据保存菜单 然后:用[↑↓]键移动到文件名输入框 然后:;用手点击(输入文件名),在弹出的(键盘操作页)输入文件名. 注:※文件名不能以数字开头※ 可以是字母+数字,也可以加下划线 输入完毕后点击(保存数据)选择保存的 文件类型. 选择完类型后就可以点击保存了.

水下机器人发展概述

水下机器人发展概述 1水下机器人发展背景 在浩瀚的宇宙中,有一个蔚蓝色的星球,那是人类赖以生存的地方——地球。地球的表面积为5.1亿平方公里,而海洋的面积为3.6亿平方公里。地球表面积的71%被海洋所覆盖。在烟波浩渺的海洋深处,蕴藏着什么样的宝藏?是否存在着智慧生命?海底生物是怎样生活的?海底的地形地貌又是什么样的?所有这一切都使海洋充满了神秘的色彩,也吸引了无数科学家、探险家为之探索。从远古时代起,人们就泛舟于海上。从19世纪起,人们开始利用各种手段对海洋进行探察。20世纪,水下机器人技术作为人类探索海洋的最重要的手段,受到了人们普遍的关注。进入21世纪,海洋作为人类尚未开发的处女地,已成为国际上战略竞争的焦点,因而也成为高技术研究的重要领域。毫不夸张地说,本世纪是人类进军海洋的世纪。人类关注海洋,是因为陆上的资源有限,海洋中却蕴藏着丰富的矿产资源、生物资源和能源。另一个重要原因是,占地球表面积49%的海洋是国际海底区域,该区域内的资源不属于任何国家,而属于全人类。但是如果哪一个国家有技术实力,就可以独享这部分资源。因此争夺国际海底资源也是一项造福子孙后代的伟大事业。水下机器人作为一种高技术手段,在海底这块人类未来最现实的可发展空间中起着至关重要的作用,发展水下机器人的意义是显而易见的。 2水下机器人的定义与分类 2.1水下机器人的定义与概述 水下机器人也称作无人水下潜水器(unmannedunderwatervehicles,UUV),它并不是一个人们通常想象的具有类人形状的机器,而是一种可以在水下代替人完成某种任务的装置。在外形上更像一艘微小型潜艇,水下机器人的自身形态是依据水下工作要求来设计的。生活在陆地上的人类经过自然进化,诸多的自身形态特点是为了满足陆地运动、感知和作业要求,所以大多数陆地机器人在外观上都有类人化趋势,这是符合仿生学原理的。水下环境是属于鱼类的“天下”,人类身体的形态特点与鱼类相比则完全处于劣势,所以水下运载体的仿生大多体现在对鱼类的仿生上。目前水下机器人大部分是框架式和类似于潜艇的回转细长体,随着仿生技术的不断发展,仿鱼类形态甚至是运动方式的水下机器人将会不断发展。水下机器人工作在充满未知和挑战的海洋环境中,风、浪、流、深水压力等各种复杂的海洋环境对水下机器人的运动和控制干扰严重,使得水下机器人的通信和导航定位十分困难,这是与陆地机器人最大的不同,也是目前阻碍水下机器人发展的主要因素。 2.2水下机器人的分类 水下潜水器根据是否载人分为载人潜水器和无人潜水器两类。载人潜水器由人工输入信号操控各种机动与动作,由潜水员和科学家通过观察窗直接观察外部环境,其优点是由人工亲自做出各种核心决策,便于处理各种复杂问题,但是人生命安全的危险性增大。由于载人需要足够的耐压空间、可靠的生命安全保障和生命维持系统,这将为潜水器带来体积庞大、系统复杂、造

AUV水下机器人运动控制系统方案设计书(李思乐)

封面

作者:PanHongliang 仅供个人学习 中国海洋大学工程学院 机械电子工程研究生课程考核论文 题目: AUV水下机器人运动控制系统研究报告

课程名称:运动控制技术姓名:李思乐 学号: 21100933077 院系:工程学院机电工程系专业:机械电子工程 时间:2010-12-26 课程成绩: 任课老师:谭俊哲

