Human Cancer Biology Glycoprotein Nonmetastatic Melanoma Protein B, a Potential Molecular T

Human Cancer Biology Glycoprotein Nonmetastatic Melanoma Protein B, a Potential Molecular T
Human Cancer Biology Glycoprotein Nonmetastatic Melanoma Protein B, a Potential Molecular T

Glycoprotein Nonmetastatic Melanoma Protein B,a Potential Molecular Therapeutic T arget in Patients with Glioblastoma Multiforme

Chien-T sun Kuan,1,2KenjiWakiya,1,2Jeannette M.Dowell,3James E.Herndon II,3DavidA.Reard on,1Michael W.Graner,1,2GregoryJ.Riggins,4Carol J.Wikstrand,1,2andDarell D.Bigner 1,2

Abstract

Purpose:More brain tumor markers are requiredfor prognosis andtargetedtherapy.We have identified and validated promising molecular therapeutic glioblastoma multiforme (G BM)targets:human transmembrane glycoprotein nonmetastatic melanoma protein B (GPNMB wt )and a splice variant form (GPNMB sv ,a 12-amino-acidin-frame insertion in the extracellular d omain).

Experimental Design:We have done genetic and immunohistochemical evaluation of human G BM to determine incidence,distribution,and pattern of localization of G PNMB antigens in brain tumors as wellas survivalanalyses.

Results:Quantitative real-time PCR on 50newly diagnosed G BM patient tumor samples indi-catedthat 35of 50G BMs (70%)were positive for GPNMB wt+sv transcripts and15of 50GBMs (30%)were positive for GPNMB sv transcripts.Normal brain samples expressedlittle or no GPNMB mRNA.We have isolatedandcharacterizedan anti-G PNMB polyclonal rabbit antiserum (2640)andtwo IgG 2b monoclonal antibod ies (mAb;G 11andU2).The bind ing affinity con-stants of the mAbs rangedfrom 0.27?108to 9.6?108M à1

measuredby surface plasmon resonance with immobilizedG PNMB,or 1.7to 2.1?108M à1by Scatchardanalyses with cell-expressedG PNMB.Immunohistochemical analysis d etectedG PNMB in a membranous and cytoplasmic pattern in 52of 79GBMs (66%),with focal perivascular reactivity in f 27%.Quan-titative flow cytometric analysis revealedG PNMB cell surface molecular d ensity of 1.1?104to 7.8?104molecules per cell,levels sufficient for mAb targeting.Increased GPNMB mRNA levels correlatedwith elevatedG PNMB protein expression in G BM biopsy samples.Univariate and multivariate analyses correlatedexpression of G PNMB with survival of 39G BM patients using RNA expression andimmunohistochemical d ata,establishing that patients with relatively high mRNA GPNMB transcript levels (wt+sv andwt),>3-foldover normal brain,as well as positive immunohistochemistry,have a significantly higher risk of death (hazard ratios,3.0,2.2,and 2.8,respectively).

Conclusions:IncreasedmRNA andprotein levels in G BM patient biopsy samples correlated with higher survival risk;as a detectable surface membrane protein in glioma cells,the data indicate that G PNMB is a potentially useful tumor-associated antigen and prognostic predictor for therapeutic approaches with malignant gliomas or any malignant tumor that expresses GPNMB.

G lioblastoma multiforme (GBM)accounts for f 50%of all

primary brain tumors in adults and is usually rapidly fatal (1).Despite recent advances in surgery and radiotherapy and the development of chemotherapeutic reagents,the clinical out-come for most GBM patients is unsatisfactory.Although a recent study showed,for the first time,a meaningful survival benefit associated with chemotherapy using an innovative,temozolo-mide-based chemoradiation approach (2),the median progres-sion-free survival among patients treated with this regimen was only 7.9months,whereas the overall survival was only 14.6months (2).Thus,effective treatment of GBM patients continues to represent a significant unmet need in oncology.

Monoclonal antibody (mAb)–based targeted therapy has been introduced to circumvent the limited efficacy of con-ventional therapies (3).Either alone or in conjunction with

Human Cancer Biology

Authors’Affiliations:1Preston Robert Tisch Brain T umor Center at Duke,Depart-ments of 2Pathology and 3Biostatistics,Duke University Medical Center,Durham,North Carolina and 4Department of Neurosurgery,Johns Hopkins University,Baltimore,Maryland

Received12/21/05;accepted1/18/06.

Grant support:NIH grants NS20023andCA11898,NIH grant MO1RR 30;General Clinical Research Centers Program;National Center for Research Resources;National Cancer Institute SpecializedPrograms of Research Excellence 1P50CA108786;Finding Cures for Glioblastoma Research Awards,and a grant from the Pediatic Brain T umor Foundation of the United States.

The costs of publication of this article were defrayed in part by the payment of page charges.This article must therefore be hereby marked advertisement in accordance with 18U.S.C.Section 1734solely to indicate this fact.

Requests for reprints:Darell D.Bigner,Department of Pathology,Duke University Medical Center,Durham,NC 27710.Phone:919-684-5018;Fax:919-684-6458;E-mail:bigne001@https://www.360docs.net/doc/b018208128.html,.

F 2006American Association for Cancer Research.doi:10.1158/https://www.360docs.net/doc/b018208128.html,R-05-2797

cytotoxins or radioisotopes,antibodies that are developed against cell surface or extracellular matrix antigens with tumor-restricted distribution can offer a more specific delivery system for cytotoxic reagents resulting in a high degree of selective destruction of tumors.The search for appropriate brain tumor –associated antigens has been a key challenge for immunotherapeutic approaches to central nervous system neoplasia (4–8).Development and progression of glial tumors arises as the result of accumulation of multiple genetic altera-tions in a single cell.As a result,malignant gliomas are composed of heterogeneous populations of cells both in genotype and phenotype (9,10).Therefore,glioma cells exhibit a wide variation in antigenic profile even within each individual tumor (11).Because there is no single gene product that was reported overexpressed in all GBM cases,success in mAb-based therapy for GBM will require the identification of a panel of glioma-associated antigens and the proper selection of target-specific mAbs for each patient.

Recent advances in the development of comprehensive molecular analysis tools for genome and gene expression provide a basis to discover novel target molecules with tumor-specific distribution (12).In an attempt to identify novel glioma-associated antigens,we have previously reported several genes that are preferentially expressed in GBMs by the serial analysis of gene expression method (13).Among these candidate GBM marker genes,glycoprotein nmb (GPNMB )showed a >10-fold induction of mRNA expression over normal brain samples in 5of 12GBM cases (13).

GPNMB is a type I transmembrane protein that was isolated from a subtractive cDNA library based on differential expres-sion between human melanoma cell lines with low and high metastatic potential in nude mice.GPNMB mRNA was expressed at high levels in low-metastatic melanoma cell lines and xenografts (14).The human GPNMB gene encodes a predicted 560amino acid protein,the deduced amino acid sequence of which shows that GPNMB is made up of three domains,a long extracellular domain (ECD)preceded by a signal peptide,a single transmembrane region,and a relatively short cytoplasmic domain (Fig.1).The human GPNMB amino acid sequence had homology of 71.1%to DC-H IL (15),69.8%to osteoactivin (16),56%to the precursor of pMel 17(17),and 51%to QNR-71(18).The human GPNMB gene was localized to human chromosome 7q15(National Center for Biotechnol-ogy Information Unigene Cluster Hs.82226GPNMB ),a locus involved in the human inherited disease cystoid macular dystrophy.Recently,Bachner et al.(19)suggested that human GPNMB may be a candidate gene for the dominant cystoid macular edema because they found high expression of murine GPNMB mRNA within the retinal and iris pigment epithelium.The function of GPNMB has not been fully described,and

paradoxical effects have been noted in transfection studies.Transfection of our in vitro minimally transformed human fetal astrocyte line THRG (20)with GPNMB cDNA altered the phenotype of both s.c.and intracranial tumors growing in athymic mice from a minimally invasive to a highly invasive and metastatic phenotype.Conversely,transfection of a partial GPNMB cDNA into a highly metastatic melanoma cell line resulted in slower s.c.tumor growth and also in reduction of the potential for spontaneous metastasis in nude mice (14).If the overexpression of GPNMB RNA by gliomas and lack of expression in normal brain is reflective of GPNMB protein expression,GPNMB,as an integral membrane protein,could be an important target for immunotherapy.Moreover,there is evidence that GPNMB may be involved in the invasive malignant phenotype of gliomas,making evaluation of GPNMB-expressing cells important (21).In our previous analysis,we could not detect GPNMB transcripts in four normal brain cortex samples,two whole brain samples,or one sample each of cerebellum,spinal cord,heart,kidney,lung,trachea,tonsil,or bone marrow (13).We have therefore proposed to investigate the suitability of this GPNMB marker as a glioma therapeutic target.

In this study,we have done genetic and immunohistochem-ical evaluation of human gliomas to determine the incidence,distribution,and pattern of localization of GPNMB antigens in brain tumors.To evaluate the therapeutic potential of GPNMB as a GBM-associated antigen,a series of 50newly diagnosed GBM biopsy specimens were examined for GPNMB RNA tran-script levels by real-time reverse transcription-PCR (RT-PCR).In addition,a larger panel of 79newly diagnosed GBM cases,including 39of the 50samples in the mRNA study,was assessed for GPNMB protein expression by immunohistochem-ical analysis,and survival analyses were done based on these two variables.We have shown that significant numbers of GBMs overexpress GPNMB at the mRNA and protein levels,and that expression levels correlate with poorer prognosis for those patients.We conclude that therapeutic strategies designed to target GPNMB may be successful in the treatment of malignant glioma.

Materials and Methods

Cell lines,cell transfection,and tumor xenografts.Human malignant glioma –derived cell lines D54MG,D245MG,D247MG,and D392MG were established and maintained in our laboratory,whereas the glioma cell lines U87MG,T98G (MG),and U251MG,and the melanoma cell lines SK-Mel-28,A375,C32,and Malme-3M were obtained from the American Type Culture Collection (Manassas,VA).Malignant glioma and melanoma cell lines were grown in Zinc Option medium supplemented with 10%fetal calf serum.The propagation,storage,and testing of these cell lines to ensure the absence of HeLa

cell

Fig.1.Schematic protein domain structure of human G PNMB and its alternatively splicedvariant insertion in glioblastoma-d erivedcell lines.NH 2,amino terminus;SS,signal sequence;RGD,RGD tripeptide;PKD,polycystic kidney disease domain;TM,

transmembrane segment;COOH,carboxyl terminus;amino acid residue numbers lie above and below the structure.Alt.splice,12-amino-acidinsert generatedby alternative splicing as d escribedin this article.DNA sequence andpred icatedamino acidtranslation of the 36bp insert segment are indicated.

GPNMB Expression in Malignant Gliomas

contamination,inter–or intra–cell line contamination,or Mycoplasma infection have been published previously(22).The THRG cell line (20,21),a genetically defined human fetal astrocyte line transfected to express GPNMB,was used as the positive control cell line for GPNMB expression.H uman malignant glioma xenogafts D256MGX,D270 MGX,D320MGX,D456MGX,and D2159MGX were established and maintained in our laboratory;the malignant glioma xenografts6B4-7 and12A-7were generous gifts from Dr.David James(Mayo Clinic, Rochester,MN).

For transient expression experiments,the ECD of GPNMB(nucleo-tides1-1,458,adenosine of the start codon as1)was ligated into the mammalian expression vector pcDNA3.1(Invitrogen,Carlsbad,CA). The resulting pcDNA3.1-GPNMB ECD was introduced into HEK293cells by using the LipofectAMINE2000reagent(Invitrogen),and transiently transfected cells were harvested48hours later.To generate stable GPNMB transformants,the Eco RI-Xho I fragment of the pWD77 vector containing the full-length GPNMB cDNA(a generous gift from H.P.Bloemers;ref.14)was cloned into the retroviral vector pBabeBleo or pBabeNeo(23).The glioma cell lines D247MG,D54MG,and U251MG were infected with retrovirus as described previously(21), and stably transfected clones were selected in medium containing 200A g/mL zeocin(Invitrogen)or1mg/mL geneticin(Invitrogen).

cDNA cloning of GPNMB from glioma cells.For cDNA cloning of the GPNMB gene from human glioma cells,mRNA was isolated from D392MG cells by using the FastTrack2.0kit(Invitrogen).After cDNA synthesis using random primers and SuperScript II RNaseHàReverse Transcriptase(Life Technologies,Rockville,MD),the DNA fragment encoding the ECD of GPNMB was amplified by one cycle of95j C for2 minutes followed by30cycles of94j C for30seconds,60j C for30 seconds,and72j C for1minute with the following primers: GPNMB ECD FWD(sense):5V-ATGGAATGTCTCTACTAT-3V

GPNMB ECD REV(antisense):5V-GTTTGCCATCCTTAAAGG-3V

The PCR products were further subcloned into pCR2.1TOPO vector (Invitrogen)and sequenced on both strands by using ABI377automatic sequencer(Applied Biosystems,Foster City,CA).

Quantitative real-time RT-PCR assay.Total RNA was isolated from subconfluent cultured cells and sample tissues using the RNeasy Mini kit(Qiagen,Valencia,CA),and then treated with RNase-free DNase I (Ambion,Austin,TX).Total RNA sample of normal adult whole brain was purchased from Clontech(Palo Alto,CA).Total RNA(0.2A g)was converted to cDNA with random primers and SuperScript II RNaseHàReverse Transcriptase(Life Technologies)in a reaction volume of20A L. After the first-strand cDNA synthesis,280A L water was added to the reaction mixture and2A L diluted cDNA sample was subjected to real-time PCR measurements.

