小波变换-完美通俗解读

小波变换-完美通俗解读
小波变换-完美通俗解读

小波变换和motion信号处理(一)

这是《小波变换和motion信号处理》系列的第一篇,基础普及。第二篇我准备写深入小波的东西,第三篇讲解应用。

记得我还在大四的时候,在申请出国和保研中犹豫了好一阵,骨子里的保守最后让我选择了先保研。当然后来也退学了,不过这是后话。当时保研就要找老板,实验室,自己运气还不错,进了一个在本校很牛逼的实验室干活路。我们实验室主要是搞图像的,实力在全国也是很强的,进去后和师兄师姐聊,大家都在搞什么小波变换,H264之类的。当时的我心思都不在这方面,尽搞什么操作系统移植,ARM+FPGA这些东西了。对小波变换的认识也就停留在神秘的“图像视频压缩算法之王”上面。

后来我才发现,在别的很广泛的领域中,小波也逐渐开始流行。比如话说很早以前,我们接触的信号频域处理基本都是傅立叶和拉普拉斯的天下。但这些年,小波在信号分析中的逐渐兴盛和普及。这让人不得不感到好奇,是什么特性让它在图象压缩,信号处理这些关键应用中更得到信赖呢?说实话,我还在国内的时候,就开始好奇这个问题了,于是放狗搜,放毒搜,找遍了中文讲小波变换的科普文章,发现没几个讲得清楚的,当时好奇心没那么重,也不是搞这个研究的,懒得找英文大部头论文了,于是作罢。后来来了这边,有些项目要用信号处理,不得已接触到一些小波变换的东西,才开始硬着头皮看。看

了一些材料,听了一些课,才发现,还是那个老生常谈的论调:国外的技术资料和国内真TNND不是一个档次的。同样的事情,别人说得很清楚,连我这种并不聪明的人也看得懂; 国内的材料则绕来绕去讲得一塌糊涂,除了少数天才没几个人能在短时间掌握的。

牢骚就不继续发挥了。在这个系列文章里,我希望能简单介绍一下小波变换,它和傅立叶变换的比较,以及它在移动平台做motion detection的应用。如果不做特殊说明,均以离散小波为例子。考虑到我以前看中文资料的痛苦程度,我会尽量用简单,但是直观的方式去介绍。有些必要的公式是不能少的,但我尽量少用公式,多用图。另外,我不是一个好的翻译者,所以对于某些实在翻译不清楚的术语,我就会直接用英语。我并不claim我会把整个小波变换讲清楚,这是不可能的事,我只能尽力去围绕要点展开,比如小波变换相对傅立叶变换的好处,这些好处的原因是什么,小波变换的几个根本性质是什么,背后的推导是什么。我希望达到的目的就是一个小波变换的初学者在看完这个系列之后,就能用matlab或者别的工具对信号做小波变换的基本分析并且知道这个分析大概是怎么回事。

最后说明,我不是研究信号处理的专业人士,所以文中必有疏漏或者错误,如发现还请不吝赐教。

要讲小波变换,我们必须了解傅立叶变换。要了解傅立叶变换,我们先要弄清楚什么是”变换“。很多处理,不管是压缩也好,滤波也好,图形处理也好,本质都是变换。变换的是什么东西呢?是基,也就是

basis。如果你暂时有些遗忘了basis的定义,那么简单说,在线性代数里,basis是指空间里一系列线性独立的向量,而这个空间里的任何其他向量,都可以由这些个向量的线性组合来表示。那basis在变换里面啥用呢?比如说吧,傅立叶展开的本质,就是把一个空间中的信号用该空间的某个basis的线性组合表示出来,要这样表示的原因,是因为傅立叶变换的本质,是。小波变换自然也不例外的和basis有关了。再比如你用Photoshop去处理图像,里面的图像拉伸,反转,等等一系列操作,都是和basis的改变有关。

既然这些变换都是在搞基,那我们自然就容易想到,这个basis的选取非常重要,因为basis的特点决定了具体的计算过程。一个空间中可能有很多种形式的basis,什么样的basis比较好,很大程度上取决于这个basis服务于什么应用。比如如果我们希望选取有利于压缩的话,那么就希望这个basis能用其中很少的向量来最大程度地表示信号,这样即使把别的向量给砍了,信号也不会损失很多。而如果是图形处理中常见的线性变换,最省计算量的完美basis就是eigenvector basis了,因为此时变换矩阵T对它们的作用等同于对角矩阵( Tv_n = av_n,a是eigenvalue )。总的来说,抛开具体的应用不谈,所有的basis,我们都希望它们有一个共同的特点,那就是,容易计算,用最简单的方式呈现最多的信号特性。

好,现在我们对变换有了基本的认识,知道他们其实就是在搞基。当然,搞基也是分形式的,不同的变换,搞基的妙处各有不同。接下来先看看,傅立叶变换是在干嘛。

傅立叶级数最早是Joseph Fourier 这个人提出的,他发现,这个basis 不仅仅存在与vector space,还存在于function space。这个function space本质上还是一个linear vector space,可以是有限的,可以是无限的,只不过在这个空间里,vector就是function了,而对应的标量就是实数或者复数。在vector space里,你有vector v可以写成vector basis的线性组合,那在function space里,function f(x)也可以写成对应function basis的线性组合,也有norm。你的vector basis 可以是正交的,我的function basis也可以是正交的(比如sin(t)和sin(2t))。唯一不同的是,我的function basis是无穷尽的,因为我的function space的维度是无穷的。好,具体来说,那就是现在我们有一个函数,f(x)。我们希望将它写成一些cos函数和一些sin函数的形式,像这样

again,这是一个无限循环的函数。其中的1,cosx, sinx, cos2x …..这些,就是傅立叶级数。傅立叶级数应用如此广泛的主要原因之一,就是它们这帮子function basis是正交的,这就是有趣的地方了。为什么function basis正交如此重要呢?我们说两个vector正交,那就是他俩的内积为0。那对于function basis呢?function basis怎么求内积呢?

现在先复习一下vector正交的定义。我们说两个vector v,w如果正交的话,应符合:

那什么是function正交呢?假设我们有两个函数f(x)和g(x),那是什么?我们遵循vector的思路去想,两个vector求内积,就是把他们相同位置上对应的点的乘积做一个累加。那移过来,就是对每一个x 点,对应的f和g做乘积,再累加。不过问题是,f和g都是无限函数阿,x又是一个连续的值。怎么办呢?向量是离散的,所以累加,函数是连续的,那就是…….积分!

我们知道函数内积是这样算的了,自然也就容易证明,按照这个形式去写的傅立叶展开,这些级数确实都是两两正交的。证明过程这里就不展开了。好,下一个问题就是,为什么它们是正交basis如此重要呢?这就牵涉到系数的求解了。我们研究了函数f,研究了级数,一堆三角函数和常数1,那系数呢?a0, a1, a2这些系数该怎么确定呢?好,比如我这里准备求a1了。我现在知道什么?信号f(x)是已知的,傅立叶级数是已知的,我们怎么求a1呢?很简单,把方程两端的所有部分都求和cosx的内积,即:

然后我们发现,因为正交的性质,右边所有非a1项全部消失了,因为他们和cosx的内积都是0!所有就简化为

这样,a1就求解出来了。到这里,你就看出正交的奇妙性了吧:) 好,现在我们知道,傅立叶变换就是用一系列三角波来表示信号方程的展开,这个信号可以是连续的,可以是离散的。傅立叶所用的function basis是专门挑选的,是正交的,是利于计算coefficients的。但千万别误解为展开变换所用的basis都是正交的,这完全取决于具体的使用需求,比如泰勒展开的basis就只是简单的非正交多项式。有了傅立叶变换的基础,接下来,我们就看看什么是小波变换。首先来说说什么是小波。所谓波,就是在时间域或者空间域的震荡方程,比如正弦波,就是一种波。什么是波分析?针对波的分析拉(囧)。并不是说小波分析才属于波分析,傅立叶分析也是波分析,因为正弦波也是一种波嘛。那什么是小波呢?这个”小“,是针对傅立叶波而言的。傅立叶所用的波是什么?正弦波,这玩意以有着无穷的能量,同样的幅度在整个无穷大区间里面振荡,像下面这样:

那小波是什么呢?是一种能量在时域非常集中的波。它的能量是有限的,而且集中在某一点附近。比如下面这样:

这种小波有什么好处呢?它对于分析瞬时时变信号非常有用。它有效的从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析,解决了傅立叶变换不能解决的许多困难问题。恩,以上就是通常情况下你能在国内网站上搜到的小波变换文章告诉你的。但为什么呢?这是我希望在这个系列文章中讲清楚的。不过在这篇文章里,我先点到为止,把小波变换的重要特性以及优点cover了,在下一篇文章中再具体推导这些特性。

小波变换的本质和傅立叶变换类似,也是用精心挑选的basis来表示信号方程。每个小波变换都会有一个mother wavelet,我们称之为母小波,同时还有一个scaling function,中文是尺度函数,也被成为父小波。任何小波变换的basis函数,其实就是对这个母小波和父小波缩放和平移后的集合。下面这附图就是某种小波的示意图:

从这里看出,这里的缩放倍数都是2的级数,平移的大小和当前其缩放的程度有关。这样的好处是,小波的basis函数既有高频又有低频,同时还覆盖了时域。对于这点,我们会在之后详细阐述。

小波展开的形式通常都是这样(注意,这个只是近似表达,严谨的展开形式请参考第二篇):

其中的就是小波级数,这些级数的组合就形成了小波变换中的基basis。和傅立叶级数有一点不同的是,小波级数通常是

orthonormal basis,也就是说,它们不仅两两正交,还归一化了。小波级数通常有很多种,但是都符合下面这些特性:

1. 小波变换对不管是一维还是高维的大部分信号都能cover很好。这个和傅立叶级数有很大区别。后者最擅长的是把一维的,类三角波连续变量函数信号映射到一维系数序列上,但对于突变信号或任何高维的非三角波信号则几乎无能为力。

2. 围绕小波级数的展开能够在时域和频域上同时定位信号,也就是说,信号的大部分能量都能由非常少的展开系数,比如a_{j,k},决定。这个特性是得益于小波变换是二维变换。我们从两者展开的表达式就可以看出来,傅立叶级数是,而小波级数是。

3. 从信号算出展开系数a需要很方便。普遍情况下,小波变换的复杂度是O(Nlog(N)),和FFT相当。有不少很快的变换甚至可以达到O(N),也就是说,计算复杂度和信号长度是线性的关系。小波变换的等式定义,可以没有积分,没有微分,仅仅是乘法和加法即可以做到,和现代计算机的计算指令完全match。

可能看到这里,你会有点晕了。这些特性是怎么来的?为什么需要有这些特性?具体到实践中,它们到底是怎么给小波变换带来比别人更强的好处的?计算简单这个可能好理解,因为前面我们已经讲过正交特性了。那么二维变换呢?频域和时域定位是如何进行的呢?恩,我完全理解你的感受,因为当初我看别的文章,也是有这些问题,就是

看不到答案。要说想完全理解小波变换的这些本质,需要详细的讲解,所以我就把它放到下一篇了。

接下来,上几张图,我们以一些基本的信号处理来呈现小波变换比傅立叶变换好的地方,我保证,你看了这个比较之后,大概能隐约感受到小波变换的强大,并对背后的原理充满期待:)

假设我们现在有这么一个信号:

看到了吧,这个信号就是一个直流信号。我们用傅立叶将其展开,会发现形式非常简单:只有一个级数系数不是0,其他所有级数系数都是0。好,我们再看接下来这个信号:

简单说,就是在前一个直流信号上,增加了一个突变。其实这个突变,在时域中看来很简单,前面还是很平滑的直流,后面也是很平滑的直流,就是中间有一个阶跃嘛。但是,如果我们再次让其傅立叶展开呢?所有的傅立叶级数都为非0了!为什么?因为傅立叶必须用三角波来展开信号,对于这种变换突然而剧烈的信号来讲,即使只有一小段变换,傅立叶也不得不用大量的三角波去拟合,就像这样:

看看上面这个图。学过基本的信号知识的朋友估计都能想到,这不就是Gibbs现象么?Exactly。用比较八股的说法来解释,Gibbs现象是由于展开式在间断点邻域不能均匀收敛所引起的,即使在N趋于无穷大时,这一现象也依然存在。其实通俗一点解释,就是当变化太sharp的时候,三角波fit不过来了,就凑合出Gibbs了:)

接下来我们来看看,如果用刚才举例中的那种小波,展开之后是这样的:

看见了么?只要小波basis不和这个信号变化重叠,它所对应的级数系数都为0!也就是说,假如我们就用这个三级小波对此信号展开,那么只有3个级数系数不为0 。你可以使用更复杂的小波,不管什么小波,大部分级数系数都会是0。原因?由于小波basis的特殊性,任何小波和常量函数的内积都趋近于0。换句话说,选小波的时候,就需要保证母小波在一个周期的积分趋近于0。正是这个有趣的性质,让小波变换的计算以及对信号的诠释比傅立叶变换更胜一筹!原因在于,小波变换允许更加精确的局部描述以及信号特征的分离。一个傅

立叶系数通常表示某个贯穿整个时间域的信号分量,因此,即使是临时的信号,其特征也被强扯到了整个时间周期去描述。而小波展开的系数则代表了对应分量它当下的自己,因此非常容易诠释。

小波变换的优势不仅仅在这里。事实上,对于傅立叶变换以及大部分的信号变换系统,他们的函数基都是固定的,那么变换后的结果只能按部就班被分析推导出来,没有任何灵活性,比如你如果决定使用傅立叶变换了,那basis function就是正弦波,你不管怎么scale,它都是正弦波,即使你举出余弦波,它还是移相后的正弦波。总之你就只能用正弦波,没有任何商量的余地。而对于小波变换来讲,基是变的,是可以根据信号来推导或者构建出来的,只要符合小波变换的性质和特点即可。也就是说,如果你有着比较特殊的信号需要处理,你甚至可以构建一个专门针对这种特殊信号的小波basis function集合对其进行分析。这种灵活性是任何别的变换都无法比拟的。总结来说,傅立叶变换适合周期性的,统计特性不随时间变化的信号; 而小波变换则适用于大部分信号,尤其是瞬时信号。它针对绝大部分信号的压缩,去噪,检测效果都特别好。

看到这里,你应该大概了解了小波变换针对傅立叶变换的优点了。你也许对背后的原因还存在一些疑问,并希望深入了解一些小波的构建等知识,请移步本系列第二篇:傅立叶变换,小波变换和motion信号处理(二)

小波变换和motion信号处理(二)

这是《小波变换和motion信号处理》系列的第二篇,深入小波。第一篇我进行了基础知识的铺垫,第三篇主要讲解应用。

在上一篇中讲到,每个小波变换都会有一个mother wavelet,我们称之为母小波,同时还有一个father wavelet,就是scaling function。而该小波的basis函数其实就是对这个母小波和父小波缩放和平移形成的。缩放倍数都是2的级数,平移的大小和当前其缩放的程度有关。还讲到,小波系统有很多种,不同的母小波,衍生的小波基就完全不同。小波展开的近似形式是这样:

其中的就是小波级数,这些级数的组合就形成了小波变换中的基basis。和傅立叶级数有一点不同的是,小波级数通常是orthonormal basis,也就是说,它们不仅两两正交,还归一化了。

我们还讲了一般小波变换的三个特点,就是小波级数是二维的,能定位时域和频域,计算很快。但我们并没有深入讲解,比如,如何理解这个二维?它是如何同时定位频域和时域的?