AUV水下机器人运动控制系统设计 摘要:以主推加舵控制的小型自治水下机器人为研究对象,建立了水下机器人的数学模型并进行了分析。根据机器人结构的特点,对模型进行了必要的简化。设计了机器人的运动控制系统。以成功研制的无缆自治水下机器人(AUV) 为基础,对其航行控制和定位控制方法进行了较详细的分析. 同时介绍了它的推进器布置、控制系统结构、推力分配等方法。最后展示了它的运行实验结果。关键词:水下机器人;总体设计方案;运动控制系统;电机仿真 1 引言 近年来国外水下机器人技术发展迅速,技术水平较高。其中,具有代表性的产品有:美国Video Ray 公司开发出的Scout、Explorer、Pro 等系列遥控式水下机器人,美国Seabotix公司研发的LBV-ROV 系列,英国AC-CESS 公司的AC-ROV系列。 随着海洋开发、探测的需求越来越强,水下机器人成为全世界研究的热门课题。小型自治水下机器人具有低成本、小型化、操作灵活等特点成为近年来国内外研究的热点。自治水下机器人(Autonomous Underwater Vehicles, AUV),载体采用模块化设计思想, 可根据需要适当增减作业或传感器模块, 载体采用鱼雷状流线外形, 总长约2 m, 外径25 cm, 基本模块包括推进器模块、能源模块、电子舱模块、传感器模块以及GPS、无线电通讯模块, 基本传感器有姿态传感器、高度计、深度计和视觉传感器, 支持光纤通讯, 载体可外挂声学设备, 通过光纤系统进行遥控操作可实现其半自主作业, 也可在预编程指令下实现自主作业。系统基本模块组成设计如图1-1所示[1]。它具有开放式、模块化的体系结构和多种控制方式(自主/半自主/遥控),自带能源。这种小型水下机器人可在大范围、大深度和复杂海洋环境下进行海洋科学研究和深海资源调查,具有更广泛的应用前景。在控制系统的设计过程中充分考虑了系统的稳定性和操纵性。控制器具有足够的鲁棒性来克服建模误差,以及水动力参数变化。 图1-1 系统基本模块组成设计 2机器人物理模型 2.1 AUV 物理模型 为了研究AUV 的运动规律,确定运行过程中AUV 的位置和姿态,需要建立AUV 的动力学模型。为了便于分析,建立适合于描述AUV 运动的两种参考坐标系,即固定坐标系Eξηζ 和运动坐标系Oxyz,如图2-1 所示:包含5 个推进器,分别是艉部的2 个主推进器、艉部的1 个垂向推进器和艏部的2 个垂向推进器。左右对称于纵中剖面,上和下、前和后都不对称[2]。 图2-1AUV水下机器人物理模型 1.2微小型水下机器人动力学分析 微小型水下机器人总长 1.5m,采用锂电池作为能源,尾部为一对水平舵和一对垂直舵,单桨推进,可携带惯导设备、探测声纳、水下摄像机、深度计等设备,设计巡航速度约 2 节。首先建立适合描述水下机器人空间运动的坐标

机器人系统操作手册簿

机器人系统操作手册 专机部分 一、检查 1、动力电压交流400V 230V,如果打开柜门小心有电。 2、控制电源直流24V 3、气压大于0.6兆帕

二、上电 图2-1 图2-1为未上电状态,如果需要上电需要做好上电前准备: 1、检查急停开关是否复位; 2、手动/自动开关打到手动; 3、无报警信息; 4、按下按钮,系统上电; 5、上电正常 注:紧急状况下,拍下急停按钮,系统断电。

系统复位按钮按下系统复位,可复位故障信息。 急停复位按钮按下急停复位 蜂鸣器复位按钮按下可在故障发生时停止蜂鸣器 灯测试按钮按下指示灯全亮,检测指示灯是否无输出 HOME循环按钮按下设备回到HOME点,即设备初始位置 系统暂停按钮按下专机和机器人进入暂停状态,再次按下暂停状态取消

