液体张力计算

液体张力计算
液体张力计算

渗透压是溶液的特性,是受半透膜的性质来决定的。比如细胞膜作为半透膜,仅允许水分子自由通过,通过的量由细胞膜两侧溶质的浓度来控制。水分子通过细胞膜向溶质高的一侧转移,逐渐达到膜两侧溶质浓度相近,这一现象就叫渗透。由此,膜两侧容积发生了变化,压力也发生了变化,这种通过渗透维持的溶液的平衡压力就是渗透压。摩尔浓度通常被用作渗透压的单位。

血液作为一种特殊溶液也有一定的渗透压,通常正常值为:280 - - 320m0Sm / L 。也就是血浆中的溶质摩尔浓度的总合。任何溶液有一定的浓度就有一定的渗透压,相对于血液比较,高于血浆渗透压的就叫高渗溶液,低于者就叫低渗溶液,在血浆渗透压正常值范围内的当然就是等渗溶液。任何溶液在进入血液时都要求是等渗的,比如:0 . 9 %盐水、1 . 4 %碳酸氢钠、1 . 2 %氯化钾、5 %葡萄糖等等。但是并不是所有的溶液进入血液中都能够维持住本身的渗透压,比如葡萄糖进入体内后很快被代谢掉,渗透压就消失了。这就引出一个概念:液体的张力。液体的张力是指溶液进入到体内后能够维持渗透压的能力。比如 5 %葡萄糖25Oml + 0 . 9 %盐水25Oml ,共计5OOml ,我们叫对半液5OOml ,输液之前是等渗溶液,输到体内后葡萄糖被代谢,仅有0 . 9 % 盐水250ml 维持渗透压,所以说对半液是1 / 2 张力液。就不一一列举了。

0 . 9 %盐水、

1 . 4 %碳酸氢钠、

1 .

2 %氯化钾、

5 %葡萄糖等

上述四种液体是我们补液的常用液体,只有葡萄糖被代谢,所以不含张力

常用的混合溶液有下列几种:

(1)1:1液:是5%葡萄糖溶液1份与0.9%氯化钠1份的混合溶液,其渗透压约为血浆的一半,即1/2张,适合于对单纯性呕吐和继续丢失液量的液体补充。简便配制方法可用5%葡萄糖500ml加入10%氯化钠溶液20ml即可。

(2)3:2:1液:即3份10%葡萄糖溶液、2份0.9%氯化钠溶液及1份1.87%乳酸钠(或1.4%碳酸氢钠)溶液的混合溶液。其简单配制方法为:5%葡萄糖溶液500ml加入10%氯化钠溶液15ml及11.2%乳酸钠溶液15ml(5%碳酸氢钠溶液24m),其张力为1/2张。

(3)3:4:2液(有的单位将混合液的顺序变动为4:3:2溶液):是3 份10%葡萄糖溶液、4份0.9%氯化钠溶液及2份1.87%(1/6克分子)乳酸钠溶液(或1.4%碳酸氢钠溶液)的混合溶液,总份数为9,其中电解质(有渗透压作用的)占6份,所以是6/9张,简化为2/3张(约相当于血浆渗透压的2/3,即2/3张)。主要用于补充以丢失的液体量(即累积损失量)。

配制方法:先用总份数9除以丢失的液体总量,求出1份是多少毫升,然后用1份的毫升数分别乘以3、4和2,所得乘积即为各种溶液的毫升数。

例如:一个9kg的小儿,估计已丢失的体液量是体重的10%,则总丢失量为900ml,900ml除以9份,则1份为100ml,那么3份是10%GS,即100ml×3=300ml,依此类推,400ml为生理盐水,200ml为1/6克分子乳酸钠溶液。

简便配制方法:用5%葡萄糖溶液500ml加10%氯化钠溶液20ml及11.2%乳酸钠溶液20ml(或5%碳酸氢钠33ml) 。

(4)6:7:5液(一般称5:6:7液):是6份5%~10%葡萄糖溶液、7份0.9%氯化钠溶液及5份1/6克分子乳酸钠溶液的混合液,总份数是18,其中含电解质的占12份,所以是12/18,简化为2/3张,它与4:3:2液有相同的张力,所不同的是5:6:7液中乳酸钠含量较4:3:2液为高,故纠正酸中毒时,以5:6:7液为佳,配制方法与4:3:2液相似(不含简便配制法)。

(5)6:3 :1 液:是6份5%葡萄糖溶液、2份0.9%氯化钠溶液及1份1.87%乳酸钠(或1.4%碳酸氢钠)溶液的混合溶液,为1/3张液。

简便配制方法:用5%葡萄糖500ml,加入10%氯化钠溶液10ml与11.2%乳酸钠溶液9ml(或5% 碳酸氢钠溶液16ml)。

(6)生理维持液:即4份10%葡萄糖溶液,1份0.9%氯化钠溶液,再加10%氯化钾溶液15ml的混合溶液,张力为1/3张。

(7)3:1或4:1溶液:是3份或4份10%葡萄糖溶液与1份0.9%氯化钠溶液的混合溶液,总份数是4或5,即为1/4张或1/5张(约相当于血浆渗透压的1/4或1/5)。多作为婴儿时期维持生理需要的维持液。因新生儿肾功能尚不健全,对氯化钠的负荷量较小,故用1/5张溶液为佳。用于新生儿的4:1溶液亦可称基本液。

4:1液的简便配制方法:5%葡萄糖溶液500ml加入10%氯化钠溶液10ml。

(8)2:1等张含钠液:即2份0.9%氯化钠溶液与1份 1.8 7%乳酸钠(或1.4%碳酸氢钠)溶液的混合溶液。

2:1等张含钠液简单配制方法:5%葡萄糖溶液500ml加10%氯化钠溶液30ml及11.2%乳酸钠溶液30ml(或5%碳酸氢钠溶液47ml)。

活套张力计算

热连轧活套张力计算1.1.1活套控制基本力矩 活套的几何结构图如下所示: 图2.9 活套几何结构图 图2.10 活套本体结构图

其中: 02sin H D LL H -+ *=θ θθcos arctan 1*+=LL A H θθcos arctan 2*-=LL B H 活套高度和张力控制根据L2设定值自动执行。本系统有三种控制理论用于活套控制,包括:传统控制,交叉解耦控制,传统控制+ILQ 控制(具体参见活套控制模型部分)。 这三种控制方式,都离不开基本力矩的计算,参见图4-2和图4-3,其计算过程如下: B S G m T T T T T +++=σ 其中 m T :电机输出力矩[Nm] G T :活套重力矩[Nm] S T :带钢重力矩[Nm] σT :带钢张力矩[Nm] B T :带钢弯曲力矩[Nm] ()()[]LL h W T *1sin 2sin θθθθσσ--+***=

