单相桥式全控整流电路简单研究MATLAB仿真

单相桥式全控整流电路简单研究MATLAB仿真
单相桥式全控整流电路简单研究MATLAB仿真

物电学院电力电子课程设计报告姓名:孙李涛

学号: 101103060

专业:电气工程及其自动化

班级: 10级

指导教师:陈永超

成绩:

日期: 2012.6.11

利用MATLAB 对单相桥式全控整流电路研究

一、电阻性负载

1.电路的结构与工作原理 1.1电路结构

U1

U2

Ud

Id

+-

T

VT3VT1VT2

VT4

a

b

R

图 1 单相桥式全控整流电路(纯电阻负载)的电路原理图

1.2 工作原理

(1)在2u 正半波的(0~α)区间,晶闸管VT1、VT4承受正向电压,但无触发脉冲,晶闸管VT2、VT3承受反向电压。因此在0~α区间,4个晶闸管都不导通。假如4个晶闸管的漏电阻相等,则2324121U U U VT VT VT VT =

=--。

(2)在2u 正半波的(α~π)区间,在ωt=α时刻,触发晶闸管VT1、VT4使其导通。

(3)在2u 负半波的(π~π+α)区间,在π~π+α区间,晶闸管VT2、VT3承受正向电压,因无触发脉冲而处于关断状态,晶闸管VT1、VT4承受反向电压也不导通。

(4)在2u 负半波的(π+α~2π)区间,在ωt=π+α时刻,触发晶闸管VT2、VT3使其元件导通,负载电流沿b →VT3→R →VT2→α→T 的二次绕组→b 流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(2d u u -=)和电流,且波形相位相同。

1.3基本数量关系

a.直流输出电压平均值

()

α

α

πωωπ

α

π

α

cos 145.02

cos 19.02

cos 122)(sin 21

22

22+=+=+==

?U U U t d t U U d

b.输出电流平均值

()αcos 145.02cos 1.9

.02

2+=

+==

R

U a R U R

U I d d C.流过晶闸管电流有效值

()?∏

=

π

α

ωωt d t)sin 2(

212

2R

U I VT π

ππ

a a R

U -+

=

22sin 22

2. 建模

在MA TLAB 新建一个Model ,命名为zuxingfuzai ,同时模型建立如下图所示: 在此电路中,输入电压的电压设置为220V ,频率设置为50Hz ,电阻阻值设置为10欧姆,脉冲输入的电压设置为3V ,周期设置为0.02(与输入电压一致周期),占空比设置为20%,触发角分别设置为30°,60°,90°,150°因为两个晶闸管在对应时刻不断地周期性交替导通,关断,所以脉冲出发周期应相差180°。

Continuous

pow ergui

v

+-Voltage Measurement

g

m

a

k

VT4

g

m

a

k

VT3

g m a

k

VT2

g

m

a

k

VT1

v +

-VR1 Measurement

Us

Scope

R

Pulse Generator2

Pulse

Generator1

i +

-

C urrent Measurement2

i +-

C urrent Measurement

@2

@1

UVT1

IVT1

ud

id

i2

U2

图1 阻性负载的电路建模图

1).0

α时的阻性负载

=

30

(1).参数设置

1、同步脉冲信号发生器参数

同步脉冲信号发生器参数取α=30°时,对应时间为t=0.02*30/360 s,脉冲宽度用脉冲周期的百分比表示,取20%即可

同步脉冲信号发生器参数取α=30°时,对应时间为t=0.02*30/360+0.01 s,脉冲宽度用脉冲周期的百分比表示,取20%即可

2、交流电源参数

3、负载上的参数设置

4、晶闸管参数设置(resistance Ron和inductance lon不能同时为零)

(2).波形图

图2 =0

30时的波形图

2).0

α时的阻性负载

=

60

(1).参数设置

1、同步脉冲信号发生器参数

同步脉冲信号发生器参数取α=60°时,对应时间为t=0.02*60/360 s,脉冲宽度用脉冲周期的百分比表示,取20%即可(其他的参数和α=30°时相同)

同步脉冲信号发生器参数取α=60°时,对应时间为t=0.02*60/360+0.01 s,脉冲宽度用脉冲周期的百分比表示,取20%即可(其他的参数和α=30°时相同)

2、晶闸管、电压源负载参数设置都与α=30°时参数设置一样

(2).波形图

α时的波形图

图3 0

60

=

3).0

α时的阻性负载

=

90

(1).参数设置

1、同步脉冲信号发生器参数

同步脉冲信号发生器参数取α=90°时,对应时间为t=0.02*90/360 s,脉冲宽度用脉冲周期的百分比表示,取20%即可(其他的参数和α=30°时相同)

同步脉冲信号发生器参数取α=90°时,对应时间为t=0.02*90/360+0.01 s,脉冲宽度用脉冲周期的百分比表示,取20%即可(其他的参数和α=30°时相同)

2、晶闸管、电压源负载参数设置都与α=30°时参数设置一样

(2).波形图

α时的波形图

图4 0

90

=

4).0150=α时的阻性负载 (1).参数设置

1、同步脉冲信号发生器参数

同步脉冲信号发生器参数取α=150°时,对应时间为t=0.02*150/360 s ,脉冲宽度用脉冲周期的百分比表示,取20%即可(其他的参数和α=30°时相同)

同步脉冲信号发生器参数取α=150°时,对应时间为t=0.02*150/360+0.01 s ,脉冲宽度用脉冲周期的百分比表示,取20%即可(其他的参数和α=30°时相同)

2、晶闸管、电压源负载参数设置都与α=30°时参数设置一样

(2).波形图

α时的波形图

图5 0

=

150

总结:触发延迟角α的移相范围是0~1800,在此电路中尽管电路的输入电压U2是交变的,但负载上正负两个半波内均有相同方向的电流流过,输出电压一个周期内脉动两次,由于桥式整流电路在正负半周期均能工作,变压器二次绕组在正负半周期均有大小相等,方向相反的电流流过,消除了变压器的直流磁化,提高了变压器的有效利用率。

二、阻感性负载

1.电路的结构与工作原理

1.1电路结构

U1

U2

Ud

Id

+-

T

VT3

VT1VT2

VT4

a

b

R

图 6 单相桥式全控整流电路(阻-感性负载)的电路原理图

1.2 工作原理

(1)在u 2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲,处于关断状态。假设电路已工作在稳定状态,则在0~α区间由于电感释放能量,晶闸管VT2、VT3维持导通。

(2)在u 2正半波的ωt =α时刻及以后:在ωt =α处触发晶闸管VT1、VT4使其导通,电流沿a →VT1→L →R →VT4→b →Tr 的二次绕组→a 流通,此时负载上有输出电压(u d=u 2)和电流。电源电压反向加到晶闸管VT2、VT3上,使其承受反压而处于关断状态。

(3)在u 2负半波的(π~π+α)区间:当ωt =π时,电源电压自然过零,感应电势使晶闸管VT1、VT4继续导通。在电压负半波,晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。