DNA sequencing of RT-PCR products revealed an alternative splicing of GPNMB RNA transcripts in human glioma cells as described in Results(Fig.1).To determine the expression levels of each GPNMB RNA transcript relative to that of b-actin,the following primers were used in real-time PCR:

GPNMB A(sense)5V-CACTTCCTCAATTATTCTAC-3V

GPNMB B1(antisense)5V-TAAAGAAGGGGTGGGTTTTG-3V

GPNMB B2(antisense)5V-TTGTCACCAGCAGGTCCTAA-3V

GPNMB B3(antisense)5V-TGGGGTGTTTGAATCATAAG-3V

b-actin FWD(sense)5V-CCAACCGCGAGAAGATGACCCAGATCA-TGT-3V

b-actin REV(antisense)5V-GTGAGGATCTTCATGAGGTAGTCAGT-CAGG-3V

Primer B1,paired with primer A,amplified the overall GPNMB mRNA(both of the wild-type and the spliced variant),whereas primer B2was located spanning the exon-exon junction to detect only the wild-type GPNMB transcripts(GPNMB wt).Primer B3,complimentary to the insert sequence generated by alternative splicing,was specific to the splice variant form of GPNMB mRNA(GPNMB sv;Fig.2A).b-actin transcript was amplified simultaneously as an internal control in each sample.For the PCR reactions,2A L cDNA,5A L of2?SYBR Green PCR Master Mix(Applied Biosystems,Warrington,United Kingdom), and400nmol/L of each primer were used in a total volume of10A L. Cycling variables were50j C for2minutes and95j C for10minutes, followed by40cycles(45cycles for the detection of splice variant, GPNMB sv)of95j C for15seconds and58j C for30seconds. Incorporation of SYBR Green dye into the PCR products was monitored with an ABI PRISM7900HT Sequence Detector System (Applied Biosystems,Foster City,CA).Integrity of PCR products was confirmed by dissociation curve analysis(SDS2.0software,Applied Biosystems)and by an agarose gel electrophoresis.To normalize the degradation of total RNA used in cDNA synthesis,the threshold cycle (C T)values were determined for GPNMB and corresponding b-actin genes in each sample,and the GPNMB/b-actin ratio was calculated from the following formula(24):

GPNMB=bàactin ratio?2eC T hàactinàC T gpnmbT

Relative GPNMB mRNA levels were expressed in terms of fold induction rate over control normal whole brain sample,which was determined by dividing the GPNMB/b-actin ratio of tumor sample by that of normal whole brain.All measurements were done in triplicate and the experiments were repeated twice.

Recombinant protein preparation and exoglycosidase treatment.The ECD of GPNMB protein,GPNMB ECD,was produced with a hexahis-tidine tag at the carboxy terminus.The extracellular segment of GPNMB (nucleotides64-1,458),excluding the signal peptide region,was cloned into a T7-based prokaryotic expression vector(25).GPNMB ECD was expressed in Escherichia coli BL21-CodonPlus(DE3)RIL(Stratagene,La Jolla,CA)as inclusion bodies.After dissolution in a buffer containing guanidine,GPNMB ECD was purified with an Ni-NTA column(Qiagen) and renatured as described previously(26).

To produce GPNMB ECD protein in the baculovirus system,the same DNA fragment was fused with baculoviral vector pVL1393(BD PharMingen,San Diego,CA).After infecting H igh Five insect cells with high titer viral stock,GPNMB protein was purified from culture supernatant with a Ni-NTA column according to instructions of the manufacturer.

For exoglycosidase digestion,total cell lysates of20A g protein were denatured by boiling at100j C for10minutes with0.5%SDS,and then incubated with10,000units/mL of the peptide N-glycosidase F(New England Biolab,Beverly,MA)in the presence of1%NP40at37j C for 2hours.Samples were subjected to SDS-PAGE and immunoblotting to determine change in molecular mass.

Immunization.Immunization protocols used an initial DNA immunization with the plasmid vectors encoding the ECD of GPNMB, followed by boosting with the corresponding recombinant protein produced in bacteria.Rabbits were given a primary s.c.immunization with250A g mammalian expression vector pcDNA3.1-GPNMB ECD or were immunized with250A g bacterial recombinant GPNMB ECD protein emulsified1:1in Freund’s complete adjuvant;this was followed by twice boosting with250A g GPNMB ECD protein+Freund’s incomplete adjuvant at4-week intervals.Rabbits were bled12days after the last boost.Titers in serum were monitored by ELISA with GPNMB ECD as the capture antigen and live-cell ELISA using GPNMB-expressing D54MG cells as targets.

For mice,the first immunization protocol(called‘‘B’’)was a combination protocol using plasmid DNA for initial immunizations, followed by purified,bacterially expressed GPNMB protein later in the immunization protocol,because titers insufficient for fusion were obtained after plasmid DNA immunization alone.On days1,49,and 77,BALB/c,C3H/H e,and C57BL/6mice received15A g GPNMB encoding plasmid DNA intradermally;50%end-point titers versus GPNMB protein determined with serum obtained on day89were<1/ 1,000.The mice then received30A g GPNMB protein+Freund’s

Human Cancer Biology

complete adjuvant on day 156and a similar boost in Freund’s incomplete adjuvant on day 176.The 50%end-point serum titers versus source of GPNMB determined on day 188were in excess of 1/5,000.Following a minimum interval of 30days,BALB/c recipients were boosted i.p.with 5A g protein,and spleens were harvested for fusion 3to 4days later.From the fusion using protocol B,mAb G11was obtained.The second immunization protocol (U)consisted solely of protein immunization:day 1,30A g GPNMB +Freund’s complete adjuvant;days 21,42,and 63,15A g protein +Freund’s incomplete adjuvant.The 50%end-point serum titers obtained on day 74were in excess of 1/10,000.On day 105,C57BL/6recipients were boosted and spleens harvested as described above;the anti-GPNMB U2mAb was derived from this fusion.

Fusion,isolation,and screening of GPNMB reactive mAbs.Fusions were done with the nonimmunoglobulin-secreting Kearney variant of P3X63/Ag8.653by using our standard procedure (27).Supernatants were screened for positivity on the bacterially derived GPNMB protein by ELISA and on THRG cells by fluorometric microvolume assay

technology (FMAT)assay (see below).Hybridoma supernatant reactiv-ity for plated protein was done as previously published (27),with the exception that the secondary reagent used was goat anti-mouse IgG-Fc specific (Sigma,St.Louis,MO),the tertiary reagent was horseradish peroxidase –Streptavidin (Zymed,South San Francisco,CA),and development was by the SigmaFast o -phenylenediamine dihdrochloride kit (Sigma)according to instructions of the manufacturer.

FMAT analysis.Analysis of mAb binding (supernatant samples or purified mAbs)to intact cell surfaces was done on the FMAT 8100HTS system (Applied Biosystems).THRG cells grown in Zinc Option medium supplemented with 10%FCS were harvested and fixed with 10%formaldehyde/PBS for 6minutes at room temperature,then plated into an FMAT 96-well plate at a concentration of 10,000cells per well;30A L purified anti-GPNMB mAbs or hybridoma supernatants were added to the wells;the positive primary antibody control was the serum pool derived from immunized spleen donors,and negative background controls included Zinc Option medium supplemented with 10%FCS (hybridoma supernatant control),1%bovine serum

albumin/PBS

Fig.2.Expression of GPNMB RNA in glioblastoma andmelanoma cell lines andglioma xenografts.A,alternative splicing of GPNMB RNA transcripts generating a 36bp insert (gray box )in the ECD.Arrows,positions of oligonucleotide primer sets used in RT -PCR analyses.RT-PCR reactions done with primer pairs are shown in gels for the amplification of overall GPNMB transcripts

(GPNMB wt+sv ),the wild-type (GPNMB wt ),andthe splice variant (GPNMB sv )GPNMB mRNA.Bottom,h -actin https://www.360docs.net/doc/b018208128.html,ne M,100bp DNA ladder.B ,relative overall GPNMB wt+sv mRNA levels were measuredin seven human GBM andfour melanoma cell lines as well as seven human glioma xenografts by quantitative real-time RT-PCR using primer pairA andB1.Relative GPNMB mRNA levels are expressedin terms of foldincrease over normal whole brain sample.Columns,mean of triplicates;bars,SD.

GPNMB Expression in Malignant Gliomas

buffer,or irrelevant isotype controls(IgG1or IgG2b)at concentrations identical to those of the primary reagents.Secondary antibody goat anti-mouse IgG(Jackson ImmunoResearch Laboratories,West Grove,PA) coupled to FMAT-blue dye according to instructions of the manufacturer (Applied Biosystems)was added to the wells at a final concentration of 0.13A g/mL in1%bovine serum albumin/PBS,and the plates were incubated for2hours in the dark at room temperature before measuring emitted fluorescence(650-685nm)with FMAT2.0.1software.

Western blotting.Total cell pellets were lysed in buffer[50mmol/L Tris-Cl(pH8.0),150mmol/L NaCl,1%NP40,1mmol/L phenyl-methylsulfonyl fluoride,and0.045mg/mL aprotinin].Aliquots of sample lysates or purified GPNMB protein were subjected to electrophoresis on Bis-Tris SDS polyacrylamide gel and blotted onto polyvinylidene difluoride membranes according to the standard method(28).Nonspecific binding sites were blocked by using3% nonfat milk in PBS-0.05%Tween20.Incubations with primary antibodies were carried out overnight at4j C with rabbit anti-GPNMB antiserum2640(5A g/mL)or mAbs(10A g/mL)in PBS-0.05%Tween20containing1%milk;irrelevant IgG1or IgG2b was used to control for nonspecific binding.After washing membranes,specific protein bands were detected with horseradish peroxidase–linked secondary antibodies(Amersham Biosciences, Piscataway,NJ)and developed with SuperSignal West Pico Chemi-luminescence kit(Pierce,Rockford,IL)according to instructions of the manufacturer.

Indirect analytic flow cytometry.Our standard procedures for these assays have been published extensively(22,27,29,30).Indirect analytic flow cytometry was done as previously described(30)on a Becton Dickinson FACSort equipped with Lysys software(Becton Dickinson,San Jose,CA).Assays were done at4j C;all washes were done with iced medium to facilitate the detection of cell surface receptors without allowing internalization to occur.As profiles obtained with cells maintained in ice-cold1%bovine serum albumin/PBS or0.5% paraformaldehyde/PBS were identical,the latter suspension buffer post–secondary reagent was selected for longer-term stability.The percentage of a population designated as positive was arbitrarily defined as that region in which only the highest fluorescing10%of the isotype control–stained cells graphed,corrected for background;this is a conservative estimate of the total positive staining population.

To examine the cell surface expression of GPNMB proteins,target cultured or biopsy-derived GBM cells were stained with anti-GPNMB mAbs,G11or U2,or rabbit polyclonal antibody2640under nonpermeabilized conditions as previously described(30).Subcon-fluent cells were detached from culture flasks by incubation with0.02% EDTA/PBS;1?106cells were maintained in0.5%paraformaldehyde/ PBS for10minutes at4j C,washed,resuspended in150A L PBS containing10%fetal bovine serum,and blocked for20minutes at4j C. After two washes,the samples were reacted with anti-GPNMB mAbs (10A g/mL)or rabbit polyclonal antibody2640(5A g/mL)and irrelevant mouse IgGs(10A g/mL)or rabbit IgGs(5A g/mL)in PBS. After two additional washes,cells were incubated with FITC-labeled secondary antibody for30minutes at4j C and analyzed on a Becton Dickinson FACSort instrument(Becton Dickinson).

Quantitative fluorescence-activated cell sorting determination of receptor density.The number of GPNMB molecules expressed per cell by cell populations was determined by quantitative fluorescence-activated cell sorting(FACS)determination of receptor density using the Quantum Simply Cellular system(Bangs Laboratories,Fishers,IN) as described(30).The microbead solution used is a mixture of five uniform populations that have varying capacities to bind no or serially increasing amounts of murine IgG;incubation of the bead sample with an identical aliquot of fluoresceinated mAb used for cell analysis allows extrapolation of antibody molecules bound per cell,and assuming1:1 stoichiometry,of the number of receptors present,expressed as a population mean or median.Analysis of receptor density was done by interpolation with the bead standard curves using QuickCal software (Bangs Laboratories).Positive population percentage was determined as described above for indirect analysis.The techniques for disaggregation of biopsy and xenograft-derived cells and preparation for flow cytometry have been thoroughly described(30).

Affinity constant determination by surface plasmon resonance.Purified GPNMB ECD protein was immobilized on the surface of biosensor chips for analysis by using the BIAcore3000System(BIAcore,Piscataway, NJ).Coupling of antigen was achieved by using N-ethyl-N V-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide according to the instructions of the manufacturer.The running buffer was10 mmol/L HEPES/150mmol/L NaCl/3.4mmol/L EDTA(pH7.4).The mAb samples were passed over the biosensor chip at concentrations from200to1,000nmol/L.The association and dissociation rate constants(k assoc and k diss)and average affinity were determined by using the nonlinear curve-fitting BIAevaluation software.K A at equilibrium was calculated as K A=k assoc/k diss.

Iodination,immunoreactive fraction determination,and Scatchard analysis.Details of these procedures have been previously published (27,31,32).Purified mAbs were iodinated by the Iodogen method (31)to a specific activity of1to3A Ci/A g immunoglobulin.The immunoreactive fraction was conventionally determined by Lindmo analysis(33)using increasing amounts of positive(THRG)or negative (P3X63/Ag8.653)cells as targets in an18-to24-hour assay at4j C.In a single assay of mAb G11,immunoreactive fraction was determined versus GPNMB protein coupled to magnetic beads(34).Plotting the total divided by the specifically bound activity versus the reciprocal of the antigen concentration yielded a linear plot,the intercept of which represents the inverse of the immunoreactive fraction.A modified Scatchard analysis was used to measure the binding affinity of iodinated mAbs beginning with serially diluted,labeled mAb starting at10A g/mL versus TH RG MG cells,incubation at4j C for4hours,and measurement of cell-bound activity as a proportion of input activity; nonlinear regression analysis to calculate K A was done with GraphPad Prism software(GraphPad Prism Software,San Diego,CA).

Tumor samples.Samples of primary brain tumors were obtained from90newly diagnosed GBM patients from the Preston Robert Tisch Brain Tumor Center Tissue Bank,Duke University Medical Center (Durham,NC).The tumors were histologically diagnosed and graded as GBM according to WHO criteria(35).Among those90GBM patient samples,50cases were studied in quantitative real-time PCR analysis for GPNMB mRNA transcript detection,79GBM cases were analyzed by immunohistochemistry staining using anti-GPNMB antibodies,and39 cases were done by both analyses.No patient had any history of chemotherapy or radiotherapy before surgery.The samples were immediately snap-frozen in liquid nitrogen and stored atà80j C until analysis.