在这一篇文章里,我们就来讨论一下这些特性背后的原理。

首先,我们一直都在讲小波展开的近似形式。那什么是完整形式呢?之前讲到,小波basis的形成,是基于基本的小波函数,也就是母小

波来做缩放和平移的。但是,母小波并非唯一的原始基。在构建小波基函数集合的时候,通常还要用到一个函数叫尺度函数,scaling function,人们通常都称其为父小波。它和母小波一样,也是归一化了,而且它还需要满足一个性质,就是它和对自己本身周期平移的函数两两正交:

另外,为了方便处理,父小波和母小波也需要是正交的。可以说,完整的小波展开就是由母小波和父小波共同定义的。

其中是母小波,是父小波。需要提醒一点的是,这个正交纯粹是为了小波分析的方便而引入的特性,并不是说小波变换的基就一定必须是正交的。但大部分小波变换的基确实是正交的,所以本文就直接默认正交为小波变换的主要性质之一了。引入这个父小波呢,主要是为了方便做多解析度分析(multiresolution analysis, MRA)。说到这里,你的问题可能会井喷了:好好的为什么出来一个父小波呢?这个scaling function是拿来干嘛的?它背后的物理意义是什么?wavelet function背后的物理意义又是什么?这个多解析度分析又是

什么呢?不急,下面,我们围绕一个例子来巩固一下前面的知识,同时再引出新的特性。

假设我们有这样一个信号:

该信号长度为8,是离散的一维信号。我们要考虑的,就是如何用小波将其展开。为了方便讲解,我们考虑最简单的一种小波,哈尔小波。下面是它的一种母小波:

那如何构建基于这个母小波的基呢?刚才提到了,要缩放,要平移。我们先试试缩放,那就是ψ(2n):

但这样的话,它与自己的内积就不是1了,不符合小波基orthonormal 的要求,所以我们要在前面加一个系数根号二,这样我们就得到了另一个哈尔小波的basis function:

同理,我们可以一直这样推广下去做scale,得到4n,8n,…….下的basis function。当然在这个例子里,我们信号长度就是8,所以做到4n就够了。但推广来说,就是这种scaling对母小波的作用为,这是归一化后的表示形式。

平移的话也很简单,我们可以对母小波进行平移,也可以对scale之后的basis function进行平移。比如对上一幅图中的basis function 进行平移,就成了

看得出来,平移后的basis function和母小波以及仅仅scale过的小波,都是正交的,附合小波basis的特点。如果我们用ψ(n)来表示这个mother wavelet,那么这些orthonormal basis函数可以写成:

这里的k是可以看成时域的参数,因为它控制着小波基时域的转移,而j是频域的参数,因为它决定了小波基的频率特性。看到这里,你应该会感觉很熟悉,因为这里的平移和变换本质和刚才对scaling function的平移变换是一模一样的。

这样,我们就有了针对此信号space的哈尔小波basis组合:

图1

可以看出,我们用到了三层频率尺度的小波函数,每往下一层,小波的数量都是上面一层的两倍。在图中,每一个小波基函数的表达形式都写在了波形的下面。

等等,你可能已经发现了,有问题。这里为什么多了个没有函数表达式的波形呢?这货明显不是wavelet function阿。没错,它是之前提到的scaling function,也就是父小波。然后你可能就会问,为啥这个凭空插了一个scaling function出来呢?明明目标信号已经可以用纯的小波基组合表示了。是,确实是,就算不包括scaling function,这些小波函数本身也组成了正交归一基,但如果仅限于此的话,小波变换也就没那么神奇的功效了。引入这个scaling function,才能引入我们提到的多解析度分析的理论,而小波变换的强大,就体现在这个多解析度上。那在这里,我们怎么用这个多解析度呢?这个哈尔小波basis组合是怎么通过多解析度推导出来的呢?

话说在数学定义中,有一种空间叫Lebesgue空间,对于信号处理非常重要,可以用L^p(R)表示,指的是由p次可积函数所组成的函数空间。我们在小波变换中要研究的信号都是属于L^2(R)空间的,这个空间是R上的所有处处平方可积的可测函数的集合,这样就等于对信号提出了一个限制,就是信号能量必须是有限的,否则它就不可积了。小波变换的定义都是基于但不限于L^2(R)中的信号的。这玩意的特性要具体解释起来太数学了,牵涉到太多泛函知识,我就不在这

里详述了。而且老实说我也没能力完全讲清楚,毕竟不是学这个的,有兴趣可以参考wiki。总之你记住,小波变换研究中所使用的信号基本都是平方可积的信号,但其应用不限于这种信号,就行了。

对L^2(R)空间做MRA是在干嘛呢?就是说,在L^2(R)空间中,我们可以找出一个嵌套的空间序列,并有下列性质:

(i)

(ii)

(iii)

(iv)

(v) 有这样一个方程, 是的orthonormal basis。

我来简单解释一下这些性质。这个V_j都是L^2(R)空间中的子空间,然后他们是由小到大的,交集是{0},因为这是最小的子空间,并集就是L空间。是不是有点难以理解?没关系,看看下面这个图就清楚了:

小波变换与傅里叶变换的对比异同

小波变换与傅里叶变换的对比、异同 一、基的概念 两者都是基,信号都可以分成无穷多个他们的和(叠加)。而展开系数就是基与信号之间的内积,更通俗的说是投影。展开系数大的,说明信号和基是足够相似的。这也就是相似性检测的思想。但我们必须明确的是,傅里叶是0-2pi 标准正交基,而小波是-inf到inf之间的基。因此,小波在实轴上是紧的。而傅里叶的基(正弦或余弦),与此相反。而小波能不能成为Reisz基,或标准稳定的正交基,还有其它的限制条件。此外,两者相似的还有就是PARSEVAL定理。(时频能量守恒)。 二、离散化的处理 傅里叶变换,是一种数学的精妙描述。但计算机实现,却是一步步把时域和频域离散化而来的。第一步,时域离散化,我们得到离散时间傅里叶变换(DTFT),频谱被周期化;第二步,再将频域离散化,我们得到离散周期傅里叶级数(DFS),时域进一步被周期化。第三步,考虑到周期离散化的时域和频域,我们只取一个周期研究,也就是众所周知的离散傅里叶变换(DFT)。这里说一句,DFT是没有物理意义的,它只是我们研究的需要。借此,计算机的处理才成为可能。所有满足容许性条件(从-INF到+INF积分为零)的函数,都可以成为小波。小波作为尺度膨胀和空间移位的一组函数也就诞生了。但连续取值的尺度因子和平移因子,在时域计算量和频域的混叠来说,都是极为不便的。用更为专业的俗语,叫再生核。也就是,对于任何一个尺度a和平移因子b的小波,和原信号内积,所得到的小波系数,都可以表示成,在a,b附近生成的小波,投影后小波系数的线性组合。这就叫冗余性。这时的连续小波是与正交基毫无关系的东西,它顶多也只能作为一种积分变换或基。但它的显微镜特点和相似性检测能力,已经显现出来了。为了进一步更好的将连续小波变换离散化,以下步骤是一种有效方法。第一步,尺度离散化。一般只将a二进离散化,此时b是任意的。这样小波被称为二进小波。第二步,离散b。怎么离散化呢?b取多少才合适呢?于是,叫小波采样定理的东西,就这样诞生了。也就是小波平移的最小距离(采样间隔),应该大于二倍小波基的最高频率(好像类似,记不清了)。所以b取尺度的整数倍就行了。也就是越胖的小波,对应频谱越窄,平移量应该越大,采样间隔越大。当然,第一二两步的频域理解,即在满足频域窗口中心是3倍的频域窗口半径的前提下,频域就在统计上是完美二分的。(但很多小波满足不了这个条件,而且频域窗口能量不?,所以只是近似二分的).这时的小波变换,称为离散二进小波变换.第三步,引入稳定性条件.也就是经过变换后信号能量和原信号能量有什么不等式关系.满足稳定性条件?后,也就是一个小波框架产生了可能.他是数值稳定性的保证.一个稍弱的稳定条件???,就是?