(4)在u 2负半波的ωt =π+α时刻及以后:在ωt =π+α处触发晶闸管VT2、VT3使其导通,电流沿b →VT3→L →R →VT2→a →Tr 的二次绕组→b 流通,电源电压沿正半周期的方向施加到负载上,负载上有输出电压 (u d=-u 2)和电流。此时电源电压反向加到VT1、VT4上,使其承受反压而变为关断状态。晶闸管VT2、VT3一直要导通到下一周期ωt =2π+α处再次触发晶闸管VT1、VT4为止。

从波形可以看出α>90o输出电压波形正负面积相同,平均值为零,所以移相范围是0~90o。

控制角α在0~90o之间变化时,晶闸管导通角θ≡π,导通角θ与控制角α无关。晶闸管承受的最大正、反向电压。

1.3基本数量关系

a.直流输出电压平均值

αcos 9.02U U d =

b.输出电流平均值

R

U I d d =

2.建模

在此电路中,输入电压的电压设置为220V ,频率设置为50Hz ,电阻阻值设置为20欧姆,电感设置为1e-0H ,脉冲输入的电压设置为3V ,周期设置为0.02(与输入电压一致周期),占空比设置为10%,触发角分别设置为30°,60°,90°,150°,因为两个晶闸管在对应时刻不断地周期性交替导通,关断,所以脉冲出发周期应相差180°

Continuous

powergui

v

+-Voltage Measurement

g

m

a

k

VT4

g

m

a

k

VT3

g m a

k

VT2

g

m

a

k

VT1

v

+

-

VR1 Measurement

Us

Series RLC Branch

Scope

Pulse Generator2

Pulse

Generator1

i +

-

Current Measurement2

i +-Current Measurement

@2

@1

UVT1

IVT1

ud

id

i2

U2

图7 阻感负载电路建模图

α时的阻感负载的同步脉冲信号发生器参数、交流电源参数、晶闸管参数设30

=

置(resistance Ron和inductance lon不能同时为零)与0

α时的阻性负载的同步脉冲信

=

30

号发生器参数、交流电源参数、晶闸管参数设置(resistance Ron和inductance lon不能同时为零),所不同的就是负载参数的设置不同。阻感负载的设置如下:

(2).波形图

α时的阻感负载波形图

图80

30

=

α时的阻感负载的同步脉冲信号发生器参数、交流电源参数、晶闸管参数设60

=

置(resistance Ron和inductance lon不能同时为零)与0

α时的阻性负载的同步脉冲信

=

60

号发生器参数、交流电源参数、晶闸管参数设置(resistance Ron和inductance lon不能同时为零),所不同的就是负载参数的设置不同。阻感负载的设置如下:

(2).波形图

α时的阻感负载波形图

图90

60

=

α时的阻感负载的同步脉冲信号发生器参数、交流电源参数、晶闸管参数设90

=

置(resistance Ron和inductance lon不能同时为零)与0

α时的阻性负载的同步脉冲信

=

90

号发生器参数、交流电源参数、晶闸管参数设置(resistance Ron和inductance lon不能同时为零),所不同的就是负载参数的设置不同。阻感负载的设置如下:

(2).波形图

α时的阻感负载波形图

图10 0

90

=

α时的阻感负载的同步脉冲信号发生器参数、交流电源参数、晶闸管参数设150

=

置(resistance Ron和inductance lon不能同时为零)与0

α时的阻性负载的同步脉冲信

=

150

号发生器参数、交流电源参数、晶闸管参数设置(resistance Ron和inductance lon不能同时为零),所不同的就是负载参数的设置不同。阻感负载的设置如下:

(2).波形图

α时的阻感负载波形图

图11 0

150

=

总结:通过仿真可知,由于电感的作用,输出电压出现负波形,当电感无限增大时,控制角a在0~90°之间变化时,晶闸管导通角θ=180°,导通角θ与控制角a无关,无论控制角α多大,输出电流波形因电感很大而呈一水平线。

三、反电势负载

1.电路的结构与工作原理 1.1电路结构

U1U2

Ud

Id

+-

T

VT3

VT1VT2

VT4

a

b

R

E

图 12 单相桥式全控整流电路(反电势负载)的电路原理图

1.2 工作原理

当整流电压的瞬时值u d 小于反电势E 时,晶闸管承受反压而关断,这使得晶闸管导通角减小。晶闸管导通时,u d=u 2,晶闸管关断时,u d=E 。与电阻负载相比晶闸管提前了电角度δ停止导电,δ称作停止导电角。

若α <δ时,触发脉冲到来时,晶闸管承受负电压,不可能导通。为了使晶闸管可靠导通,要求触发脉冲有足够的宽度,保证当晶闸管开始承受正电压时,触发脉冲仍然存在。这样,相当于触发角被推迟,即α=δ。

2.建模

在MA TLAB 新建一个Model ,命名为fandiandongshifuzai ,同时模型建立如下图所示:

C o n t i n u o u

p o w e r g u i

v +

-

V o l t a g e M e a s u r e m e n t g

m

a

k

V T 4

g

m

a

k

V T 3

g m

a

k

V T 2g

m

a

k

V T 1

v

+

-

V R 1 M e a s u r e m e n t

Us

S c o p e

R

P u l s e

G e n e r a t o r 2

P u l s e

G e n e r a t o r 1

D C V o l t a g e S o u r c e

i +-

C u r r e n t M e a s u r e m e n t 2

i +

-

C u r r e n t M e a s u r e m e n t

@2

@1

U V T 1

I V T 1

ud

id

i2

U2

图13 反电动势负载电路建模图

2.1模型参数设置

在此电路中,输入电压的电压设置为220V ,频率设置为50Hz ,电阻阻值设置为1欧姆,电感设置为1e-3H ,脉冲输入的电压设置为3V ,周期设置为0.02(与输入电压一致周期),占空比设置为10%,触发角分别设置为30°,50°,90°,150°因为两个晶闸管在对应时刻不断地周期性交替导通,关断,所以脉冲出发周琴应相差180°。

α时的反电动势负载的同步脉冲信号发生器参数、交流电源参数、晶闸管参=

30

数设置(resistance Ron和inductance lon不能同时为零)与0

α时的阻性负载的同步脉

=

30

冲信号发生器参数、交流电源参数、晶闸管参数设置(resistance Ron和inductance lon不能同时为零),所不同的就是负载参数的设置不同。反电动势负载的设置如下:

(2).波形图

图14 α=0

30时的反电动势波形图

单相桥式整流电路实验

课题单相桥式整流电路执教者教学时间40×2分钟 教学方法启发讲授、项目示范、练习巩固教学用具黑板/粉笔,投影,二极管整流电路示范装置,交流电源调节器,通用双踪示波器,万用表 教学目的通过对单相桥式整流电路原理的理解,能够正确的使用和安装单向桥式整流电路或桥堆(1)根据二极管的单向导电性正确判断桥中二极管的导通、截止状态,并用波形表示;(2)使用示波器分析工作中电路的波形,正确判断桥及桥中二极管的工作情况是否正常;(3)使用万用表对桥的输入、输出电压进行测量、监控,掌握桥的输入、输出关系;(4)根据要求正确地选择二极管或集成的桥堆; (5)正确安装整流桥并接入电路,注意好的职业习惯的培养; 教学重点单向桥式整流电路原理的理解及电路安装 教学难点(1)桥中各桥臂二极管的工作情况分析;(2)整流桥中二极管参数的选择; (3)二极管在整流电路安装时的操作要点。 教学过程 项目内容备注 导入:8min 1、二极管的单向导电性; 2、单向半波、全波整流电路的优劣特点 使用万用表和示波器 对相关内容进行复习。

