2000年大连理工数学分析试题及解答

2000年大连理工数学分析试题及解答
2000年大连理工数学分析试题及解答

2000年大连理工大学硕士生入学考试试题——数学分析

一、从以下的第一到第八题中选取6题解答,每题10分

1. 证明:1()f x x

=

于区间0(,1)δ(其中001δ<<)一致连续,但是于(0,1)内不一

致连续 证明:

01212(1)0,()[1]2

(2)1||()|()()|f x x x f x f x δδδδεδδε<=

利用定义,取,不存在为定值使得从而不难利用反证法得到第二个命题成立

2. 证明:若()[,]f x a b 于单调,则()[,]f x a b Riemann 于内可积

证明:

1101111111

1

11()...[,],m ax 0

(

m ax {()}m in {()})(()())(m ax{()()})

(m ax{()()})i i

i i

n i i i i i n

n

n

i i

i i i i x x x x x x i n

i i i i i n

f x a x x x b a b x x f x f x f x f x f x f x f x f x λλλλλλ---≤≤--≤≤≤≤≤≤==-≤≤?=<<<==-=→-=

-

<--∑∑不妨设单调递增,且:是的一个划分,

必然存在一个划分,使得11111

(m ax{()()})lim

(

m ax {()}m in {()})0i i

i i

i i i n

n

i x x x x x x i f x f x f x f x λ---≤≤?

≤≤≤≤=→--=∑(由于递增,使用二分法的思想,可以使得小于任何数)

所以,,所以可积

3. 证明:Dirichlet 函数:

0,()1,()x f x p

x q q ??

=?=??

为无理数有理数在所有无理点连续,在有理点间断, 证明:

0001000000()0

10[]1m in {||}1(,),|()|()0{,{}},()n N i Z

i i x f x i

N x n x x x f x N

x f x x y y f x εδδεεεε

+

≤≤∈=?>=+=-∈-+≤<≠∈为无理数,对于,,取,显然这样的存在

当所以,在无理点连续

为有理数,。不难找到趋近于的收敛子列:无理数这样显然不连续。

4. 证明:若()(,),(,)f x C a b a b ∈(指上的连续函数),且任意(,)(,)

a b αβ?,()0f x dx β

α

=?,那么()0f x ≡,(,)x a b ∈

证明:

002

000000000()(),(,),()0()()'()()02()0

(,)(,)()()()()(2)()02

2

x a b x x F x f t dt x a b F x F x f x F x f x f x x x x x x x f x f x f x f x dx f x δδ

δδδδδδ++-=

?∈==?≡>-+?∈-+>

?

>

=≠?

?

证明1:构造函数。

因为,可导而且,证明:反证法,不妨设那么,存在的一个小的邻域,使得。矛盾

5. 证明:1

(0,)0,[,)nx n ne δδ∞

-=+∞?>+∞∑于不一致收敛,但是对于于一致收敛

证明:

1

1

1

(1)1

01

(1)(1)0

(1)2

()()()(1)1(1)()11lim ()1()lim ()1(1)

(1)m

nx

m n m

nx

m n m

m x

n x

nx

m n n m x m x

m x

nx

m x

x

n m x m x

x

x

m m x

x

m A x ne

A x ne

e A x ne

n e e

e A x m e

e

m e

e e

m e

e

e A x A x e e -=-=----==--------=----→∞

→∞

=

?

=

?????

=

=+??

--=+

=+

--+

-?==

=

--∑∑∑

∑∑假设:2

12

1

[,),0,()ln(

),,|()()|(1)11

1(2)(0,),,()()

1

(1)

m m nx

m

x

m x

x

e

x N m N A x A x e m e

e

x m N A e

A x m

e e δ

δ

δεεε

δ

ε

--

-∈+∞?>?=?>-<-+-∈+∞?∈=

≠=--所以,一致收敛

所以,非一致收敛

6. 证明:

4

1sin ,0()0,0x x f x x

x ?≠?

=??=?

,在x=0处有连续的二阶导数

证明:

4

3432

230022001sin ,0()0,0111114sin cos ()4sin cos ,0'()()(0)1lim lim sin 0,00111112sin 4cos 2cos sin ,0"()'()'(0)1lim lim (4sin c 0x x x x x x f x x

x x x x x x x x x x x

f x f x f x x x x x x x x x x x x

f x f x f x x x x →→→→?≠?

=??=?

?+-=-≠??=?

-?===?-?---≠=-=--1os )0,0

"(0)"()0x x f f x x ????

?==??=存在,但是,不在连续

7. 利用重积分计算三个半长轴分别为a,b,c 的椭球体的体积

解:三种方法:

2

22

22

1)arcsin

2

212arcsin |

2

2(1)

c

c c

c

c c

a

x C

a

V a z

c ab dz

z ab c

π

++----+-=

+=

=-

==-

???

??

?

222

42

3

cos 2)sin ,[0,1],[0,2),[,]42(1)3

cos sin 3)sin sin ,[0,1],[0,2)cos c c

c c c c

c

c

dz abc

x ar y br r z c c z z z V abrd drdz ab ab dz abc

c

x ar y br r z cr ππθθθπθπ

π

πθ?

θ?θπ?

+-+++---=

=??

=∈=∈-??=?=

==-

=

=??

=∈∈??=??

??

??

?

1212

2

2

2

2

2

,[,]

2222sin 2sin sin 3

43

V abcr d drd abcr drd abc d abc π

π

π

ππππ??θ?π

??π??

π

++

+-∈-===

=???

??

?