小波变换的原理及matlab仿真程序讲解学习

小波变换的原理及m a t l a b仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 () R t dw w C ψψ =<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()( )a b t b t a ψ -= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()( )f a b R t b W a b f f t dt a ψψ-=<>= ? (3) 其逆变换为: 211()(,)()f R R t b f t W a b dadb C a a ψ ψ+-= ?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参

数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如图所示[6]: 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下形式: (k)()()S f k e k ε=+* k=0.1…….n-1 其中 ,f( k)为有用信号,s(k)为含噪声信号,e(k)为噪声,ε为噪声系数的标准偏差。 假设e(k)为高斯白噪声,通常情况下有用信号表现为低频部分或是一些比较平稳的信号,而噪声信号则表现为高频的信号,下面对 s(k)信号进行如图结构的小波分解,则噪声部分通常包含在Cd1、Cd2、Cd3中,只要对 Cd1,Cd2,Cd3作相应的小波系数处理,然后对信号进行重构即可以达到消噪的目的。

小波变换-完美通俗解读

小波变换和motion信号处理(一) 这是《小波变换和motion信号处理》系列的第一篇,基础普及。第二篇我准备写深入小波的东西,第三篇讲解应用。 记得我还在大四的时候,在申请出国和保研中犹豫了好一阵,骨子里的保守最后让我选择了先保研。当然后来也退学了,不过这是后话。当时保研就要找老板,实验室,自己运气还不错,进了一个在本校很牛逼的实验室干活路。我们实验室主要是搞图像的,实力在全国也是很强的,进去后和师兄师姐聊,大家都在搞什么小波变换,H264之类的。当时的我心思都不在这方面,尽搞什么操作系统移植,ARM+FPGA 这些东西了。对小波变换的认识也就停留在神秘的“图像视频压缩算法之王”上面。 后来我才发现,在别的很广泛的领域中,小波也逐渐开始流行。比如话说很早以前,我们接触的信号频域处理基本都是傅立叶和拉普拉斯的天下。但这些年,小波在信号分析中的逐渐兴盛和普及。这让人不得不感到好奇,是什么特性让它在图象压缩,信号处理这些关键应用中更得到信赖呢?说实话,我还在国的时候,就开始好奇这个问题了,于是放狗搜,放毒搜,找遍了中文讲小波变换的科普文章,发现没几个讲得清楚的,当时好奇心没那么重,也不是搞这个研究的,懒得找英文大部头论文了,于是作罢。后来来了这边,有些项目要用信号处理,不得已接触到一些小波变换的东西,才开始硬着头皮看。看了一

些材料,听了一些课,才发现,还是那个老生常谈的论调:国外的技术资料和国真TNND不是一个档次的。同样的事情,别人说得很清楚,连我这种并不聪明的人也看得懂; 国的材料则绕来绕去讲得一塌糊涂,除了少数天才没几个人能在短时间掌握的。 牢骚就不继续发挥了。在这个系列文章里,我希望能简单介绍一下小波变换,它和傅立叶变换的比较,以及它在移动平台做motion detection的应用。如果不做特殊说明,均以离散小波为例子。考虑到我以前看中文资料的痛苦程度,我会尽量用简单,但是直观的方式去介绍。有些必要的公式是不能少的,但我尽量少用公式,多用图。另外,我不是一个好的翻译者,所以对于某些实在翻译不清楚的术语,我就会直接用英语。我并不claim我会把整个小波变换讲清楚,这是不可能的事,我只能尽力去围绕要点展开,比如小波变换相对傅立叶变换的好处,这些好处的原因是什么,小波变换的几个根本性质是什么,背后的推导是什么。我希望达到的目的就是一个小波变换的初学者在看完这个系列之后,就能用matlab或者别的工具对信号做小波变换的基本分析并且知道这个分析大概是怎么回事。 最后说明,我不是研究信号处理的专业人士,所以文中必有疏漏或者错误,如发现还请不吝赐教。 要讲小波变换,我们必须了解傅立叶变换。要了解傅立叶变换,我们先要弄清楚什么是”变换“。很多处理,不管是压缩也好,滤波也好,图形处理也好,本质都是变换。变换的是什么东西呢?是基,也就是

小波变换详解

基于小波变换的人脸识别 近年来,小波变换在科技界备受重视,不仅形成了一个新的数学分支,而且被广泛地应用于模式识别、信号处理、语音识别与合成、图像处理、计算机视觉等工程技术领域。小波变换具有良好的时频域局部化特性,且其可通过对高频成分采取逐步精细的时域取样步长,从而达到聚焦对象任意细节的目的,这一特性被称为小波变换的“变聚焦”特性,小波变换也因此被人们冠以“数学显微镜”的美誉。 具体到人脸识别方面,小波变换能够将人脸图像分解成具有不同分辨率、频率特征以及不同方向特性的一系列子带信号,从而更好地实现不同分辨率的人脸图像特征提取。 4.1 小波变换的研究背景 法国数学家傅立叶于1807年提出了著名的傅立叶变换,第一次引入“频率”的概念。傅立叶变换用信号的频谱特性来研究和表示信号的时频特性,通过将复杂的时间信号转换到频率域中,使很多在时域中模糊不清的问题,在频域中一目了然。在早期的信号处理领域,傅立叶变换具有重要的影响和地位。定义信号(t)f 为在(-∞,+∞)内绝对可积的一个连续函数,则(t)f 的傅立叶变换定义如下: ()()dt e t f F t j ωω-? ∞ -∞ += (4-1) 傅立叶变换的逆变换为: ()()ωωπ ωd e F t f t j ? +∞ ∞ -= 21 (4-2) 从上面两个式子可以看出,式(4-1)通过无限的时间量来实现对单个频率

的频谱计算,该式表明()F ω这一频域过程的任一频率的值都是由整个时间域上的量所决定的。可见,式(4-1)和(4-2)只是同一能量信号的两种不同表现形式。 尽管傅立叶变换可以关联信号的时频特征,从而分别从时域和频域对信号进行分析,但却无法将两者有效地结合起来,因此傅立叶变换在信号的局部化分析方面存在严重不足。但在许多实际应用中,如地震信号分析、核医学图像信号分析等,研究者们往往需要了解某个局部时段上出现了哪个频率,或是某个频率出现在哪个时段上,即信号的时频局部化特征,傅立叶变换对于此类分析无能为力。 因此需要一种如下的数学工具:可以将信号的时域和频域结合起来构成信号的时频谱,描述和分析其时频联合特征,这就是所谓的时频局部化分析方法,即时频分析法。1964年,Gabor 等人在傅立叶变换的基础上引入了一个时间局部化“窗函数”g(t),改进了傅立叶变换的不足,形成窗口化傅立叶变换,又称“Gabor 变换”。 定义“窗函数”(t)g 在有限的区间外恒等于零或很快地趋于零,用函数(t )g -τ乘以(t)f ,其效果等同于在t =τ附近打开一个窗口,即: ()()()dt e t g t f G t j f ωττω-+∞ ∞--=?, (4-3) 式(4-3)即为函数f(t)关于g(t)的Gabor 变换。由定义可知,信号(t)f 的Gabor 变换可以反映该信号在t =τ附近的频谱特性。其逆变换公式为: ()()()ττωτωπ ωd G t g e d t f f t j ,21 ? ?+∞ ∞ --- = (4-4) 可见()τω,f G 的确包含了信号(t)f 的全部信息,且Gabor 窗口位置可以随着 τ的变化而平移,符合信号时频局部化分析的要求。 虽然Gabor 变换一定程度上克服了傅立叶变换缺乏时频局部分析能力的不