Immunohistochemistry.Immunohistochemical analysis of acetone-fixed(à70j C,30seconds)5-to8-A m frozen tissue sections of human tumor tissue was done as described previously(22,30).For detection of GPNMB,exposure to primary reagent(polyvalent rabbit antiserum 2640/irrelevant negative control rabbit IgG,or mAb G11/murine IgG2b isotype control at10and5A g/mL)was done for1hour at room temperature.Slides were washed in PBS,the appropriate dilution of biotinylated goat anti-mouse IgG or goat anti-rabbit IgG(Vector, Burlingame,CA)established by previous titration was applied,and the slides were incubated for1hour.Slides were washed again in PBS, exposed to horseradish peroxidase–avidin complex(Vector,standard ABC kit)for30minutes,and following PBS washes,developed with diaminobenzidine(Metal Enhanced DAB Substrate kit;Pierce).Slides were counterstained with hematoxylin,dehydrated,mounted,and read independently by two investigators,including a neuropathologist. Slides were scored on the basis of staining intensity(none to intense, 0-3),and staining distribution and localization(0-25%,1+;26-50%, 2+;51-75%,3+;76-100%,4+),with notation of parenchymal, perivascular,or nuclear staining.Positive tissue control was provided by D256MG athymic rat xenografts.

Statistical analysis.The relationship between relative GPNMB mRNA expression levels(GPNMB wt,GPNMB sv,and GPNMB wt+sv)and

Human Cancer Biology

immunohistochemical score was examined by using Spearman’s correlation coefficient.For survival analyses in which patient survival was computed from the date of pathology sample to date of death or last contact,relative GPNMB mRNA expression levels and immuno-histochemical scores were categorized as V3.0-versus>3.0-fold and zero versus positive,respectively.Survival data were current as of August19,2005.Cox proportional hazards model analysis was used to check the statistical significance for each individual predictor of survival(SAS Statistical Analysis Package,Cary,NC).A predictor was considered for the multivariate model if P<0.25in the univariate model.Age was included as a continuous predictor in the model due to a lack of dichotomy.

Results

Alternative splicing of GPNMB RNA transcripts in glioma cells. We have cloned the GPNMB gene from the human

glioblastoma cell line D392MG by isolation of polyadenylate mRNA and RT-PCR(Fig.1).Through the cDNA sequence analysis of individual clones,in addition to the published GPNMB RNA sequence(14),we found that one clone,EX1, had an in-frame insertion of a36bp fragment at nucleotide position1019in the ECD of GPNMB(Fig.1).By Basic Local Alignment Search Tool search(National Center for Biotech-nology Information,Bethesda,MD),we determined that this 36bp fragment insert created by alternative splicing com-pletely matches the human genomic GPNMB intron DNA clone CTA-271G13from chromosome7(Genbank accession no.AC005082).This12-amino-acid insertion variant is designated as GPNMB sv(splice variant),and the normal gene as GPNMB wt(wild type).In CTA-271G13,an additional99 bp matching the GPNMB wt cDNA sequence was found directly downstream from this36bp fragment.Further sequence analysis revealed that CTA-271G13contains the human geno-mic GPNMB sequence.The5V and3V ends of each intronic fragment matched the consensus sequences for3V acceptor site and for5V donor site(36,37),confirming that GPNMB sv is generated by the alternative splicing of GPNMB RNA tran-scripts.

Quantification of GPNMB mRNA in GBM cell lines,xeno-grafts,and biopsy samples.After our initial screening analyses (13),we used real-time RT-PCR to measure the expression of the GPNMB gene in seven GBM cell lines,four melanoma cell lines,seven malignant glioma xenografts,and39cases of newly diagnosed GBM samples(Fig.2;Table1).First,human GBM-derived cell lines and melanoma cell lines were analyzed for GPNMB mRNA expression(Fig.2B).We have designed specific primer sets to identify the expression of GPNMB wt,GPNMB sv as well as GPNMB wt+sv(Fig.2A;details in Materials and Methods). As shown in Fig.2A,all seven glioma cell lines examined expressed both types of GPNMB RNA transcripts(i.e.,the wild-type GPNMB wt and the splice variant GPNMB sv).By quantita-tive real-time RT-PCR,D54MG,D392MG,and D247MG cells exhibited high levels of overall GPNMB mRNA,whereas U251MG,T98G,and D245MG exhibited moderate to marginal levels,and U87MG exhibited very low or no GPNMB mRNA expression(Fig.2B).Therefore,we used D54MG,D392MG, and D247MG cells in studies of GPNMB protein expression. For the melanoma cell lines we obtained from American Type Culture Collection,C32,Malme-3M,and SK-mel-28exhibited high levels of GPNMB RNA expression ranging from20-to60-fold higher relative to normal brain tissue by using h-actin as an internal control(Fig.2B);however,the A375melanoma line expressed a low level of GPNMB RNA.We also found that malignant glioma xenografts D256MGX and12A-7exhibited a 3-fold increase over normal brain samples(Fig.2B).

Real-time RT-PCR analysis of GPNMB sv alone in the same cell line panel revealed that a subset of GPNMB wt-positive cell lines also express GPNMB sv.Relative transcript levels of GPNMB sv RNA were10-to100-fold lower than those for GPNMB wt,and no significant GPNMB sv or GPNMB wt tran-scripts were detected in normal brain samples(data not shown).Similar analysis of established glioma cell lines revealed that significant levels were present in three potential glioma target cell lines,D247MG,D392MG,and D54MG;the latter two were chosen as reference controls on the basis of reproducible growth in vitro.

Going from cultured cell lines to patient tumors,we measured GPNMB mRNA levels in50GBM biopsy samples.We found that35of50(70%)cases were positive(at least3-fold increase over normal whole brain sample)for GPNMB wt+sv mRNA,26of 50(52%)cases were positive for GPNMB wt mRNA,and15of 50(30%)cases were positive for GPNMB sv mRNA(Table1). High transcript expression(a>10-fold increase over normal brain of GPNMB wt+sv mRNA transcripts)was found in19of 50(38%)cases;for GPNMB wt and GPNMB sv mRNA,high expression was found in11of50(22%)and3of50(6%) biopsy samples,respectively(Table1).As the GPNMB wt mRNA profile was virtually identical to the GPNMB wt+sv profile,it is conceivable that GPNMB wt is the predominant detected moiety. No significant expression for the GPNMB gene was detected in normal brain samples assayed simultaneously.

Isolation and quantitative analyses of anti-GPNMB antibodies for cell surface GPNMB.Although high levels of RNA transcripts can be predictive of protein levels,the presence of detectable protein in human tumor material must be estab-lished for targeting applications.Thus,we developed specific antibodies to detect the presence of GPNMB protein.Purified rabbit anti-GPNMB IgG2640was shown to detect the cell surface GPNMB protein by performing the indirect FACS analysis as shown in Fig.3A.Antiserum2640reacted with GPNMB-positive cell lines D392MG and D54MG,as indicated by GPNMB RNA expression,but not with a negative cell line, such as HEK293(Fig.3A)or U251MG cell lines(data not shown).Antiserum2640also reacted with a GPNMB-trans-fected H EK293cell line,which expressed GPNMB on the cell surface(Fig.3A,right

).

GPNMB Expression in Malignant Gliomas

In addition,we have immunized three different standard mouse strains(BALB/c,C57Bl/6,and C3H/H e)by the intrader-mal route with cytomegalovirus-based plasmid DNA encoding the ECD of normal GPNMB wt or GPNMB sv.Those animals were subsequently boosted i.p.with bacterially expressed or insect cell–expressed GPNMB ECD protein.Two separate fusions were done as described in Materials and Methods.As derivation of mAbs specific for the extracellularly expressed portion of GPNMB was desired,supernatants from outgrowing hybridomas were screened for reactivity on the D54MG cell line and GPNMB-transfected cell line TH RG,previously shown to express GPNMB (20,21);U251MG,which does not express GPNMB,was used as the negative control in FMAT screening.From the two protocols, two hybridomas(B:IgG2b mAb G11;U:IgG2b mAb U2)were selected for cloning and further analysis.

Detection of cell surface GPNMB was done with anti-GPNMB mAb G11.Representative indirect FACS histograms of purified mAb G11are shown in Fig.3B;this analysis establishes that mAb G11,generated following immunization with plasmid DNA of GPNMB and with bacterially produced GPNMB protein,is reactive with a cell surface epitope on the purposefully transfected THRG cell line(data not shown)and on D54MG(Fig.3B,left).Indirect FACS analysis revealed reactivity of G11with GPNMB-expressing D247MG cells

under Fig.3.Detection of GPNMB on malignant glioma cells,G BM biopsy sample,andGPNMB-positive cells.A,indirect FACS analysis using rabbit polyvalent antiserum2640.

Reactivity of2640for nonpermeabilizedGPNMB-positive glioma lines,D392MG andD54MG(dotted lines),andnegative control HEK293cells.Filledpeaks,control staining with normal rabbit IgG.Right,reactivity of2640for nonpermeabilizedHEK293cells transfectedwith G PNMB(dotted line).B,FACS analysis for mAb G11andU2.Left, reactivity of mAb G11for formalin-fixed,nonpermeabilized D54MG(dotted lines).Filledpeaks,control staining with normal mouse IgG2b for D54MG.Mid d le,reactivity of G11for formalin-fixed,nonpermeabilized D247MG cells(solid line)andD247MG cells transfectedwith full-length G PNMB(dotted line).Filledpeak,control staining with normal mouse IgG2b for D247MG.Note the increase in mAb binding following transfection(shift to the right),indicating a higher number of cell surface G PNMB molecules than in the parental cells.Right,quantitative FACS analysis of biopsy G BM2180^derived cells with anti-G PNMB mAb U2in noninternalizing conditions.The‘‘B’’peaks refer to the beads that bind to increasing quantities of FITC-mAb U2.Estimated median cell surface density is7?104GPNMB molecules per cell.C,Western blotting analysis of GPNMB protein.T otal cell lysates containing20A g protein were separatedby SDS-P AGE andprobedwith anti-GPNMB rabbit antiserum2640.Left,cell lysates from insect Sf9GPNMB ECD transfectants were incubatedwith or without N-glycosidase(PNGase F),andelectrophoresedalong with recombinant GPNMB ECD protein produced in

bacteria E.coli.Note the mobility shift after N-glycosidase treatment from M r f70to f54kDa.Middle and right,detection of G PNMB proteins in cultured human GBM cells, including D392MG and D54MG,HEK293,and its G PNMB transfectant,as shown on top of the gel.Note that the G PNMB protein expression increased after transfection; the protein migratedpred ominantly as two band s of apparent molecular weights M r f80and f100kDa.The locations of protein molecular weight markers are shown between panels.D,Western blot analysis of GPNMB protein by anti-GPNMB mAb G11andirrelevant isotype control IgG2b against GPNMB ECD protein purifiedfrom insect cells Sf9andwhole cell lysates(20A g)preparedfrom U251MG,U251MG/GPNMB,andD247MG/GPNMB transfectants.Short arrow,apparent molecular weights for glycosylatedGPNMB ECD purifiedfrom Sf9insect cells(f70kDa).Three arrows on the right side of gel,G PNMB proteins detected in human glioma cell lines and transfectants representing differentially glycosylated forms.

Human Cancer Biology

nonpermeabilized conditions(Fig.3B,middle).Furthermore,

stable transfectant D247MG-GPNMB showed a peak shift

compared with that of the parental line D247MG,indicating

an increase in the number of surface GPNMB molecules after

transfection.Irrelevant control IgG2b was unreactive with both

lines.Similar profiles were obtained with all of the components

of this mAb panel on SK-Mel-28cell lines(data not shown);the

non–cell surface GPNMB-expressing cell line U251MG was

negative with these mAbs detected by FACS.

mAbs G11and U2were fluoresceinated for quantitative

FACS analysis,and cell surface GPNMB densities were

determined on a panel of cell lines,disaggregated xenografts,

and biopsy samples(data not shown).mAb U2was determined

to be the optimal FITC-labeled reagent for these analyses.An

example of such an analysis of patient biopsy GBM2180is

provided in Fig.3B(right);from the regression equation

calculated for FITC-mAb binding to quantitated receptor site

beads,the fluorescent channel value obtained with GBM2180

cells predicts a median GPNMB density of7?104GPNMB

molecules per cell.Fifty percent(four of eight)of long-term

cultured GBM cell lines expressed GPNMB in excess of1?104

molecules per cell;only three of nine established xenografts did

so.Analysis of freshly disaggregated cells from GBM(n=27)

biopsies revealed that11of27(41%)GBM expressed cell

surface GPNMB with a range of densities from1.1?104to

7.8?104;one GBM expressed>105GPNMB molecules per cell.

Positive GPNMB-expressing cell lines THRG and SK-Mel-28

exhibited1.4?105to3.9?105and3?104to9?104

GPNMB molecules per cell,respectively.No GPNMB expres-

sion was detected by quantitative FACS in medulloblastoma

cultured cells,xenografts,or biopsies(data not shown).

Detection of GPNMB protein by Western blotting in glioblas-

toma cells.The integrity of the GPNMB coding sequence was

first investigated by expressing the recombinant protein in

insect cells.By Western blotting,purified rabbit anti-GPNMB

IgG2640reacted with the lysates of Sf9insect cells tran-

siently transfected with the ECD of GPNMB(Fig.3C,left).

GPNMB ECD expressed in Sf9cells migrated with an apparent

molecular weight of M r f70kDa,which was significantly larger than the molecular weight of GPNMB ECD protein

deduced from the amino acid composition(54kDa).The

ECD of human GPNMB contains12potential N-glycosyla-

tion sites.N-glycosidase treatment of Sf9lysates significantly

reduced the molecular size of GPNMB ECD almost identical to

that produced in E.coli(Fig.3C,left),indicating that the

discrepancy in the molecular mass is due to glycosylation of

the GPNMB protein.

We further investigated the GPNMB protein expression in

cultured human GBM cell lines.Detection of GPNMB proteins

using antiserum2640was carried out in several cultured

human GBM cells,including D392MG and D54MG as shown

in Fig.3C(middle).In GBM cell lines,GPNMB proteins were

detected by antiserum2640in D392MG and D54MG as

multiple bands between f80and f100kDa as shown by

arrow lines and a faint band at120kDa(Fig.3C,middle);we

also found two nonspecific bands reacted with2640as shown

by arrow heads at70and40kDa positions.The GPNMB

protein expression increased significantly after transfection of

U251MG,D54MG,or D247MG cells with GPNMB expression

vectors(data not shown).The proteins appeared as multiple

bands in Western blots,presumably due to different degrees of glycosylation;essentially,the GPNMB proteins migrated

predominantly as two bands of apparent molecular weights

M r f100and f75kDa.In addition,Western blot of a parent control line HEK293and its GPNMB transfectant with2640

indicated that two nonspecific bands were also seen in the

negative control;however,the Western blot results of H EK293/

GPNMB transfectant lysate exhibited highly specific reactivity to

recombinant GPNMB protein as shown in Fig.3C(right).