教学过程( 续) 新 课: 65 min 单相桥式 整流电路 原理 (35min) 1、用不同颜色的发光二极管代替普通的整流二极管组成桥式整流电路,正确接入电 路,演示二极管整流过程。 2、将双踪示波器分别接入相邻、相对两桥臂,观察其变化过程。(1、2共18min) 3、使用万用表对其输入、输出电压进一步跟踪,调节输入电压的大小,测量输出电 压,发现它们之间的数量关系。(14min) 4、师生对上述过程进行分析,探究上述现象形成的原因。(3min) 运用模块式任务导向 教学原理,展开教学, 以突出重点、分化难 点。 器件的选 择与电路 安装 (30min) 1、根据上述原理分析,获得二极管桥式整流电路中二极管上承受最大反压、流过二 极管整流电流值与整流桥交流侧输入电压的关系,从而理解该电路在选择二极管时 所采用的经验式。 2、示范练习并指导学生根据需要选择二极管,并将其正确接入电路。 注意事项 电路安装时,一定要认准交流侧“阴阳-阴阳”串联,直流侧“阴阴-阳阳”并联; 测试桥式整流电路输入、输出电压时要注意万用表使用安全; 测试信号波形时,因测试探头“公共接地”端在测试中的作用,在测试时为了分析方便,当测试扫描一旦确 定,在进行输出、管压降测试时,不要再次调节该参数。 课堂总结及作 业布置(5min) 总结本教学单元的重点,巧妙设置问题考查学生的掌握程度,同时提出思考,为进入滤波电路学习做好铺垫。课堂答疑(2 min)针对本教学单元内的相关问题,课堂上回答学生的疑问,并对比较集中的、非常规性的问题在全班进行解释。教学反思(附后) 2

单相桥式整流电路教学及反思

单相桥式整流电路由于其优点突出、实用性强,在生活及实践中得到了广泛的应用,它也是中职教材《电子技术基础与技能》的重点内容。本人从事电子专业教学十多年,对该内容的教学想谈谈自己的见解。 一、教材的处理和创新:在“理实一体”和“任务驱动”模式的指导下,将本节内容设置成一个任务:桥式整流电路的搭建与测试,需两课时完成。以手机充电器为载体将该任务分解成识一识、连一连、做一做、测一测四个子任务,以“任务驱动、行动导向”来完成本课任务。 二、教学目标: 1.知识目标:掌握单相桥式整流电路的组成、特点和应用;理解单相桥式整流电路的工作原理。 2.能力目标:会识读桥式整流电路原理图;会根据电路图搭建电路;会用合适的仪器进行测试。 3.情感目标:增强学生专业学习的自信心和求知欲,获得成功的喜悦;培养学生团队协作精神以及严谨、细致、规范的职业素养。 三、教学重点、难点:桥式整流电路的连接规则,搭建并测试桥式整流电路;如何理解桥式整流电路的工作原理。 四、教学策略:主要采用任务驱动、直观演示、体验探究、小跨步教学和对比讨论等教学方法。 五、教学过程: 1.创设情境,引出任务。播放一段视频:一位男士正在家里用手机通话,突然手机没电了,他一脸无奈,但很快他拿出手机充电器插上电源又继续开始通话。看完视频,我结合手机充电器实物(投影展示电路板图片),问:这里面的元器件大家认识吗?我请一位学生说出图中各种元器件的名称,并将该电路的组成器件与之前学过的半波整流电路作一个比较,然后得出该电路有别于半波整流电路,顺理成章地导入新课。 2.任务引导,探索新知。为了降低难度,便于任务的实施,我将任务进行了分解。 (1)识一识。首先,用ppt展示桥式整流电路的电路图,要求学生观察并以大组(六人一大组)为单位讨论四个整流二极管是如何与电源变压器和负载相连的。从“个数”和“极性”两个方面做了引导,四个二极管在与变压器的两个抽头和负载两端相连时,每一头上接了几个二极管?与电源变压器每一抽头相连时,二极管的极性有何特点?与电阻相连时又有何特点?学生们通过观察、讨论得出“两两相连、源反阻同”的连接规则。 (2)连一连。按照实验模板上元器件的位置排布,要求学生以大组为单位讨论后得出连接图,每组派一位代表上台通过实物投影展示并讲解给其他同学听,以达到共同学习、共同进步的目的。 (3)做一做。要求学生按照上面的连接图在实验模板上搭建一个桥式整流电路,这次以两人一小组为单位进行实践操作。电路搭建好之后,我让各组交叉评判改正后接上交流电源,教师检查无误后才通电。这样做是为了让学生养成胆大心细、严谨有序的职业素养,体现安全第一的岗位原则。 (4)测一测。先利用仿真软件演示一下电路与仪器仪表的连接以及示波器上显示的输入输出波形,然后让学生按照学案上的测量要求去进行测试并做好记录。测试完毕后,让学生以大组为单位,交流他们的测试结果,并对比半波整流电路的输出波形,讨论桥式整流电路有哪些优点。 通过实验,学生知道了桥式整流属于全波整流,引导学生产生质疑:为什么桥式整流能把交流电转化成全波脉动直流电?我们能不能用所学的知识来解释这种现象?借助于ppt动画演示,由学生在教师的引导下分析归纳桥式整流电路的工作原理。 3.拓展应用,延伸知识。桥式整流电路由于其电源利用率高、输出电压大、波形脉动小等优点,得到了广泛的应用,可让学生结合生活实际,举例介绍桥式整流电路的几个应用。

单相桥式全控整流电路Matlab仿真

单相桥式全控整流电路 M a t l a b仿真 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

目录( ( (3 4 6 8 单相桥式全控整流电路仿真建模分析 一、实验目的 1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。 2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。 二.实验内容

(一)单相桥式全控整流电路(纯电阻负载) 1.电路的结构与工作原理 电路结构 单相桥式全控整流电路(纯电阻负载)的电路原理图(截图) 工作原理 用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。 (1)在u2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲。四个晶闸管都不通。假设四个晶闸管的漏电阻相等,则==1/2 u2。 (2)在u2正半波的ωt=α时刻: 触发晶闸管VT1、VT4使其导通。电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且=0。此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则=1/2 u2。晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。 (3)在u2负半波的(π~π+α)区间: 晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。此时,==1/2 u2。 (4)在u2负半波的ωt=π+α时刻: 触发晶闸管VT2、VT3,元件导通,电流沿b→VT3→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电

单相桥式整流电路课程设计报告..