LL L h W T S *cos *2θρ ***= LL E L h H W T B *cos *163 θ*??? ??***= )cos(***P G P g GE T θθ-= 其中 W :带钢宽度[mm] h :带钢出口厚度设定值[mm] σ :带钢张力设定值[KG/mm 2] ρ :带钢密度[KG/m 3] E :带钢杨氏模量 [KG/mm 2 ] g :重力加速度,9.807m/s 2 1.1.2 带钢张力计算 单位张力值计算为活套电机力矩减去带钢重力矩、弯曲力矩、离心力矩、活套辊重力矩四个量得到的。与基本力矩相比,它多了一个带钢离心力矩。 ()()[]LL h W T T T T T E B S G m ***--++---= 1sin 2sin θθθθσ ()LL g V W h T E *cos 212θρθθ**+***= 其中: E T :带钢离心力矩[Nm] V :上游机架速度[m/s]

儿科补液最简单的计算方法

判断某溶液的张力,是以它的渗透压与血浆渗透压正常值(280~320mosm/L,计算时取平均值300mosm/L)相比所得的 比值,它是一个没有单位但却能够反映物质浓度的一个数值。 溶液渗透压=(百分比浓度×10×1000×每个分子所能离解的离子数)/分子量。如0.9%NaCl溶液渗透压=(0.9×10×1000×2)/58.5=308mOsm/L(794.2kPa)该渗透压与血浆正常渗透压相比,比值约为1,故该溶液张力为1 张。 又如5%NaHCO3 溶液渗透压=(5×10×1000×2)/84=1190.4mOsm/L(3069.7kPa)该渗透压与血浆正常渗透压相比,比值约为4,故该溶液张力为4 张。 对以上复杂的计算过程,不要求学生掌握, 但要记住张力是物质浓度的一种表达方式, 其换算自然亦遵循稀释定律:C1×V1=C2×V2。 然后列出课本上已标明相应张力的几种常 用溶液:10%(NaCl)11 张(临**可按10 张计算) 0.9%(NaCl)1 张 5%(NaHCO3)4 张 10%(KCl)9 张 10%(GS)0 张(无张力,相当于水) 并指出,临**多数情况下就是用以上几种 溶液配制成其它所需的液体进行治疗,只需 记住此几种溶液的张力,便可灵活自如地进行配制与计算所需溶液及张力;而不必去究为什么10%NaCl张力是10 张这一复杂的计算过程。 4、举例说明混合溶液张力的计算 例2、10%NaCl(10ml)+10%GS(90ml),请问该组溶液张力。 同学们很快能够根据C1×V1=C2×V2 列 出算式:10×10=X×100,X=1 张 例3、10%NaCl(20ml)+5%NaHCO3(25ml)+10%GS(255ml),请 问该组溶液张力。10×20+4×25=X×300,X=1 张。 例4、欲配制一组300ml,2/3 张液体,现已使用5%NaHCO3(15ml),还需10%NaCl多少毫升。10×X+4×15=2/3×300,X=14ml 那么,再加入10%GS271(270)ml后即可配制成所需液体(300-15-14=271ml,GS为0 张) 5、2∶1 等张液是抢救休克时扩容的首选溶液,其有固定组份,由2 份等渗盐溶液+1份等渗碱溶液配制而成。学生对配制2∶1液感到十分困难,为了便于学生记忆,快速计算、配制,便给出一个简单的计算公式(推导过程较为复杂,不必阐述)配制2∶1 液Mml,则需 10%NaCl=M/15ml————a 5%NaHCO3=M/12ml———b 10%GS=M-a-bml 例5、配制2∶1 液300ml,需10%NaCl、5%NaHCO3、10%GS各多少毫升。 10%NaCl=300/15=20ml 5%NaHCO3=300/12=25ml 10%GS=300-20-25=255ml 这样,似乎很玄的2∶1 液通过一个简单的 公式便可快速配制出来。 补液阶段补液量(ml/kg)补液性 质(液体 补液速度 补液时 间(h)

张力放线布线计算公式

第一步:按下列公式制作放线模板 f=kl2+4*(kl2)3/(3l2) ⑴ k=G/(0.816H) ⑵ 式中:f -弛度,m;l -档距,m;k -模板模数;G -导线(或牵引绳)单位长度重量,kg/m;H -预选张力,N。 ①施工前,按既定的G值,预选不同的H值,分别制出不同k值的模板, ②制作模板的比例,应和线路断面图的比例相同。 第二步:选定张力 山地放线段,可在用放线模板选出的H i值得基础上,再按公式⑶分别计算出与相对应的张力机出线张力T Hi,以其中最大值作为选定的张力机出线张力。 T Hi= H i/εi- ﹝(aG*Σh i)/i﹞*﹝(εi-1)/(εi-εi-1)﹞⑶ 式中:H i -用模板选定的第i档的放线张力,N; T Hi -与H i相对应的张力机出线张力,N; i –由张力机到预选张力档前档的档数,张力机至邻塔也算一档; h1、h2……h i -由张力机到预选张力档为顺序的各档悬挂点间高差(张力机到邻塔悬挂点间高差为h1),牵引侧悬挂点高者取正值,低者取负值,m; Σh i -由张力机出线口到预选张力档悬挂点间高差; Σh i= h1+h2……+h i,m;

ε -放线滑车综合摩擦系数。 第三步:展放牵引绳或导线时,应分别验算导引绳、导线是否上扬,以使采取相应的防止上扬的措施 验算上扬的计算公式 l S= (l1/cosφ1+ l2/cosφ2)/2+T H(h1/l1+h2/l2)/(aG) ⑷ 式中l S -被验算杆塔的垂直档距,m; l1、l2 -被验算杆塔的前、后档距,m; h1、h2 -被验算杆塔的前、后档悬挂点高差(邻塔悬挂点低时取正值,高时取负值),m; φ1、φ 2 -被验算杆塔的前、后档悬挂点高差角φ=tg-1(h i/ 1i) ; T H -验算上扬时的架空线张力(N),验算导引绳时取T H=T QZ,验算牵引绳时取T H=T zd,验算导线时取T H=T dz G -被验算架空线的单位长度重量,kg/m; 当被验算杆塔的垂直档距l S≥0时,该塔不发生上扬,l S<0时,则该塔将发生上扬。