To establish the restricted specificity of these mAbs,Western

blots were done by using the glycosylated purified GPNMB ECD

isolated from Sf9cells as control and cell lysates prepared from

the U251MG cell line as well as the GPNMB-transfected cell

lines,U251MG and D247MG.As shown in Fig.3D,mAb G11

recognized the purified GPNMB ECD protein(f70kDa mass,

small arrow).mAb U2exhibited similar pattern(data not

shown).All mAbs detected bands between f75to100kDa

and120kDa in the GPNMB-transfected D247MG line in a

pattern similar to that of rabbit polyclonal antiserum2640

(Fig.3C and D).mAb G11was capable of consistently

identifying these bands in the untransfected glioma cell lines,

U251MG and D54MG,as well as their GPNMB-transfectants in a

pattern similar to that of rabbit polyclonal antiserum2640,

whereas IgG2b irrelevant isotype control was negative(Fig.3D).

Kinetics of mAb-to-GPNMB binding.A kinetic analysis of

the interaction of purified mAbs with immobilized

GPNMB ECD by surface plasmon resonance(BIAcore)was

conducted to determine the association and dissociation rate

constants and to calculate the affinity constants.Determina-

tion of the association and dissociation rates from the

sensorgrams revealed a k assoc of1.1?106(mol/L-s)à1and a

k diss of 1.1?10à3secondà1for mAb G11.The K A at

binding equilibrium,calculated as K A=k assoc/k diss,was9.6?108(mol/L)à1for G11and2.7?107(mol/L)à1for U2. Anti-GPNMB mAbs G11and U2were also each analyzed by conventional Scatchard analysis versus the THRG cell line.mAbs G11and U2exhibited K A values of1.7?108and2.1?108 (mol/L)à1,respectively,measured by Scatchard analysis versus cell surface–expressed GPNMB and immunoreactive fractions in the range of75%to91%for G11and71%to75%for U2, respectively.The estimated cell surface receptor densities obtained from the b max values for G11and U2were quite similar(ranges of4?104-8?104)in multiple assays. Immunohistochemical analysis.The immunohistochemical analysis of GBM tissue samples from newly diagnosed, pretherapy patient cases was done using rabbit anti-GPNMB serum2640and/or mAb G11to stain frozen sections of the tumor samples(39GBMs)that were also used for GPNMB mRNA analysis.The Spearman’s analysis(one sided,assuming a direct relationship between mRNA presence and production of protein)revealed that the correlation of GPNMB mRNA and protein expression was significant(P<0.0001);the higher the detected level of mRNA,the more probable a positive immunohistochemistry result.Spearman’s correlation coeffi-cients equal to0.58and0.57for all ages and those>45, respectively.

In addition to those39GBM cases,an additional40GBMs

were stained with rabbit anti-GPNMB serum2460;of these

total79cases,32GBMs were concurrently stained with mAb

G11and appropriate irrelevant IgG2b isotype control.Results

of this analysis are summarized in Table2(79cases of GBM)

and are illustrated in Fig.4for some representative cases.A high

GPNMB Expression in Malignant Gliomas

percentage of positive anti-GPNMB staining was observed in those 79patient samples;52of 79(66%)were stained as positive (Table 2).As shown in Fig.4,GPNMB localization can present in different patterns,whereas the majority of cases (58%;Table 2)exhibit focal or multifocal tumor parenchymal staining panels (E,H ,I,and K)with clear membrane staining (E,F,and K),a subset of GBMs (42%;Table 2)exhibits pronounced perivascular accumulation of GPNMB either with (27%,panels B and C)or without (15%)accompanying parenchymal staining.

Survival analysis.Analyses were conducted to examine the effect on survival of select predictors (RNA expression and immunohistochemical data)in specific patient subgroups:39newly diagnosed GBM patients (Table 3)and a subgroup of patients older than 45years (data not shown,n =34).Among all 39patients,the relative GPNMB wt+sv RNA expression level was a strong predictor of survival across all analyses as shown in Fig.5A.The hazard ratio of death for patients with relative GPNMB wt+sv RNA expression level >3.0-fold was 2.98[95%confidence interval (95%CI),1.26-7.06]as shown in Table 3A (as rounded numbers).The estimated 2-year survival probability was 0.42(95%CI,0.21-0.81)for patients with relative GPNMB wt+sv RNA expression levels <3-fold,and 0.15(95%CI,0.06-0.37)for patients with relative GPNMB wt+sv RNA expression level >3.0-fold.The median patient survival for low GPNMB wt+sv RNA expression level (<3-fold of normal brain sample)and high GPNMB wt+sv RNA expression level (>3-fold)are 90and 55weeks,respectively (Table 3B).For patients older than 45years,the 2-year survival estimate was 0.40and 0.13for the low GPNMB wt+sv RNA and high GPNMB wt+sv RNA groups,respectively (Cox hazard ratio,3.00;95%CI,1.19-7.57).The median patient survival for low GPNMB wt+sv RNA expression level (<3-fold of normal brain sample)and high GPNMB wt+sv RNA expression level (>3-fold)are 94and 55weeks,respectively (data not shown).

The relative GPNMB wt RNA expression level was also a strong predictor of survival.The hazard ratio of death for patients with relative GPNMB wt RNA expression level >3.0-fold was 2.21(95%CI,1.08-4.55)as shown in Table 3A.The estimated 2-year survival probability was 0.35(95%CI,0.19-0.64)for patients with relative GPNMB wt RNA expression levels <3.0-fold,and 0.11(95%CI,0.03-0.39)for patients with relative GPNMB wt RNA expression levels >3.0-fold (Table 3B).For patients older than 45years,the survival probability at 104weeks for low levels of GPNMB wt RNA was 0.35,whereas the probability for high levels of GPNMB wt RNA,0.06(Cox hazard ratio,2.38;95%CI,1.09-5.20;data not shown).

In addition,immunohistochemisty score was also a strong predictor of survival as shown in Fig.5B.The hazard of death for patients with a positive immunohistochemical score

was

Fig.4.Immunohistochemistry.Frozen sections of G BM tissues were reactedwith normal rabbit IgG (A,D ,and J ),purifiedIgG from rabbit anti-GPNMB antiserum 2640(B ,E,H ,and K ),murine IgG2b (G ),or anti-GPNMB mAb G11(C,F ,and I )at a concentration of 10A g/mL.Irrelevant staining controls not illustrated(murine IgG2b as control for C and F ,normal rabbit IgG as control for H )were identical to the control illustrated.A to C,GBM1917,?50.The staining pattern of GPNMB in this GBM is primarily perivascular,with weaker cytoplasmic staining in the surrounding tumor parenchyma.D and F ,GBM TB1943,?100.The predominant staining pattern in this G BM is focal with distinct membrane decoration.E,GBM TB1399,?132.Similar to the pattern displayed byTB1943,staining in this G BM is also focal andmembrane associated(arrows ).G to I,GBM TB1944,?100.This GBM exhibits focal cytoplasmic staining of tumor cells invading normal brain.J and K,GBM TB 526,?132.The staining pattern in this specimen is diffuse cytoplasmic (moderate)with some distinct membrane decoration and perivascular accumulation.Note that staining patterns obtainedwith both the polyvalent

anti-GPNMB antiserum 2640andmAb G11are identical in pattern for a given specimen.

Human Cancer Biology

2.80(95%CI,1.24-6.32);that is,patients with positive immunohistochemical staining have higher risk of death (2.80times)than patients with negative staining(Table3A). The estimated2-year survival probability was0.39(95%CI,0.19-0.77)for patients with zero immunohistochemical scores and0.15(95%CI,0.06-0.38)for patients with positive immunohistochemical scores.The median patient survival for negative GPNMB immunohistochemical staining and positive GPNMB immunohistochemical staining are90and50weeks, respectively(Table3B).For patients older than45years,the 2-year survival estimate was0.36and0.13for the zero and positive immunohistochemical groups,respectively(Cox hazard ratio,2.71;95%CI,1.14-6.45;data not shown).

Two bivariate models containing age were generated based on multicollinearity in a Cox model with age,immunohistochem-istry,and mRNA expression levels as predictors(Table3C).The first model shows that patients with high relative GPNMB wt RNA expression levels have a higher risk of death(2.6times higher) than patients with low relative GPNMB wt RNA expression level after adjusting for age.The second model shows similar results with positive immunohistochemistry scores that patients with positive GPNMB immunohistochemical score have a higher risk of death(2.6times higher)than patients with zero immunohis-tochemical score after adjusting for age.

Discussion

Effective mAb-based targeted therapy depends on several factors,which include characteristics of the target

antigens,the

GPNMB Expression in Malignant Gliomas

immune reagents used,the route of administration,and the tissue dynamics of the tumor (8).Preferential expression on or around tumor cells and membrane localization are major requirements for tumor antigens in antibody therapy (3,8).This article presents data indicating that the transmembrane glycoprotein GPNMB is overexpressed in a significant portion of high-grade glioma tumors,at both the mRNA and the protein levels,but not in normal brain tissues.We have done genetic and immunohistochemical evaluation of human gliomas to deter-mine incidence,distribution,and pattern of localization of GPNMB antigens in brain tumors.We used quantitative RT-PCR to analyze 50newly diagnosed human GBM biopsy samples received directly from surgery to determine levels of mRNA for GPNMB wt +GPNMB sv .The results revealed that 70%of GBM patient samples were positive for GPNMB transcripts and that 38%of GBM showed a >10-fold increase over normal brain in GPNMB mRNA expression.In contrast,only marginal levels of GPNMB mRNA were noted in normal brain RNA.

Correlation between the assays was good,as Spearman’s analysis (one sided,assuming a direct relationship between mRNA presence and production of protein)revealed that the correlation of GPNMB mRNA and protein expression as detected by immunohistochemistry was significant (i.e.,the higher the detected level of mRNA,the more probable a

positive immunohistochemistry result).H owever,the sensitiv-ity of mRNA detection is far higher than that of immunohis-tochemical assays,which accounts for some of the discrepancies noted.In cases where protein is detected in tissue in the absence of mRNA,the most likely explanation is that the mRNA is short-lived and chronically produced,leaving a relatively long-lived protein in situ (38).GPNMB antigens exhibit diffuse staining in frozen sections with distinct membrane staining and absence of blood vessel staining by both polyvalent rabbit antiserum and mAbs demonstrably specific for GPNMB.These observed staining patterns corrob-orate the cell membrane staining observed in quantitative FACS assays as described above.These data show the establishment of specific and reliable antibody probes for analysis of tissue and biopsy-derived cell populations.Concerning subcellular local-ization,indirect FACS analysis with anti-GPNMB mAb G11under nonpermeabilizing conditions showed that GPNMB proteins are expressed at the surface cell membrane of human glioblastoma cell line D247MG.Furthermore,a shift of peak was observed following stable transfection with full-length GPNMB,indicating an increase in the number of surface GPNMB protein molecules following transfection.This super-transfectant cell line will likely prove useful in our preclinical mAb localization and tumor immunotherapy models.

Although some extracellular matrix antigens,such as tenascin,and some noninternalizing surface antigens are suitable for immunotherapeutic approaches,the ideal antigens for brain tumor immunotherapy would be those that fulfill the following criteria:(a )the general consensus for minimum surface antigen density is z 1?104protein molecules per cell (30,39);(b )stability at the cell surface and lack of antigen shedding (8);and (c )internalization following binding to ligand or antibody (8).Glioma cell surface–expressed GPNMB fulfills these criteria in terms of adequate cell surface diversity,dynamics of protein synthesis,half-life,internalization,and mechanisms of degradation (8).Little is known about the distribution and function of GPNMB proteins in normal human organs (13,14,40).H owever,for tumors localized within the central nervous system,the optimal route for the administration of mAb-based therapeutic agents is through surgically created resection cavities or saturation of an entire hemisphere by intracranial microdiffusion (41).The expression of GPNMB in distant normal tissues should not compromise the compartmental delivery of GPNMB-related immunologic agents within the central nervous system,because only small amounts of conjugates reach systemic organs (42).

The mechanistic biological significance of the aberrant expression of GPNMB in high-grade gliomas remains to be determined.In another study,the expression levels of GPNMB RNA transcripts showed a positive correlation with increasing grade of tumors (data not shown).The GBM group exhibited higher GPNMB mRNA levels than those in anaplastic astrocy-toma;in addition,the appearance of perivascular accumulation of GPNMB protein was noted in GBM,but was absent in anaplastic astrocytoma (data not shown).The ECD of GPNMB contains 12potential N-glycosylation sites,an RGD integrin-binding motif,and a heparin-binding motif (14).Other functional motifs found are a polycystic kidney disease motif and a proline-rich region that presumably forms a hinge and can mediate protein-protein interaction.In a genetically defined human glioma model using minimally transformed human

fetal

Fig.5.Kaplan-Meier curve of time to progression stratifiedby (A )GPNMB RNA expression levels (>3.0-versus <3.0-foldincrease over normal brain),P =0.013,and (B )immunohistochemical value for GPNMB protein (positive versus zero)in newly diagnosed G BM patient samples,P =0.013.

Human Cancer Biology

astrocytes(20),transfection of GPNMB resulted in the drastic change of tumor phenotype,with invasion of brain tissues and formation of spontaneous metastasis(21).Thus,GPNMB may serve as an adhesion molecule mediating cell-cell and/or cell-matrix interaction(15)and may contribute to the acquisition of the invasive nature of malignant glioma cells.

For survival analysis,newly diagnosed GBM patients over the age of45years had a higher risk of death(data not shown),as has been known for decades.Similarly,in this population, univariate analyses show that patients with high relative GPNMB mRNA expression levels(wt and wt+sv)had a higher risk of death.The relative GPNMB protein expression levels (positive and negative immunohistochemical results)held the same significance.Taken together,the results of survival analysis suggest that the relative GPNMB mRNA levels and immunohistochemical staining represent a strong prognostic predictor of poor GBM patient survival.There are only a few molecular markers that are prognostic for survival in malignant gliomas.High GPNMB expression in GBM patient samples, strong glutathione S-transferase/k protein expression in human gliomas(43),and a functional polymorphism in epidermal growth factor gene(44)are associated with clinically more aggressive gliomas and are useful and powerful prognostic markers of poor patient survival.