8. 计算第二类曲面积分:xdydz ydzdx zdxdy ∑

++?,其中,

,,0,1,,x y z x y z x y z ∑>++=是三角形(),法方向按与轴成锐角为正。

解:(Gauss 定理) 123

1

2

3

1230,,0,10,,0,10,,0,1

132012

00

V

z x y x y y x z z x x y z y z xdydz ydzdx zdxdy dxdydz xdydz ydzdx zdxdy xdydz ydzdx zdxdy xdydz ydzdx zdxdy xdydz ydzdx zdxdy ∑+∑+∑+∑∑∑

∑∑∑=>+=∑=>+=∑=>+=?

++=

=

??++=???++=

??++=??++=??

??

??

??

:::

二、从9-14题中选4题解答

9.假设122

2...lim ,lim 2

n

n n n a a na a a a n

→∞

→∞

+++==

证明:

证明:Stolz 公式 12121122

2

2

1

2...(2...(1))(2...)

lim

lim

(1)(1)lim

21

2

n

n n n n n n n a a na a a na n a a a na n

n n

n a a n +→∞

→∞

+→∞

++++++++++++=+-+==

+ 利用定义也可以做的

10.计算积分:22

xdy ydx

I x y

Γ

-=

+?

,其中,Γ为包含原点的一条分段光滑闭曲线,取正

方向。

证明:利用Green 公式,不过要注意去掉中间那个极点

1

1

1

12222

22

2

2

2

2

22

222

2

:(

)02cos sin sin cos xdy ydx

y x x y dxdy x y x y

x y

xdy ydx

x y

xdy ydx

d d d x y

π

ππ

θθθθθΓ-ΓΓ-ΓΓ

ΓΓ?

---=

+

=?+++-??=?+-?=

-=

?+?

??

?

?

?

?

单位圆周,方向为正方向

11.计算曲面积分333

S

I x dydz y dzdx z dxdy =

++??

,S 为椭球面

2222

2

2

1x y z a

b

c

+

+

=的外

侧。

证明:

333222

2

2

2

2

2

2

2

22222222

02

2

3()cos sin ,[0,1],[0,2)3(cos sin )3cos sin )3()2

S

V

V

c c I x dydz y dzdx z dxdy x y z dxdydz

x ar y br r z z I ab a r b r z rdrd dz

ab a r b r z rdrd dz

ab dr d πθθθπθθθθθθ-=

++=++=??

=∈∈??=?

=++=++=??

????????

222222

2

2

2

222

2

2

2

2

2

2

2

2

2

(cos sin )3()3()(1)3(1)4

3()16

223(22)

4

15

15

5

c

c c

c

c c c

c

z a b d ab z dz d a b ab z z dz ab z dz

c

c

ab a b c

ab ab a b c ππθθθθ

π

ππππ

----+++=-

+-

+=+=

++?

??

?

?

?

12.设1

1

()0,[1,1],()

1,1,2,3....n n n x C x d x n φφφ->∈-==?,对于任意的c>0,

()[1,][,1]n x c c φ--在一致收敛于0。证明:对于任意()[1,1]g x C ∈-:

lim ()()(0)n n g x x g φ→∞

=

证明:

0001

111

10,()[1,1],[,],()[(0),(0)]

()[1,][,1],,[1,][,1],|()|()()()()()()()()|()()||n n c c n n n n c

c

c n g x C c x c c g x g g x c c N n N x c c x g x x dx g x x dx g x x dx g x x dx

g x x dx g εεεφφεφφφφφε------?>∈-???∈-∈-+--??>∈--?<=

+

+

?

?

?

在一致收敛于0,此时,1

1

1()|(1)m ax{()}

|()()||()|(1)m ax{()}

((0))()()()((0))()|()1|2(1)c

n c

c

c

c c

n n n c

c

c

c n c

x dx c g x g x x dx g x dx c g x g x dx g x x dx g x dx

x dx c εφεεεφφεφφε------<-<<--<

<+-<-?

????

??综上所述,不难得到命题成立

13.证明:一个严格递增函数的间断点只能是第一类间断点

证明:首先,证明左右极限都存在。不妨先证明左极限存在。如果不存在,函数有

界,那么存在两个不同的子列,收敛于不同极限A

然后证明,左极限不等于右极限,否则,根据严格递增不难得到函数在该点是连续的,又和题目矛盾

从而命题成立

14.(,)(,)[,)()(,)f x y a b I y f x y dx ∞-∞

-∞∞?=

?

于连续,于[,)y a b ∈收敛,但是

(,)f x b d x ∞-∞

?

发散,证明,()[,)I y y a b ∈于非一致收敛

未完成!

Zhubin846152 朱斌

(完整版)大连理工大学高等数值分析抛物型方程有限差分法

抛物型方程有限差分法 1. 简单差分法 考虑一维模型热传导方程 (1.1) )(22x f x u a t u +??=??,T t ≤<0 其中a 为常数。)(x f 是给定的连续函数。(1.1)的定解问题分两类: 第一,初值问题(Cauchy 问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: (1.2) ()()x x u ?=0,, ∞<<∞-x 第二,初边值问题(也称混合问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: ()13.1 ()()x x u ?=0,, l x l <<- 及边值条件 ()23.1 ()()0,,0==t l u t u , T t ≤≤0 假定()x f 和()x ?在相应的区域光滑,并且于()0,0,()0,l 两点满足相容条件,则上述问题有唯一的充分光滑的解。