三、运行 一)自动启动 1、将手动/自动按钮切换到自动位置后,控制面板显示状态如下图所示, 2、按下系统启动按钮系统启动,控制面板状态下图所示。 3、自动启动完成

二)自动状态及单机控制(HMI) 1、主画面 (仅供参考) 主画面,见上图,为设备上电后自动进入的默认页面。(不同的区域设备号不同,以下以分拣C20为例) 设备1723—>1#专机设备1723&1718 –> 1#机器人 设备1718—>2#专机 设备1713—>3#专机设备1713&1718 –> 2#机器人 设备1708—>4#专机设备1708&1703 –> 3#机器人 设备1703—>5#专机 设备1698—>6#专机设备1698&1703 –> 4#机器人

状态显示区: 主画面左侧区域为状态显示区,主要显示设备的工作状态,每个工作状态对应一种颜色,例如:故障是紫色,准备好是黄色,运行是绿色。 专机选择区: 主画面右侧区域为专机选择区,在自动运行过程中如果需要单台专机单独控制,选择对应按钮进入相应的画面即可。 报警信息区:

ABB机器人操作培训SCIRB说明书_完整版

S4C IRB 基本操作 培训教材 目录 1、培训教材介绍 2、机器人系统安全及环境保护 3、机器人综述 4、机器人启动 5、用窗口进行工作 6、手动操作机器人 7、机器人自动生产 8、编程与测试 9、输入与输出 10、系统备份与冷启动 11、机器人保养检查表 附录1、机器人安全控制链 附录2、定义工具中心点

附录3、文件管理 1、培训教材介绍 本教材解释ABB机器人的基本操作、运行。 你为了理解其内容不需要任何先前的机器人经验。 本教材被分为十一章,各章分别描述一个特别的工作任务和实现的方法。各章互相间有一定联系。因此应该按他们在书中的顺序阅读。 借助此教材学习操作操作机器人是我们的目的,但是仅仅阅读此教材也应该能帮助你理解机器人的基本的操作。 此教材依照标准的安装而写,具体根据系统的配置会有差异。 机器人的控制柜有两种型号。一种小,一种大。本教材选用小型号的控制柜表示。大的控制柜的柜橱有和大的一个同样的操作面板,但是位于另一个位置。 请注意这教材仅仅描述实现通常的工作作业的某一种方法,如果你是经验丰富的用户,可以有其他的方法。 其他的方法和更详细的信息看下列手册。 《使用指南》提供全部自动操纵功能的描述并详细描述程序设计语言。此手册是操作员和程序编制员的参照手册。 《产品手册》提供安装、机器人故障定位等方面的信息。 如果你仅希望能运行程序,手动操作机器人、由软盘调入程序等,不必要读8-11章。

2、机器人系统安全及环境保护 机器人系统复杂而且危险性大,在训练期间里,或者任何别的操作过程都必须注意安全。无论任何时间进入机器人周围的保护的空间都可能导致严重的伤害。只有经过培训认证的人员才可以进入该区域。请严格注意。 以下的安全守则必须遵守。 万一发生火灾,请使用二氧化碳灭火器。 急停开关(E-Stop)不允许被短接。 机器人处于自动模式时,不允许进入其运动所及的区域。 在任何情况下,不要使用原始盘,用复制盘。 搬运时,机器停止,机器人不应置物,应空机。 意外或不正常情况下,均可使用E-Stop键,停止运行。在编程,测试及维修时必须注意既使在低速时,机器人仍然是非常有力的,其动量很大,必须将机器人置于手动模式。 气路系统中的压力可达0.6MP,任何相关检修都要断开气源。 在不用移动机器人及运行程序时,须及时释放使能器(Enable Device)。 调试人员进入机器人工作区时,须随身携带示教器,以防他人无意误操作。 在得到停电通知时,要预先关断机器人的主电源及气源。 突然停电后,要赶在来电之前预先关闭机器人的主电源开关,并及时取下夹具上的工件。