表面张力的测量方法

表面张力的测量方法 英才学院 1236305 张雍淋 6121810519 液体表面张力测量在化学、医药、生物工程等领域具有重要意义, 根据液体表面张力的大小可以确定表面活性并计算表面活性剂在溶液表面的吸附量;在合金液体体系中,借助于表面张力还可以评价金相组织及孕育效果等重要参数。目前,测量液体表面张力系数有毛细上升法、最大气泡压力法、液滴法等。 1. 毛细上升法 这个方法,研究的比较早,在理论和实际上都比较成熟。如图 1所示,干净的毛细管浸入液体内部时,如果液体间的分子力小于液体与管壁间的附着力,则液体表面呈凹形。此时表面张力产生的附加力为向上的拉力,并使毛细管内的液面上升, 直到液柱的重力与表面张 力相平衡。 图 1 212cos ()g r r gh πσθπρρ=- 1()2cos g ghr ρρσθ-=

其中:σ—液体的表面张力;r-毛细管的内径;θ-接触角; ρ 1ρ-液体和气体的密度;h-液柱的高度;g-当地的重力加速度。在 和 g 实际应用中一般用透明的玻璃管,如果玻璃被液体完全润湿,可以近似的认为θ= 0。 毛细上升法是测定表面张力最准确的一种方法,国际上也一直用此方法测得的数据作为标准。应用此方法时,要注意选择管径均匀, 透明干净的毛细管,并对毛细管直径进行仔细的标定;毛细管要经过仔细彻底的清洗,毛细管浸入液体时要与液面垂直。 2.最大气泡压力法 如图 2 所示,向插入液体的毛细管轻轻的吹入惰性气体(如 N 2等)。如果选用的毛细管半径很小,在管口形成的气泡基本上是球形的。并且当气泡为半球时,球的半径最小等于毛细管半径 r ;在其前后曲率半径都比r大,如图2 所示。当气泡为半球时,泡内的压力最大,管内外最大压差可由差压计测量得到。 图2

张力放线计算书

编制说明 本计算为500kV肇花博输变电工程线路1标1段《张力架线施工方案》的计算部分。根据对整个张力系统中的受力情况的计算,合理选择设备、工器具,确定施工方案,并在施工中控制牵张力,设置控制点,保证架线施工的安全,放线质量符合规范要求。 计算依据: 1、广东电力设计院的设计资料(说明及架线施工图) 2、《超高压输电线路张力架线施工工艺导则》(SDJ226-87) 3、《高压架空输电线路施工技术手册》(架线工程计算部分) 4、《110—500千伏架空电力线路施工及验收规范》(GBJ233-90) 5、电力部颁布的《电力建设安全工作规程》(架空电力线路部分) 6、500kV肇花博工程线路1标1段《施工组织设计》

一、技术参数 1、本工程导、地线机械特性参数 2、本工程OPGW光缆技术参数

2、放线施工段 本工程导线、地线、OPGW光缆同期采用张力放线,共分二个放线施工段。

二、主要机具的选择 根据《超高压架空输电线路张力架线施工工艺导则(SDJJS2-87)》,机具选择如下: 1、主牵、张设备的选择 ――主牵引机额定牵引力: P ≥m ×K P ×T P (式2-1) 其中:m :同时牵放子导线根数,m =4 K P :主牵引机额定牵引力的系数,一般0.25~0.33,本工程取K P =0.33 T P :被牵放导线(ACSR-720/50导线)的保证计算拉断力(N ),经查T P =162.07kN 这样:P ≥4×0.33×162.07 ≥213.94kN ――主张力机单根导线额定制动张力: T =K T ×T P (式2-2) 其中:K T :主张力机单根导线额定制动张力的系数,一般取0.17~0.2,,本工程取K T =0.2 这样:T =0.2×162.07 =32.42kN 根据计算结果,我公司已有的加拿大天柏伦25t 主牵引机,4×5t 主张力机可满足要求。 2、主牵引绳、导引绳的选择 ――主牵引绳的选择应与主机的选择配套,使用抗扭结构钢丝绳。 其综合破断力Q P 应满足: Q P ≥ 53 ×m ×T p (式2-3) 这样:Q P ≥5 3 ×4×162.07 ≥388.97kN ――导引绳应与牵引绳配套,使用抗扭结构钢丝绳。 其综合破断力Q P 应满足: P P ≥ 41 Q P (式2-4) 这样:P P ≥4 1 ×388.97 ≥97.25kN 根据计算结果,我公司已有的主牵引绳□28及导引绳□15均可满足要求。

最大泡压法测定溶液的表面张力

最大泡压法测定溶液的表面张力 一、实验目的 1、掌握最大泡压法测定表面张力的原理,了解影响表面张力测定的因素。 2、了解弯曲液面下产生附加压力的本质,熟悉拉普拉斯方程,吉布斯吸附等温式,了解兰格缪尔单分子层吸附公式的应用。 3、测定不同浓度正丁醇溶液的表面张力,计算饱和吸附量, 由表面张力的实验数据求正丁醇分子的截面积及吸附层的厚度。 二、实验原理 1、表面张力的产生 液体表面层的分子一方面受到液体内层的邻近分子的吸引,另一方面受到液面外部气体分子的吸引,由于前者的作用要比后者大, 因此在液体表面层中,每个分子都受到垂直 于液面并指向液体内部的不平衡力,如图所 示,这种吸引力使表面上的分子自发向内挤 促成液体的最小面积。 在温度、压力、组成恒定时,每增加单位 表面积,体系的表面自由能的增值称为单位表面的表面能(J·m-2)。若看作是垂直作用在单位长度相界面上的力,即表面张力(N·m-1)。事实上不仅在气液界面存在表面张力,在任何两相界面都存在表面张力。表面张力的方向是与界面相切,垂直作用于某一边界,方向指向是表面积缩小的一侧。 液体的表面张力与液体的纯度有关。在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决定于溶质的本性和加入量的多少。 由于表面张力的存在,产生很多特殊界面现象。