现在考虑边值问题(1.1),(1.3)的差分逼近 取 N l h = 为空间步长,M T = τ为时间步长,其中N ,M 是 自然数, jh x x j ==, ()N j ,,1,0Λ=; τ k y y k ==, ()M k ,,1,0Λ= 将矩形域G {}T t l x ≤≤≤≤=0;0分割成矩形网格。其中 ()j i y x ,表 示网格节点; h G 表示网格内点(位于开矩形G 中的网格节点)的集合; h G 表示位于闭矩形G 中的网格节点的集合; h Γ表示h G -h G 网格边界点的集合。 k j u 表示定义在网点()k i t x ,处的待求近似解,N j ≤≤0,M k ≤≤0。 注意到在节点()k i t x ,处的微商和差商之间的下列关系 ((,)k j k j u u x t t t ????≡ ? ????): ()() ()ττ O t u t x u t x u k j k j k j +??? ????=-+,,1 ()() ()2112,,ττ O t u t x u t x u k j k j k j +??? ????=--+ ()()()h O x u h t x u t x u k j k j k j +??? ????=-+,,1 ()() ()h O x u h t x u t x u k j k j k j +??? ????=--,,1 ()() ()2112,,h O x u h t x u t x u k j k j k j +??? ????=--+ ()()() ()2 222 11,,2,h O x u h t x u t x u t x u k j k j k j k j +???? ????=+--+ 可得到以下几种最简差分格式

数学分析试题

(六)一年级《数学分析》考试题 一 判断题:(满分10分,每小题2分) 1、设数列{}n a 递增且a a n n =∞ →lim (有限),则有{}n a a sup =; ( ) 2、设数列)(x f 在点0x 的某领域)(0x U 内有定义,若对)(00x U x n ∈?,当0x x n →时, 数列{})(n x f 都收敛于同一极限,则函数)(x f 在带点0x 连续;( ) 3、设数列)(x f y =在点0x 的某领域内有定义,若存在实数A ,使0→?x 时,)()()(00x o x A x f x x f ?=?--?+,则)(0'x f 存在且A x f =)(0';( ) 4、若0)()(2'1'==x f x f ,)(0)(2''1''x f x f ,则有)()(21x f x f ;( ) 5、设?+=c x F dx x f )()(,?+=c x G dx x g )()(,则当)()(x G x F ≠时,有)()(x g x f ≠; ( ) 二 填空题:(满分15分,每小题3分) 1、∑+=+=1 61291n k n k n a , =∞ →n n a lim ; 2、函数3 ln 3)(--=x x x f 全部间断点是 ; 3、)1ln()(2x x f +=,已知56)2()(lim 000=--→h h x f x f h ,=0x ; 4、函数193)(23+--=x x x x f 的既递减又下凸的区间是 ; 5、?+=c x dx x f 2sin )(,?=dx x xf )(' ; 三 计算题:(满分36分,每小题6分) 1、111 1lim 30-+-+→x x x ; 2、求函数54 )15(4)(+-=x x x f 的极值; 3、?+12x x dx ; 4、?++dx x x )1ln(2 ;

大连理工大学2009年数学分析考研试题

大连理工大学2009年研究生入学考试数学分析试题 一、解答下列问题。 1、 判断下列数列是否收敛 222 111123n ++++…… 2、 设{}n a 1= 1= 3、 判断下列函数是否一致连续 ()1cos n f x e x ??= ??? ,(]0,1x ∈ 4、 设,y u f xy x ??= ???,求:22u x ??,2u x y ??? 5、 已知:()f a 存在,求()()lim x a xf a af x x a →-- 6、 设()f x 在[],a b 上可导,且()f a =()f b ,证明:存在(),a b ξ∈,使得 ()()()22f f a f ξξξ-= 7、 求极限()2lim ln n x x x →∞ 8、 求下列函数的Fourior 级数展开(),0,0x x f x x x ππππ+≤,使得 ()()0f x f x ≥,()00,x x x δδ∈-+,证明存在一个区域I 使得()f x 在I 上是一个常数。 二、设()f x 是[],a b 上具有连续的导数,()0a b <<,()()0f a f b ==,()2 1b a f x dx =?, 证明()()2 2'14b a x f x dx >? 三、给定函数列()()()2,3,n x x Inx f x n n α==…试问当α取何值时,(){}n f x 在[0,)+∞上

数学分析试卷及答案6套

数学分析-1样题(一) 一. (8分)用数列极限的N ε-定义证明1n n n =. 二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x a g x b →=; (2) 0()x U a ?∈,有0 ()()g x U b ∈ (3) lim ()u b f u A →= 用εδ-定义证明, lim [()]x a f g x A →=. 三. (10分)证明数列{}n x : cos1cos 2 cos 1223 (1) n n x n n = +++ ???+收敛. 四. (12分)证明函数1 ()f x x = 在[,1]a (01)a <<一致连续,在(0,1]不一致连续. 五. (12分)叙述闭区间套定理并以此证明闭区间上连续函数必有界. 六. (10分)证明任一齐次多项式至少存在一个实数零点. 七. (12分)确定,a b 使2 lim (1)0x x x ax b →+∞ -+-=. 八. (14分)求函数32()2912f x x x x =-+在15[,]42 -的最大值与最小值. 九. (14分)设函数()f x 在[,]a b 二阶可导, ()()0f a f b ''==.证明存在(,)a b ξ∈,使 2 4 ()()()() f f b f a b a ζ''≥ --. 数学分析-1样题(二) 一. (10分)设数列{}n a 满足: 1a a =, 1()n n a a a n N +=+ ∈, 其中a 是一给定的正常 数, 证明{}n a 收敛,并求其极限. 二. (10分)设0 lim ()0x x f x b →=≠, 用εδ-定义证明0 11 lim ()x x f x b →=.