电力电子课程设计报告

目录 一、设计任务说明 (3) 二、设计方案的比较 (4) 三、单元电路的设计和主要元器件说明 (6) 四、主电路的原理分析 (9) 五、各主要元器件的选择: (12) 六、驱动电路设计 (14) 七、保护电路 (16) 八、元器件清单 (21) 九、设计总结 (22) 十、参考文献 (23)

一、设计任务说明 1.设计任务: 1)进行设计方案的比较,并选定设计方案; 2)完成单元电路的设计和主要元器件说明; 3)完成主电路的原理分析,各主要元件的选择; 4)驱动电路的设计,保护电路的设计; 5)利用仿真软件分析电路的工作过程; 2.设计要求: 1)单相桥式相控整流的设计要求为: 负载为感性负载,L=700mH,R=500Ω 2)技术要求: A.电网供电电压为单相220V; B.电网电压波动为5%——10%; C.输出电压为0——100V;

二、设计方案的比较 单相桥式整流电路有两种方式,一种是单相桥式全控整流电路,一种是单相桥式半控整流电路。主要方案有三种: 方案一: 采用单相桥式全控整流电路,电路图如下: 对于这个电路,每一个导电回路中有两个晶闸管,即用两个晶闸管同时导通以控制导电的回路,不需要续流二极管,不会出现失控现象,整流效果好,波形稳定。变压器二次绕组不含直流分量,不会出现变压器直流磁化的问题,变压器利用率高。 方案二: 采用单相桥式半控整流电路,电路图如下: 相较于单相桥式全控整流电路,对每个导电回路进行控制,只需一个晶闸管,而另一个用二极管代替,这样使电路连接简便,且

降低了成本,降低了损耗。但是若无续流二极管,当α突然增大到180°或触发脉冲丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使d U成为正弦半波,级半周期d U为正弦波,另外半周期d U为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形,即失控现象。因此该电路在实际应用中需要加设续流二极管。 综上所述:单相桥式半控整流电路具有线路简单、调整方便的优点。但输出电压脉动冲大,负载电流脉冲大(电阻性负载时),且整流变压器二次绕组中存在直流分量,使铁心磁化,变压器不能充分利用。而单相桥式全控整流电路具有输出电流脉动小,功率因数高,变压器二次电流为两个等大反向的半波,没有直流磁化问题,变压器利用率高的优点。因此选择方案一的单相桥式全控整流电路。

单相半控桥整流电路实验报告

目录 一、实验基本内容----------------------------------2 1.实验项目名称-----------------------------------2 2.实验已知条件-----------------------------------2 3.实验完成目标-----------------------------------3 二、实验条件描述-----------------------------------3 1.主要设备仪器-----------------------------------3 2.小组人员分工-----------------------------------3 三、实验过程描述-----------------------------------4 1.实现同步---------------------------------------4 2.半控桥纯阻性负载试验---------------------------4 3.半控桥阻-感性负载(串联L=200mH)实验-----------6 四、实验仿真---------------------------------------9 五、实验数据处理及讨论-----------------------------18 六、实验思考---------------------------------------22

一、实验基本内容 1.实验项目名称:单相半控桥整流电路实验 2.实验已知条件:单相半控桥整流电路如图所示,图中晶闸管VT1,二极管VD4组成一对桥臂,VT3,VD2组成另一对桥臂,变压器u2加在桥臂的中间。 (1)阻性负载电源电压u2在(0,α),VD2,VT3承受反向阳极电压处于截止状态,由于VT1未加触发脉冲而使VT1,VD4处于正向阻断状态,此时ud=0 , uVT1=u2, uVD2= -u2, uVT3=0, uVD4=0;wt=α时刻,触发VT1,VT1,VD4立即导通,VD2,VT3承受反向电压关断,此时ud= u2 , uVT1= 0, uVD2= -u2, uVT3=-u2, uVD4=0;u2在负半周(π,π+α)期间,VT3,VD2虽然承受正向阳极电压但由于门极没有触发信号而正向阻断,此时ud=0,uVT1=0,uVD4=u2,uVT3= -u2,uVD2=0; wt=π+α时刻触发VT3,则VT3,VD2,此时ud= u2,uVT1=-u2,uVD4=u2, uVT3=0, uVD2=0。 (2)感性负载负载电感足够大从而使负载电流连续且为一水平线。电源电压u2的正半周,wt=α时刻触发晶闸管VT1,则VT1,VD4立即导通,电流从电源出来经VT1,负载,VD4流回电源,此时ud=u2。当wt=π时,电源电压u2经零变负,由于电感的存在,VT1将继续导通,此时a点电位较b点电位低,二极管自然换相,从VD4换至VD2,这样电流不再经过变压器绕组,而由VT1,VD2续流,忽略器件导通压降,ud=0,整流电路不会输出负电压。电源电压u2的负半周,wt=π+α时刻触发VT3,则VT3,VD2导通,使VT1承受反向电压关断,电源通过VT3和VD2又向负载供电,ud= -u2。U2从负半周过零变正时,电流从VD2换流至VD4,电感通过VT3,VD4续流,ud又为零。以后,VT1再次触发导通,重复上诉过程。 3. 实验完成目标: (1)实现控制触发脉冲与晶闸管同步。

单相桥式全控整流电路带阻感负载的工作情况仿真

单相桥式全控整流电路带阻感负载的工作情况仿真 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

宁波理工学院 题目单相桥式全控整流电路(带阻感负载)专业班级自动化091 姓名汤涛王赛王航波黄贤谷 分院信息分院

一、实验原理 单相桥式全控整流电路原理图如下:(带阻感负载的工作情况) 图1:单相桥式全控整流电路原理图 1)在U2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲,处于关断状态。假设电路已工作在稳定状态,则在0~α区间由于电感释放能量,晶闸管VT2、VT3维持导通。 2)在U2正半波的ωt=α时刻及以后: 在ωt=α处触发晶闸管VT1、VT4使其导通,电流沿a→VT1→L→R→VT4→b→T的二次绕组→a流通,此时负载上有输出电压(U d= U2)和电流。电源电压反向加到晶闸管VT2、VT3上,使其承受反压而处于关断状态。 3)在U2负半波的(π~π+α)区间: 当ωt=π时,电源电压自然过零,感应电势使晶闸管VT1、VT4继续导通。在电压负半波,晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。 4)在U2负半波的ωt=π+α时刻及以后:

在ωt=π+α处触发晶闸管VT2、VT3使其导通,电流沿b→VT3→L→R →VT2→a→T的二次绕组→b流通,电源电压沿正半周期的方向施加到负载上,负载上有输出电压(U d =- U2)和电流。此时电源电压反向加到VT1、VT4上,使其承受反压而变为关断状态。晶闸管VT2、VT3一直要导通到下一周期ωt=2π+α处再次触发晶闸管VT1、VT4为止。 二、特性 电路如上图所示。为便于讨论,假设电路已工作于稳态, I d的平均值不变。在U2的正半周期,触发角α处给晶闸管VT1和 VT4加触发脉冲使其开通,U d = U2。负载中有电感存在使负载电流不能突变,电感对负载电流起平波作用,假设负载电感很大,负载电流I d连续且波形近似为一水平线。U2过零变负时,由于电感的作用晶闸管VT1和VT4中仍有流过电流Id,并不关断。至ωt=π+α时刻,给VT2和VT3加触发脉冲,因VT2和VT3本已承受正电压,故两管导通。VT2和VT3导通后,U2通过VT2和VT3分别向VT1和VT4施加反压使VT1和VT4关断,流过VT1和VT4的电流迅速转移到VT2和VT3上,此过程成为换相,亦称换流。至下一周期重复上述过程,如此循环下去,U d的平均值为: U d=0.9U2cosα 当α=0时,U d0=0.9U2;α=90°时,U d=0.晶闸管移相范围为0°-90°单相桥式全控整流电路带负载时,晶闸管承受的最大正反

单相桥式全控整流电路设计_(纯电阻负载)

单相桥式全控整流电路的设计一、 1. 设计方案及原理 1.1 原理方框图 触发电路 驱动电路 整流主电路 负载 1.2 主电路的设计 电阻负载主电路主电路原理图如下: 1.3主电路原理说明 1.3.1电阻负载主电路原理 (1)在u2正半波的(0~α)区间,晶闸管VT1、VT4承受正向电压,但无触发脉冲,晶闸管VT2、VT3承受反向电压。因此在0~α区间,4个晶闸管都不导通。假如4个晶闸管的漏电阻相等,则Ut1.4= Ut2.3=1/2u2。 (2)在u2正半波的(α~π)区间,在ωt=α时刻,触发晶闸管VT1、VT4使其导通。 (3)在u2负半波的(π~π+α)区间,在π~π+α区间,晶闸管VT2、VT3承受正向电压,因无触发脉冲而处于关断状态,晶闸管 VT1、VT4承受反向电压也不导通。 (4)在u2负半波的(π+α~2π)区间,在ωt=π+α时刻,触发晶闸管VT2、VT3使其元件导通,负载电流沿 b→VT3→R→VT2→α→T的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(ud=-u2)和电流,且波形相位相同。

1.4整流电路参数的计算 电阻负载的参数计算如下: (1) 整流输出电压的平均值可按下式计算 U d=0.45U2(1+cos ) (1-1) 当α=0时,取得最大值,即= 0.9 ,取=100V则U d =90V,α=180o 时,=0。α角的移相范围为180o。 (2) 负载电流平均值为 I d=U d/R=0.45U2(1+cos )/R (1-2) (3)负载电流有效值,即变压器二次侧绕组电流的有效值为 I2=U2/R (1-3) (4)流过晶闸管电流有效值为 IVT= I2/ (1-4) 二、元器件的选择 晶闸管的选取 晶闸管的主要参数如下: ①额定电压U TN 通常取和中较小的,再取靠近标准的电压等级作为晶闸管型的额定电压。在选用管子时,额定电压应为正常工作峰值电压的2~3倍, 以保证电路的工作安全。 晶闸管的额定电压 U TN=(2~3)U TM(2-1) U TM:工作电路中加在管子上的最大瞬时电压

实验二 单相桥式全控整流电路实验

实验二单相桥式全控整流电路实验 一.实验目的 1.了解单相桥式全控整流电路的工作原理。 2.研究单相桥式全控整流电路在电阻负载及电阻-电感性负载下的工作特性。 3.熟悉NMCL-05锯齿波触发电路的工作。 二.实验线路及原理 三.实验内容 1.单相桥式全控整流电路供电给电阻负载。 2.单相桥式全控整流电路供电给电阻-电感性负载。 四.实验设备及仪器 1.NMCL-III教学实验台主控制屏 2.NMCL-32主控制屏

3.NMCL-05组件及SMCL-01或NMCL-31 4.MEL-03A组件和NMCL-331多电感组件 5.NMCL-35和NMCL-33组件 6.双踪示波器 7.万用表 五.注意事项 1.本实验中触发可控硅的脉冲来自NMCL-05挂箱。 2.负载电阻调节需注意。若电阻过小,会出现电流过大造成过流保护动作(熔断丝烧断,或仪表告警);若电阻过大,则可能流过可控硅的电流小于其维持电流,造成可控硅时断时续。 3.电感的值可根据需要选择并且必须与电阻串联,需防止过大的电感造成可控硅不能导通。 4.NMCL-05面板的锯齿波触发脉冲需导线连到NMCL-33面板,应注意连线不可接错,否则易造成损坏可控硅。同时,需要注意同步电压的相位,若出现可控硅移相范围太小(正常范围约30°~180°),可尝试改变同步电压极性。 5.示波器的两根地线由于同外壳相连,必须注意需接等电位,否则易造成短路事故。 六.实验方法 1.将NMCL-05面板左上角的同步电压输入接NMCL-32的U、V输出端,“触发电路选择”拨向“锯齿波”。 2.单相桥式全控整流电路供电给电阻负载 接上电阻负载(可采用两只900Ω电阻并联),并调节电阻负载至最大,短接平波电抗器。合上主电路电源,调节U ct ,测量在不同α角(30°、60°、90°) 时整流电路的输出电压U d =f(t),晶闸管的端电压U VT =f(t)的波形,并记录 相应α角时的输出电压U d 和U VT 的波形。 若输出电压的波形不对称,可分别调整锯齿波触发电路中RP1,RP3电位器。3.单相桥式全控整流电路供电给电阻-电感性负载 接上电路负载为阻感型,测量在不同控制电压U ct 时的输出电压U d =f(t),负

单相桥式整流电路-教案

单相桥式整流电路》授课教案 授课班级】电气技术应用专业11 春电气班 学生人数】52 人 教材】校本教材《实用电工电子》 教学内容】《单相桥式整流电路》 授课形式】课堂教学 授课时间】 2 个课时 教材分析】 本节课选自校本教材第十章第二节《单相桥式整流电路》,整节教学分两个课时完成,整流电路是二极管最基本的应用电路,也是电子技术中最基本的电路之 一。学好这节课对学习直流稳压电源电路至关重要。学生掌握了本章节的内容能够为下一步学习滤波电路和直流稳压电源奠定基础。在教材中起到承上启下的作用。单相桥式整流电路是整流电路中的一种,由于其优点明显,实用性强,在大、中、小型各种实际电路中都有十分广泛的应用。 二、【学情分析】 存在的问题: 1.学生为初中毕业,年龄在15-17 周岁之间,学习态度不够端正,没有良好的学习习惯,缺乏必要的探索研究问题的能力。 2.学生基础知识薄弱,对电路工作原理难以理解,容易产生厌倦。 解决的方法: 1.从学生熟悉的应用(直流稳压器、手机充电器等)入手,激发学生的学习兴趣。 2.提高课堂吸引力,采用动画演示和动手实验等方法,尽可能的让学生动手、动脑,提升他们理解问题的能力,与他人合作的能力。 三、【教学目标】 1、知识目标:掌握单相桥式整流电路各种元器件的图形与文字符号,并能画出电路