2、弯曲液面下的附加压力 静止液体的表面在某些特殊情况下是一个弯曲表面。由于表面张力的作用,弯曲表面下的液体或气体与在平面下情况不同,前者受到附加的压力。 弯曲液体表面平衡时表面张力将产生一合力P s ,而使弯曲液面下的液体所受实际压力与外压力不同。当液面为凹形时,合力指向液体外部,液面下的液体受到的实际压力为: P ' = P o - P s ;当液面为凸形时,合力指向液体内部,液面下的液体受到的实际压力为: P ' = P o + P s 。这一合力P S ,即为弯曲表面受到的附加压力,附加压力的方向总是指向曲率 中心。 附加压力与表面张力的关系用拉普拉斯方程表示:(式中σ为表面张力,R 为弯曲表面的曲率半径,该公式是拉普拉斯方程的特殊式,适用于当弯曲表面刚好为半球形的情况)。 3、毛细现象 毛细现象则是弯曲液面下具有附加压力的直接结果。假设溶液在毛细管表面完全润湿,且液面为半球形,则由拉普拉斯方程以及毛细管中升高(或降低)的液柱高度所产生的压力 P=gh ,通过测量液柱高度即可求出液体的表面张力。这就是毛细管上升法测定溶液表面 张力的原理。 此方法要求管壁能被液体完全润湿,且液面呈半球形。 4、最大泡压法测定溶液的表面张力 实际上,最大泡压法测定溶液的表面张力是毛细管上升法的一个逆过程。其装置图如所示,将待测表面张力的液体装于表面张力仪中,使毛细管的端面与液面相切,由于毛细现象液面即沿毛细管上升,打开抽气瓶的活塞缓缓抽气,系统减压,毛细管内液面上受到一个比表面张力仪瓶中液面上(即系统)大的压力,当此压力差——附加压力(Δp = p 大气 - p 系统 ) 在毛细管端面上产生的作用力稍大于毛细管口液体的表面张力时,气泡就从毛细管口脱 出,此附加压力与表面张力成正比,与气泡的曲率半径成反比,其关系式为拉普拉斯公式:R p σ2=?. P s = 2σ R

小儿补液及张力计算

小儿补液三部曲 来源:穆欢喜的日志 一、首先,我们必须先判断孩子的病情到底如何,属于哪种脱水程度,以知道我们下一步的补液计划。 1、程度性脱水判断: 轻度脱水:由于身体内水分减少,患儿会稍感到口渴,有尿排出,检查见患儿一般情况良好,两眼窝稍有陷,捏起腹部或大腿内侧皮肤后回缩尚快。(轻度脱水最重要的判断标准就是:有尿排出,一般情况可,哭时有泪) 中度脱水:患儿的出烦躁,易激惹;口渴想喝水,婴儿四处找奶头,如果得到奶瓶,会拼命吸吮;医学教育网原创啼哭时泪少,尿量及次数也减少;检查见患儿两眼窝下陷,口舌干燥,捏起腹壁及大腿内侧皮肤后回缩慢。(中度脱水主要的判断标准:开始烦躁,易激惹,哭时泪少,眼窝下陷) 重度脱水:患儿现为精神极度萎缩、昏睡,甚至昏迷;口喝非常严重,啼哭时无泪流出,尿量及尿次数明显数少。检查见患儿两眼窝明显下陷,口舌非常干燥;捏起腹壁及大腿内侧皮肤后回缩很慢。(重度脱水判断标准:精神萎靡,甚至昏睡。皮肤相当的干燥,甚至出现了花纹,哭时无泪,无尿排出。)

2、渗透性的判断: 低渗:血清钠<130mmol/L;(初期并未有口渴症状,但是极易发生脑水肿) 等渗:血清钠130-150mmol/L; 高渗:血清钠>150mmol/L。(口渴症状相当的明显,高热,烦躁、肌张力增高. 小儿补液三部曲之二 先前,我们已经了解判断了小儿脱水的基本判断方法了,那么接下来,我们就应该了解,补什么,补多少,怎么补的问题了。 一、补什么、补多少 1、补液总量:轻度失水:90-120ml/kg*d 中度失水:120-150 ml/kg*d 重度失水:150-180 ml/kg*d 补液总量是由三部分组成的: 一般需按累积损失量、继续损失量和生理需要量计算。 ①累积损失量:指病后(如急性脱水)减轻之体重数量,这部分液体最主要。这部分液量可根据脱水程度加以估计。累积损失量也可按体表面积计算,轻度脱水为30-50ml/kg ,中度脱水为50-100ml/kg,重度脱水为100-150ml/kg。 ②继续损失量:按实际损失补充,一般在禁食条件下为 40ml/kg?d,非禁食状态是30ml/kg。电解质包括钠、氯及

混合液张力公式

1 混合液张力公式 混合液张力=溶质产生的张力混合液的体积(或总量)=高渗液的体积×张力系 数混合液的体积 2 公式运用 (1)张力是指溶液溶质的微粒对水的吸引力,溶液的浓度越大,对水的吸引力越大。判断某溶液的张力是以它的渗透压与血浆渗透压正常值(280~320mmol/L)相比所得的比值。溶液渗透压=(百分比浓度×10×1000×每个分子所能解离的离子数/分子量)。如0.9%NaCl溶液的渗透压为0.9×10×1000× 2/58.5=308mmol/L。该渗透压与血浆相比比值为1,故该溶液张力为1,即为等张液。又如5%NaHCO3溶液渗透压为5×10×1000×2/84=1190.4,其张力为1190.4/300≈4。同样,10%NaCl溶液张力约等于10。故临床上常把1ml0.9%NaCl产生的张力看成1,那么1ml10%NaCl产生的张力约为10;同样把1ml1.4% NaHCO3产生的张力看成1,那么1ml5% NaHCO3产生的张力约为4。其换算方法:高渗液的张力=高渗液的体积×换算系数。例如10%的NaCl 10ml溶液产生的张力为10×10=100张力。临床上常用的几种高渗液与等渗液间的换算系数见表1。 (2)上述公式中溶质产生的张力是指混合液中各电解质所产生的张力之和。 (3)为了计算方便,加入的电解质不计入混合液的总量,临床上常用的混合液的成分及张力见表2。 表1 高渗液与等渗液间张力的换算系数(略) 表2 临床常见溶液成分及张力(略) 从上表中可以看出以下规律: ①上述混合液(含盐和碱)中,盐∶碱=2∶1 ②混合液张力=盐+碱盐+碱+糖 举例说明: 例1:在200ml5%Glucose中加入10ml10% NaCl,该混合液的张力为多少? 该溶液的张力=10(高渗液的体积)×10(张力系数)/200=1/2。 例2:如何用5%葡萄糖、5% NaHCO3及10 %NaCl配制2∶1等张含钠液M ml? 根据张力公式则有: 盐产生张力+碱产生张力 M=1 因为盐∶碱=2∶1,则盐产生张力为2/3M,碱产生张力为1/3M,那么2/3M张力需要10%NaCl为2/3M ×1/10,即M/15ml;1/3M张力需要5% NaHCO3为1/3M×1/4,即M/12ml。即配制2∶1等张含钠液M ml 则需10%NaCl M/15ml、5% NaHCO3 M/12ml。上例公式可作为配制2∶1等张含钠液简化公式,类推:配制2∶1等张含钠液300ml,则需10%NaCl为300/15=20ml,5% NaHCO3为300/12=25ml。该混合液张力为(20×10+25×4)/300 = 1。同理可得出配制3∶2∶1溶液M ml的简化公式为需10%NaCl M/30ml、5% NaHCO3 M/24ml。 例3:如何配制3∶2∶1溶液300ml? 首先该溶液张力为2+1/3+2+1=1/2,又根据张力公式:该混合溶液张力(1/2)=盐生产张力+碱产生张力体积(300ml),则盐和碱产生张力之和为150,其中盐∶碱=2∶1,则盐产生张力为2/3×150=100;碱产生张力为1/3×150=50,故需要10% NaCl为100×1/10=10ml,5% NaHCO3为50×1/4=12.5ml。也可以这样计算:300ml溶液中0.9%NaCl占2/6,即100ml可产生100个张力,若用10%NaCl只需 100/10=10ml;同样:300ml溶液中1.4% NaHCO3占1/6,即50ml可产生50个张力,若用5% NaHCO3只需50/4=12.5ml。也可直接代入例2的简化公式得出10% NaCl为300/30=10ml,5% NaHCO3为300/24=12.5ml