水下机器人发展趋势

水下机器人发展趋势 关键词:水下机器人、智能水下机器人、智能体系、运动控制、通讯导航、探测识别、高效能源 随着人类海洋开发的步伐不断加快,水下机器人技术作为人类探索海洋最重要的手段得到了空前的重视和发展。作者对水下机器人进行了定义与分类。介绍了近年来国内外水下机器人的发展现状与发展趋势,重点针对智能水下机器人的主要关键技术及未来发展方向进行了分析。地球的表面积为5.1亿km2,而海洋的面积为3.6亿km2。占地球表面积71%的海洋是人类赖以生存和发展的四大战略空间——陆、海、空、天中继陆地之后的第二大空间,是能源、生物资源和金属资源的战略性开发基地,不但是目前最现实的,而且是最具发展潜力的空间。作为蓝色国土的海洋密切关系到人类的生存和发展,进入21世纪后,人类更加强烈的感受到陆地资源日趋紧张的压力,这是人类面临的最现实的问题。海洋即将成为人类可持续发展的重要基地,是人类未来的希望。水下机器人从20世纪后半叶诞生起,就伴随着人类认识海洋、开发海洋和保护海洋的进程不断发展。专为在普通潜水技术较难到达的区域和深度执行各种任务而生的水下机器人,将使海洋开发进人一个全新的时代,在人类争相向海洋进军的21世纪,水下机器人技术作为人类探索海洋最重要的手段必将得到空前的重视和发展[1]。 1海洋对人类的重要性

海洋作为蓝色国土,首先是一个沿海国家的“门户”,是其与远方联系的便捷途径,并且“门户”的安全是国家安全的重要组成部分,早在2 500多年前古希腊海洋学家锹未斯托克就提出过“谁控制了海洋,谁就控制了一切”。很久以来人们就依赖于海洋航道进行大量的物品贸易,现在整个世界大部分的货物运输都依赖于海上运输,海洋运输是整个经济正常运转必要的一环。更重要的是,现在很多国家的石油、矿石等最基本的生产资料大部分都依赖于海洋运输,海洋运输的安全和对海洋的控制力成为一个国家生存的基本保障。 近年来再次掀起海洋热的浪潮是因为陆上的资源有限,很多资源已经开发殆尽,而海洋中蕴藏着丰富的能源、矿产资源、生物资源和金属资源等,人们急需开发这些资源以接替所剩不多的陆上资源来维持发展。更为重要的是,地球上半数以上面积的海洋是国际海域,这些区域内全部的资源属于全体人类,不属于任何国家。但目前的现状是只有少数国家有能力对这些资源进行初步开采,这些国家在其已探明的区域拥有优先开采权,相对于那些没有能力开采的国家这几乎就等于独享这部分资源。因此海洋已经成为国际战略竞争的焦点,争夺国际海洋资源是一项造福子孙后代的伟大事业。所以水下技术成为目前重点研究的高新技术之一,智能水下机器人作为高效率的水下工作平台在海洋开发与利用中起到至关重要的作用。 2水下机器人的定义与分类

H300 ROV水下机器人指标资料

●H300 ROV水下机器人(法国ECA Hytec公司) 1.系统规格 水下运载器部分: ?性能:三轴运动,满载静水中前进速度3节; ?作业深度:300米; ?尺寸:80×60×47cm(长,宽,高); ?重量:65Kg(空气中),不包含选件; ?制作材料:压缩聚丙烯框架,316L不锈钢支干; ?推进器:4个,两个做水平运动,一个做垂直运动,一个做横 向运动; ?自动航向精度:±1%量程; ?自动水深精度:0.1%量程; ?搭载能力:15.5公斤; 光学成像设备配置: ?低光导航TV 摄像机(黑白)–置于H300顶上端 ?静画TV 相机VSPN 303 ?3倍变焦; ?同步闪光; ?自动对焦; ?可控快门; 美国DIDSON双频识别声纳; ?高频模式