图、波形图,简述其工作原理。培养学生动脑的能力、观察的能力,逐步养成科学的归纳分析能力. 2、能力目标:通过在教师指导下的自主学习,学生学会分析单相桥式整流电路工作原理,学会能应用桥式全波整流电路解决简单问题。 3、情感目标:通过对单相桥式整流电路的分析、探究,保持良好的求知欲,乐于探索规律,让学生体验学习过程的快乐,保持学习电子技术基础课程的热情,培养学生的团队协作精神。 四、【教学重点和难点】 重点: 1.单相整流电路的组成; 2.单相整流电路的工作原理。 难点: 1. 对单相整流电路的工作原理的理解。 2. 二极管两个参数的计算以及电路波形分析 重点难点突破方法:采用多媒体教学法(动画与视频)、实验操作来解决课程中出现的重点与难点。 五、【教学方法设计】 教法学法:采用“探究性实验教学”,实验演示——观察现象——得出结论,引导学生进行探究式学习,能充分激发学生的好奇心和求知欲,调动学生学习的积极性。并充分运用多媒体动画演示和提问等交互手段,达到突出重点突破难点的目的。 课前准备:220V交流电源、单相变压器、二极管4个、电阻1个、万用表1 块、导线若干、示波器、投影仪. 六、【教学过程和步骤】

单相桥式全控整流电路Matlab仿真(完美)资料-共18页

目录 完美篇 单相桥式全控整流电路仿真建模分析 (1) (一)单相桥式全控整流电路(纯电阻负载) (2) 1.电路的结构与工作原理 (2) 2.建模 (3) 3仿真结果与分析 (4) 4小结 (6) (二)单相桥式全控整流电路(阻-感性负载) (7) 1.电路的结构与工作原理 (7) 2.建模 (8) 3仿真结果与分析 (10) 4.小结 (12) (三)单相桥式全控整流电路(反电动势负载) (13) 1.电路的结构与工作原理 (13) 2.建模 (14) 3仿真结果与分析 (16) 4小结 (18) 单相桥式全控整流电路仿真建模分析 一、实验目的 1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。 2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。 二.实验内容

(一)单相桥式全控整流电路(纯电阻负载) 1.电路的结构与工作原理 1.1电路结构 U1U2Ud Id + - T VT3 VT1 VT2VT4 a b R 单相桥式全控整流电路(纯电阻负载)的电路原理图(截图) 1.2工作原理 用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。 (1)在u2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲。四个晶闸管都不通。假设四个晶闸管的漏电阻相等,则u T1.4= u T2.3=1/2 u2。 (2)在u2正半波的ωt=α时刻: 触发晶闸管VT1、VT4使其导通。电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且u T1.4=0。此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则u T2.3=1/2 u2。晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。 (3)在u2负半波的(π~π+α)区间: 晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。此时,u T2.3=u T1.4=1/2 u2。 (4)在u2负半波的ωt=π+α时刻: 触发晶闸管VT2、VT3,元件导通,电流沿b→VT3→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(u d=-u2)和电流,且波形相位相同。此时电源电压反向加到晶闸管VT1、VT4上,使其承受反压而处于关断状态。晶闸管VT2、VT3一直要导通到ωt=2π为止,此时电源电压再次过零,晶闸管阳极电流也下降为零而关断。晶闸管VT1、

单相桥式整流电路设计..

1 单相桥式整流电路设计 单相桥式整流电路可分为单相桥式相控整流电路和单相桥式半控整流电路,它们所连接的负载性质不同就会有不同的特点。下面分析两种单相桥式整流电路在带电感性负载的工作情况。 单相半控整流电路的优点是:线路简单、调整方便。弱点是:输出电压脉动冲大,负载电流脉冲大(电阻性负载时),且整流变压器二次绕组中存在直流分量,使铁心磁化,变压器不能充分利用。而单相全控式整流电路具有输出电流脉动小,功率因数高,变压器二次电流为两个等大反向的半波,没有直流磁化问题,变压器利用率高的优点。 单相全控式整流电路其输出平均电压是半波整流电路2 倍,在相同的负载下流过晶闸管的平均电流减小一半;且功率因数提高了一半。 单相半波相控整流电路因其性能较差,实际中很少采用,在中小功率场合采用更多的是单相全控桥式整流电路。 根据以上的比较分析因此选择的方案为单相全控桥式整流电路(负载为阻感性负载)。 1.1 元器件的选择 1.1.1 晶闸管的介绍 晶管又称为晶体闸流管,可控硅整流(Silico n Con trolled Rectifier--SCR ), 开辟了电力电子技术迅速发展和广泛应用的崭新时代; 20 世纪80 年代以来,开始被性能更好的全控型器件取代。能承受的电压和电流容量最高,工作可靠,以被广泛应用于相控整流、逆变、交流调压、直流变换等领域,成为功率低频(200Hz 以下)装置中的主要器件。晶闸管往往专指晶闸管的一种基本类型--普通晶闸管。广义上讲,晶闸管还包括其许多类型的派生器件 1)晶闸管的结构晶闸管是大功率器件,工作时产生大量的热,因此必须安装散热器。 晶闸管有螺栓型和平板型两种封装 引出阳极A、阴极K和门极(或称栅极)G三个联接端。 对于螺栓型封装,通常螺栓是其阳极,能与散热器紧密联接且安装方便

实验二 单相桥式全控整流电路实验 电力电子技术实验

一.实验目的 1.了解单相桥式全控整流电路的工作原理。 2.研究单相桥式全控整流电路在电阻负载、电阻—电感性负载及反电势负载时的工作。 3.熟悉NMCL—05(E)组件或NMCL—36组件。 二.实验线路及原理 参见图1-3。 三.实验内容 1.单相桥式全控整流电路供电给电阻负载。 2.单相桥式全控整流电路供电给电阻—电感性负载。 四.实验设备及仪器 1.教学实验台主控制屏; 2.NMCL—33组件; 3.NMCL—05(E)组件或NMCL—36组件; 4.MEL-03(A)组件; 5.NMCL—35组件; 6.双踪示波器(自备); 7.万用表(自备)。 五.注意事项 1.本实验中触发可控硅的脉冲来自NMCL-05挂箱(或NMCL—36组件),故NMCL-33的内部脉冲需断,以免造成误触发。 2.电阻R D的调节需注意。若电阻过小,会出现电流过大造成过流保护动作(熔断丝烧断,或仪表告警);若电阻过大,则可能流过可控硅的电流小于其维持电流,造成可控硅时断时续。 3.电感的值可根据需要选择,需防止过大的电感造成可控硅不能导通。 4.NMCL-05(E)(或NMCL—36)面板的锯齿波触发脉冲需导线连到NMCL-33面板,应注意连线不可接错,否则易造成损坏可控硅。同时,需要注意同步电压的相位,若出现可控硅移相范围太小(正常范围约30°~180°),可尝试改变同步电压极性。 5.逆变变压器采用NMCL—35组式变压器,原边为220V,副边为110V。 6.示波器的两根地线由于同外壳相连,必须注意需接等电位,否则易造成短路事故。 六.实验方法