1大连理工数学分析试题及解答

大连理工大学2001年硕士生入学考试 数学分析试题 一. 从以下的1到8题中选答6题 1. 证明:2 ()f x x =在区间[0,]M 内一致连续(M 为任意正数),但是在[0,)+∞不一致 连续 2. 证明:若()f x 在[,]a b 内连续,那么()f x 在[,]a b 内Riemann 可积. 3. 证明:若1α>,那么广义积分1 sin x dx α+∞ ? 收敛 4. 证明:若()f x ,()g x 为区间(,)a b 上的连续函数,对任意的(,)(,)a b αβ?有: ()()f x dx g x dx β β α α =??,那么, ()()f x g x ≡于(,)a b 5. 证明:若1 n n a ∞ =∑收敛,那么 1 nx n n a e ∞ -=∑在[0,)+∞一致收敛 6. 已知:2 ,0 ()0,0 x e x f x x -?≠?=?=??,求"(0)f 7. 已知:()() 1(,)()2 2x at x at x at x at u x t d a φφψαα+-++-= + ?. 其中, ψ和φ分别是可以求导一次和求导两次的已知函数,计算 22 222 (,)(,)u x t u x t a t x ??-?? 8. 计算,半径为R 的球的表面积 二. 从9到14题中选取6题 9.已知: lim '()0x f x →∞ =,求证: () lim 0x f x x →∞ =

10.证明: ()a f x dx +∞ ? 收敛,且lim ()x f x λ→+∞ =,那么0λ= 11.计算曲面积分: 333 S I x dydz y dzdx z dxdy = ++??, 其中S 为旋转椭球面222 2221x y z a b c ++=的外侧 12.设()[0,1]f x C ∈,(0)0f =,(1)1f =,0()1f x ≤<. 求证: ()()n n S x f x =对于任意小于1的正数δ,在区间(0,1]δ-一致收敛,但是不在(0,1)一致收敛 13.设()[0,1]f x C ∈,(0)0f =,(1)1f =,0()1f x ≤<. 求证: 1 0lim ()0n n f x dx →∞ =? 14.证明:若()[,]n u x C a b ∈,1,2,...,...n =且1 ()n n u b ∞ =∑发散,那么1 ()n n u x ∞ =∑不在[,)a b 一致收 敛

东南大学 2002 年数学分析试题解答

东南大学2002年数学分析试题解答 一、叙述定义(5分+5分=10分) 1.()+∞=?∞ →x f x lim . 解:M x f E x E M >??>?)( , ,0 ,0. 2.当+→a x 时,)(x f 不以A 为极限. 解: 二、计算(9分×7=63分) 1.求曲线210 ),1ln(2≤ ≤?=x x y 的弧长. 解:dx x f s ∫+=βα 2)]('[1 ∫∫∫?=?++?=?+=??+=21 0 21 0 222 1 0 22 213ln )11111(11)12(1dx x x dx x x dx x x . 2.设x y z e x g z y x f u y sin ,0),,( ),,,(2===,g f ,具有一阶连续偏导数, 0≠??z g ,求dx du . 解:由0),,(2=z e x g y 得02321=++dz g dy g e dx xg y ,从而 x z z f x y y f x f dx du ?????+?????+??==32121)cos 2(cos f g e x xg f x f y ?++?+. 3.求∫dx x x 2ln ( 解:令dt e dx e x x t t t === , ,ln , ∫=dx x x 2)ln (∫?dt e e t t t 22 =∫ =?dt e t t 2t t te e t ????22C e t +??2 C x x x +++?=2ln 2)(ln 2. 4.求()2 0lim x a x a x x x ?+→()0>a . 解:()2 0lim x a x a x x x ?+→

数学分析试题集锦

June21,2006 2002 1.(10) lim x→0( sin x1?cos x . 2.(10)a≥0x1=√2+x n n=1,2,... lim n→∞ x n 3.(10)f(x)[a,a+α]x∈[a,a+α]f(x+α)?f(x)= 1 1?x2+arcsin x f′(x). 5.(10)u(x,y)u ?2u ?x?y + ?2u x2+y2dx dy dz,?z=

x2+y2+z2=az(a>0) 8.(10) ∞ n=1ln cos1 ln(1+x2) 2 √ (2).{n . ?x (4). L(e y+x)dx+(xe y?2y)dy.L O(0,0),A(0,1),B(1,2) O B OAB. √ 2.(15)f(x)=3

4. 15 f (x )[0,1] sup 01 | n ?1 i =0 f (i n ? 1 f (x )dx |≤ M a n 6.(15 ) θ θ(x )= +∞ n =?∞ e n 2 x x >0 7.(15 ) F (α)= +∞ 1 arctan αx x 2?1 dx ?∞<α>+∞ 8.(21 ) R r r 2004 1.( 6 30 ) (1).lim n →?∞ ( 1 n +2 +...+ 1 f (x ) ) 1 3 sin(y 1+n

(5).e x=1+x+x2 n1 4≤e x+y?2. 5.(12)F(x)= Γf(xyz)dxdydy,f V={(x,y,z)|0≤x≤t,0≤y≤t,0≤z≤t}(t>0), F′(t)=3 a+n √ 2 n(a>0,b>0) (2).lim n→∞ 10x n√ 2 0dx 3 . (5).F(t)= x2+y2+z2=t2f(x,y,z)dS, f(x,y,z)= x2+y2,z≥ x2+y2