?作业频率:1.8 MHz ?波束宽(双向):0.5 度水平x 13 度垂直 ?波束:96 ?作用范围:1 - 15 米 ?低频模式 ?作业频率:1.1 MHz ?波束宽(双向):0.3 度水平x 13 度垂直 ?波束:48 ?作用范围:1 – 40 米 ?双频模式 ?最大图像显示速度:5–21 幅/秒 ?视角:29 度 ?调焦:自1 米至最大作业距离 ?电池支持时间:2.5 小时 ?空气中重量:7.7 公斤 ?电池空气中重量:2 公斤 ?声纳尺寸:43(包括13 厘米手把) x 20 x 17 厘米 ?电池盒尺寸:18 x 13 厘米直径 ?作业深度:90 米 ?能耗:30W(24VDC@1.25A) 液压机械臂: ?180 度旋转

?80巴压力之下的转矩8Nm ?80巴压力之下举重10 公斤 ?钳夹旋转180 度 ?可切割绳索 ?材料:高密度聚乙烯,不锈钢叉钳; ?尺寸:长55.3 厘米,高为9.7 厘米,宽23.2 厘米 ROV水下系链电缆: ?直径:19.5 毫米+/-1 毫米 ?密度:0.99 ?强度:800 daN ?动态弯曲半径:> 30 厘米 ?静态弯曲半径:>16 厘米 ROV水面控制器: ?设置相机各种参数,摄像状况,电控快门,亮度调节; ?启动,显示自动航向,自动水深(包括航迹指示、旋转次数指 示); ?控制数字静画相机拍摄; ?在硬盘上存储相片; ?启动图像旁注(短文,日期,时间,航向/深度); ?系统自检状况(电源状况,自动量测传感器内部温度,湿度, 进水报警); ?控制灯光(开,关,亮度);

水下机器人推进系统综述

摘 要: 阐述了水下机器人的推进装置,介绍了水下机器人常见的推进装置类型和关键技术。 关键词:水下机器人 推进装置 关键技术 水下机器人按用途分类可分为作业用水下机器人和观测用水下机器人;按电源配置分类,可分为有缆水下机器人(ROV)和无缆水下机器人(AU V);按运动方式分类,可分为浮游式水下机器人、履带式水下机器人和步行式水下机器人。近年来,随着越来越多的国家重视海洋,如何设计出多功能智能化的水下机器人以及高效率的水下推进装置成为研究重点。 国外对水下机器人研制较早,技术也更加先进。自从1953年世界上第一台水下机器人“Poodle”研发出来后,世界各国也都开始了对水下机器人研究机构的创建。2010年美国科研人员研发出主要依靠海水热能驱动的新型水下机器;2019年挪威科技大学和kongsberg海事公司合作研究出一款仿生机器蛇,可以更方便的到达目的区域。我国开展对水下机器人研究较晚,我国首台水下机器人“海人一号”样机在1985年进行海试并取得成功,此后国内水下机器人研究层次不断上升新得高度。2018年10月,我国自主研制的“海星号”有缆水下机器人下潜深度突破6000米,创造了我国有缆水下机器人最大下潜深度;由中科院海洋所等机构研发的“发现号”水下机器人,已经执行数百个潜次任务,获取数千例岩石、生物等样品。 1.水下机器人的推进系统 目前,水下机器人的推进装置主 要有螺旋桨推进器、液压推进器、泵 喷推进器、磁流体推进器、仿生推进 器、履带推进器等。 2.螺旋桨推进器 螺旋桨是指靠桨叶在水中旋转, 将电机转动功率转化为推进力的装 置。工作原理:由作用力与反作用力 的原理可知,当电机带动螺旋桨转动 时,产生对水的一个向后的力,那么 水也会对螺旋桨一个反作用力,以此 来驱动水下机器人。可以通过改变 驱动电机的转速参数以及螺旋桨的 转向来控制水下机器人的航速和航 向。目前大多数水下机器人采用多螺 旋桨协同推进方式,即通过对螺旋 桨分布的位置进行设计,然后通过 系统控制每一个螺旋桨的旋转,继 而达到控制机器人的姿态和驱动。 这种推进方式的优点是:螺旋桨在 一定速度下连续转动可以产生高效 的推进力。缺点是:在机器人较高速 度航行时,能量损失比较大。目前常 见的螺旋桨形式有:可调螺距螺旋 桨、导管型螺旋桨、串列型螺旋桨、 对转螺旋桨。我国研制的“蛟龙号” 载人下潜机器人采用的是多导管螺 旋桨协同推进。 3.液压推进器 液压推进系统因为由液压液体 流量来控制,所以增大了调速范围。 液压推进器采用安装螺旋桨推进, 通过增加推进器的个数来对机器人 姿态和航向的改变。液压推进系统 主要由液压动力单元、控制单元、执 行单元、液压油和其他辅助元件组 成,通过元件间的相互配合来驱动 机器人。现阶段水下作业级机器人基 本采用液压推进方式,这种推进方 式的特点:液压系统体积小、传动稳 定、通用性强、安全性高、良好的调 速性等。为了设计和调试液压系统, 采用计算机仿真,目前主要的液压仿 真软件有:A MESim、Matlab等, 其中A ME Sim应用范围最广。2014 年4月,我国国内首套应用于4500米 级水下机器人“海马号”的液压推进 系统在南海通过了海试验收。 4.喷水推进器 喷水推进器又称泵喷推进器,一 般将进水口、水泵和喷口等部件的综 合称为喷水推进器。原理是:水通过 进水口进入,由电机带动水泵将水加 速后经出水道,由喷口向后喷出,利 用反作用力推动机器人前进。采用喷 水推进器的优点:效率高、速度快、 84/ 珠江水运·2019·07

