快速成型在生物制造中的应用

快速成型在生物制造中的应用
快速成型在生物制造中的应用

快速成型在生物制造中的应用

xx

西安交通大学机机械工程学院

摘要:快速成型技术的发展弥补了传统制造在产品设计、复杂件加工方面的不足。同时人们对健康的重视,再生对于人类生活意义重大。在这样一个特俗的环境下,将快速成型技术运用到医学上面无疑对再生医学的发展提供了便利。细胞打印、陶瓷假牙、颅颌面骨缺损修复手等在医学上的应用越来越广泛。本文介绍了最基本的快速成型技术以及在医学上的应用

关键词:快速成型再生医学修复

1介绍

快速成型技术是20世纪80年代中期发展起来的一种高新急速,是造型技术和制造技术的一次飞跃,它从成型原理上提出一个分层制造、逐层叠加成形的全新思维模式,即讲计算机辅助设计、计算机辅助制造、计算机数字控制、激光、精密伺服驱动和新材料等先进技术集于一体,依据计算机上构成的工件三维设计模型,对其进行分层切片,得到各层界面的二维轮廓性息,快速成型机的成形头按照这些轮廓性息在控制系统的控制下,选择性地固化或切割一层层的变形材料,形成各个截面轮廓,并逐步顺序叠加成三维工件。一个复杂的实体零件,可以认为是由一些具有物质的点、线、面叠加而成。从CAD模型中获得这些点、线、面的几何信息,把它与成型参数信息相结合,转化成为控制成型机工作的数控代码,控制材料有规律的精确的堆积起来,从而构成三维实体零件。

快速成型技术的应用领域也在随着技术的进步而不断扩展。在生物医学领域,目前快速成型技术在国际上已经开始被应用与器官模型的制造与手术分析策划、个性化组织工程支架材料和假体植入物的制造、以及细胞或组织打印等方面。例如,在骨科、口腔颌面外科等外科疾病中通常需要植入假体代替损坏、切除的组织,以恢复相应的功能以及外观,然而,目前临床所使用的替代材料都是按照固定模式制造,难以与患者的缺损部位完美匹配无法获得十分满意的效果。而利用快速成型技术可以根据不同患者的CT、MRI等成像数据,快速制造个性化的组织工程支架材料,甚至可以携带细胞对组织缺损部位进行原位细胞打印。通过调控材料的结构,以及细胞的排列,更有利于促进细胞的生长分化,获得理想的组织修复效果。快速成型技术也应用于生物医用材料的制备,生物相容与生物可降解高分子材料在生物医学尤其是组织工程中有很大优势。

2 快速成型方法

常见的快速成型方法有:

1 光固化成型法SL(Stereo lithography)用特定波长与强度的激光聚焦到光固化材料表面,使之由点到线,由线到面顺序凝固,完成一个层面的绘图作业,然后升降台在垂直方向移动一个层片的高度,再固化另一个层面.这样层层叠加构成一个三维实体。Fig 1

Fig 1 光固化成型原理图

2 选择性激光烧结SLS(Selective Laser Sintering)利用粉末状材料成形的。将材料粉末铺洒在已成形零件的上表面,并刮平;用高强度的CO2激光器在刚铺的新层上扫描出零件截面;材料粉末在高强度的激光照射被烧结在一起,得到零件的截面,并与下面已成形的部分连接;当一层截面烧结完后,铺上新的一层粉末材料,选择地烧结下层截面。Fig 2

Fig 2 SL原理图

3 叠层制造LOM(Laminated Object Manufacturing) 以片材(如纸片、塑料薄膜或复合材料)为原材料,激光切割系统按照计算机提取的横截面轮廓线数据,将背面涂有热熔胶的纸用激光切割出工件的内外轮廓。切割完一层后,送料机构将新的一层纸叠加上去,利用热粘压装置将已切割层粘合在一起,然后再进行切割,这样一层层地切割、粘合,最终成为三维工件. Fig 3

Fig 3 使用LOM工艺生成模型过程的示意图1.提

供箔材 2.热辊3.激光束4. 扫描棱镜. 5.激光器 6.