大连理工大学入学测试机考专升本高等数学模拟题

大连理工大学入学测试机考专升本高等数学模拟题1、题目Z1-2(2)() 标准答案:A 2、题目20-1:(2)() 标准答案:A 3、题目20-2:(2)() 标准答案:B 4、题目20-3:(2)() 标准答案:A 5、题目20-4:(2)() 标准答案:D 6、题目20-5:(2)() 标准答案:D

标准答案:A 8、题目20-7:(2)() 标准答案:D 9、题目20-8:(2)() 标准答案:C 10、题目11-1(2)() 标准答案:C 11、题目11-2(2)() 标准答案:B 12、题目11-3(2)() 标准答案:A 13、题目20-9:(2)() 标准答案:C

标准答案:D 15、题目11-5(2)() 标准答案:C 16、题目20-10:(2)() 标准答案:B 17、题目11-6(2)() 标准答案:B 18、题目11-7(2)() 标准答案:C 19、题目11-8(2)() 标准答案:C 20、题目11-9(2)() 标准答案:D 21、题目11-10(2)() 标准答案:B

标准答案:C 23、题目19-2:(2)() 标准答案:B 24、题目19-3:(2)() 标准答案:D 25、题目12-1(2)() 标准答案:D 26、题目12-2(2)() 标准答案:D 27、题目19-4:(2)() 标准答案:B 28、题目12-3(2)() 标准答案:B 29、题目12-4(2)() 标准答案:C

标准答案:A 31、题目19-5:(2)() 标准答案:C 32、题目12-6(2)() 标准答案:A 33、题目12-7(2)() 标准答案:B 34、题目19-6:(2)() 标准答案:B 35、题目12-8(2)() 标准答案:B

大连理工大学上学期工科数学分析基础学习知识试题

2010工科数学分析基础(微积分)试题 一、填空题 (每题6分,共30分) 1.函数?? ? ?? ??? ??-≥+=01 0)(2πx x e x bx a x f bx ,=- →)(lim 0x f x ,若函数)(x f 在0=x 点连续,则b a ,满足 。 2.=?? ? ??+∞→x x x x 1lim , =??? ??+++???++++++∞→n n n n n n n n n 2222211lim 。 3.曲线? ??==t e y t e x t t cos 2sin 在()1,0处的切线斜率为 ,切线方程为 。 4.1=-+xy e y x ,=dy ,='')0(y 。 5.若22 lim 2 21=-+++→x x b ax x x ,则=a ,=b 。 二、单项选择题 (每题4分,共20分) 1.当0→x 时,1132-+ax 与x cos 1-是等价无穷小,则( ) (A )32= a , (B )3=a , (C). 2 3 =a , (D )2=a 2.下列结论中不正确的是( ) (A )可导奇函数的导数一定是偶函数; (B )可导偶函数的导数一定是奇函数; (C). 可导周期函数的导数一定是周期函数; (D )可导单调增加函数的导数一定是单调增加函数; 3.设x x x x f πsin )(3-=,则其( ) (A )有无穷多个第一类间断点; (B )只有一个跳跃间断点; (C). 只有两个可去间断点; (D )有三个可去间断点; 4.设x x x x f 3 )(+=,则使)0() (n f 存在的最高阶数n 为( )。 (A )1 (B )2 (C) 3 (D )4 5.若0)(sin lim 30=+→x x xf x x , 则20) (1lim x x f x +→为( )。 (A )。 0 (B )6 1 , (C) 1 (D )∞

数学分析试题及答案解析

2014 ---2015学年度第二学期 《数学分析2》A 试卷 一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()?dx x f 可表为()C dt t f x a +?( ). 2.若()()x g x f ,为连续函数,则()()()[]()[]????= dx x g dx x f dx x g x f ( ). 3. 若()?+∞a dx x f 绝对收敛,()?+∞a dx x g 条件收敛,则()()?+∞ -a dx x g x f ][必然条件收敛( ). 4. 若()?+∞ 1dx x f 收敛,则必有级数()∑∞=1 n n f 收敛( ) 5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I 上内闭一致收敛( ). 6. 若数项级数∑∞ =1n n a 条件收敛,则一定可以经过适当的重排使其发散 于正无穷大( ). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到 的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题3分,共15分) 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上( ) A.不连续 B. 连续 C.可微 D.不能确定 2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相 等,则( )

A. ()x f 在[]b a ,上一定不可积; B. ()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C. ()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D. ()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞=--+12111n n n n A.发散 B.绝对收敛 C.条件收敛 D. 不确定 4.设∑n u 为任一项级数,则下列说法正确的是( ) A.若0lim =∞→n n u ,则级数∑ n u 一定收敛; B. 若1lim 1<=+∞→ρn n n u u ,则级数∑n u 一定收敛; C. 若1,1<>?+n n u u N n N ,时有当,则级数∑n u 一定收敛; D. 若1,1>>?+n n u u N n N ,时有当,则级数∑n u 一定发散; 5.关于幂级数∑n n x a 的说法正确的是( ) A. ∑n n x a 在收敛区间上各点是绝对收敛的; B. ∑n n x a 在收敛域上各点是绝对收敛的; C. ∑n n x a 的和函数在收敛域上各点存在各阶导数; D. ∑n n x a 在收敛域上是绝对并且一致收敛的;