探析自主水下机器人机械结构设计及实现

探析自主水下机器人机械结构设计及实现 机器人技术的发展在当前智能技术领域发展的助力下已经取得了迅速和重要的突破,并且已经渗透到了生产生活和科学研究的各个领域,为社会的发展注入了新的动力。水下机器人作为机器人领域的一项重要研究内容,在水下探测和资源勘探等方面发挥着重要的作用,本文通过对自主水下机器人各个方面机械结构的介绍,对其机械结构设计方面的技术进行分析。 标签:水下机器人;机械结构;设计与实现 一、水下机器人的发展与应用 水下机器人技术是机器人领域与水下侦查和水文探测等水下作业方面技术的结合所形成的一门新兴学科,对水下探测、资源勘探、海上导航、与目标侦查等民用和军用相应范围内各类水下任务的执行都有着十分重要的意义。水下机器人是在当前较为成熟的机器人技术在特定的水下作业环境中发展而来的技术,其技术理论涉及了机械设计、水下动力、流体力学和智能控制等多方面的相关技术。 水下机器人由于工作环境的特殊性,在相关的外形设计和结构布局等方面也与常规的机器人有所区别,具体来说,水下机器人在结构设计方面有着以下几点主要的要求:阻力小,更有利于水下機器人的水下运动;结构和材料强度能够应对一定水深下的压强变化;结构布局、性能指标和制造工艺等更加符合水下作业环境等。 二、水下机器人的机械结构设计与实现 (一)水下机器人的设计要求 当前,水下机器人的机械结构设计可以分为框架型结构、流线型结构以及混合型结构。其中框架型的结构设计是指在实现水下机器人大的基本功能框架的基础上,按照具体的实际需求和工作环境进行相关机械部件的增添,使机器人的整体结构布局更加容易进行调整,但是存在着体型笨重,水下阻力较大等缺点影响了该类型水下机器人的实际使用性能;流线型的结构设计是利用了仿生学的原理技术,将水下机器人的外形设计成类似鱼类的形状例如鱼雷形状和枋梭形状,来减小其在水下工作过程中的运动阻力,在一定程度上减小了运行能耗并延长了水下的工作时间,满足了更多水下任务的工作需求;混合型的结构设计是将框架型结构设计和流线型结构设计相结合形成的机械结构设计方案,综合了以上两种结构设计的特点和优势,使水下机器人既具备了一定的结构部件可调性,又拥有了水下作业时良好的机动性能和续航能力。 (二)整体设计方案与流程 在对水下机器人的设计要求和主要的机械结构的形式进行了分析之后,综合