小波变换 完美通俗解读2

这是《小波变换和motion信号处理》系列的第二篇,深入小波。第一篇我进行了基础知识的铺垫,第三篇主要讲解应用。 在上一篇中讲到,每个小波变换都会有一个mother wavelet,我们称之为母小波,同时还有一个father wavelet,就是scaling function。而该小波的basis函数其实就是对这个母小波和父小波缩放和平移形成的。缩放倍数都是2的级数,平移的大小和当前其缩放的程度有关。 还讲到,小波系统有很多种,不同的母小波,衍生的小波基就完全不同。小波展开的近似形式是这样: 其中的就是小波级数,这些级数的组合就形成了小波变换中的基basis。和傅 立叶级数有一点不同的是,小波级数通常是orthonormal basis,也就是说,它们不仅两两正交,还归一化了。 我们还讲了一般小波变换的三个特点,就是小波级数是二维的,能定位时域和频域,计算很快。但我们并没有深入讲解,比如,如何理解这个二维?它是如何同时定位频域和时域的? 在这一篇文章里,我们就来讨论一下这些特性背后的原理。 首先,我们一直都在讲小波展开的近似形式。那什么是完整形式呢?之前讲到,小波basis的形成,是基于基本的小波函数,也就是母小波来做缩放和平移的。但是,母小波并非唯一的原始基。在构建小波基函数集合的时候,通常还要用到一个函数叫尺度函数,scaling function,人们通常都称其为父小波。它和母小波一样,也是归一化了,而且它还需要满足一个性质,就是它和对自己本身周期平移的函数两两正交: 另外,为了方便处理,父小波和母小波也需要是正交的。可以说,完整的小波展开就是由母小波和父小波共同定义的。

详解傅里叶变换与小波变换

详解傅里叶变换与小波变化 希望能简单介绍一下小波变换,它和傅立叶变换的比较,以及它在移动平台做motion detection的应用。如果不做特殊说明,均以离散小波为例子。考虑到我以前看中文资料的痛苦程度,我会尽量用简单,但是直观的方式去介绍。有些必要的公式是不能少的,但我尽量少用公式,多用图。另外,我不是一个好的翻译者,所以对于某些实在翻译不清楚的术语,我就会直接用英语。我并不claim我会把整个小波变换讲清楚,这是不可能的事,我只能尽力去围绕要点展开,比如小波变换相对傅立叶变换的好处,这些好处的原因是什么,小波变换的几个根本性质是什么,背后的推导是什么。我希望达到的目的就是一个小波变换的初学者在看完这个系列之后,就能用matlab或者别的工具对信号做小波变换的基本分析并且知道这个分析大概是怎么回事。 要讲小波变换,我们必须了解傅立叶变换。要了解傅立叶变换,我们先要弄清楚什么是”变换“。很多处理,不管是压缩也好,滤波也好,图形处理也好,本质都是变换。变换的是什么东西呢?是基,也就是basis。如果你暂时有些遗忘了basis的定义,那么简单说,在线性代

数里,basis是指空间里一系列线性独立的向量,而这个空间里的任何其他向量,都可以由这些个向量的线性组合来表示。那basis在变换里面啥用呢?比如说吧,傅立叶展开的本质,就是把一个空间中的信号用该空间的某个basis的线性组合表示出来,要这样表示的原因,是因为傅立叶变换的本质,是。小波变换自然也不例外的和basis有关了。再比如你用Photoshop去处理图像,里面的图像拉伸,反转,等等一系列操作,都是和basis的改变有关。 既然这些变换都是在搞基,那我们自然就容易想到,这个basis的选取非常重要,因为basis的特点决定了具体的计算过程。一个空间中可能有很多种形式的basis,什么样的basis比较好,很大程度上取决于这个basis服务于什么应用。比如如果我们希望选取有利于压缩的话,那么就希望这个basis能用其中很少的向量来最大程度地表示信号,这样即使把别的向量给砍了,信号也不会损失很多。而如果是图形处理中常见的线性变换,最省计算量的完美basis就是eigenvector basis了,因为此时变换矩阵T对它们的作用等同于对角矩阵(Tv_n= av_n,a是eigenvalue)。总的来说,抛开具体的应用不谈,所有的basis,我们都希望它们有一个共同的特点,那就是,容易计算,用最简单的方式呈现最多的信号特性。 好,现在我们对变换有了基本的认识,知道他们其实就是在搞基。当然,搞基也是分形式的,不同的变换,搞基的妙处各有不同。接下来先看看,傅立叶变换是在干嘛。

用matlab小波分析的实例

1 绪论 1.1概述 小波分析是近15年来发展起来的一种新的时频分析方法。其典型应用包括齿轮变速控制,起重机的非正常噪声,自动目标所顶,物理中的间断现象等。而频域分析的着眼点在于区分突发信号和稳定信号以及定量分析其能量,典型应用包括细胞膜的识别,金属表面的探伤,金融学中快变量的检测,INTERNET的流量控制等。 从以上的信号分析的典型应用可以看出,时频分析应用非常广泛,涵盖了物理学,工程技术,生物科学,经济学等众多领域,而且在很多情况下单单分析其时域或频域的性质是不够的,比如在电力监测系统中,即要监控稳定信号的成分,又要准确定位故障信号。这就需要引入新的时频分析方法,小波分析正是由于这类需求发展起来的。 在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,这对于某些应用来说是很恰当的,因为信号的频率的信息对其是非常重要的。但其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。其中短时傅立叶变换是在傅立叶分析基础上引入时域信息的最初尝试,其基本假定在于在一定的时间窗内信号是平稳的,那么通过分割时间窗,在每个时间窗内把信号展开到频域就可以获得局部的频域信息,但是它的时域区分度只能依赖于大小不变的时间窗,对某些瞬态信号来说还是粒度太大。换言之,短时傅立叶分析只能在一个分辨率上进行。所以对很多应用来说不够精确,存在很大的缺陷。 而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整,在一般情况下,在低频部分(信号较平稳)可以采用较低的时间分辨率,而提高频率的分辨率,在高频情况下(频率变化不大)可以用较低的频率分辨率来换取精确的时间定位。因为这些特定,小波分析可以探测正常信号中的瞬态,并展示其频率成分,被称为数学显微镜,广泛应用于各个时频分析领域。 全文介绍了小波变换的基本理论,并介绍了一些常用的小波函数,它们的主要性质包括紧支集长度、滤波器长度、对称性、消失矩等,都做了简要的说明。在不同的应用场合,各个小波函数各有利弊。 小波分析在图像处理中有非常重要的应用,包括图像压缩,图像去噪,图像融合,图像分解,图像增强等。文中给出了详细的程序范例,用MATLAB实现了基于小波变换的图像处理。 小波分析在图像处理中有非常重要的应用,包括图像压缩,图像去噪,图像融合,图像分解,图像增强等。文中给出了详细的程序范例,用MATLAB实现了基于小波变换的图像处理。 小波分析在图像处理中有非常重要的应用,包括图像压缩,图像去噪,图像融合,图像分解,图像增强等。文中给出了详细的程序范例,用MATLAB实现了基于小波变换的图像处理。 1.2 傅立叶变换与小波变换的比较 小波分析是傅立叶分析思想方法的发展与延拓。它自产生以来,就一直与傅立叶分析