溶液表面张力的测定(精)

溶液表面张力的测定-最大气泡法 Determination of Surface Tension Using Maxinum Bubble Pressure Method 一、实验目的及要求 1.掌握最大气泡法测定表面张力的原理和技术。 2. 学会以镜面法作切线,并利用吉布斯吸附公式计算不同浓度下正丁醇溶液的表面吸附量。 3. 求正丁醇分子截面积和饱和吸附分子层厚度。 二、实验原理 在液体的内部任何分子周围的吸引力是平衡的。可是在液体表面层的分子却不相同。因为表面层的分子,一方面受到液体内层的邻近分子的吸引,另一方面受到液面外部气体分子的吸引,而且前者的作用要比后者大。因此在液体表面层中,每个分子都受到垂直于液面并指向液体内部的不平衡力(如图1所示)。 这种吸引力使表面上的分子向内挤促成液体的最小面积。要使液体的表面积增大就必须要反抗分子的内向力而作功增加分子的位能。所以说分子在表面层比在液体内部有较大的位能,这位能就是表面自由能。通常把增大一平方米表面所需的最大功A或增大一平方米所引起的表面自由能的变化值 图1 分子间作用力示意图 ΔG称为单位表面的表面能其单位为J.m-3。而把液体限制其表面及力图使它收缩的单位直线长度上所作用的力,称为表面张力,其单位是N.m-1。 液体单位表面的表面能和它的表面张力在数值上是相等的。欲使液体表面积加△S时,所消耗的可逆功A为: 液体的表面张力与温度有关,温度愈高,表面张力愈小。到达临界温度时,液体与气体不分,表面张力趋近于零。液体的表面张力也与液体的纯度有关。在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决 定于溶质的本性和加入量的多少。当加入溶质后,溶剂的表面张力要发生变化,。根据能量最低原理,若溶液质能降低溶剂的表面张力,则表面层溶质的浓度应比溶液内部的

最大气泡法测表面张力实验报告

最大气泡法测定溶液的表面张力 【实验目的】 1、掌握最大泡压法测定表面张力的原理,了解影响表面张力测定的因素。 2、了解弯曲液面下产生附加压力的本质,熟悉拉普拉斯方程,吉布斯吸附等温式,了解兰格缪尔单分子层吸附公式的应用。 3、测定不同浓度正丁醇溶液的表面张力,计算饱和吸附量, 由表面张力的实验数据求正丁醇分子的截面积及吸附层的厚度。 【实验原理】 1、表面张力的产生 纯液体和其蒸气组成的体系体相分子:自由移动不消耗功。表面分子:液体有自动收缩表面而呈球形的趋势。要使液体表面积增大就必须要反抗分子的内向力而作功以增加分子位能。所以分子在表面层比在液体内部有较大的位能,这位能就是表面自由能。 W=A σ-?g 如果ΔA 为1m 2,则-W ′=σ是在恒温恒压下形成1m 2新表面所需的可逆功,所以σ称 为比表面吉布斯自由能,其单位为J·m -2。也可将σ看作为作用在界面上每单位长度边缘上的力,称为表面张力,其单位是N·m -1。液体单位表面的表面能和它的表面张力在数值上是相等的。 2、弯曲液面下的附加压力 (1)在任何两相界面处都存在表面张力。表面张力的方向是与界面相切,垂直作用于某一边界,方向指向使表面积缩小的一侧。 (2)液体的表面张力与温度有关,温度愈高,表面张力愈小。到达临界温度时,液体与气体不分,表面张力趋近于零。 (3)液体的表面张力与液体的纯度有关。在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决定于溶质的本性和加入量的多少。 (4)由于表面张力的存在,产生很多特殊界面现象。 3、毛细现象 (1)由于表面张力的作用,弯曲表面下的液体或气体与在平面下情况不同,前者受到附加的压力。