In conclusion,increased GPNMB mRNA levels correlated strongly with elevated GPNMB protein expression in GBM biopsy samples and higher risk of death.Statistically significant predictors of survival among patients with GBM are age,the mRNA expression variables(wt and wt+sv),and immunohis-tochemical positivity.In a Cox model examining RNA for the subgroup of patients over45years old in these populations, mRNA expression and immunohistochemistry were shown to add significant prognostic value beyond that provided by age alone.These data indicate that GPNMB is a potentially useful tumor-associated antigen in immunotherapeutic approaches for malignant gliomas.We propose that therapeutic strategies designed to target GPNMB may be successful in malignant glioma treatment.

Acknowledgments

We thank Dr.H.P.Bloemers(University Nijmegen,Nijmegen,the Netherlands)for providing human GPNMB cDNA,Dr.Jeremy Rich(Duke University Medical Center,Durham,NC)for providing THRG cells,T.Shelley Davis for Western blot analysis,R.Ian Cumming for quantitative FACS assays,Charles Pegram for BIAcore analysis,Shawn Connelly andLingWang for immunohistochemical analyses,Diane SatterfieldandMelissa Ehinger for procuring tissue,andDr.Roger McLend on for neuropathology consultation.

References

1.Berger MS,Leibel SA,Levin VA.Primary central nervous system tumors of the supratentorial compart-ment.In:Levin VA,editor.Cancer in the nervous system.London:Churchill Livingston;1996. p.57^126.

2.Stupp R,Mason WP,van den Bent MJ,et al.Ra-diotherapy plus concomitant and adjuvant temozolo-mide for glioblastoma.N Engl J Med2005;352: 987^96.

3.Waldmann TA.Monoclonal antibodies in diagnosis andtherapy.Science1991;252:1657^62.

4.Kalofonos HP,PawlikowskaTR,Hemingway A,et al. Antibody guided diagnosis and therapy of brain glio-mas using radiolabeled monoclonal antibodies against epidermal growth factor receptor and placental alka-line phosphatase.J Nucl Med1989;30:1636^4

5. 5.Brady LW,Miyamoto C,Woo DV,et al.Malignant as-trocytomas treatedwith iod ine-125labeledmonoclo-nal antibody425against epidermal growth factor receptor:a phase II trial.Int J Radiat Oncol Biol Phys 1992;22:225^30.

6.Bigner DD,Brown MT,Friedman AH,et al.Iodine-131-labeledantitenascin monoclonal antibod y81C6 treatment of patients with recurrent malignant glio-mas:phase I trial results.J Clin Oncol1998;16: 2202^12.

7.Kuan CT,Reist CJ,Foulon CF,et al.125I-labeledanti-epidermal growth factor receptor-vIII single-chain Fv exhibits specific andhigh-level targeting of glioma xenografts.Clin Cancer Res1999;5:1539^49.

8.WikstrandCJ,Cokgor I,Sampson JH,Bigner DD. Monoclonal antibody therapy of human gliomas:cur-rent status andfuture approaches.Cancer Metastasis Rev1999;18:451^64.

9.Bigner DD.Biology of gliomas:potential clinical impli-cations of glioma cellular heterogeneity.Neurosurgery 1981;9:320^6.

10.Kleihues P,Ohgaki H.Primary andsecond ary glio-blastomas:from concept to clinical diagnosis.J Neu-rooncol1999;1:44^51.

11.WikstrandCJ,Bigner SH,Bigner DD.Demonstration of complex antigenic heterogeneity in a human glioma cell line andeight d erivedclones by specific monoclo-nal antibodies.Cancer Res1983;43:3327^34.

12.Velculescu VE,Zhang L,Vogelstein B,Kinzler KW.

Serial analysis of gene expression.Science1995;270:

484^7.

13.Loging WT,Lal A,Siu IM,et al.Identifying potential

tumor markers andantigens by d atabase mining and

rapidexpression screening.G enome Res2000;10:

1393^402.

14.Weterman MA,Ajubi N,van Dinter IM,et al.nmb,a

novel gene,is expressedin low-metastatic human

melanoma cell lines andxenografts.Int J Cancer

1995;60:73^81.

15.Shikano S,Bonkobara M,Zukas PK,Ariizumi K.

Molecular cloning of a dendritic cell-associated trans-

membrane protein,DC-HIL,that promotes RGD-

dependent adhesion of endothelial cells through

recognition of heparan sulfate proteoglycans.J Biol

Chem2001;276:8125^34.

16.Safadi FF,Xu J,Smock SL,Rico MC,Owen TA,

Popoff SN.Cloning andcharacterization of osteoacti-

vin,a novel cDNA expressedin osteoblasts.J Cell

Biochem2001;84:12^26.

17.Kwon BS,Chintamaneni C,Kozak CA,et al.A mela-

nocyte-specific gene,Pmel17,maps near the silver

coat color locus on mouse chromosome10andis in a

syntenic region on human chromosome12.Proc Natl

AcadSci U S A1991;88:9228^32.

18.T urque N,Denhez F,Martin P,et al.Characterization

of a new melanocyte-specific gene(QNR-71)

expressedin v-myc-transformedquail neuroretina.

EMBO J1996;15:3338^50.

19.Bachner D,Schroder D,Gross G.mRNA expression

of the murine glycoprotein(transmembrane)nmb

(G PNMB)gene is linkedto the d eveloping retinal pig-

ment epithelium andiris.Brain Res Gene Expr Patterns

2002;1:159^65.

20.RichJN,Guo C,McLendon RE,Bigner DD,Wang XF,

Counter CM.A genetically tractable model of human

glioma formation.Cancer Res2001;61:3556^60.

21.Rich JN,Shi Q,HjelmelandMD,et al.Bone-related

genes expressedin ad vancedmalignancies ind uce

invasion andmetastasis in a genetically d efinedhuman

cancer model.J Biol Chem2003;278:15951^7.

22.WikstrandCJ,Stanley SD,Humphrey P A,et al.In-

vestigation of a synthetic peptide as immunogen for a

variant epidermal growth factor receptor associated

with gliomas.J Neuroimmunol1993;46:165^73.

23.Morgenstern JP,LandH.Ad vancedmammalian

gene transfer:high titre retroviral vectors with multiple

drug selection markers and a complementary helper-

free packaging cell line.Nucleic Acids Res1990;18:

3587^96.

24.El-Rifai W,Moskaluk CA,Abdrabbo MK,et al.Gas-

tric cancers overexpress S100A calcium-binding pro-

teins.Cancer Res2002;62:6823^6.

25.Beers R,Chowdhury P,Bigner D,Pastan I.Immuno-

toxins with increasedactivity against epid ermal

growth factor receptor vIII-expressing cells produced

by antibody phage display.Clin Cancer Res2000;6:

2835^43.

26.Buchner J,Pastan I,Brinkmann U.A methodfor in-

creasing the yieldof properly fold edrecombinant fu-

sion proteins:single-chain immunotoxins from

renaturation of bacterial inclusion bodies.Anal Bio-

chem1992;205:263^70.

27.WikstrandCJ,Hale LP,Batra SK,et al.Monoclonal

antibodies against EGFRvIII are tumor specific and

react with breast andlung carcinomas andmalignant

gliomas.Cancer Res1995;55:3140^8.

28.SambrookJ,Russell DW.Molecular cloning:a labo-

ratory manual.3rd ed.Cold Spring Harbor(NewY ork):

ColdSpring Harbor Laboratory Press;2001.

29.Chu CT,Everiss KD,WikstrandCJ,Batra SK,Kung

HJ,Bigner DD.Receptor dimerization is not a factor

in the signalling activity of a transforming variant epi-

dermal growth factor receptor(EG FRvIII).Biochem J

1997;324:855^61.

30.WikstrandCJ,McLend on RE,Fried man AH,

Bigner DD.Cell surface localization andd ensity of

the tumor-associatedvariant of the epid ermal

growth factor receptor,EGFRvIII.Cancer Res1997;

57:4130^40.

31.Reist CJ,Archer G E,KurpadSN,et al.T umor-

specific anti-epidermal growth factor receptor variant

III monoclonal antibodies:use of the tyramine-

cellobiose radioiodination method enhances cellular

retention anduptake in tumor xenografts.Cancer Res

1995;55:4375^82.

32.Reist CJ,Archer G E,WikstrandCJ,Bigner DD,

Zalutsky MR.Improvedtargeting of an anti-epid ermal

growth factor receptor variant III monoclonal antibody

in tumor xenografts after labeling using N-succini-

GPNMB Expression in Malignant Gliomas

Human Cancer Biology

midyl5-iodo-3-pyridinecarboxylate.Cancer Res 1997;57:1510^5.

33.Lindmo T,Boven E,Cuttitta F,Fedorko J,Bunn P, Jr.Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapo-lation to binding at infinite antigen excess.J Immunol Methods1984;72:77^89.

34.Kuan CT,WikstrandCJ,Archer G,et al.Increased binding affinity enhances targeting of glioma xenografts by EGFRvIII-specific scFv.IntJCancer2000;88:962^9.

35.Kleihues P,Burger PC,Scheithauer BW,Zu lch KJ. Histological typing of tumours of the central nervous system.2nded.Berlin:Springer-Verlag;1993.

36.Grant CE,Kurz EU,Cole SP,Deeley RG.Analysis of the intron-exon organization of the human multid rug-resistance protein gene(MRP)andalternative splicing of its mRNA.Genomics1997;45:368^78.37.Shapiro MB,Senapathy P.RNA splice junctions of

different classes of eukaryotes:sequence statistics

andfunctional implications in gene expression.Nucleic

Acids Res1987;15:7155^74.

38.T suka H,Mori H,Li B,Kanamaru H,Matsukawa S,

Okada K.Expression of c-MET/HGF receptor mRNA

andprotein in human non-malignant andmalignant

prostate tissues.Int J Oncol1998;13:927^34.

39.Capone PM,Papsidero LD,Chu TM.Relationship

between antigen density and immunotherapeutic re-

sponse elicitedby monoclonal antibod ies against solid

tumors.J Natl Cancer Inst1984;72:673^7.

40.Ahn JH,Lee Y,Jeon C,et al.Identification of the

genes differentially expressed in human dendritic cell

subsets by cDNA subtraction andmicroarray analysis.

Blood2002;100:1742^54.

41.Bobo RH,Laske DW,Akbasak A,Morrison PF,

Dedrick RL,Oldfield EH.Convection-enhanced deliv-

ery of macromolecules in the brain.Proc Natl AcadSci

U S A1994;91:2076^80.

42.Archer GE,Sampson JH,Lorimer IA,et al.Re-

gional treatment of epidermal growth factor receptor

vIII-expressing neoplastic meningitis with a single-

chain immunotoxin,MR-1.Clin Cancer Res1999;5:

2646^52.

43.Ali-Osman F,Bruner JM,Kutluk TM,Hess K.

Prognostic significance of glutathione S-transferase

pi expression andsubcellular localization in human

gliomas.Clin Cancer Res1997;3:2253^61.

44.Bhowmick DA,Zhuang Z,Wait SD,Weil RJ.A

functional polymorphism in the EGF gene is found

with increasedfrequency in glioblastoma multiforme

patients andis associatedwith more aggressive

disease.Cancer Res2004;64:1220^3.

《胃癌诊疗规范(2018年版)》要点

《胃癌诊疗规范(2018年版)》要点 一、概述 胃癌是指原发于胃的上皮源性恶性肿瘤。在我国胃癌发病率仅次于肺癌居第二位,死亡率排第三位。全球每年新发胃癌病例约120万,中国约占其中的40%。我国早期胃癌占比很低,仅约20%,大多数发现时已是进展期,总体5年生存率不足50%。近年来随着胃镜检查的普及,早期胃癌比例逐年增高。 胃癌治疗的总体策略是以外科为主的综合治疗。 二、诊断 应当结合患者的临床表现、内镜及组织病理学、影像学检查等进行胃癌的诊断和鉴别诊断。 (一)临床表现 早期胃癌患者常无特异的症状,随着病情的进展可出现类似胃炎、溃疡病的症状,主要有:①上腹饱胀不适或隐痛,以饭后为重;②食欲减退、嗳气、返酸、恶心、呕吐、黑便等。进展期胃癌除上述症状外,常出现:①体重减轻、贫血、乏力。②胃部疼痛,如疼痛持续加重且向腰背放射,则提示可能存在胰腺和腹腔神经丛受侵。胃癌一旦穿孔,可出现剧烈腹痛的胃穿孔症状。 ③恶心、呕吐,常为肿瘤引起梗阻或胃功能紊乱所致。贲门部癌可出现进行性加重的吞咽困难及反流症状,胃窦部癌引起幽门梗阻时可呕吐宿食。④出血和黑便,肿瘤侵犯血管,可引起消化道

出血。小量出血时仅有大便潜血阳性,当出血量较大时可表现为呕血及黑便。⑤其他症状如腹泻(患者因胃酸缺乏、胃排空加快)、转移灶的症状等。晚期患者可出现严重消瘦、贫血、水肿、发热、黄疸和恶病质。 (二)体征 一般胃癌尤其是早期胃癌,常无明显的体征,进展期乃至晚期胃癌患者可出现下列体征:①上腹部深压痛,有时伴有轻度肌抵抗感,常是体检可获得的唯一体征。②上腹部肿块,位于幽门窦或胃体的进展期胃癌,有时可扪及上腹部肿块;女性患者于下腹部扪及可推动的肿块,应考虑Krukenberg瘤的可能。③胃肠梗阻的表现:幽门梗阻时可有胃型及震水音,小肠或系膜转移使肠腔狭窄可导致部分或完全性肠梗阻;④腹水征,有腹膜转移时可出现血性腹水;⑤锁骨上淋巴结肿大;⑥直肠前窝肿物;⑦脐部肿块等。其中,锁骨上窝淋巴结肿大、腹水征、下腹部盆腔包块、脐部肿物、直肠前窝种植结节、肠梗阻表现均为提示胃癌晚期的重要体征。因此,仔细检查这些体征,不但具有重要的诊断价值,同时也为诊治策略的制订提供了充分的临床依据。 (三)影像检查 1. X线气钡双重对比造影:定位诊断优于常规CT或MRI,对临床医师手术方式及胃切除范围的选择有指导意义。 2. 超声检查(US):因简便易行、灵活直观、无创无辐射等特点,可作为胃癌患者的常规影像学检查。