小波变换与傅里叶变换的对比异同

小波变换与傅里叶变换 的对比异同 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

小波变换与傅里叶变换的对比、异同 一、基的概念 两者都是基,信号都可以分成无穷多个他们的和(叠加)。而展开系数就是基与信号之间的内积,更通俗的说是投影。展开系数大的,说明信号和基是足够相似的。这也就是相似性检测的思想。但我们必须明确的是,傅里叶是0-2pi标准正交基,而小波是-inf到inf之间的基。因此,小波在实轴上是紧的。而傅里叶的基(正弦或余弦),与此相反。而小波能不能成为Reisz基,或标准稳定的正交基,还有其它的限制条件。此外,两者相似的还有就是PARSEVAL 定理。(时频能量守恒)。 二、离散化的处理 傅里叶变换,是一种数学的精妙描述。但计算机实现,却是一步步把时域和频域离散化而来的。第一步,时域离散化,我们得到离散时间傅里叶变换(DTFT),频谱被周期化;第二步,再将频域离散化,我们得到离散周期傅里叶级数(DFS),时域进一步被周期化。第三步,考虑到周期离散化的时域和频域,我们只取一个周期研究,也就是众所周知的离散傅里叶变换(DFT)。这里说一句,DFT是没有物理意义的,它只是我们研究的需要。借此,计算机的处理才成为可能。所有满足容许性条件(从-INF到+INF积分为零)的函数,都可以成为小波。小波作为尺度膨胀和空间移位的一组函数也就诞生了。但连续取值的尺度因子和平移因子,在时域计算量和频域的混叠来说,都是极为不便的。用更为专业的俗语,叫再生核。也就是,对于任何一个尺度a和平移因子b的小波,和原信号内积,所得到的小波系数,都可以表示成,在a,b附近生成的小波,投影后小波系数的线性组合。这就叫冗余性。这时的连续小波是与正交基毫无关系的东西,它顶多也只能作为一种积分变换或基。但它的显微镜特点和相似性检测能力,已经显现出来了。为了进一步更好的将连续小波变换离散化,以下步骤是一种有效方法。第一步,尺度离散化。一般只将a二进离散化,此时b 是任意的。这样小波被称为二进小波。第二步,离散b。怎么离散化呢b取多少才合适呢于是,叫小波采样定理的东西,就这样诞生了。也就是小波平移的最小距离(采样间隔),应该大于二倍小波基的最高频率(好像类似,记不清了)。所以b取尺度的整数倍就行了。也就是越胖的小波,对应频谱越窄,平移量应该越大,采样间隔越大。当然,第一二两步的频域理解,即在满足频域窗口中心是3倍的频域窗口半径的前提下,频域就在统计上是完美二分的。(但很多小波满足不了这个条件,而且频域窗口能量不,所以只是近似二分的).这时的小波变换,称为离散二进小波变换.第三步,引入稳定性条件.也就是经过变换后信号能量和原信号能量有什么不等式关系.满足稳定性条件后,也就是一个小波框架产生了可能.他是数值稳定性的保证.一个稍弱的稳定条件,就是

小波分析-经典解读

时间序列-小波分析 时间序列(Time Series )是地学研究中经常遇到的问题。在时间序列研究中,时域和频域是常用的两种基本形式。其中,时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息;频域分析(如Fourier 变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。然而,地学中许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息。显然,时域分析和频域分析对此均无能为力。 20世纪80年代初,由Morlet 提出的一种具有时-频多分辨功能的小波分析(Wavelet Analysis )为更好的研究时间序列问题提供了可能,它能清晰的揭示出隐藏在时间序列中的多种变化周期,充分反映系统在不同时间尺度中的变化趋势,并能对系统未来发展趋势进行定性估计。 目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析和大气科学等众多的非线性科学领域内得到了广泛的应。在时间序列研究中,小波分析主要用于时间序列的消噪和滤波,信息量系数和分形维数的计算,突变点的监测和周期成分的识别以及多时间尺度的分析等。 一、小波分析基本原理 1. 小波函数 小波分析的基本思想是用一簇小波函数系来表示或逼近某一信号或函数。因此,小波函数是小波分析的关键,它是指具有震荡性、能够迅速衰减到零的一类函数,即小波函数)R (L )t (2∈ψ且满足: ? +∞ ∞ -=0dt )t (ψ (1) 式中,)t (ψ为基小波函数,它可通过尺度的伸缩和时间轴上的平移构成一簇函数系: )a b t ( a )t (2 /1b ,a -=-ψψ 其中,0a R,b a,≠∈ (2) 式中,)t (b ,a ψ为子小波;a 为尺度因子,反映小波的周期长度;b 为平移因子,反应时间上的平移。 需要说明的是,选择合适的基小波函数是进行小波分析的前提。在实际应用研究中,应针对具体情况选择所需的基小波函数;同一信号或时间序列,若选择不同的基小波函数,所得的结果往往会有所差异,有时甚至差异很大。目前,主要是通过对比不同小波分析处理信号时所得的结果与理论结果的误差来判定基小波函数的好坏,并由此选定该类研究所需的基小波函数。 2. 小波变换 若)t (b ,a ψ是由(2)式给出的子小波,对于给定的能量有限信号)R (L )t (f 2 ∈,其连续小波变换(Continue Wavelet Transform ,简写为CWT )为: dt )a b t ( f (t)a )b ,a (W R 2 /1-f ? -=ψ (3) 式中,)b ,a (W f 为小波变换系数;f(t)为一个信号或平方可积函数;a 为伸缩尺度;b 平移参数; )a b x ( -ψ为)a b x (-ψ的复共轭函数。地学中观测到的时间序列数据大多是离散的,设函数)t k (f ?,

共振稀疏分解

共振稀疏分解:一种新的可稀疏信号的分析 方法 0. 摘要 生命和物质过程会产生大量信号,这些信号不但是不稳定的,而且是持续震荡信号和瞬态冲击信号的混合,并且这两种信号是很难线性分解的,例如声音、医疗和地理信号。因此,本文描述了一种基于信号共振的非线性信号分析方法,而这种方法不基于傅里叶变换和小波变换产生的频谱和幅值。这种方法将信号分解成一个高共振分量和一个低共振分量——高共振分量由多个同时发生的持续震荡信号组成,低共振分量由多个没有具体现状和持续时间的瞬态冲击信号组成。本文所阐述的共振稀疏分解算法使用的方法有信号稀疏表示、形态分量分析和品质因子可调小波换。 1. 前言 频域分析法和滤波是信号处理的基础。然而,频域分析法和时频分析法并不适用于所有信号,事实上只适用于持续震荡或周期信号。那些主要由奇异点限定的分段光滑信号多数使用时域和小波变换描述、分析和处理。例如,图像扫描,眼部运动记录,潜能诱发反应,神经尖刺训练等。 然而,许多生命和物质过程产生信号不只是不稳定的,而且是持续震荡信号和瞬态冲击信号的混合,例如声音、医疗(脑电图和心电图等)和地理(海浪高度数据等)信号。这些信号既含有稳态震荡部分又含有瞬态冲击部分。脑电波包含有节奏振荡(alpha和beta波等),也包含人为测量和无节奏脑行为所产生的瞬态冲击。海浪高度数据测量的是已经流动了几百英里(100‘s)的海量的重叠高度,但是天气因素将中断这种震荡行为。当然,通过生命和物质系统测量的信号通常包含持续震荡信号和瞬态冲击信号,而这两种信号是很难线性分解的。 为了改进复杂非平稳信号的描述、分析和处理,我们阐述了一种新的基于共振的非线性信号分析方法,而这种方法不基于傅里叶变换和小波变换产生的频谱和幅值。这种方法将信号分解成一个高共振分量和一个低共振分量。其中,高共振分量由多个同时发生的持续震荡信号合成,另一方面,低共振分量由多个没有具体现状和持续时间的瞬态冲击信号合成。 这篇论文的部分内容已经出版在两个早期的会议论文中[84,85]。