水下机器人发展概述

水下机器人发展概述 --船舶102 赵书孝 1005080224 无人遥控潜水器,也称水下机器人。一种工作于水下的极限作业机器人,能潜入水中代替人完成某些操作,又称潜水器。水下环境恶劣危险,人的潜水深度有限,所以水下机器人已成为开发海洋的重要工具。无人遥控潜水器主要有,有缆遥控潜水器和无缆遥控潜水器两种,其中有缆避控潜水器又分为水中自航式、拖航式和能在海底结构物上爬行式三种。 特别是近10年来,无人遥控潜水器的发展是非常快的。从1953年第一艘无人遥控潜水器问世,到1974年的20年里,全世界共研制了20艘。特别是l974年以后,由于海洋油气业的迅速发展,无人遥控潜水器也得到飞速发展。到1981年,无人遥控潜水器发展到了400余艘,其中90%以上是直接;或间接为海洋石油开采业服务的。1988年,无人遥控潜水器又得到长足发展,猛增到958艘,比1981年增加了110%。这个时期增加的潜水器多数为有缆遥控潜水器,大约为800艘上下,其中420余艘是直接为海上池气开采用的。无人无缆潜水器的发展相对慢一些,只研制出26艘,其中工业用的仪8艘,其他的均用于军事和科学研究。另外,载人和无人混合理潜水器在这个时期也得到发展,已经研制出32艘,其中28艘用于工业服务。 无人有缆潜水器研制与发展 无人有缆潜水器的研制开始于70年代,80年代进入了较快的发展时期。1987年,日本海事科学技术中心研究成功深海无人遥控潜水器“海鲀3K”号,可下潜3300米。研制“海鲀3K”号的目的,是为了在载人潜水之前对预定潜水点进行调查而设计的,供专门从事深海研究的,同时,也可利用“海鲀3K”号进行海底救护。“海鲀3K”号属于有缆式潜水器,在设计上有前后、上下、左右三个方向各配置两套动力装置,基本能满足深海采集样品的需要。1988年,该技术中心配合“深海6500”号载人潜水器进行深海调查作业的需要,建造了万米级无人遥控潜水器。这种潜水器由工作母船进行控制操作,可以较长时间进行深海调查。这种潜水器可望在1992年内建成,总投资为40亿日元。日本对于无人有缆潜水器的研制比较重视,不仅有近期的研究项目,而且还有较大型的长远计划。目前,日本正在实施一项包括开发先进无人遥控潜水器的大型规划。这种无人有缆潜水器系统在遥控作业、声学影像、水下遥测全向推力器、海水传动系统、陶瓷应用技术水下航行定位和控制等方面都要有新的开拓与突破。这项工作的直接目标是有效地服务于200米以内水深的油气开采业,完全取代目前由潜水人员去完成的危险水下作业。在无人有缆潜水技术方面,始终保持了明显的超前发展的优势。根据欧洲尤里卡计划,英国、意大利将联合研制无人遥控潜水器。这种潜水器性能优良,能在6000米水深持续工作250小时,比现在正在使用的只能在水下4000米深度连续工作只有l2小时的潜水器性能优良的多。按照尤里卡EU-191计划还将建造两艘无人遥控潜水器,一艘为有缆式潜水器,主要用于水下检查维修;另一艘为无人无缆潜水器,主要用于水下测量。这项潜水工程计划将由英国;意大利、丹麦等国家的l7个机构参加。英国科学

相关文档
最新文档