心情不好说说发朋友圈,适合心情不好发的朋友圈

心情不好说说发朋友圈,适合心情不好发的朋友圈 1、如果一个人真的爱你,距离不是一个问题,它只会成为一种滋长爱情的力量。 2、曾经以为,伤心是会流很多眼泪的,原来,真正的伤心,是流不出一滴眼泪。什么事情都会过去,我就是这样活过来的。 3、人人都是自顾不暇的泥菩萨,别指望谁能帮你度过现实这条河。 4、你可能也不爱我,只是刚好遇见我。 5、烟灭酒半杯,往后日子多笑少流泪。 6、再也不幻想,再也不乱想,再也不会想,再也不用想。 7、听到你的消息还是会心头一震,不过这些都不重要了,孤独至少比爱你舒服。 8、所有回不去的良辰美景,都是举世无双的好时光。感谢过去,珍惜现在,憧憬未来。哭给自己听,笑给别人看,这就是所谓的人生。 9、我一直走一直走,直到走到回忆的尽头,才发现时光与你,都没有等我。 10、付出和接受都是种债都无法还清。

11、自以为是刻骨铭心的回忆,别人早已已经忘记了。 12、成熟就是自己吞下苦难、眼泪、委屈、转脸还能给别人一个笑容。 13、我也经常觉得冷可我不会随便抱别人。 14、这世上真的没有感同身受只能冷暖自知。 15、心情不好就少听悲伤的歌。 16、有的时候连自己都不知道自己心里想什么,只知道自己心好累。 17、心情不好的时候,音乐必须大声,这样才听不到心碎的声音。 18、我们就像仙人掌,防备了别人,孤单了自己。 19、不要在流眼泪的时候做任何决定,情绪负面的时候说话越少越好。 20、说出口的伤痛都已平复,绝口不提的才触及心底。 21、不该看的东西就别去看,很多时候我们心情不好是因为我们手贱。 22、说什么待我长发及腰,心情不好全剪了,叫他想一辈子去吧。 23、心情不好的时候,做什么事都那么力不从心。 24、很多人,因为寂寞而错爱了一人,但更多的人,因为错爱一

疲劳驾驶预警系统

DSD行车安全电脑(四合一版本) 产品介绍 DSD行车安全电脑是结合车载智能电脑 和车辆辅助驾驶安全电脑功能的全新一代创新 产品,其包括疲劳检测与防瞌睡系统、视频行 车记录仪、GPS定位导航以及全面的车载3G 平板电脑的功能。 DSD行车安全电脑的防瞌睡检测系统,利 用面部生物特征模式检测技术,通过对驾驶人 员视频图像的获取、跟踪和分析,对驾驶过程 中常见的注意力涣散、驾驶姿态异常、驾驶反应迟钝、疲劳瞌睡等非正常工作状态进行提示告警和记录;不仅如此,同步结合产品的视频行驶记录、GPS定位导航服务、3G实时信息推送等功能,DSD行车安全电脑可为行车安全提供最全面有效的保护。 DSD行车安全电脑将智能视频分析技术、生物模式识别技术与无线通讯及信息传递技术相结合,可全面应用于车辆主动安全驾驶及行车监察管理等关键环节,最终为行车安全提供功能完善、简便实用、可靠安全、能够全天候实时运行的创新科技产品。 产品功能 1、驾驶疲劳及防瞌睡预警 ■完成驾驶员的状态及姿态等异常驾驶状态 预警; ■完成驾驶员的多级疲劳检测及防瞌睡告警; ■完成驾驶员各类异常驾驶事件的主动分析 和记录; 2、GPS定位导航 ■正版GPS导航3D软件; ■全面的更新及扩展能力; DSD行车安全电脑提供功能全面的GPS定位导航服务,不仅如此,结合产品本身完善的处理能力和3G通讯能力,相应的导航软件可以做到实时更新,并为车辆加入更完善的车辆在线导航服务,预留了设备功能接口的链接扩展能力。 3、行车记录黑匣子 ■无论何时何地,DSD为你的合法权益提供行车保障。 DSD行车安全电脑提供完善的行车视频记录仪功能,通过广角视频获取和超大容量的自动存储,行车过程的全视频信息,可以在DSD设备中实时重现和清晰记录,并且叠加时间标签,为你的事后过程查询、责任

心情不好的时候怎么发朋友圈 形容心情不好的句子

1.手掌就那么大,握不住的东西太多了。 2.怎么可以对淋在雨里的小孩说要乖 3.还以为你不一样呢。 4.再大大咧咧的人也会觉得难过啊,就像下了很大的雨,别人在等伞,而我在等雨停。 5.不等了,也等不到了。 6.哭,是解决不了问题的。可是,就是解决不了才哭啊。 7.我也曾对你心动过,只是赶路要紧,我忘了说 8.都会走的,无一例外 9.我可以恢复出厂设置吗? 10.我也不想一个人,但是我就擅长一个人待着。

11.要离开的人,你不妨推他一把。 12.一哄就好的人活该受尽委屈。 13.我表达不满的方式是晚一点回消息。 14.今天天气很好,好像也就一般。 15.连不开心都要暗示,你就应该知道他不在意。 16.我不会怪你,但我不会忘记每一次难过的原因。 17.我还以为这次我真能好好谈一个恋爱了呢 18.这场自救的仗我不想打了 19.生活中的糟糕小事都在消磨我对世界的兴趣。 20.心情不好说话就喜欢加句号。

21.下雨了,我说的不是天气。 22.成为遗憾,或许会被记住的久一点。 23.去吹吹风吧,能醒的话,感冒也没关系。 24.不管你承不承认,人确实是经历了一些事情后,就偷偷 换了一种性格。 25.今天还好吗,被人左右情绪了吗。 26.庆幸的是我一直很理性的看待所有的事情,我可悲的是 我是个很感性的人,所以所有的情绪我一样都没有逃过去。 27.不用考虑我,我没有感受,不用对不起,反正下次还是 会对不起。 28.我又把头发剪短了,好像变温柔了,好像过得比以前好,好像又不怎么样,我不清楚。 29.你剥开一个很酸的橘子,而感到后悔了,可对于橘子来说,那是它的一切。 30.这不就是你梦寐以求的长大吗,你怎么不笑了。

司机疲劳驾驶检测系统设计

司机疲劳驾驶检测系统设计

司机疲劳驾驶检测系统设计 摘要:随着社会经济的发展,商用长途运输车越来越多,司机为了追求经济效益,经常罔顾交通法的规定疲劳驾驶,而一些私家车也因为各种各样的原因经常铤而走险疲劳驾驶,酿成很多人间惨剧。为了减少减轻司机的精神压力并对疲劳及时提示预警,本论文以计算机视觉技术为主体,设计实用操作简单的疲劳驾驶检测系统,辅助驾驶员安全驾驶。 司机疲劳驾驶实时检测系统在实际应用中有很重要的意义。设计了一个利用图像分析的方法,通过测量PERCLOS指标值来进行疲劳判断的该类系统。系统首先对图像进行预处理,然后采用基于YCbCr颜色空间肤色模型进行人脸粗定位,根据人脸特征,逐次进行人眼区域缩小;最后通过对边缘信息进行先验知识结合积分投影的方法进行人眼定位和闭合度测量。考虑到视频图像序列帧与帧之间的相关性,采用线性运动预测的方法对人眼进行跟踪,减少了系统的运算量。实验结果表明系统能实时、准确地反映司机的疲劳状态。 关键词:疲劳驾驶人脸检测肤色检测交通安全疲劳判断

目录 摘要 Abstract 1.疲劳驾驶检测系统研究背景与意义............................ 2.疲劳驾驶检测系统研究与实现 2.1国内外疲劳驾驶检测系统研究现状 2.1.1国外疲劳驾驶检测系统的研究成果...................... 2.1.2国内疲劳驾驶检测系统的研究现状...................... 2.2疲劳驾驶检测系统浅析............................................. 2.3驾驶员疲劳检测系统的研究..................................... 2.3.1人脸检测 2.3.2人眼定位 2.3.3疲劳程度的综合判定........................................................................................... 3.基于人脸特征的列车司机疲劳驾驶检测与识 别系统研究....................................................................... 3.1研究内容及目标......................................................... 3.1.1基于人脸特征的疲劳驾驶检测与识别算法 开发................................................................................... 3.1.2疲劳驾驶检测与识别算法OSP移植 3.2基于Adaboost算法的人脸检测

心情不好适合发的句子,心情不好朋友圈句子

心情不好适合发的句子,心情不好朋友圈句子 1、难过的时候别说话,因为一张口眼泪就停不下。 2、原来除了记忆外,什么也不能永久。 3、虽然知道自己是个普通人但还是会希望在特别的人心里能有特别的存在。 4、放开彼此的手,当爱已经无法挽留,终于看透幸福的背后,是一道道伤口。 5、从有你真好到没你也行,这中间的心酸与艰难,你怎么会知道。 6、在最后的时光里我决定不再哭泣,在剩下的路里我也决定放弃。 7、深夜总是那么多无奈。挣不脱从前,怕极了以后。 8、心情不好的时候删东西就有一种快感。 9、有时候,莫名的心情不好,不想和任何人说话,只想一个人静静的发呆。有时候,想一个人躲起来脆弱,不愿别人看到自己的伤口。 10、心情不好,微微抬起头,看看湛蓝的天,看看悠悠的云,也是一种舒心的幸福。 11、某些人,某些事,久而久之就忘了,久而久之就不那么在意了。 12、有人总说:已经晚了。实际上,现在就是最好的时光。对于一个真正有所追求的人来说,生命的每个时期都是年轻的、及时的。13、被特别在乎的人忽略,会很难过,而更难过的是你还要装作你不在乎。 14、你伤我如此之深,我心里却全是你的甜言蜜语。

15、我心情不好没关系,你开心就好。 16、我承认我在发脾气的时候最喜欢说很极端的话。 17、再深的记忆,也有淡忘的一天。 18、这几天我心情不好阿!全世界都烦死人,只有你是死烦人。 19、从相遇到离开,我欠自己良多,不欠你分毫。 20、太多心酸无处诉说,太多难过如何洒脱。 21、曾经无话不说,如今的无话可说。 22、当初我们那么不甘心,最后还不是成了陌生人。 23、人老的唯一好处就是:能失去的东西越来越少了。 24、你看的,你听的,你都相信。我用心说的话你却从不相信。 25、我的难过无人知晓,我的心情无人过问。 26、任何瞬间的心动都不容易,不要怠慢了它。 27、在一瞬间曾经所有的梦都幻灭,剩下回忆湿了我的眼。 28、悉数记忆的流沙,那些逝去的年华,洗尽了我的尘沙。 29、我心情不好的时候你不在你知道我多想你安慰我吗? 30、时间不是让人忘了痛,它只是让人习惯痛。 31、一个人吃饭也没什么不好,不过是空出来一个座,邀请了寂寞。 32、心情不好的时候,看看大海,大海那么大,足以包容你的一切。没有大海就望望天空吧,望着望着心就不痛了,脖子就会痛了。 33、嗯!生理性心情不好谢谢大哥没打死我。 34、以前觉得,人只要一天不洗澡就会长蛆。。。昨天心情不好没有洗澡就睡了,今天发现也没夸张到长蛆。。。

心情不好时发朋友圈的伤感心情说说100句

心情不好时发朋友圈的伤感心情说说100句 1、爱上等于哀伤。 2、离网络越近,离现实越远。 3、你不安定,注定我不安宁。 4、幻光留不住时光的时间。 5、你说的坚强,始终都学不会。 6、我爱你,爱了整整一个曾经。 7、有心则会累,无心者无所谓。 8、你的心不是能读懂我眼神的料。 9、他说爱你又没说只爱你一个。 10、一切都已结束,一切都将开始。 11、害怕背叛,所以不敢为爱承诺。 12、如果坦白是伤害,情愿选择谎言。 13、相爱的人,刚分开,却又心生思念。 14、女人从来不争气,男人从来不珍惜。 15、听你说他的一举一动我心如刀割。 16、不在恋爱中失败,就在恋爱中变态。 17、我就只有这么一颗心,你看着伤吧。 18、格式化我们的过去,一切重新开始。 19、有时爱情一眨眼,就把回忆当留言。 20、你说的太少或太多,都会让人很惶恐。 21、也许只有可悲,才能填补寂寞的空位。

22、不知道什么时候开始,变得如此狼狈。 23、如果说,你的忧伤是我最痛的伤口。 24、丢失的曼陀罗,我知道,不会太远。 25、我希望有个人懂我,即使我什么也不说。 26、明明说忘记,却总是不经意的想起。 27、我们都只是孩子,何必什么都懂。 28、我们在原地转了无数次,无法解脱。 29、有那么一瞬间,我以为我们会一辈子。 30、曾经的那些勇气,全都变成了回忆。 31、未知的下一秒才更容易让人刻骨铭心。 32、我尽量减少了难过,过平静的生活。 33、心不知下落,我早己找不回单纯的我。 34、宁可高傲的发霉,也不低调的凑合。 35、伤痛复合不了叻,心里永远有伤疤。 36、我捂着心脏,傻傻的痛到撕心裂肺。 37、习惯了伤感,竟然忘了什么是幸福? 38、只希望你能聆听我的世界,仅此而已。 39、看起来百毒不侵,其实早已百毒侵心。 40、给你自由的爱,冻结我们美好的回忆。 41、那种华丽旳颓废,有种令人心惊旳美丽。 42、我假装坚强,只是不想告诉自己我想哭。 43、没有人值得你放弃自己的卑微去讨好。 44、你的笑容,是我今生无法忘记的眷念。 45、明知是陌路,却还追逐,缠绵一生的毒。