生成的实体层7. 移动平台8.废料

4熔积成型(FDM——Fused Deposition Modeling)法,该方法使用丝状材料(石蜡、金属、塑料、低熔点合金丝)为原料,利用电加热方式将丝材加热至略高于熔化温度(约比熔点高1℃),在计算机的控制下,喷头作x-y平面运动,将熔融的材料涂覆在工作台上,冷却后形成工件的一层截面,一层成形后,喷头上移一层高度,进行下一层涂覆,这样逐层堆积形成三维工件.Fig 4

Fig 4 使用FDM工艺生成模型过程的示意图1.融化的塑料从喷嘴喷出 2.原材料3.可移动的工作台

3生物应用

1 3-DP骨支架

软骨磨损和骨关节炎入关受损在在临床

上相对保守的治疗方法就是软骨修复,相对于关节置换而言更为保守,但是缺损软骨的修复确实难题,异体软骨移植会导致免疫反应,而如果采用自体软骨移植,软骨的来源也是难以避免的问题。一系列的生物降解和生物相容材料,不同材料不同结构的软骨支架的研究表明了支架应该具有的特性: 1 三维的多孔结构提供细胞生长的空间和营养

的传输。2 降解的速度要和细胞生长的速度相适应3 合适的表面形貌提供细胞黏着环境。4 良好的力学性能。

首先支架结构相对较小,并且要求要有很大的孔密度,传统的加工方法从方便性还是经济性都很难达到满意。快速成型技术,比如3-DP和fused deposition modeling (FDM)加工过程能够实现多孔支架的加工,所加工的结构很大程度上近似活性组织。马萨诸塞州的科学技术研究中心[1]运用三维打印成

功制造了可降解细胞支架,并且用于临床。这项技术是通过喷头将粘接剂喷在粉末层

上实现的,无需其它加工。零件时由一层一层的堆积起来的,粘接剂喷涂在粉末层上形成零件的第一层,然后工作台下降,再铺第二层粉,如此循环直到整个零件加工完成。

速度、移动位置都是通过计算机控制的。整

个过程都是在室温下进行的,所以所以在组织工程方面的应用有很大潜力。3-DP所需

3D图像来自于CT或者是MRI获得的CAD

文件。这一制造过程由CAD模型的设计开始,之后将模型文件导入专业软件中,这些软件将实体按一定方向分割成薄片。在导入3-DP 之前应首先生成加工路线。3-DP成型机的喷头在X、Y方向移动,工作台在Z方向移动,每形成一层下降一定距离。

2 FDM软骨支架

直径为1.78mm的热塑性材料在喷头内被加热熔化。喷头沿零件截面轮廓和填充轨迹运动,同时将熔化的材料挤出,材料迅速固化,并与周围的材料粘结。每一个层片都是在上一层上堆积而成,上一层对当前层起到定位和支撑的作用。随着高度的增加,层片轮廓的面积和形状都会发生变化,当形状发生较大的变化时,上层轮廓就不能给当前层提供充分的定位和支撑作用,这就需要设计一些辅助结构-“支撑”,对后续层提供定位和支撑,以保证成形过程的顺利实现。

目前,作者已经成功试验了多种材料的支架,。比如PCL和PCL/HA复合材料。是最先报道的通过FDM制造可降解细胞支架的团

队[2].Fig

Fig 5 FDM加工过程原理图

Fig 6 扫描电镜下支架结构图

但是这种基于FDM技术制造的支架也存在一些问题。

(1)由于在制造过程中需要融化PCL等材料,这就极大地限制了生物材料的选择。

(2)FDM制造本身的缺陷是:它的处理空间极小——譬如喷嘴的设计,这就对材料处理、工艺上的实现提出了很严峻的问题。

另外,人体各个组织中都存在水,材料具有亲水性质也是不可忽视的要求。因此,

水凝胶(hydrogels)等的使用也是很重要的。显然,这在FDM中是不可能的。

3 SL制备陶瓷支架

自然关节骨软骨复合体梯度分层结构及各

层之间不同的材料组成是关节软骨发挥其

生理功能的基础。关节表面的软骨组织和下层的骨组织材料不同,界面的微结构影响软骨的性能和软骨对骨的附着性。认识软骨组织与骨组织的界面结构并制造这些仿生结

构是发展关节组织工程的方向。通过对自然骨/软骨界面分析,设计并制造了一种新型

从材料到结构仿生软骨/骨梯度组织工程支架,以解决目前骨软骨组织工程中存在的难题。综合应用扫描电镜、微计算机断层扫描技术(Micro computed tomography,Micro CT)与组织学染色切片的方法,分析了骨软骨组织的组成与其界面的微结构特征[10]。针对