基于小波变换的边缘检测技术(完整)

第一章图像边缘的定义 引言 在实际的图像处理问题中,图像的边缘作为图像的一种基本特征,被经常用于到较高层次的特征描述,图像识别。图像分割,图像增强以及图像压缩等的图像处理和分析中,从而可以对图像进行进一步的分析和理解。 由于信号的奇异点或突变点往往表现为相邻像素点处的灰度值发生了剧烈的变化,我们可以通过相邻像素灰度分布的梯度来反映这种变化。根据这一特点,人们提出了多种边缘检测算子:Roberts算子Prewitt算子Laplace算子等。 经典的边缘检测方法是构造出像素灰度级阶跃变化敏感的微分算子。这些算子毫无例外地对噪声较为敏感。由于原始图像往往含有噪声、而边缘和噪声在空间域表现为灰度有大的起落,在频域则反映为同是主频分量,这就给真正的边缘检测到来困难。于是发展了多尺度分析的边缘检测方法。小波分析与多尺度分析有着密切的联系,而且在小波变换这一统一理论框架下,可以更深刻地研究多尺度分析的边缘检测方法,Mallat S提出了一小波变换多尺度分析为基础的局部极大模方法进行边缘检测。 小波变换有良好的时频局部转化及多尺度分析能力,因此比其他的边缘检测方法更实用和准确。小波边缘检测算子的基本思想是取小波函数作为平滑函数的一阶导数或二阶导数。利用信号的小波变换的模值在信号突变点处取局部极大值或过零点的性质来提取信号的边缘点。常用的小波算子有Marr 算子Canny算子和Mallat算子等。

§1.1信号边缘特征 人类的视觉研究表明,信号知觉不是信号各部分简单的相加,而是各部分有机组成的。人类的信号识别(这里讨论二维信号即图像)具有以下几个特点:边缘与纹理背景的对比鲜明时,图像知觉比较稳定;图像在空间上比较接近的部分容易形成一个整体;在一个按一定顺序组成的图像中,如果有新的成份加入,则这些新的成份容易被看作是原来图像的继续;在视觉的初级阶段,视觉系统首先会把图像边缘与纹理背景分离出来,然后才能知觉到图像的细节,辨认出图像的轮廓,也就是说,首先识别的是图像的大轮廓;知觉的过程中并不只是被动地接受外界刺激,同时也主动地认识外界事物,复杂图像的识别需要人的先验知识作指导;图像的空间位置、方向角度影响知觉的效果。从以上这几点,可以总结出待识别的图像边缘点应具有下列特征即要素:具有较强的灰度突变,也就是与背景的对比度鲜明;边缘点之间可以形成有意义的线形关系,即相邻边缘点之间存在一种有序性;具有方向特征;在图像中的空间相对位置;边缘的类型,即边缘是脉冲型、阶跃型、斜坡型、屋脊型中哪一种。 §1.2图像边缘的定义 边缘检测是图像处理中的重要内容。而边缘是图像中最基本的特征,也是指周围像素灰度有变化的那些像素的集合。主要表现为图像局部特征的不连续性,也就是通常说的信号发生奇异变化的地方。奇异信号沿边缘走向的灰度变化剧烈,通常分为阶跃边缘和屋顶边缘两种类型。阶跃边缘在阶跃的两边的灰度值有明显的变化;屋顶边缘则位于灰度增加与减少的交界处。我们可以利用灰度的导数来刻画边缘点的变化,分别求阶跃边缘和屋顶边缘的一阶,二阶导数。如图可见,对于边缘点A,阶跃边缘的一阶导数在A点到最大值,二阶导数在A点过零点;屋顶边缘的一阶导数在A点过零点,二阶导数在A点有最大值。

几种时频分析综述1——傅里叶变换和小波变换

几种时频分析方法综述1——傅里叶变换和小波变换 夏巨伟 (浙江大学空间结构研究中心) 摘要:传统的信号理论,是建立在Fourier 分析基础上的,而Fourier 变换作为一种全局性的变化,其有一定的局限性。在实际应用中人们开始对Fourier 变换进行各种改进,小波分析由此产生了。小波变换与Fourier 变换相比,是一个时间和频域的局域变换因而能有效地从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis ),解决了Fourier 变换不能解决的许多困难问题。本文对傅里叶变换和小波变换进行了详细介绍,并用算例分析指出了两者的差别。 关键词:傅里叶变换;小波变换;时频分析技术; 1 傅里叶变换(Fourier Transform ) 1 2/201 22/0()()()()1()()()(::::)N j nk N ft N ft j nk N n H T h kT e H f h t e d DFT FT IFT IDFT t NT k h t H f e dt h nT H e N NT ππππ--∞ --∞∞--∞?=??=??????????→????=?=??? ∑??∑离散化(离散取样) 周期化(时频域截断) 2 小波变换(Wavelet Transform ) 2.1 由傅里叶变换到窗口傅里叶变换(Gabor Transform(Short Time Fourier Transform)/) 从傅里叶变换的定义可知,时域函数h(t)的傅里叶变换H(f )只能反映其在整个实轴的性态,不能反映h (t )在特定时间区段内的频率变化情况。如果要考察h(t)在特定时域区间(比如:t ∈[a,b])内的频率成分,很直观的做法是将h(t)在区间t ∈[a,b]与函数[][]11,t ,()0,t ,a b t a b χ?∈?=? ∈??,然后考察1()()h t t χ傅里叶变换。但是由 于1()t χ在t= a,b 处突然截断,导致中1()()h t t χ出现了原来h (t )中不存在的不连 续,这样会使得1()()h t t χ的傅里叶变化中附件新的高频成分。为克服这一缺点, D.Gabor 在1944年引入了“窗口”傅里叶变换的概念,他的做法是,取一个光滑的函数g(t),称为窗口函数,它在有限的区间外等于0或者很快地趋于0,然后将窗口函数与h(t)相乘得到的短时时域函数进行FT 变换以考察h(t)在特定时域内的频域情况。 22(,)()()()()(,)ft f ft f STFT ISTF G f h t g t e dt h t df g t G f e d T ππτττττ +∞ --∞ +∞+∞ -∞ -∞ =-=-??? ::