液体张力简单计算

液体张力简单计算 液体疗法的目的是纠正水、电解质和酸碱平衡紊乱,以恢复机体的正常生理功能。补液方案应根据病史、临床表现及必要的实验室检查结果,综合分析水和电解质紊乱的程度、性质而定。首先确定补液的总量、组成、步骤和速度。补液总量包括补充累积损失量、继续损失量及供给生理需要量三个方面。 1.补充累积损失量指补充发病后至补液时所损失的水和电解质量。 (1)补液量:根据脱水严重程度而定。原则上轻度脱水补50ml/kg,中度脱水补50~ 100ml/kg,重度脱水补100~120ml/kg。实际应用时一般先按上述量的2/3 量给予。 (2)补液成分:根据脱水性质而定。一般而论,低渗性脱水补充高渗溶液,等渗性脱水补充等张溶液,高渗性脱水补充低渗溶液。若临床判断脱水性质有困难,可先按等渗性脱水处理。有条件者最好测血钠含量,以确定脱水性质。 (3)补液速度:累积损失量应在开始输液的8~12 小时内补足,重度脱水或有循环衰竭者,应首先静脉推注或快速静脉滴入以扩充血容量,改善血液循环及肾功能,一般用 2 :1等张含钠液(2份生理盐水加1份1. 4 %碳酸氢钠)20ml/kg ,总量不超过300ml,于30~60 分钟内静脉推注或快速滴入。 2.补充继续损失量指补液开始后,因呕吐腹泻等继续损失的液体量。应按实际损失量补充,但腹泻患儿的大便量较难准确计算,一般根据次数和量的多少大致估计,适当增减。补充继续损失量的液体种类,一般用l/3 张~1/2张含钠液,于24 小时内静脉缓慢滴入。 3.供给生理需要量小儿每日生理需水量约为60~80ml/kg,钠、钾、氯各需1~2mmol/kg 。这部分液体应尽量口服补充,口服有困难者,给予生理维持液(1/5 张含钠液十0.15%氯化钾),于24 小时内均匀滴入。 在实际补液中,要对上述三方面需要综合分析,混合使用。对腹泻等丢失液体引起脱水的补液量:一般轻度脱水约90-120ml/kg ;中度脱水约120~150ml/kg;重度脱水约150-180ml/kg 。补液成分:等渗性脱水补1/2 张含钠液;低渗性脱水补2/3 张合钠液;高渗性脱水补1/3 张含钠液,并补充钾,再根据治疗反应,随时进行适当调整。累积损失量的补充[2] (一)补液量根据脱水程度决定。轻度脱水应补50ml/kg ;中度脱水50~100ml/kg ;重度脱水 100~120ml/kg 。 (二)补液种类所用输液的种类取决于脱水的性质。一般而论,低渗性脱水补2/3 张含钠液,等渗性脱水补1/2 张含钠液,高渗性脱水补1/3~1/4 张含钠液。这是因为细胞外液中的钠除因腹泻通过消化道丢失以外,还有一部分钠因细胞内液丢失钾后而进入细胞内,补钾后,进入细胞内液中的钠又可返回到细胞外液中,故补液成分中含钠量可稍减少。 补充累积损失量[3] 1.补液量根据脱水程度决定。轻度脱水约50ml/kg ,中度脱水50~100ml/kg ,重度脱水 100~120ml/kg 。一般按上述的2/3 量给予。这是因为细胞外液的钠不仅通过消化道等途径丢失,而且由于细胞同时失钾,有一部分钠进入细胞内液进行代偿(细胞内液钾缺乏,钠过剩);当补钾时,随着细胞内液钾的逐渐恢复,其过剩的钠又返回细胞外液,故补充的含钠液量可稍减,以免细胞外液过度扩张。 2.溶液种类根据脱水性质决定。 (1)等渗性脱水用等张含钠液。 (2)低渗性脱水用高张含钠液,相当于纠正体液低渗(低钠血症)所需钠量加纠正等渗脱水所需等张含钠液量。 (3)高渗性脱水用低张含钠液,相当于纠正体液高渗(高钠血症)所需水量加纠正等渗脱水所需等张含钠液量。

最大气泡法测定表面张力

【目的要求】 1. 了解表面自由能、表面张力的意义及表面张力与吸附的关系。 2. 掌握最大气泡法测定表面张力的原理和技术。 3. 通过测定不同浓度乙醇水溶液的表面张力,计算吉布斯表面吸附量和乙醇分子的横载面积。 4. 学会以镜面法作切线,并利用吉布斯吸附公式计算不同浓度下正丁醇溶液的表面吸附量。 5. 求正丁醇分子截面积和饱和吸附分子层厚度。 【基本原理】 在液体的内部任何分子周围的吸引力是平衡的。可 是在液体表面层的分子却不相同。因为表面层的分子, 一方面受到液体内层的邻近分子的吸引,另一方面受到 液面外部气体分子的吸弓I,而且前者的作用要比后者大。 因此在液体表面层中,每个分子都受到垂直于液面并指 向液体内部的不平衡力(如图1所示)。 这种吸引力使表面上的分子向内挤促成液 体的最小面积。要使液体的表面积增大就必须要 图1分子间作用力示意图 反抗分子的内向力而作功增加分子的位能。所以 说分子在表面层比在液体内部有较大的位能,这位能就是表面自由能。通常把增大一平方米表面所需的最大功A或增大一平方米所引起的表面自由能的变化值ΔG称为单位表面的表面能其单位为J. m-3。而把液体限制其表面及力图使它收缩的单位直线长度上所作用的力,称为表面张力, 其单位是N.m-1。 液体单位表面的表面能和它的表面张力在数值上是相等的。欲使液体表面积加△S时,所消耗 的可逆功A为: -A= ΔG= σΔS 液体的表面张力与温度有关,温度愈高,表面张力愈小。到达临界温度时,液体与气体 不分,表面张力趋近于零。液体的表面张力也与液体的纯度有关。在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决定于溶质的本性和加入量的多少。当加入溶质后,溶剂的表面张力要发生变化,。根据能量最低原理,若溶液质能降 低溶剂的表面张力,则表面层溶质的浓度应比溶液内部的浓度大;如果所加溶质能使溶剂的 表面张力增加,那么,表面层溶液质的浓度应比内部低。这种现象为溶液的表面吸附。用吉布斯公式(GibbS)表示: ⑴式 式中,Γ为表面吸附量(mol.m-2); σ为表面张力(J.m-2); T为绝对温度(K) ;C为溶液浓度(mol/L ); 表示在一定温度下表面张力随浓度的改变率。

表面张力 的测定

6.2溶液表面的吸附——最大气泡压力法测溶液表面张力 6.2.1 实验目的: 1、掌握气泡最大压力法测定液体表面张力的原理与方法,并测定不同浓度正丁醇水溶 液的表面张力; 2、了解溶液表面的吸附作用,应用Gibbs 吸附等温式和Langmuir 吸附等温式求出正丁醇的饱和吸附量,并计算正丁醇分子的截面积。 6.2.2 实验原理: 当液体中加入溶质时,其表面张力就会升高或降低。若升高,则溶质在表面层的浓度 比溶液内部浓度小;若降低,则溶质在表面层的浓度比溶液内部浓度大。这种溶质在溶液表面层的浓度与溶液内部浓度不一致的现象被称为溶液表面的吸附作用。单位溶液表面积上溶质的过剩量称为表面吸附量Γ。在一定温度下,溶液的表面吸附量Γ与表面张力γ及溶液本体浓度c 之间的关系符合吉布斯吸附等温式: dc d RT c γ ?- =Γ (6-2-1) 式中:Γ为表面吸附量(mol ·m -2 );T 为热力学温度(K );c 为稀溶液浓度(单位:mol ·L -1 );γ为表面张力(单位:N ·m -1) ;R 为气体常数。 当溶液的表面张力随浓度的变化 0d dc γ <时,0Γ>,称为正吸附,表明增加浓度时,能使溶液表面张力降低的溶质,在表面层的浓度大于溶液内部的浓度;反之,当0d dc γ >时, 0Γ<,称为负吸附,也就是增加浓度,使溶液的表面张力增加的溶质,在表面层的浓度小 于溶液内部的浓度。 用吉布斯吸附等温式计算某溶质的吸附量时,可通过实验测定不同浓度的溶液的表面张力 γ,并以γ对c 作图,如图6-2-1所示。在c γ-曲线上任取一点a ,通过a 点作曲线的切线和平 行于横坐标的直线,分别与纵坐标交于' ,b b 。令 'b b Z =,则d Z c dc γ =-,代入式(6-2-1),得:Z RT Γ= ;从c γ-曲线上取不同的点,就可求 图6-2-1 表面张力与浓度关系图 b ’ b γ