仿生软骨/骨梯度组织工程支架的制造需求,将骨软骨界面的微结构总结归纳为板层、锚定、嵌锁和管道等,并对其进行了量化分析,建立了骨软骨复合体微结构的设计方法,为新型骨软骨组织工程支架的设计提供数据

支持。利用组织染色切片、扫描电镜、Micro CT 三种方法从不同尺度和形态研究了骨软

骨界面的3D 结构。通过对股骨髁模型与骨软骨界面微结构的生物力学有限元分析发现,股骨髁表面软骨厚度的分布有利于应力、应变的分散。股骨髁软骨中央区域承受的应力、应变大于边缘区域,而中央区域因具有更大粗糙度的界面结构则更有利于应力与

应变的分散。基于此,建立了软骨形态、骨

软骨界面微结构与关节生物力学性能之间

的关系。这三者互相影响,彼此适应,共同

保证了关节的正常的生理功能。BIAN 等[3]研究并设计了一种新型的从结构到材料构

成全方位仿生的软骨/骨梯度组织工程支架,并对支架的制造工艺进行了摸索。采用陶瓷直接成形制造的β-TCP 生物陶瓷骨支架,

在微孔孔径、连通孔径、力学性能等方面均达到了理想骨组织工程支架的要求。利用凝胶注模工艺将Ⅰ型胶原水凝胶复合到骨支

架上,软骨支架突起伸入并充满骨支架界面连接结构,Ⅰ型胶原与β-TCP 紧密结合,

所形成的复合支架[11]最大抗剪切力为11.8 N±1.6 N,有助于解决传统软骨支架抗剪切性能差、容易脱层的问题.

针对犬和兔膝关节大面积骨软骨缺损,利用所制备的软骨骨复合支架开展了动物试验研究。发现新生软骨与陶瓷支架结合紧密,形成了类似于自然骨软骨的连接结构。新生软骨无论从大体标本和组织学评价均与关节透明软骨高度相似,软骨/骨的结合力达到55 N,接近于自然软骨水平,新生软骨的弹性模量与透明软骨的弹性模量相匹配,初步实现了工程化软骨的功能化.

Fig 7 陶瓷部分在SL成型机上加工过程

Fig 8 陶瓷支架具有连通孔和过度结构4 SL可降解支架

光固化使用的原液为光敏树脂,也可在其加入其他材料形成复合材料,它是采用计算机控制下的紫外激光束以计算机模型的各个分

层界面为路径逐点扫描,使被扫描区域内的树脂薄层产生光聚合或光交联反应后固化完成后,在垂直方向移动工作台,是先固化的树脂包面覆盖一层新的液态树脂,逐层扫描、固化,最终获得三为原型,SL技术具有高精度、性

能稳定、产品力学强度高等特点,其缺点是成型产品需要清洗出去杂质,可能造成产品变形。SL技术是目前技术成熟和应用最广的快速成

型技术。

目前常用的SL技术制备生物可降解支架材料

的高分子原料包括光敏分子修饰的聚富马酸

二羟基丙酯(PPF)、PLA、PCL、聚碳酸酯等.韩国浦项科技大学Cho等一PPF为原料,通

过利用SL技术制备的多孔支架具有与人松质

骨想相似的力学性能,并发现支架能促进纤维细胞的粘附与分化。通过将PPF支架一直到兔皮下或颅骨缺损部位的实验表明,PPF支架在动物体内引起温和的软组织和硬组织响应。[4]移植两周后会出现炎性洗白、血管生成和结缔组织形成,然而,到第八周,炎性细胞密度降低并形成更规则的结缔组织。

5 细胞打印

Boland等于2003年提出“细胞打印”技术

的概念[5],该技术突破了传统组织工程技术

空间分辨率低的局限性,可精确控制细胞的

分布。在“细胞打印”过程中,细胞(或细胞

聚集体)与溶胶(水凝胶的前驱体)同时置于

打印机的喷头中,由计算机控制含细胞液滴

的沉积位置,在指定的位置逐点打印,在打印

完一层的基础上继续打印另一层,层层叠加

形成三维多细胞/凝胶体系,如图1所示。与

传统的组织工程技术相比(如“细胞+支架”技术),“细胞打印”的优势主要有:(1)同时构建有生物活性的二维或三维“多细胞/材料”体系;(2)在时间和空间上准确沉积不同种类