司机疲劳驾驶检测系统设计

司机疲劳驾驶检测系统设计 摘要:随着社会经济的发展,商用长途运输车越来越多,司机为了追求经济效益,经常罔顾交通法的规定疲劳驾驶,而一些私家车也因为各种各样的原因经常铤而走险疲劳驾驶,酿成很多人间惨剧。为了减少减轻司机的精神压力并对疲劳及时提示预警,本论文以计算机视觉技术为主体,设计实用操作简单的疲劳驾驶检测系统,辅助驾驶员安全驾驶。 司机疲劳驾驶实时检测系统在实际应用中有很重要的意义。设计了一个利用图像分析的方法,通过测量PERCLOS指标值来进行疲劳判断的该类系统。系统首先对图像进行预处理,然后采用基于YCbCr颜色空间肤色模型进行人脸粗定位,根据人脸特征,逐次进行人眼区域缩小;最后通过对边缘信息进行先验知识结合积分投影的方法进行人眼定位和闭合度测量。考虑到视频图像序列帧与帧之间的相关性,采用线性运动预测的方法对人眼进行跟踪,减少了系统的运算量。实验结果表明系统能实时、准确地反映司机的疲劳状态。 关键词:疲劳驾驶人脸检测肤色检测交通安全疲劳判断

目录 摘要 Abstract 1.疲劳驾驶检测系统研究背景与意义............................................................................................................... 2.疲劳驾驶检测系统研究与实现 2.1国内外疲劳驾驶检测系统研究现状 2.1.1国外疲劳驾驶检测系统的研究成果......................................................................................................... 2.1.2国内疲劳驾驶检测系统的研究现状......................................................................................................... 2.2疲劳驾驶检测系统浅析................................................................................................................................ 2.3驾驶员疲劳检测系统的研究........................................................................................................................ 2.3.1人脸检测 2.3.2人眼定位 2.3.3疲劳程度的综合判定 ............................................................................................................................................................................. 3.基于人脸特征的列车司机疲劳驾驶检测与识别系统研究........................................................................... 3.1研究内容及目标............................................................................................................................................ 3.1.1基于人脸特征的疲劳驾驶检测与识别算法开发..................................................................................... 3.1.2疲劳驾驶检测与识别算法OSP移植 3.2基于Adaboost算法的人脸检测 3.2.1人脸检测技术概述 3.2.2Adaboost人脸检测算法 3.3基于Adaboost算法的人脸检测软件实现 3.3.1.样本训练过程 3.3.2人脸检测程序 3.4人眼检测与人眼状态分析算法 3.4.1基于Adaboost的人眼检测算法 3.4.2人眼级联分类器效果分析 3.4.3人眼状态分析算法 4.基于贝叶斯网络的驾驶疲劳程度识别模型 4.1基于贝叶斯网络模型的驾驶疲劳程度识别 4.2驾驶疲劳程度识别模型 4.2.1驾驶疲劳贝叶斯网络结构 4.2.2贝叶斯网络条件概率表的确定 4.2.3驾驶疲劳程度贝叶斯网络识别模型 4.3模型有效性验证 5.基于FPGA的疲劳驾驶检测系统设计 5.1疲劳驾驶检测系统总体设计方案 5.1.1系统红外光源原理 5.1.2系统总体设计 5.2系统硬件设计与实现 5.2.1系统硬件总体架构 5.2.2图像采集电路设计

病理标本取材的注意事项

1、活检组织包括:子宫内膜诊刮、浅表或深部组织穿刺物、皮肤组织、内镜钳取粘膜、微创手术切去不完整组织等 ?应描述标本的数量、大小(mm、cm、多量时聚堆测量)、形状、色泽、和质地等 ?小量小标本,应全部取材 ?多量小标本,取材后剩余者应保管好备用 ?粘膜和皮肤应“立埋”以便观察各层结构 2、大标本取材 记录标本的手术类型 描述和记录标本大小(三维长度、形状、色泽、表面、质地等)球形标本可测直径 切面:沿大面切开,描述和记录其特点,如实性或囊性,各占比例,色泽、质地、出血坏死,囊壁厚度,内容物颜色等 前列腺、甲状腺、胰腺等脏器应间隔一定距离做多个平行破面,以免漏掉微小肿瘤. 取代表性区域,并与正常组织交界处取材 完整瘤体要带包膜,如甲状腺、乳腺 取材块的大小2cmx1.5cmx0.3cm 编号:数量、剩余组织记录“留”,全部取材时记录(全包)一包等,微小组织试做 重取材要记录 描述和记录标本大小(三维长度、形状、色泽、表面、质地等)球形标本可测直径 切面:沿大面切开,描述和记录其特点,如实性或囊性,各占比例,色泽、质地、出血坏死,囊壁厚度,内容物颜色等 前列腺、甲状腺、胰腺等脏器应间隔一定距离做多个平行破面,以免漏掉微小肿瘤. 取代表性区域,并与正常组织交界处取材 完整瘤体要带包膜,如甲状腺、乳腺 取材块的大小2cmx1.5cmx0.3cm 编号:数量、剩余组织记录“留”,全部取材时记录(全包)一包等,微小组织试做 重取材要记录 3皮肤和皮下组织 肉眼观察:形状、大小、测量、三维 皮肤表面:平滑、粗糙、水肿、水疱、毛发附着、色素、白斑、疣状物、乳头、结节状隆起、皮下结节、硬度等全部描述 取材的组织块大小、方向、切缘等 4肿瘤 整体观察:肿瘤位置、数量、大小、形状、色泽、质地、活动度、生长方式等 溃疡病变:数目、部位、直径、形状、色泽、边缘、深度、底部、穿孔等 切面:最大径破面观察囊性、实性、囊实性

水产病理切片组织标本选择和固定注意事项

组织标本选择和固定的注意事项 组织标本的选择非常重要,不能随意切取组织来制作组织切片,否则病理检验的结果是不会令人满意的。切取组织块时必须注意下列几点: 一愈新鲜愈好: 为了使组织切片的结构清楚,组织块必须争取时间及时固 定,组织的固定以愈新鲜愈好。水产动物最好选择病重但还 没死的样品。 较大的标本不能及时检查时,可暂放在冰箱内,以减低 死后变化的速度,但应注意发生冰冻的变化。水产动物上一 般不采用暂放在冰箱内的方法。 二切勿挤压或损伤: 在切取各组织块时,切勿挤压或损伤,以免造成人为的 “病变”,肠粘膜组织上沾有少量粪便,亦不应以手拭去或以 水洗去。 产生压力的原因甚多: 1.所用的刀过钝或过短,致使切块时不得不依靠下压的力量, 这样难免把组织挤压。故作切块的刀要长而快,切时勿将 刀下压,应从刀根起向后拉,在拉的同时徐徐向下切,直 至切到刀尖时,组织的全后方被切开。 2.亦应避免其它形式的挤压,如镊子的钳夹,剪刀的剪切等。 3.避免摩擦、固定前不要用水过多地冲洗。 三切下的组织块,应尽量防止其弯曲扭转 如胃肠等组织,应先平展于草纸上,粘着以后,慢慢地放于 固定液中(故应在动手剖验之前做好准备工作)。为了携带方 便、可备带50毫升的广口瓶,瓶装置适量10%甲醛液。固定 液的量要充足,应为固定组织体积的10倍。其他固定液如纯酒 精或Zenker氏液等亦需准备齐全,以便需要时即可应用。瓶上 应先贴上一个标签,记录水产动物种类、组织名称、地点等情 况。 四组织切块的选择和切法: 1.若标本各部的病变不同,则应从各个不同的部位以及从病 变部与正常部相接处采取切块。 2.凡有层次结构的组织,如皮肤、胃、肠壁、主动脉壁等, 切块的切面应包括组织的所有各层,而且与各层的平面相垂直。 3.若标本为细的管状物,如血管等,则切块应为该管状组织的 横切面。 4.如为肌肉、神经等组织,则横切纵切都需要。 组织块的厚度以0.3厘米为宜,最厚不应超过0.5厘米,这样较易固定;至于长度和宽度,则无硬性规定,一般为0.3—1.0厘米(人蓄上,其大小不应小于1—3平方厘米,以便使病变可以看得全面些,又便于以后切取镜检组织块时修削)。在典型病变部分不妨多切数块,以备日后研究的需要。 五各组织块应包括各脏器的重要结构: 如肾脏组织应包括前肾、中肾(也可分开固定)。在有浆膜的脏器组织块中,要有一块带有浆膜。

精品-心情特烦想发个朋友圈_心情不好发朋友圈的句子短句

心情特烦想发个朋友圈_心情不好发朋友圈的句 子短句 心情不好发朋友圈的句子短句 1、突如其来的委屈,连笑都带着僵硬。 2、没有值不值得,只有愿不愿意。 3、一个人最伤心的事情无过于良心的死灭。 4、偶尔被需要,从来不重要。 5、走完同一条街,回到两个世界。 6、青春的抛物线,把将来始于相遇的地点。 7、别在没我的地方哭,我怕没人给你擦眼泪。 8、撕心裂肺的挽留,不过是心有不甘的表现。 9、我还是那么没出息,处处留意你的消息。 10、他依旧是我的软肋,却不再是我的盔甲。 11、我今天只做了两件事,呼吸和想你! 12、曾以为他生性冷淡,直到他对另一个人嘘寒问暖。 13、向日葵也知道,该面向太阳那头的希望。 14、决口不提不是因为忘记,而是因为铭记。

15、能动手尽量别吵吵,能整死尽量别留活口。 16、别对我笑,我怕以后得不到,还忘不掉。 17、有没有这样一个人,无论多么想念,却不曾再见面。 18、自古多情空余恨,此恨绵绵无绝期。 19、人生,是一场盛大的遇见。若你懂得,就请珍惜。 20、我的心好冷,等着你来疼。 21、过去的不再回来,回来的不再完美。 22、从现在起,我将不再期待,只珍惜我所拥有的。 23、是否在你们的生命划过,留下清晰可见的痕迹。 24、我在你眼里找不到出路,我倒在回忆里脱不开身。 25、我的倔强就是,宁愿笑着流泪,也不愿哭着说后悔。 26、你给我一滴眼泪,我就看到了你心中全部的海洋。 27、没有你,就算把世界给我,我还是一无所有。 28、这个不知所措的年龄,似乎一切都不尽人意。 29、最难过的喜欢,就是分开后的喜欢。 30、有时候突然不说话,回过神来才知道,自己在想他。 31、我想给他看最好看的我,可最好看的我却已经死了。 32、有一种单身,只是为了等待一个人。 33、你不会懂我的沉默,又怎么会懂我的难过。

司机疲劳驾驶检测系统设计

司机疲劳驾驶检测系统 设计 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

司机疲劳驾驶检测系统设计 摘要:随着社会经济的发展,商用长途运输车越来越多,司机为了追求经济效益,经常罔顾交通法的规定疲劳驾驶,而一些私家车也因为各种各样的原因经常铤而走险疲劳驾驶,酿成很多人间惨剧。为了减少减轻司机的精神压力并对疲劳及时提示预警,本论文以计算机视觉技术为主体,设计实用操作简单的疲劳驾驶检测系统,辅助驾驶员安全驾驶。 司机疲劳驾驶实时检测系统在实际应用中有很重要的意义。设计了一个利用图像分析的方法,通过测量PERCLOS指标值来进行疲劳判断的该类系统。系统首先对图像进行预处理,然后采用基于YCbCr颜色空间肤色模型进行人脸粗定位,根据人脸特征,逐次进行人眼区域缩小;最后通过对边缘信息进行先验知识结合积分投影的方法进行人眼定位和闭合度测量。考虑到视频图像序列帧与帧之间的相关性,采用线性运动预测的方法对人眼进行跟踪,减少了系统的运算量。实验结果表明系统能实时、准确地反映司机的疲劳状态。 关键词:疲劳驾驶

目录 摘要 Abstract 3. 预警系统的组成及工作原理 典型的疲劳驾驶预警系统 疲劳驾驶预警系统比较 发展趋势 8.新型多功能驾驶员状态监测系统设计 无线脑电信号采集和分析 酒精监测 9.多源信息融合在驾驶疲劳检测中的应用 驾驶疲劳特征 模糊神经网络疲劳识别 智能控制技术在汽车疲劳驾驶监控中的应用研究 1.研究背景与意义 驾驶疲劳川是指驾驶员由于睡眠不足或长时间持续驾驶造成的反应能力下降,这种下降表现在驾驶员困倦、打磕睡、驾驶操作失误或完全丧失驾驶能力。美国印第安那大学对交通事故原因的调查研究发现85%的事故与驾驶员有关,车辆和环境因素只占15%。驾驶员在事故发生前一瞬间的行为和故障直接导致了事故的发生,这些行为包括知觉的延迟、对环境的决策错误、对危险情况的处理不当等。在所有的驾驶员错误中,最常见的是知觉延迟和决策错误,这些错误会产生注意力不集中、反映迟钝、操作不当等,产生这些错误的根本原因就是驾驶疲劳。 随着我国生活水平的提高,人们的衣食住行等方面有了很大的改善,在交通方面更是有了质的飞跃。四通八达的道路、便捷的交通工具大大地缩短了人与人的距离,其中汽车保有量更是与日俱增,一个家庭拥有两辆以上的小车已经不是什么新鲜的事

胃癌诊疗规范(2011年版)

胃癌诊疗规范(2011年版) 一、概述 胃癌是我国最常见的恶性肿瘤之一,2010年卫生统计年鉴显示,2005年,胃癌死亡率占我国恶性肿瘤死亡率的第3位。胃癌的发生是多因素长期作用的结果。我国胃癌发病率存在明显地区差异,环境因素在胃癌的发生中居支配地位,而宿主因素则居从属地位。有研究显示,幽门螺旋杆菌(Helicobacter pylori, H.pylori)感染、饮食、吸烟及宿主的遗传易感性是影响胃癌发生的重要因素。 为进一步规范我国胃癌诊疗行为,提高医疗机构胃癌诊疗水平,改善胃癌患者预后,保障医疗质量和医疗安全,特制定本规范。本规范所称的胃癌是指胃腺癌(以下简称胃癌),包括胃食管结合部癌。 二、诊断 应当结合患者的临床表现、内镜及组织病理学、影像学

检查等进行胃癌的诊断和鉴别诊断。 (一)临床表现。胃癌缺少特异性临床症状,早期胃癌常无症状。常见的临床症状有上腹部不适或疼痛、食欲减退、消瘦、乏力、恶心、呕吐、呕血或黑便、腹泻、便秘、发热等。 (二)体征。早期或部分局部进展期胃癌常无明显体征。晚期胃癌患者可扪及上腹部包块,发生远处转移时,根据转移部位,可出现相应的体征。出现上消化道穿孔、出血或消化道梗阻等情况时,可出现相应体征。 (三)辅助检查。 1.内镜检查。 (1)胃镜检查:确诊胃癌的必须检查手段,可确定肿瘤位置,获得组织标本以行病理检查。必要时可酌情选用色素内镜或放大内镜。 (2)超声胃镜检查:有助于评价胃癌浸润深度、判断胃周淋巴结转移状况,推荐用于胃癌的术前分期。对拟施行内镜下粘膜切除(EMR)、内镜下粘膜下层切除(ESD)等