小儿补液张力计算

小儿补液张力计算 “溶液张力计算与配制” 液体疗法是儿科最常用的治疗方法之一,是儿科学的重要内容,也是每位临床医学生必需掌握的基本技能。液体张力计算与配制则是液体疗法的基础,如对此不理解、不掌握,则将难以学习和运用液体疗法。现有多种教材对液体张力的计算与配制,阐述均较为复杂而含糊,教师按教材授课,学生按课本学习,其结果是大多数学生难于理解与掌握。通过五个步骤,即使所有学生很快便能理解与掌握。过程如下: 1、首先出一道简单的数学算术题 例1、将10%NaCl10ml稀释至100ml,请问稀释后溶液百分比浓度。学生很快便能列出算式: 10%×10=X×100,X=1%。 稀释定律:稀释前浓度×稀释前体积=稀释后浓度×稀释后体积。即:C1×V1=C2×V1。并且强调但凡涉及物质浓度的换算,均遵循此定律。 2、问题: 能够用来表达物质浓度的有( )A.百分比浓度B.摩尔浓度C.张力 张力亦是物质浓度的一种表达方式。 3、阐述溶液张力的概念及计算 张力是指溶液溶质的微粒对水的吸引力,溶液的浓度越大,对水的吸引力越大。 判断某溶液的张力,是以它的渗透压与血浆渗透压正常值(280~320mosm/L,计算时取平均值300mosm/L)相比所得的比值,它是一个没有单位但却能够反映物质浓度的一个数值。 溶液渗透压=(百分比浓度×10×1000×每个分子所能离解的离子数)/分子量。如0.9%NaCl溶液渗透压=(0.9×10×1000×2)/58.5=308mOsm/L(794.2kPa)该渗透压与血浆正常渗透压相比,比值约为1,故该溶液张力为1张。 又如5%NaHCO3溶液渗透压=(5×10×1000×2)/84=1190.4mOsm/L(3069.7kPa)该渗透压与血浆正常渗透压相比,比值约为4,故该溶液张力为4张。 对以上复杂的计算过程,不要求掌握,但要记住张力是物质浓度的一种表达方式,其换算自然亦遵循稀释定律:C1×V1=C2×V2。

滴体积法测定液体表面张力

滴体积法测定液体表面张力 摘要:表面张力是液体的基本物化性质之一。采用自制的滴体积法实验装置, 以蒸馏水的表面张力作为标准,通过计算得到相关参数,从而利用相关联的参数测定和计算乙醇和异丙醇的表面张力。 关键词:滴体积法;表面张力;蒸馏水标准;关联参数 引言:表面张力是一种特殊的力,它是液体性质的一种表现。测定表面张力的方法有很多种,如毛细光上升法,滴体积法,最大气泡法,吊片法等。滴体积发最早是由Tate于1864年提出,经过Harkins和Brown严密的数学推理和精确的实验研究,得出了可将Tate定理应用与实际的校正系数。随后Wilkson及吴树森等人又将校正因子的范围进一步拓宽,最终使滴体积法成为测液体表面张力的一种基本方法。 实验部分: 实验原理: 液体在毛细管口成滴下落前的瞬间,落滴所受的重力与管口半径及液体的表面张力有关。用公式表示为: γ=F?V?ρ?g/R 其中V测出的液体体积,ρ为液体密度(g/mL),g为重力加速度( 98017cm1s-2),R为滴头半径,F为校正系数,它是为了校正液滴滴落过程中的变形和部分残留的影响而引入的。经过实验测定,校正系数是V/R3的函数,与待测液体表面张力,密度,粘度及滴管材料无关。校正系数与V/R3的经验关系已用列表形式给出。曲线形状见图: 通过测定蒸馏水,得到V和ρ,然后通过书上查表得到相应的表面张力γ值,通过γ=F?V?ρ?g/R关系式,得到校正系数F和针头半径R的关系式。然后又因为和V/R3 的关系,通过查表,得到相应的使两个关系式成立的R,然后带入测定乙醇和异丙醇的公式中(因为整个实验使用同一套装置),通过查表得相应

用拉脱法测定液体表面张力系数

用拉脱法测定液体表面张力系数 液体表层厚度约m 10 10 -内的分子所处的条件与液体内部不同,液体内部每一分子被周 围其它分子所包围,分子所受的作用力合力为零。由于液体表面上方接触的气体分子,其密 度远小于液体分子密度,因此液面每一分子受到向外的引力比向内的引力要小得多,也就是说所受的合力不为零,力的方向是垂直与液面并指向液体内部,该力使液体表面收缩,直至达到动态平衡。因此,在宏观上,液体具有尽量缩小其表面积的趋势,液体表面好象一张拉紧了的橡皮膜。这种沿着液体表面的、收缩表面的力称为表面张力。表面张力能说明液体的许多现象,例如润湿现象、毛细管现象及泡沫的形成等。在工业生产和科学研究中常常要涉及到液体特有的性质和现象。比如化工生产中液体的传输过程、药物制备过程及生物工程研究领域中关于动、植物体内液体的运动与平衡等问题。因此,了解液体表面性质和现象,掌握测定液体表面张力系数的方法是具有重要实际意义的。测定液体表面张力系数的方法通常有:拉脱法、毛细管升高法和液滴测重法等。本实验仅介绍拉脱法。拉脱法是一种直接测定法。 【实验目的】 1.了解326FB 型液体的表面张力系数测定仪的基本结构,掌握用标准砝码对测量仪进行 定标的方法,计算该传感器的灵敏度。 2.观察拉脱法测液体表面张力的物理过程和物理现象,并用物理学基本概念和定律进行分析和研究,加深对物理规律的认识。 3.掌握用拉脱法测定纯水的表面张力系数及用逐差法处理数据。 【实验原理】 如果将一洁净的圆筒形吊环浸入液体中,然后缓慢地提起吊环,圆筒形吊环将带起一 层液膜。使液面收缩的表面张力f 沿液面的切线方向,角?称为湿润角(或接触角)。当继续提起圆筒形吊环时,?角逐渐变小而接近为零,这时所拉出的液膜的里、外两个表面的张力f 均垂直向下,设拉起液膜破 裂时的拉力为F ,则有 f g m m F 2)(0++= (1) 式中,m 为粘附在吊环上的液体的质量,0m 为吊环质量,因表面张力的大小与接触面周边界长度成正比,则有 απ?+=)(2外内D D f (2) 比例系数α称为表面张力系数,单位是m N /。α在数值上等于单位长度上的表面张力。式中l 为圆筒形吊环内、外圆环的周长之和。 ) ()(0外内D D g m m F ++-= πα (3)