的细胞[6];(3)构建细胞所需的三维微环境[7]。此外,“细胞打印”还是完全由计算机控制的高通量细胞排列技术,也可发展成为在生物

体内进行原位操作的技术

[8]

Fig 9 细胞打印示意图

结论

目前国外在设计生物骨微结构方面,众多的研究者提出了支架的设计原则,提出了许多制造方法,但是提出的设计方法却很少。2002年 VanCleynenbreugel等提出用网格结

构替代小粱骨的自然结构。选择的支架基质

材料能够匹配小梁骨的硬度。但是这个方法

的问题在于它既不能匹配各向异性的骨硬度,也不能修改已确定了的生物材料硬度的微结构设计,而这正是支架制造的瓶颈 (scenario)。在骨组织工程中,虽然有很多文献都提到使用RP技术制造生物骨的支架结构,并接合生长因子、靶细胞等技术制造生物骨,但是从目前的情况看,主要集中在3DP和FDM方法。考虑到SLS的工作原理,可以发现,由于激光的使用,使得生物材料的选择上比较困难。而且,局部的过热处理很可能引起材料的改性

而引起其他毒理等反应。

虽然快速成型技术能够根据不同患者的需求,快速准确的制造个性化医用高分子材料,并同时对材料的微观结构进行精确控制。因此,医用高分子材料的新制备技术在未来医学应用

中有独特地优势,快速成型技术在细胞体外培养,动物模型的软组织硬组织的修复中得到广泛的应用。

参考文献

[1] E. Sachs, M. Cima, P. Williams, D. Brancazio, J. Cornie Three-dimensional printing: rapid tooling and prototypes directly from a CAD model J Eng Industry, 114 (1992), pp. 481–488

[2] Dietmar W. Hutmacher et al , Scaffolds in tissue engineering bone and cartilage Dietmar W. Hutmacher et al 2000)

[3]BIAN W G, LI D C, LIAN Q, et al. Fabrication of a bio-inspired beta-Tricalcium phosphate/collagen scaffold based on ceramic stereolithography and gel casting for osteochondral tissue engineering[J]. Rapid Prototyping Journal, 2012, 18(1):68-80.

[4]Shin JH,Lee JW,Jung JH,Cho DW,Lim G.J Mater Sci ,2011,46:5282~5287

[5]SaundersRE,GoughJE,DerbyB.Deliveryofhumanfibr oblast cells by Piezoelectric drop on demand inkjet printing. Biomaterials,2008,29(2):1932203

[6]JakabK,DamonB,NeaguA,etal.Three2dimensionaltis sue

constructsbuiltbybioprinting.Biorheology,2006,43:509 2513.

[7]CalvertP.Materialsscience:printingcells.Science,200 7,318 (5848):2082209.

[8]BurgT,GroffR,BurgK,etal.Systemsengineeringchalle ngesininkjet biofabrication. IEEE Proceedings, 2007, 3952398

快速成型工艺比较

快速成形典型工艺比较 关键词及简称 光固化成形(简称:SLA或AURO)光敏树脂为原料 熔融挤压成形(简称:FDM或MEM)ABS丝为原料 分层实体成形(简称:LOM或SSM)纸为原料 粉末烧结成形(简称:SLS或SLS)蜡粉为原料 光固化成形 光固化成形是最早出现的快速成形工艺。其原理是基于液态光敏树脂的光聚合原理工作的。这种液态材料在一定波长(x=325nm)和强度(w=30mw)的紫外光的照射下能迅速发生光聚合反应, 分子量急剧增大, 材料也就从液态转变成固态。图1光固化工艺原理图 图1 工艺过程为:液槽中盛满液态光固化树脂,激光束在偏转镜作用下, 能在液体表面上扫描, 扫描的轨迹及激光的有无均由计算机控制, 光点扫描到的地方, 液体就固化。成型开始时,工作平台在液面下一个确定的深度,液面始终处于激光的焦平面,聚焦后的光斑在液