小波变换快速算法及应用小结

离散小波变换的快速算法 Mallat算法[经典算法] 在小波理论中,多分辨率分析是一个重要的组成部分。多分辨率分析是一种对信号的空间分解方法,分解的最终目的是力求构造一个在频率上高度逼近L2(R)空间的正交小波基,这些频率分辨率不同的正交小波基相当于带宽各异的带通滤波器。因此,对于一个能量有限信号,可以通过多分辨率分析的方法把其中的逼近信号和细节信号分离开,然后再根据需要逐一研究。多分辨率分析的概念是S.Mallat在构造正交小波基的时候提出的,并同时给出了著名的Mallat 算法。Mallat算法在小波分析中的地位相当于快速傅立叶变换在经典傅立叶变换中的地位,为小波分析的应用和发展起到了极大的推动作用。 MALLAT算法的原理 在对信号进行分解时,该算法采用二分树结构对原始输入信号x(n)进行滤波和二抽取,得到第一级的离散平滑逼近和离散细节逼近x k1和d k1,再采用同样的结构对d k1进行滤波和二抽取得到第二级的离散平滑逼近和离散细节逼近x k2和d k2,再依次进行下去从而得到各级的离散细节逼近对x k1,x k2,x k3…,即各级的小波系数。重构信号时,只要将分解算法中的步骤反过来进行即可,但要注意,此时的滤波器与分解算法中的滤波器不一定是同一滤波器,并且要将二抽取装置换成二插入装置才行。 多孔算法 [小波变换快速算法及其硬件实现的研究毛建华] 多孔算法是由M.shen于1992年提出的一种利用Mallat算法结构计算小波变换的快速算法,因在低通滤波器h0(k)和高通滤波器h1(k)中插入适当数目的零点而得名。它适用于a=2j的二分树结构,与Mallat算法的电路实现结构相似。先将Mallat算法的电路实现的基本支路作一下变形。令h0k和h1(k)的z变换为H0(z)与H1(z),下两条支路完全等价,只不过是将插值和二抽取的顺序调换一下罢了。图中其它的上下两条支路也为等效支路,可仿照上面的方法证明。这样,我们便可由Mallat算法的二分树电路结构得出多孔算法的电路级联图,原Mallat算法中的电路支路由相应的等效支路所取代,所以整个电路形式与Mallat算法非常相似。如果舍去最后的抽取环节们实际上相当于把所有点的小波变换全部计算出来。 基干FFT的小波快速算法 [小波变换快速算法及其硬件实现的研究毛建华] Mallat算法是由法国科学家StephaneG.Mallat提出的计算小波分解与重构的快速算法,能大大降低小波分解与重构的计算量,因此在数字信号处理和数字通信领域中得到了广泛的应用。但是如果直接采用该算法计算信号的分解和重构,其运算量还是比较大。主要体现在信号长度较大时,与小波滤波器组作卷积和相关的乘加法的计算量很大,不利于信号的实时处理。

小波变换完美通俗解读

小波变换完美通俗解读 转自: 这是《小波变换和motion信号处理》系列的第一篇,基础普及。第二篇我准备写深入小波的东西,第三篇讲解应用。 记得我还在大四的时候,在申请出国和保研中犹豫了好一阵,骨子里的保守最后让我选择了先保研。当然后来也退学了,不过这是后话。当时保研就要找老板,实验室,自己运气还不错,进了一个在本校很牛逼的实验室干活路。我们实验室主要是搞图像的,实力在全国也是很强的,进去后和师兄师姐聊,大家都在搞什么小波变换,H264之类的。当时的我心思都不在这方面,尽搞什么操作系统移植,ARM+FPGA这些东西了。对小波变换的认识也就停留在神秘的"图像视频压缩算法之王"上面。 后来我才发现,在别的很广泛的领域中,小波也逐渐开始流行。比如话说很早以前,我们接触的信号频域处理基本都是傅立叶和拉普拉斯的天下。但这些年,小波在信号分析中的逐渐兴盛和普及。这让人不得不感到好奇,是什么特性让它在图象压缩,信号处理这些关键应用中更得到信赖呢?说实话,我还在国内的时候,就开始好奇这个问题了,于是放狗搜,放毒搜,找遍了中文讲小波变换的科普文章,发现没几个讲得清楚的,当时好奇心没那么重,也不是搞这个研究的,懒得找英文大部头论文了,于是作罢。后来来了这边,有些项目要用信号处理,不得已接触到一些小波变换的东西,才开始硬着头皮看。看了一些材料,听了一些课,才发现,还是那个老生常谈的论调:国外的技术资料和国内真TNND不是一个档次的。同样的事情,别人说得很清楚,连我这种并不聪明的人也看得懂;国内的材料则绕来绕去讲得一塌糊涂,除了少数天才没几个人能在短时间掌握的。 牢骚就不继续发挥了。在这个系列文章里,我希望能简单介绍一下小波变换,它和傅立叶变换的比较,以及它在移动平台做motion detection的应用。如果不做特殊说明,均以离散小波为例子。考虑到我以前看中文资料的痛苦程度,我会尽量用简单,但是直观的方式去介绍。有些必要的公式是不能少的,但我尽量少用公式,多用图。另外,我不是一个好的翻译者,所以对于某些实在翻译不清楚的术语,我就会直接用英语。我并不claim我会把整个小波变换讲清楚,这是不可能的事,我只能尽力去围绕要点展开,比如小波变换相对傅立叶变换的好处,这些好处的原因是什么,小波变换的几个根本性质是什

小波分析入门_本人总结_

给我们一个信号时,我们从时域中观察这个信号时,我们得到的信息是信号的持续的时间,随着时间的变化,信号的幅度起起伏伏。如果我们更进一步,就是起伏速度较快的部分对应着信号中高频部分。变换缓慢的部分对应着代表信号中的频率低频部分。我们也可以估算信号中直流分量的大小。当然这都是我们直观的理解。这种单纯的从时域中的信号的波形得到的信息是不全面的。有的时候我们想要知道我们的信号中含有那些频率成分,相应频率的强度,相位。这就是从从频域的角度来看待我们的信号。这就需要一个数学变换的工具,将我们的信号变换到频域。这个强大的数学工具就是傅里叶变换,变换后我们希望我们还可以回到时域中,也就是我们的变换是可可逆的,事实上,傅里叶变换就有这个信息不损失的性质。如今傅里叶变换已经成为一个体系。一切来自于数学中的分解思想,在这里我们选择一组正交基。对我们信号函数的分解就像是对空间中某一一向量分解到三个坐标系一样,只不过函数的坐标是傅里叶系数而已。这样,我们经过傅里叶变换就可以知道我们的信号中含有的频率成分。但是这里有一个隐含的假设,或者说是傅里叶变换的致命弱点,那就是他潜在的假设了我们的信号是平稳信号。何为平稳信号?所谓的平稳信号就是信号的各种频率成分在信号的全部持续时间中都存在。举个例子,假如我们对一个持续时间在[0,100s]的平稳信号做傅里叶变换,得出信号中有59HZ,那么就说明,对该平稳信号,59HZ从0开始,在这100s中的任何一个时刻都存在。 可是,当我们的信号不是平稳信号时,例如59HZ产生50s 处,强度和上一个信号的完全相同,其他频率也完全相同,如果我们对这一个信号做傅里叶变换,由于傅里叶变换的积分域是从负无穷到正无穷,所以不幸的是,我们得到了和上一信号完全一样的结果,我们无法再从频域回到时域了。也就是FT并没有告诉我们非平稳信号的各种频率分别出现在那个时间段上。 事实上,在现实生活中,非平稳信号和平稳信号交织在一起的。例如 心电图(ECG)、脑电图(EEG)和肌电图(EMG)。所以知道哪些频率出现在何种时间段的需求是那么的紧迫。换句话说,就是我们想要同时知道信号的时间信息和频率信息。解决方案就是FT的改进版:STFT(短时傅里叶变换)。 小波变换: 小波(wavelet)的意思是:a small wave。FT中,我们选用的是exp(jwt)函数作为我们变换空间的一组标准正交基,exp(jwt)函数在时间轴上一直存在,从-∞到+∞上均存在的信号,不会衰减,而我们在小波变换中选用的小波不仅持续时间是有限的,即只在某一个时间段内存在,而且小波的频率也是有限的,即超过一定的频率之外,该频率的强度(幅度)会逐渐衰减到0。小波变换较之于傅里叶变换的优点可以归结为如下方面:1)使得信号的存储较之于傅里叶变换后再去存储更加的有效,也就是更易于压缩,进而传输图像。2)方便了对信号的分析,因为能够更好地去近似现实中的信号(non stationary signal)。3)当信号函数中有不连续的点的时候,如果用FT得到信号的近似,会有吉布斯现象(虽然在功率上会很好的近似,但是在不连续点附近却有一个固定的误差,无法进一步减小),比之于FT的这个缺点,我们的小波变换能够更好的对数据中的不连续点进行近似。

相关文档
最新文档