张力计算方法

张力控制资料 张力计算方法: 在彩涂线上,带钢在通过悬垂式固化炉和卷取机在卷绕带钢时,必须具有一定的张力。卷取张力的大小取决于产品规格和生产工序。带钢张力值选取得不合适,直接影响带钢的质量和生产操作。张力过大,使电机容量增大,而且易发生断带;张力过小,易引起带钢跑偏而影响产品质量。(1)卷取张力 卷取张力T为: (1-1) 式中——单位张应力,MPa; ——带钢宽度,mm; ——带钢厚度,mm。 卷取机卷取张力由电动机力矩产生,电动机力矩为: (1-2) 式中——电动机结构常数; ——电动机磁通; ——电动机电枢电流。 卷取张力T与电动机力矩M的关系如下: (1-3) 式中——带卷直径。 带钢的线速度为: (1-4) 式中——电动机转速,r/min; ——电动机至卷筒的速比。 电动机电枢电势E为: (1-5) 将式1-2、式1-4和式1-5代入式1-3,得: 式中——常数。(1-6) 若电枢电势E不变,v也不变,则带钢张力T与电动机电枢电流I枢成正比。 卷取张力控制的实质是,若卷取时带钢线速度不变,采用电流调节器使电枢电流I枢保持恒定,就可以保证张力恒定。 实际上,随着带钢卷径的变化,卷取带钢的线速度是变化的。生产中,怎样才能保持线速度不变呢?一般采用电势调节器来调整电动机的磁通Ф,以改变电动机转速,是带钢线速度不变。或者,当磁通一定时,通过电流调节器调节电机电流,以保持带钢张力恒定。 (2)张力辊张力 在S辊上,带钢与辊子是面接触。张力是通过带钢与辊子之间的摩擦力形成的。带钢通过张力辊的辊子数目越多,产生的张力越大。为了增加带钢的张力,有时在带钢进口辊子处,增加压辊装置。 根据张力辊在机组中安装位置和作用不同,张力辊可以处在电动机工作状态或发电机工作状态。如图所示,a所示的张力辊,待岗入口处张力T1大于出口处张力T2,张力辊处于电动机工作状态。B所示的张力辊,带钢出口处张力T2大于入口处张力T1,张力辊处于发电机工作状态。当张力辊处于电动机工作状态时,带钢入口端的T1可按下式计算:

张力辊计算

1张力辊直径计算 原则:带钢缠绕在张力辊上不产生塑性弯曲变形,即按厚带材绕过张力辊的弯矩小于或等于带材的弹性极限弯矩计算辊径。 计算公式如下: 参数:D h Eσs 单位:mm mm MPa MPa 计算值:1276.596 1.5200000235 计算值:857.1429 1.5200000350 计算值:600 1.5200000500 D:张力辊辊径。 h:钢板厚度。 E:带钢的弹性模量。 σs:带钢的屈服强度。 说明:1).由上述计算可以发现,带钢规格相同,屈服强度越高需要的辊径越小。这正是带退火炉的热镀锌线入口张力辊径小,出口张力辊径大的原因。 2).带钢经过张力辊不产生塑性变形的要求是相对的,为了不使辊径过大,实际生产中允许部分厚规格产品产生塑性变形。 3).根据产品规格不同,热镀锌及酸洗冷轧生产线常用的张力辊辊径范围是500~1200mm。 4).在实际生产中,最大带钢厚度为1.2mm的镀锌线,张力辊辊径通常选取为550~650mm;拉矫机张力辊径650~700mm; 最大带钢厚度为1.5mm的镀锌线,张力辊辊径通常选取为600~700mm;拉矫机张力辊径800mm; 最大带钢厚度为2.0mm的镀锌线,张力辊辊径通常选取为800~1000mm;拉矫机张力辊径1000~1200mm; 5).根据我公司的现有设计,张力辊辊径选取系列为:560mm;650mm;800mm;900mm;1000mm;1200mm。 6).辊身长度依据带钢的宽度选取,通常是带宽加200~300mm,常用的宽度系列是1000mm;1300mm;1500mm。 2张力辊允许产生的张力 说明带钢经过张力辊后,张力值可以得到放大,放大的量取决于张力辊的结构、辊面材质、传动功率等, 张力放大系数λ是张力辊的张力放大能力,是张力计算的重要参数。 参数:λμαμ*α 单位:弧度 计算值: 1.460.1 3.780.378 计算值: 1.760.15 3.780.567 计算值: 1.970.18 3.780.6804 μ:带钢与张力辊之间的摩擦系数;采用钢辊时取0.1~0.15;采用衬胶辊时取0.18~0.25;带钢表面有油时,摩擦系数降低。 α:带钢在张力辊上的包角。图一张力辊1#辊包角为180+61度=241度=4.2弧度。计算时取0.9的利用系数。 λ:张力辊传动带钢,保证带钢不打滑可能产生的张力放大倍数。这是可能产生的放大倍数,张力辊实际放大能力取决于传动功率,但是传动能力超过此范围也没有意义。 见图一 如果进入张力辊1#辊之前的带钢张力为F1,1#、2#辊之间的张力为F2,2#辊出口的张力为F3,如果两辊包角相同则:F2=F1*λ F3=F2*λ 如果每个辊子的包角不同,则分别使用不同的λ1和λ2进行计算。 说明:在设计中通常知道F1和F3,计算需要的辊子数量及包角,以此为依据设计张力辊的结构。 3张力辊的传动功率计算 张力辊的传动功率需要考虑三个方面:张力放大需要的功率、辊子摩擦损耗功率和弯曲变形损耗功率。 张力放大需要的功率: W1=(F2-F1)*v/η v:带钢速度 η:传动效率,通常取0.85-0.9。 辊子摩擦损耗功率: 图一1#辊子承受带钢的拉力应该是F1与F2的合力,其根据结构设计不同,其最大力为F1+F2。 辊子的摩擦力矩:M1=f*(d/2)*(F1+F2) 辊子摩擦损耗功率:W2=M1*ω/η M1:辊子的摩擦力矩 f:张力辊轴承摩擦系数 d:张力辊轴承平均直径 ω:张力辊的角速度

相关文档
最新文档