专升本数学分析精选三试卷及答案

《数学分析》――参考答案及评分标准 一. 计算题(共8题,每题9分,共72分)。 1. 求函数11 (,)f x y y x =在点(0,0)处的二次极限与二重极限. 解: 11 (,)f x y y x = =, 因此二重极限为0.……(4分) 因为011x y x →+ 与011 y y x →+均不存在, 故二次极限均不存在。 ……(9分) 2. 设(),()y y x z z x =??=? 是由方程组(),(,,)0z xf x y F x y z =+??=? 所确定的隐函数,其中f 和F 分别 具有连续的导数和偏导数,求dz dx . 解: 对两方程分别关于x 求偏导: , ……(4分) 。 解此方程组并整理得()()() ()y y x y z F f x y xf x y F F dz dx F xf x y F '?+++-='++. ……(9分) 3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程 222z z z z x x y x ???++=????。 设,,22 y x y x y w ze μν+-=== (假设出现的导数皆连续). 解:z 看成是,x y 的复合函数如下: ,(,),,22 y w x y x y z w w e μνμν+-==== 。 ……(4分) 代人原方程,并将,,x y z 变换为,,w μν。整理得: 2222w w w μμν ??+ =???。 ……(9分) 4. 要做一个容积为31m 的有盖圆桶,什么样的尺寸才能使用料最省? 解: 设圆桶底面半径为r ,高为h ,则原问题即为:求目标函数在约束条件下的最小值,其中 目标函数: 222S rh r ππ=+表, ()()(1)0x y z dz dy f x y xf x y dx dx dy dz F F F dx dx ?'=++++????++=??

大工《高等数学》课程考试模拟试卷A答案

绝 密★启用前 大连理工大学网络教育学院 2010年9月份《高等数学》课程考试 模拟试卷答案 考试形式:闭卷 试卷类型:A 一、单项选择题(本大题共10小题,每小题2分,共20分) 1.B 2.C 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.B 二、填空题(本大题共10小题,每小题3分,共30分) 1.dx x 45 2.x e 3.0 4.5 5.C x x +-3 31 (不写常数C 扣1分) 6.0 7.)cos(2 2y x x 8.2ln 21 9.61 10.C x y +=22(不写常数C 扣1分) 三、计算题(本大题共5小题,每小题8分,共40分) 1.解:11lim )1)(1(1lim 1 1lim 1121+=+--=--→→→x x x x x x x x x (4分)21=(4分) 2.解:)(sin sin 1'= 'x x y (4分)x x cos sin 1=x cot =(4分) 3.解:??=x xd xdx 33sin 313sin (4分)C x +-=3cos 31(4分)(不写常数C 扣1分) 4.解法1:令x t =,则tdt dx t x 2,2== 当1=x 时,1=t ;4=x 时,2=t (4分) 于是???=?=212 14122dt e dt t t e dx x e t t x (2分) )(21222e e e t -==(2分) 解法2:x d e dx x e x x ??=41412(4分))(21422e e e x -==(4分) 5.解:t dt dx 4=(2分) t dt dy cos =(2分)

大连理工大学2005硕士研究生考试数学分析试题及解答

大连理工大学2005硕士研究生考试试题数学分析试题及解答 一、 计算题 1、 求极限:122 2 (i) ,lim n n n n a a na a a n →∞ →∞+++=其中 解: 1212222...(1)(1)lim lim lim ()(1)212 n n n n n n a a na n a n a a Stolz n n n n +→∞→∞→∞+++++===+-+利用公式 2、求极限:2 1lim (1)x x x e x -→∞ + 解: 22 2 222 1(1) 1lim (1)lim()1111(1)(1)(ln(1)) 1lim lim 11 1111(())21lim 121(1)112lim (1)lim( )lim()x x x x x x x x x x x x x x x x x x x x e x e e x x x x x x o e x x x x e x e e x x e x e e e -→∞→∞→∞→∞→∞-→∞→∞→∞++=+-++-+=--+- +==--+- ∴+=== 3、证明区间(0,1)和(0,+∞)具有相同的势。 证明:构造一一对应y=arctanx 。 4、计算积分2 1 D dxdy y x +?? ,其中D 是x=0,y=1,y=x 围成的区域 解:

1120220001 1 1011ln()|ln(1)ln [(1)ln(1)(1)ln ]|2ln 2 y y D dxdy dxdy x y dy y x y x y dy ydy y y y y y y ==+++=+-=++-+-+=?? ????? 5、计算第二类曲线积分:22 C ydx xdy I x y --=+?,22:21C x y +=方向为逆时针。 解 : 222222002222 2tan 2222 cos ,[0,2)1sin 211 sin cos 4cos 222113cos 22cos 22 13(2)(1)812arctan 421(2)(1)2 311421C x x y ydx xdy I d d x y x x x x d x dx x x x x ππθθ θπθθθθθθθθ +∞+∞=-∞-∞=?? ∈? =?? ---=???→=-+++-+-++?????→-=--+++ +=-?????换元万能公式代换22 6426212x dx d x x ππ+∞+∞-∞-∞+=-++??+ ??? ?? 6、设a>0,b>0,证明:1 11b b a a b b ++?? ?? ≥ ? ?+?? ?? 。 证明:

数学分析习题

《数学分析Ⅱ》期中考试题 一、选择题(每小题3分,共30分) 1、曲线2x 2 +3y 2 + z 2 =9, z 2 =3x 2 + y 2 在点 ( 1, -1, 2 )的法平面方程是( 1 ) A 、8x+10y+7z-12=0; B 、8x+10y+7z+12=0; C 、8x -10y+7z-12=0; D 、8x+10y+7z+12=0 2、L 为单位圆周,则 L y ds =? ( 4 ) A 、1 B 、2 C 、3 D 、4 3、L 为从( 1, 1, 1 )到( 2, 3, 4 )的直线段,则 L zdx xdz +? = ( 3 ) A 、3 B 、5 C 、7 D 、9 4、 ()1 3x y x y dxdy +≤+?? =( 2 ) A 、2 B 、4 C 、6 D 、8 5、 02 11(,)y dy f x y dx --? ? ,改变积分顺序得( 1 ) A 、2 110 (,)x dx f x y dy -?? B 、2 111(,)x dx f x y dy --?? C 、 2 11 (,)x dx f x y dy +? ? D 、2 11 1 (,)x dx f x y dy +-?? 6、V=[-2, 5]?[-3, 3]?[0,1],则 2()V xy z dv +??? =( 3 ) A 、1 B 、7 C 、14 D 、21 7、密度为1的均匀单位圆盘对于它的直径的转动惯量为( 4 ) A 、π B 、 π/2 C 、π/3 D 、π/4 8、曲面S 为上半单位球面z =S yzdxdz ?? =( 2 ) A 、π/2 B 、 π/4 C 、π/6 D 、π/8 9、函数2 3 u x y xz =++的梯度场在(1,1,1)的旋度为( 2 ) A 、(1,1,1) B 、(0,0,0) C 、(1,0,1) D 、(0,1,1) 10、下面反常积分收敛的有( 3 )个。 0cos x e xdx -∞ ? ,10 ? ,3cos ln x dx x +∞?,20?,1+∞? A 、2 B 、3 C 、4 D 、5 二、填空题(28分,每空4分) 1、区域Ω由1z =与22 z x y =+围成的有界闭区域,则 (,,)f x y z dv Ω ??? 在直角坐标下的三 次积分为 柱坐标下三次积分

大工高等数学课程考试模拟试卷A答案

大工高等数学课程考试模 拟试卷A答案 Prepared on 24 November 2020

机密★启用前 大连理工大学网络教育学院 2015年3月份《高等数学》课程考试模拟试卷答案 考试形式:闭卷试卷类型:A 一、单项选择题(本大题共10小题,每小题2分,共20分)1、C 2、A 3、C 4、B 5、B 6、C 7、D 8、B 9、C 10、A 二、填空题(本大题共 10 小题,每小题 3 分,共 30 分) 1、2 1 -=x y 2、0 3、dx x x x x x x x ??? ? ??-+---22 22121)23(arccos 6 4、>(或写成“大于”) 5、C x x +-3sin 31 sin 6、13-=x y 7、x 2 sin 2ππ 8、C e x +--9、必要10、 2 2y x xy + 三、计算题(本大题共5小题,每小题8分,共40分) 1、解:所给极限为“ ”型,注意当0→x 时,x x ~)1ln(+(4分)。因此 211sin lim sin lim )1ln(sin lim 000=+=?? ? ??+=+=++→→→x x x x x x x x x x x x x (4分) 2、解:本题为第一类换元法计算不定积分 解法Ⅰ做变量代换,令,1 ,ln du dx x u x ==(4分) C x C u udu dx x x +=+==??ln sin sin cos ln cos (4分) 解法Ⅱ凑微分法,使用凑微分公式 3、解:依前述求定义域的原则,需有???>+-≥--01204222x y y x ,(4分)即???>+≤+x y y x 214 222(4分)

(完整版)大连理工大学高等数值分析偏微分方程数值解(双曲方程书稿)

双曲型方程的有限差分法 线性双曲型方程定解问题: (a )一阶线性双曲型方程 ()0=??+??x u x a t u (b )一阶常系数线性双曲型方程组 0=??+??x t u A u 其中A ,s 阶常数方程方阵,u 为未知向量函数。 (c )二阶线性双曲型方程(波动方程) ()022=?? ? ??????-??x u x a x t u ()x a 为非负函数 (d )二维,三维空间变量的波动方程 0222222=???? ????+??-??y u x u t u 022222222=???? ????+??+??-??z u y u x u t u §1 波动方程的差分逼近 1.1 波动方程及其特征 线性双曲型偏微方程的最简单模型是一维波动方程: (1.1) 22 222x u a t u ??=?? 其中0>a 是常数。 (1.1)可表示为:022 222=??-??x u a t u ,进一步有

0=??? ????+?????? ????-?? u x a t x a t 由于 x a t ?? ±??当a dt dx ±=时为()t x u ,的全导数 (=dt du dt dx x u t u ???+??x u a t u ??±??=),故由此定出两个方向 (1.3) a dx dt 1 ±= 解常微分方程(1.3)得到两族直线 (1.4) 1C t a x =?+ 和 2C t a x =?- 称其为特征。 特征在研究波动方程的各种定解问题时,起着非常重要的作用。 比如,我们可通过特征给出(1.1)的通解。(行波法、特征线法) 将(1.4)视为),(t x 与),(21C C 之间的变量替换。由复合函数的微分法则 2 12211C u C u x C C u x C C u x u ??+??=?????+?????=?? x C C u C u C x C C u C u C x u ????? ? ????+????+?????? ????+????=??2 212121122 2221222122 12C u C C u C C u C u ??+???+???+??= 2 2 22122122C u C C u C u ??+???+??= 同理可得 a t t a t C -=??-=??1,a t C =??2 ???? ????-??=?????+?????=??21 2211C u C u a t C C u t C C u t u