微创手术者必须进行此项检查。 (3)腹腔镜:对怀疑腹膜转移或腹腔内播散者,可考虑腹腔镜检查。 2.组织病理学诊断。 组织病理学诊断是胃癌的确诊和治疗依据。活检确诊为浸润性癌的患者进行规范化治疗。如因活检取材的限制,活检病理不能确定浸润深度,报告为癌前病变或可疑性浸润的患者,建议重复活检或结合影像学检查结果,进一步确诊后选择治疗方案。 (1)胃镜活检标本处理。 ①标本前期处置:活检标本离体后,立即将标本展平,使粘膜的基底层面贴附在滤纸上。 ②标本固定:置于10%-13%福尔马林缓冲液中。包埋前固定时间须大于6小时,小于48小时。 ③石蜡包埋:去除滤纸,将组织垂直定向包埋。 ④HE制片标准:修整蜡块,要求连续切6~8个组织面,捞取在同一张载玻片上。常规HE染色,封片。

心情不好发朋友圈的说说 内心压抑憋屈的心情短语

心情不好发朋友圈的说说内心压抑憋屈的心情短语 1.与你无关的事,别问,别想,别多嘴。 2.多少事,从来急;天地转,光阴迫。一万年太久,只争朝夕。 3.有些事藏在心里是莫大的委屈,话到嘴边又觉得无足挂齿不值一提。 4.最怕的不是说出秘密,而是两个人的秘密,你却在第三个人那里听见。 5.放弃并不是心血来潮,各种失望累积在一起,最终在沉默中爆发。没有声音,没有吵闹,就这么静悄悄的放弃了。 6.人都会有心情不好的时候,说不上来的失落,道不明白的难过,理不清楚的交错。 7.活得累是因为心里装了多余的东西,跟吃饱了撑的是一个道理。 8.不要在人前哭,也不要在深夜做任何决定。 9.突如其来的脾气大概是积攒了很久的委屈。 10.这世界上根本不存在“不会做”这回事,当你失去了所有的依靠的时候,自然就什么都会了。 11.无论你活成什么样子,背地里都会有人对你说三道四。一笑了之,给自己一个灿烂的阳光,一片自由的海洋,让自己不断变强,其实就是最好的蔑视。 12.不卑不亢,落落大方,但行好事,莫问前程。 13.想得开,也就那么一回事。想不开,什么都是事。

14.我心里一直有你,只是比例变了而已。 15.爱到收不住,才是真的输。 16.要没点自我安慰的本事,还真活不到现在。 17.去找一个像太阳一样的人,帮你晒晒所有不值一提的迷茫。 18.奉劝各位:除了灾难、病痛,时时刻刻要快乐。 19.幸福如人饮水,冷暖自知,你的幸福,不在别人眼里,而在自己心里。 20.我是一个经常笑的人,可我不是经常开心的人 21.生活没那么多剧情,靠谱的人花样不多却能陪你过平淡生活。 22.有时候,明明心如刀割,却要灿烂的微笑,明明很脆弱,却表现的如此坚强,眼泪在眼里打转,却告诉每个人我很好。 23.世界再大还是遇见你,世界再小还是丢了你。 24.有些人,有些事,该忘就忘了吧,人家从没把你放心里过,你又何必自作多情。 25.有些事,现在看来不过如此,但在当时,真的就是一个人一秒一秒熬过来的。 26.愿我们,都有能力爱自己,有余力爱别人。 27.你真的很奇怪,烟对你不好你喜欢,酒对你不好你喜欢,我对你这么好,你却不喜欢。在我青春岁月里,唯有你最深得我意,也只有你最不识抬举。

组织标本采取及处理的正确方法

组织标本采取及处理的正确方法 近年来从国外引进许多先进的实验室检测技术和诊断方法,但是临床病理诊断仍然是最重要的“定性诊断”方法,是临床制定治疗措施和判断预后的重要依据。由于医学的发展使临床医生和病理医生有时对某些问题的理解有很大的差别,从而影响了对患者的治疗,甚至产生不良结果,也可因标本的采取部位和处理不当,直接影响病理医生做出准确的诊断。 1标本的固定 正确的病理诊断需要有高质量的切片,正确的标本固定是制成高质量切片的第一步。如果组织自溶、结构破坏、细胞变形,就无法诊断,而且这是无法补救的一步。 常用的固定液有10%福尔马林,80%酒精、丙酮、戊二醛、醋酸。10%福尔马林的渗透组织能力为1 mm/h,所以一般标本均需固定数小时,较大标本(直径大于6 cm)沿最大径切开后应固定24 h,腔状器官剪开后铺平(粘膜面向上),在大的容器内固定,表面覆以侵有固定液的湿纱布或湿棉花。小组织(直径小于2 cm)装在小瓶内固定以防丢失,囊性标本勿剖开以防上皮脱落。盛标本的容器口径应大于标本的直径。固定液的体积应10倍于标本的体积。 较大标本的固定方法:消化道沿系膜和胃大弯剖开;肺沿支气管树的冠状面剖开;子宫应从前面剖开宫腔固定内膜,以最大径剖开子宫的肿物;从外缘向肾门方向剖开肾脏;肝脾可沿最长径平行切开;眼球应开窗固定,在巩膜处剪开一小口,使固定液流入眼球内。 10%福尔马林配制:市销36%福尔马林1份加9份蒸馏水。用于分子生物学和免疫组化研究的标本应用中性福尔马林固定。 2关于快速冰冻问题 2.1快速冰冻的用途决定病变的性质;确定切除肿瘤边缘是否有残留的癌组织;辨认组织;确定有无淋巴结转移。 2.2快速冰冻有下列局限性①切片质量差,准确性可达97%〔1〕。②不适用于骨、脂肪和淋巴结非转移性病变的诊断。前两者因为组织坚硬和难以冷冻不能切片。淋巴瘤在石蜡切片上诊断都很困难。③疑难病变和变界性病变在石蜡切片上都很难诊断,需借助于免疫组化和电镜来诊断,因此要延缓诊断。 2.3临床医生在送检标本时注意事项①组织忌放在生理盐水、福尔马林或水中,应该用干纱布包裹组织,尤其脑组织,否则在制片中形成冰晶使切片上有大量空泡和网状结构无法诊断。②尽可能提供全面的临床资料,尤其是肿瘤的确切部位。如脑肿瘤位于髓内还是髓外,病理诊断大不相同。③认真填写手术所见。因为临床医生手术所见实际上就是病理医生的大体检查。需要描写的内容有:病灶的大小、形状、质地、颜色、有无包膜、包膜是否完整,与周围组织是否粘连,是否有出血、坏死、渗出、钙化、囊性变等。④手术送检组织尽可能取靠近病变中心的组织。例如,临床疑为乳腺癌送检冰冻时,病变中心可能是典型的癌,而周围的组织可能是导管上皮高度伴不典型增生。有些器官或组织的肿物尽可能将肿物全部切除送检。 2.4病理医生延迟冰冻诊断报告的原则一些疑难病例当缺乏足够的组织学改变依据时;病理诊断与临床诊断有原则性分歧时;病理医生们存在原则性分歧时;发现有特殊疑点时,应与临床医生讨论,待石蜡切片再做出诊断。

关于发在朋友圈表示心情抑郁,很不开心,心情压抑的伤感说说100句

关于发在朋友圈表示心情抑郁,很不开心,心情压抑的伤感说说100句 寂寞的人总是会用心的记住他生命中出现过的每一个人,于是我总是意犹未尽地想起你在每个星光陨落的晚上一遍一遍数我的寂寞。这份关于心情抑郁,很不开心,心情压抑的伤感说说希望大家会喜欢。 1、我总是躲在梦与季节的深处,听花与黑夜唱尽梦魇,唱尽繁华,唱断所有记忆的来路。 2、逃避,不一定躲得过;面对,不一定最难过。孤独,不一定不快乐;得到,不一定能长久。失去不一定不再拥有,可能因为某个理由而伤心难过。 3、足够真心的人经得起等待,随口说说的人转身就牵了别人的手。 4、后来我才知道,那些真正要走的人,吝啬得连说再见都觉得是浪费时间。 5、曾经,我想和你分享我的所有秘密,但现在,你成了我心底的秘密。 6、想你的滋味,就象喝了一杯冰冷的水,然后凝成了滴滴热泪。 7、这世上没有真正的公主!除非你老爸家资亿万,能引来一帮图你油水的男生女生常绕在左右虚意奉承,否则,你别指望全世界的人都能宠你若宝!

8、我忘记了哪年哪月的哪一天,我在哪面墙上刻下了一张微笑着,忧伤着,凝望着我的脸。 9、想你的时候有些幸福,幸福得有些难过。幸福对我说,你还太小。 10、人,不怕渺小,只怕卑微;人,可以无傲气,但不可无傲骨,无论别人怎样看你,你要自己看得起自己。 11、在这个城市里,我不断地迷路,不断地坐错车,并一再下错车,常常不知道自己在哪里,要去什么地方。 12、总有一些文字,触动心灵。总有一段心语,痛彻心扉。总有一些句子,你看着看着就哭了。 13、我耗尽了热情,丢失了自己,伤痛处还含着淡淡的甜蜜,原来只是场奇迹。 14、有些歌,深入人心,有时候我不知道我是在听歌,还是在听自己? 15、如果时间不可以令你忘记那些不该记住的人,我们失去的岁月又有什么意义。 16、有些话,说与不说都是伤害;有些人,留与不留都会离开。 17、遗忘是我们不可更改的宿命,所有的一切都像是没有对齐的图纸,从前的一切回不到过去就这样慢慢延伸一点一点的错开来。也许错开了的东西我们真的应该遗忘了。 18、绾青丝,挽情思,任风雨飘摇,人生不惧。浮生一梦醉眼看,海如波,心如皓月,雪如天赐。你自妖娆,我自伴。 19、我不是真的想踩着你的头往上爬,我也没有办法,他踩我,我踩你,踩来踩去大家也就习惯了。真高兴往上爬的人是我,

心情不好发朋友圈的说说,心情不好时发的朋友圈

心情不好发朋友圈的说说,心情不好时发的朋友圈 1、心情不好,也不想好。 2、你可能也不爱我,只是刚好遇见我。 3、其实我很难过,只是骄傲不让我哭,宁愿坚强转身,也不委屈留下。 4、唯你最深得我心,也只有你最不识抬举。 5、起码我不后悔爱过你,永远也不会忘记你。 6、怀孕时要担心心情不好哭泣会影响宝宝发育,坐月子了还要担心心情不好分泌乳汁对宝贝不好,为什么我总要担心这样的破问题…… 7、心情不好的时候,我只想一个人安安安静的待着。 8、明明不是陌生人,却装旳比陌生人还陌生。 9、有些事情好像在冥冥中早已注定,譬如遇见,比如感觉,比如离开。 10、最近吃的都很少,虽然吃的少会心情不好,不过无所谓啦,少吃起码还能瘦一瘦,毕竟吃的多了心情也没好过。 11、莫名其妙心情不好。差不多见到谁都想打一架。

12、不开心就不要想,对自己好些,因为没有谁会真的在乎你。 13、寂静的夜里,难以入眠。有一种情不自禁的感觉在撩拨着我的心弦。 14、有时候,没有下一次,没有机会重来,没有暂停继续。有时候,错过了现在,就永远永远的没机会了。 15、走过每个场景,都是回忆,你要我怎么忘记。 16、是否你也像我一样,用言不由衷的话语,逼走最爱的人,然后独自心痛。 17、以朋友的名义爱着一个人,连吃醋的资格都没有,有多喜欢,就有多心酸。 18、其实我还好,只是突然回首,看到了个陌生的自己和一条回不去的路。 19、我想我的思念是种病,久久不能痊愈。 20、没有回应,再深的感情也得憋回去。 21、我在努力的变成你喜欢的样子,可是你却告诉我你爱的是她。 22、世界上最残忍的事,不是没遇到爱的人,而是遇到了却是最终错过。 23、你本来很爱一个人,可是,当所有的失望累积到了一个临界

朋友圈说说心情不好短语,心情不好的说说发朋友

朋友圈说说心情不好短语,心情不好的说说发朋友 1、最荒芜的不是这个世界,而是人心。 2、不要轻易说爱,许下的承诺就是欠下的债! 3、时间不是让人忘了痛,它只是让人习惯痛。 4、我的硬伤不过是你的名字而已。总是一千次的忘记你,但又一千零一次的想起你。 5、天空下起了绵绵细雨,不知是否太过悲伤,连上帝也忍不住哭泣。 6、终于你只是一个名字而不是一段往事。 7、我们似乎都忘了那段感情,我忘得刻意,你忘得随意。 8、寂寞是听见某个熟悉名字,不小心想起某些故事;孤独是路过我身边的影子,笑着对我说似曾相识。 9、头发越剪越短,穿的越来越简单,睡的也越来越早,在乎的越来越少。 10、我会莫名其妙的心情不好,然后不惜得罪任何人。 11、有时候,没有下一次,没有机会重来,没有暂停继续。有时候,错过了现在,就永远永远的没机会了。

12、我没有朋友又怎样,这之后让我变得更加坚强。 13、一个人自以为刻骨铭心的回忆。别人也许早已经忘记了。 14、一停下来就迷失了方向,心情不好就是自己在这里坐坐,不管什么情绪都不会有人看见!想哭就哭吧! 15、我说我喜欢猫,可到现在为止,我也没拥有过猫。 16、懂我的人知道我一发笑脸就是心情不好。 17、当初我们那么不甘心,最后还不是成了陌生人。 18、看不见的时候以为忘记了,重逢时只需一眼还是会溃不成军。 19、你的长相,影响了我滴健康成长,我看到你,心情比上坟还要纠结。 20、真正疼的要命的哭泣。不是有太多的情绪。而是面无表情的留下一滴一滴的苦泪。 21、一个人值不值得你穷极一生去喜欢,不是看他能对你有多好,而是看他心情不好的时候能对你有多差。 22、不需要有谁能够看穿我的笑容,因为我知道,那里面藏着一个真实的自己。 23、我想我的思念是种病,久久不能痊愈。 24、每次看到你的背影,我都拼命去追。

相关文档
最新文档