图1-3 单相桥式全控整流电路 1.将NMCL—05(E)(或NMCL—36)面板左上角的同步电压输入接NMCL—3 2的U、V输出端),“触发电路选择”拨向“锯齿波”。 2.断开NMCL-35和NMCL-33的连接线,合上主电路电源,此时锯齿波触发电路应处于工作状态。 NMCL-31的给定电位器RP1逆时针调到底,使U ct=0。调节偏移电压电位器RP2,使 =90°。 断开主电源,连接NMCL-35和NMCL-33。 3.单相桥式全控整流电路供电给电阻负载。 接上电阻负载(可采用两只900Ω电阻并联),并调节电阻负载至最大,短接平波电抗器。

单相桥式整流、滤波电路教案

课题:单相桥式整流、滤波电路 课型:讲练结合 一、学习目标 (一)职业技能: 1.掌握电路接线的基本技能,能完成单相整流滤波电路的搭建 2.学会用示波器观察单相桥式整流、滤波电路电压波形并比较整流与滤波前后的波形。 3.能正确使用双踪示波器和万用表完成对单相整流滤波电路的测试 (二)职业知识: 1 ?理解整流的含义,熟悉几种典型的整流电路 2?理解整流电路的工作原理,熟练掌握其相应的计算 及二极管的选用原则 3?理解滤波的概念,了解常用的滤波方式 4.理解电容滤波的工作原理,掌握滤波电容的选择要求(三)职业道德与情感: 1通过电路接线与搭建,提高学生排除常见故障的能力 2.提高学生分析问题和解决问题的能力 二、工作任务单 【任务一】单相整流滤波电路的接线搭建

【任务二】单相整流电路的分析 【任务三】单相整流电路的测试 【任务四】单相整流滤波电路的测试和识读 三、预备实践知识 1.电路接线的基本技能 2.双踪示波器和万用表的使用方法 四、预备理论知识 1.整流的含义及整流电路的工作原理 2.滤波的概念和滤波电路的工作原理 3.二极管和滤波电容的选用原则 五、教学重点、难点: 重点:单相桥式整流、滤波电路的工作原理与参数计算难点:单相桥式整流、滤波电路的工作原理 六、【知识回顾】 1.二极管的特性是_________________ O 2.理想二极管是指___________________ o 3.单相半波整流电路变压器次级输出电压和负载的电压U。的关系是什么? 七、教学过程: 引子:上一堂课我们讲述了单相半波整流滤波电

路,大家发现半波整流,只能整出上半个波形,电源利用率低,脉动大,效果不是很好,脉动虽有所减少,但依然存在,那么怎样才能提高电源的利用率呢?如

单相桥式全控整流电路Matlab仿真

目录 单相桥式全控整流电路仿真建模分析 0 (一)单相桥式全控整流电路(纯电阻负载) (1) 1.电路的结构与工作原理 (1) 2.建模 (2) 3仿真结果与分析 (4) 4小结 (6) (二)单相桥式全控整流电路(阻-感性负载) (7) 1.电路的结构与工作原理 (7) 2.建模 (8) 3仿真结果与分析 (10) 4.小结 (11) (三)单相桥式全控整流电路(反电动势负载) (13) 1.电路的结构与工作原理 (12) 2.建模 (14) 3仿真结果与分析 (16) 4小结 (18) 单相桥式全控整流电路仿真建模分析 一、实验目的 1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。 2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。 二.实验内容

(一)单相桥式全控整流电路(纯电阻负载) 1.电路的结构与工作原理 1.1电路结构 R 单相桥式全控整流电路(纯电阻负载)的电路原理图(截图) 1.2工作原理 用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。 (1)在u2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲。四个晶闸管都不通。假设四个晶闸管的漏电阻相等,则u T1.4= u T2.3=1/2 u2。 (2)在u2正半波的ωt=α时刻: 触发晶闸管VT1、VT4使其导通。电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且u T1.4=0。此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则u T2.3=1/2 u2。晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。 (3)在u2负半波的(π~π+α)区间: 晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。此时,u T2.3=u T1.4=1/2 u2。 (4)在u2负半波的ωt=π+α时刻: 触发晶闸管VT2、VT3,元件导通,电流沿b→VT3→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(u d=-u2)和电流,且波形相位相同。此时电源电压反向加到晶闸管VT1、VT4上,使其承受反压而处于关断状态。晶闸管VT2、VT3一直要导通到ωt=2π为止,此时电源电压再次过零,晶闸管阳极电流也下降为零而关断。晶闸管VT1、

单相桥式半空整流电路MATLAB仿真实验报告

一、单相桥式半控整流电路(电阻性负载)1.电路结构与工作原理 (1)电路结构 T u1 u2 it1 i2 id2 VT1VT3 VD2VD4 id4 it3 u R 2.建模 3.仿真结果分析 α=30°单相桥式半控整流电路(电阻性负载)

α=60°单相桥式半控整流电路(电阻性负载) α=90°单相桥式半控整流电路(电阻性负载) 4.小结 尽管整流电路的输入电压U2是交变的,但负载上正负两个半波内均有相同的电流流过,输出电压一个周期内脉动两次,由于桥式整流电路在正、负半周均能工作,变压器二次绕组正在正、负半周内均有大小相等、方向相反的电流流过,消除了变压器的电流磁化,提高了变压器的有效利用率。 二、单相桥式半控整流电路(阻-感性负载、不带续流二极管) 1.电路结构与工作原理

(1)电路结构 L (2)工作原理 1)在u2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲,处于关断状态。假设电路已工作在稳定状态,则在0~α区间由于电感释放能量,晶闸管VT2、VT3维持导通。 2)在u2正半波的ωt=α时刻及以后: 在ωt=α处触发晶闸管VT1、VT4使其导通,电流沿a→VT1→L →R→VT4→b→Tr的二次绕组→a流通,此时负载上有输出电压(u d=u2)和电流。电源电压反向加到晶闸管VT2、VT3上,使其承受反压而处于关断状态。 2.建模

3.仿真结果分析 α=30°单相桥式半控整流电路(阻感性负载) α=60°单相桥式半控整流电路(阻感性负载)

α=90°单相桥式半控整流电路(阻感性负载) 4.小结 电路具有自续流能力,但实用中还需要加设续流二极管VD,以避免可能发生的失控现象。 三、单相桥式半控整流电路(带续流二极管) 1.电路结构与工作原理 (1)电路结构 T u2 it1 i2 id2 VT1VT3 VD2VD4 id4 it3 R u R L ul id VD ud (2)工作原理

MATLAB课程设计,单相桥式全控整流电路的MATLAB设计

学号 控制系统仿真 单相桥式全控整流电路(电阻性负载) 在MATLAB中的仿真真 在MATLAB软件中的仿真应用 学生姓名 班级 成绩 控制与机械工程学院 2015年6 月19 日