数学分析三试卷及答案

《数学分析》(三)――参考答案及评分标准 .计算题(共8题,每题9分,共72分)。 因为 lim 3 xsin — 3 ysin —与 lim 3 xsin — 3 ysin -均不存在, x 0 y x y 0 y x 故二次极限均不存在。 4.要做一个容积为1m 3的有盖圆桶,什么样的尺寸才能使用料最省? 解:设圆桶底面半径为r ,高为h,则原问题即为:求目标函数在约束条件下的 最小值,其中 目标函数:S 表2 rh 2 r 2, 1. 解: 1 1 求函数f (x, y) V^sin — 济sin-在点(0,0)处的二次极限与二重极限. y x f (x, y) Vxs in 丄 羽 si n 丄 y x |3X |3y|,因此二重极限为0.……(4分) (9分) 2. 解: 设y y(x),是由方程组z xf(x z z(x) F(x, y,z) 具有连续的导数和偏导数,求空. dx 对两方程分别关于x 求偏导: y 0'所确定的隐函数’其中f 和F 分别 dz 丁 f (x dx F F 矽 x y dx y) xf (x y)(dX 1 ), 解此方程组并整理得竺 dx F z dz 0 dx F y f(x y) xf (x y)(F y F x ) (4分) 3. 取,为新自变量及 2 z x y x y 2 解: 2 z 2 x x y J 2 z 看成是 w z y F y xf (x y)F z w( ,v)为新函数,变换方程 ze y (假设出现的导数皆连续) x, y 的复合函数如下: / 、 x y w w(,), , 2 代人原方程,并将x, y, z 变换为,,w 2 2 w W c 2 2w 。 x y 。 2 整理得: (9分) (4分) (9分)

大连理工大学专升本高等数学题库道

大连理工大学专升本高等 数学题库道 Last updated on the afternoon of January 3, 2021

Z题库建议搜索作业帮 [题型]单选题 [章节] [类别]模拟 [题干]题目编号01 [选项] [答案]D [解析] [难度]易 [分数]2 [题型]单选题 [章节] [类别]模拟 [题干]题目编号02 [选项] [答案]A [解析] [难度]易 [分数]2 [题型]单选题 [章节] [类别]模拟 [题干]题目编号03 [选项] [答案]A [解析] [难度]易 [分数]2 [题型]单选题 [章节] [类别]模拟 [题干]题目编号04 [选项]

[答案]A [解析] [难度]易 [分数]2 [题型]单选题 [章节] [类别]模拟 [题干]题目编号05 [选项] [答案]D [解析] [难度]易 [分数]2 [题型]单选题 [章节] [类别]模拟 [题干]题目编号06 [选项] [答案]D [解析] [难度]中 [分数]2 [题型]单选题 [章节] [类别]模拟 [题干]题目编号07 [选项] [答案]C [解析] [难度]易 [分数]2 [题型]单选题 [章节] [类别]模拟 [题干]题目编号08

[答案]B [解析] [难度]中 [分数]2 [题型]单选题 [章节] [类别]模拟 [题干]题目编号09 [选项] [答案]B [解析] [难度]中 [分数]2 [题型]单选题 [章节] [类别]模拟 [题干]题目编号10 [选项] [答案]A [解析] [难度]中 [分数]2 [题型]单选题 [章节] [类别]模拟 [题干]题目编号11 [选项] [答案]B [解析] [难度]中 [分数]2 [题型]单选题

大连理工数学分析试题及解答

2000年大连理工大学硕士生入学考试试题——数学分析 一、从以下的第一到第八题中选取6题解答,每题10分 1. 证明:1 ()f x x =于区间0(,1)δ(其中001δ<<)一致连续,但是于(0,1)内不一致连续 证明: 01212(1)0,()[1]2 (2)1||()|()()|f x x x f x f x δδδδεδδε<= =+=-∈-+≤<≠∈为无理数,对于,,取,显然这样的存在 当所以,在无理点连续 为有理数,。不难找到趋近于的收敛子列:无理数这样显然不连续。

数学分析试题及答案解析

2014 —--2015学年度第二学期 《数学分析2》A 试卷 一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()?dx x f 可表为()C dt t f x a +?( ) . 2.若()()x g x f ,为连续函数,则()()()[]()[] ????= dx x g dx x f dx x g x f ( ). 3. 若()? +∞a dx x f 绝对收敛,()? +∞ a dx x g 条件收敛,则()()?+∞-a dx x g x f ][必然条件收敛( )。 4. 若()? +∞1 dx x f 收敛,则必有级数()∑∞ =1 n n f 收敛( ) 5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I上内闭一致收敛( )。 6。 若数项级数∑∞ =1n n a 条件收敛,则一定可以经过适当的重排使其发 散于正无穷大( ). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题3分,共15分) 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上( ) A.不连续 B. 连续 C .可微 D 。不能确定 2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不

相等,则( ) A. ()x f 在[]b a ,上一定不可积; B. ()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C 。 ()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D 。 ()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞ =--+1 21 11n n n n A.发散 B.绝对收敛 C.条件收敛 D . 不确定 4。设∑n u 为任一项级数,则下列说法正确的是( ) A .若0lim =∞ →n n u ,则级数∑ n u 一定收敛; B 。 若1lim 1 <=+∞→ρn n n u u ,则级数∑n u 一定收敛; C . 若1,1<>?+n n u u N n N ,时有当,则级数∑n u 一定收敛; D 。 若1,1>>?+n n u u N n N ,时有当,则级数∑n u 一定发散; 5.关于幂级数∑n n x a 的说法正确的是( ) A 。 ∑n n x a 在收敛区间上各点是绝对收敛的; B . ∑n n x a 在收敛域上各点是绝对收敛的; C . ∑n n x a 的和函数在收敛域上各点存在各阶导数;

相关文档
最新文档