绪论 Matlab以矩阵运算为基础,把计算可视化程序设计融合到了一个交互的工作环境中,可实现工程计算、算法研究、建模和仿真、数据分析及可视化、科学和工程绘图、应用程序开发等功能.Simulink是Mat2lab 所提供的用来对动态系统进行建模、仿真和分析的集成环境,是结合了框图界面和交互仿真能力的非线性动态系统仿真工具.Matlab5.3与以前的MA TLAB版本的最大区别就是增加了电力系统模块库(PowerSystemBlockset),能快速而准确地对电路及电力系统进行仿真。 1990年MathWorks软件公司为Matlab提供了新的控制系统模型图形输入与仿真工具Simulink.作为对Matlab语言运算环境的扩展,在保持Matlab的一般性能基础上,Simulink又增加了许多功能.它与Matlab及其工具箱结合使用,可以完全对连续系统、离散系统、连续和离散混合系统的动态性能进行仿真与分析. Simulink与传统的仿真软件包用微分方程和差分方程建模相比,具有更直观、方便、灵活的优点.Simulink 提供了8个子模型库:Continuous(持续环节)、Discrete(离散系统)、Function&Tables(函数及图表)、Math(数学计算)、Nonlinear(非线形环节)、Signals&System(信号及系统)、Sink(输出方式)、Source(输入源).在以上每个子模型库中还包含有相应的功能模块,如Source子模块中包含有SineWave(正弦波)、PulseGenerator(脉冲信号)、Step(阶跃信号)等,Sink子模块中包含有scope(示波器)、To Workspace(传送到工作空间)、XYGraph(X-Y图表)等. Simulink提供了动态系统建模、分析和仿真的交互环境,能够实现交互建模、交互仿真,并允许用户扩展仿真环境等功能.Simulink的专用模型库(Blocksets)提供了一些专用元件集,使得Simulink的功能进一步扩展。

单相桥式全控整流电路纯电阻课程设计

1 引言 电力电子技术是利用电力电子器件实现工业规模电能变换的技术,有时也称为功率电子技术。一般情况下,它是将一种形式的工业电能转换成另一种形式的工业电能。是建立在电子学、电工原理和自动控制三大学科上的新兴学科。随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可以方便地得到大中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。 要得到直流电,除了直流发电机外,最普遍应用的是利用各种半导体元件产生直流电。这个方法中,整流是最基础的一步。整流,即利用具有单向导电特性的器件,把方向和大小交变的电流变换为直流电。整流的基础是整流电路。整流电路(Rectifier)是电力电子电路中出现最早的一种,它的作用是将交流电能变为直流电能供给直流用电设备。典型的单相可控整流电路包括单相半波可控整流电路、单相整流电路、单相全波可控整流电路及单相桥式半控整流电路等。单相可控整流电路的交流侧接单相电源。 这次课程设计我设计的是单相桥式全控整流电路电阻性负载,与单相半波可控整流电路相比,桥式全控的电源利用率更高一些,应用范围更广泛一些。 2 单相桥式全控整流电路 2.1 单相桥式全控整流电路带电阻负载的工作情况分析 单相桥式全控整流电路带电阻负载电路如图2-1: 图2.1 单相桥式全控整流电路原理图

在单相桥式全控整流电路,闸管VT1和VT4组成一对桥臂,VT2和VT3组成另一对桥臂。在u2正半周(即a 点电位高于b 点电位),若4个晶闸管均不导通,id=0,ud=0,VT1、VT4串联承受电压u2。在触发角a 处给VT1和VT4加触发脉冲,VT1和VT4即导通,电流从电源a 端经VT1、R 、VT4流回电源b 端。当u2过零时,流经晶闸管的电流也降到零,VT1和VT4关断。在u2负半周,仍在触发角a 处触发VT2和VT3,VT2和VT3导通,电流从电源b 端流出,经VT3、R 、VT2流回电源a 端。到u2过零时,电流又降为零,VT2和VT3关断。 在u2负半周,仍在触发延迟角a 处触发VT2和VT3(VT2和VT3的a=0处为ωt=Π),VT2和VT3导通,电流从电源b 端流出,经VT3,R,VT2流回电源a 端。到u2过零时,电流又降为零,VT2和VT3关断。晶闸管承受的最大正向电压和反向电压分别为22U2和2U2。由于在交流电源的正负半周都有整流输出电流流过负载,故该电路为全波整流。 整流电压平均值为: ?+=+==παααπωωπ2 cos 19.02cos 122)(d sin 21 222U U t t U U d 向负载输出的直流平均电流为: 2 cos 19.02cos 12222ααπ+=+==R U R U R U I d d 晶闸管VT 1、VT 4 和 VT 2、VT 3 轮流导电,流过晶闸管的电流平均值只有输出直流电流平均值的一半,即 2 cos 145.0212α+==R U I I d dT b c) d u V 图2.2单相桥式全控整流电路波形

单相桥式全控整流电路MATLAB仿真实验报告(上)~4EDA1

单相桥式全控整流电路MATLAB仿真 一、单相桥式全控整流电路(电阻性负载) 1.电路结构与工作原理 (1)电路结构 如图1-1所示为典型单相桥式全控整流电路,共用了四个晶闸管,两只晶闸管接成共阳极,两只晶闸管接成共阴极,每一只晶闸管是一个桥臂,桥式整流电路的工作方式特点是整流元件必须成对以构成回路,负载为电阻性。 u1 T u2 u d R id a b VT1 VT3 VT2VT4 i2 图1-1 (2)工作原理 1)在u2正半波的(0~α)区间,晶闸管VT1、VT4承受正向电压,但无触发脉冲,晶闸管VT2、VT3承受反向电压。因此在0~α区间,4个晶闸管都不导通。假如4个晶闸管的漏电阻相等,则U t1.4= U t2.3=1/2u2。 2)在u2正半波的(α~π)区间,在ωt=α时刻,触发晶闸管VT1、VT4使其导通。 3)在u2负半波的(π~π+α)区间,在π~π+α区间,

晶闸管VT2、VT3承受正向电压,因无触发脉冲而处于关断 状态,晶闸管VT1、VT4承受反向电压也不导通。 4)在u2负半波的(π+α~2π)区间,在ωt=π+α时刻,触发晶闸管VT2、VT3使其元件导通,负载电流沿b→ VT3→R→VT2→α→T的二次绕组→b流通,电源电压沿正半 周期的方向施加到负载电阻上,负载上有输出电压(u d=-u2)和电流,且波形相位相同。 表1-1 各区间晶闸管的导通、负载电压和晶闸管端电压情况 ωt 0~αα~ππ~π+ απ+α~2π 晶闸管导通情况VT1.4、 VT2.3都截 止 VT1.4导 通、VT2.3 截止 VT1.4、 VT2.3都截 止 VT1.4截 止、VT2.3 导通 ud 0 u2 0 -u2 id 0 u2/R 0 -u2/R i2 0 u2/R 0 +u2/R ut ut1.4=ut2 .3= (?)u2 ut1.4=0、 ut2.3=u2 ut1.4=ut2 .3= (?)u2 ut1.4=u2 、ut2.3=0 2.建模

相关文档
最新文档