面上按计算机的指令逐点扫描即逐点固化。当一层扫描完成后,未被照射的地方仍是液态树脂。然后升降台带动平台下降一层高度,已成型的层面上又布满一层树脂,刮平器将粘度较大的树脂液面刮平,然后再进行下一层的扫描,新固化的一层牢固地粘在前一层上,如此重复直到整个零件制造完毕, 得到一个三维实体原型。 光固化工艺的设备做出的零件其优点是精度较高、表面效果好,零件制作完成后需要少量打磨,将层层的堆积痕迹去除。光固化工艺制作的零件打磨工作量相对其他工艺设备制作的零件的打磨量是最小的;其缺点是强度低无弹性,无法进行装配。光固化工艺设备的原材料很贵,种类不多。光固化设备的零件制作完成后,还需要在紫外光的固化箱中二次固化,用以保证零件的强度。液漕内的光敏树脂经过半年到一年的时间就要过期,所以要有大量的原型服务以保证液漕内的树脂被及时用完,否则新旧树脂混在一起会导致零件的强度下降、外形变形。如需要更换不同牌号的材料就需要将一个液漕的光敏树脂全部更换,工作量大树脂浪费很多。三十几万的紫外激光器只能用1万小时,使用一年后激光器更换需要二次投入三十几万的费用。 熔融挤压成形 熔融挤压成形工艺是利用热塑性材料的热熔性、粘结性,在计算机控制下层层堆积成型。熔融挤压成形工艺原理是材料先抽成丝状,通过送丝机构送进喷头,在喷头内被加热熔化,喷头沿零件截面轮廓和填充轨迹运动,同时将熔化的材料挤出,材料迅速固化,并与周围的材料粘结,层层堆积成型。图2熔融挤压工艺原理图

认识快速成型技术

教学难点与重点: 难点: 《产品逆向工程技术》教案 共 页 第 页 授课教师: 教研室: 备课日期: 年 月 日 课 题: 教 学 准 备: 教学目的与要求: 授 课 方 式: 项目四 快速成型技术认识 任务一 认识快速成型技术 PPT 掌握快速成型技术的原理、工作流程和特点。 讲授(90') 重点:快速成型技术的原理、工作流程和特点。 教 学 过 程: 上节课回顾→讲授课题→课堂小结

“ “ 张家界航院教案 第 页 上节课回顾: 讲授课题: 项目四 快速成型技术认识 通过前面的几节课我们学习了什么是逆向工程。通过逆向工程技术, 企业可以迅速的设计出符合当前流行趋势,以及符合人们消费需求的产品, 快速抢占市场。市场这块蛋糕就那么大,谁先抢到谁先吃,后来的就只能 看别人吃。现在的企业发展战略已经从以前的“如何做的更多、更好、更 便宜”转变成了“如何做的更快”。所以快速的响应市场需求,已经是制 造业发展的必经之路。 但是一件产品是不是设计出来就完事了?从设计到产品,中间还有一 个制造的过程,逆向工程解决了快速设计的问题,但是如果在制造加工阶 段耗费太长的时间,最后依然是无法快速的响应市场。尤其是在加工复杂 薄壁零件的时候,往往加工一件零件的周期要好几周,甚至几个月才能完 成,比如飞机发动机上的涡轮,加工周期要 90 天。 怎么解决这个问题呢?这就要用到今天我们这节课要讲的内容:快速 成型技术。快速成型技术就是在这种背景需求下发展起来的一种新型数字 化制造技术,利用这项技术可以快速的将设计思想转化为具有结构和功能 的原型或者是直接制造出零部件,以便可以对设计的产品进行快速评价、 修改。按照以往的技术,在生产一件样品的时候,要么开模、要么通过复 杂的机加工艺来生产,这样不管是从成本的角度还是时间的角度来讲,都 会带来成本的提高。而快速成型技术可以极大地缩短新产品的开发周期, 降低开发成本,最大程度避免产品研发失败的风险,提高了企业的竞争力。 任务一 认识快速成型技术 快速成型技术(Rapid Prototype ,简称 RP)有许多不同的叫法,比如 “3D 打印”( 3D printing)、分层制造”( layered manufacturing ,LM) 、增材制 造”( additive manufacturing ,AM) 等。同学们最熟悉的应该就是“3D 打 印”,其实刚开始的时候,3D 打印本是特指一种采用喷墨打印头的快速成 型技术,演变至今,3D 打印成了所有快速成型技术的通俗叫法,但是现在 在学术界被统一称为“增材制造”。 增材制造是一种能够不使用任何工具(模具、各种机床),直接从三 维模型快速地制作产品物理原型也就是样件的技术,可以使设计者在产品 的设计过程中很少甚至不需要考虑制造工艺技术的问题。使用传统机加的 方法来加工零件时,在设计阶段设计师就需要考虑到零件的工艺性,是不 是能够加工出来。对于快速成型技术来讲,任意复杂的结构都可以利用它 的三维设计数据快速而精确的制造出来,解决了许多过去难以制造的复杂 结构零件的成型问题,实现了“自由设计,快速制造”。 一、物体成型的方式 之所以叫“增材制造”很好理解就是通过“堆积”材料的方式进行制 造。与之相应的还有“减材制造”和“等材制造”。在现代成型学的观点 中,物体的成型方式可分以下几类:

快速成型技术的多领域应用与发展

快速成型技术的多领域应用与发展 摘要:简要介绍了快速成型技术的基本原理、工艺方法和技术特点。阐述了快速成型技术在工业造型、制造、模具、医学、航天等多领域的应用,探讨了快速成型技术今后的发展趋势。关键词:快速成型技术原型快速制模应用快速成型技术RP(Rapid Protot-yping RP)是20世纪80年代末开始发展起来的一种基于逐层累加成型的新兴制作工艺,它是集多种先进科技于一体的能够迅速将设计思想转化为产品的现代先进制造技术。它为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段。快速成型工艺是一个涉及CAD/CAM、逆向工程技术、分层制造技术、数据编程、材料编制、材料制备、工艺参数设置及后处理等环节的集成制造过程。通俗地说,快速成型技术就是利用三维CAD的数据,通过快速成型机,将一层层的材料堆积成实体原型。近十几年来,随着全球市场一体化的形成,制造业的竞争十分激烈。尤其是计算机技术的迅速普遍和 CAD/CAM技术的广泛应用,使得RP技术得到了异乎寻常的高速发展,表现出很强的生命力和广阔的应用前景。快速成型制造工艺PR技术是将传统的“去除”加工方法(由毛坯切去多余材料形成产品)改变为“增加”加工方法(将材料逐层累

积形成产品),采用离散分层/堆积的原理,由CAD模型直接驱动,快速制作原型或三维实体零件的一种全新的制造技术。快速成型技术发展至今,以其技术的高集成性、高柔性、高速性而得到了迅速发展,目前,快速成型的工艺方法已有几十种之多,其中主要工艺有四种基本类型: 光固化成型法(Stereo lithography Apparatus, SLA)、叠层实体制造法(Laminated Object Manufacturing, LOM)、选择性激光烧结法(Selective Laser Sintering, SLS) 和熔融沉积制造法(Fused Deposition Manufacturing, FDM)。 1、SLA工艺SLA工艺也称光造型或立体光刻,其工艺过程是以液态光敏树脂或丙稀酸树脂为材料充满液槽,由计算机控制激光束跟踪层状截面轨迹并照射到液槽中的液体树脂上而固化一层树脂,之后升降台下降一层高度,已成型的层面上又布满一层树脂,刮平器将粘度较大的树脂液面刮平,然后再进行新一层的扫描,新固化的一层牢固地粘在前一层上,如此重复直到整个零件制造完毕,得到一个三维实体模型。该工艺的特点是精度高,生产零件强度和硬度好,可制出形状特别复杂的空心零件,生产的模型柔性化好,可随意拆装,是间接制模的理想方法,缺点是清洗和养护等后处理工序较费时。 2、LOM工艺LOM工艺称叠层实体制造或分层实体制造,其工艺过程是由加热辊筒将薄形材料(如纸片,塑料薄膜,复合材料或金

快速成型技术的发展与应用

快速成型技术的发展与应用 摘要:快速成型技术是一项多学科交叉多技术集成的先进制造技术,本文简要介绍该技术的原理、特点,并重点研究阐述该技术在国内外应用和发展状况,并结合实际指出了该技术开发方向。 关键词:快速成型;原理;应用;开发 一引言 最近英国经济学人指出:快速成型技术(简称RP技术)市场潜力巨大,必将引领未来制造业,它将使工厂彻底告别车床、钻床等传统工具,改由更加灵巧的电脑软件主宰,这便是第三次工业革命到来的标志。虽然究竟谁能够引领第三次工业革命?目前我们要下这个结论,显得时机过早。但重视这被西方媒体誉为将带来“第三次工业革命” 的“RP技术”是非常必要的。本文就这一技术的原理及发展应用情况予以介绍。 二快速成型技术原理及特点 RP技术是20世纪90年代发展起来的一项高新技术。笼统地讲,RP技术属于堆积成形;严格地讲,它是基于离散和堆积原理,将零件的CAD模型按一定方式离散,成为可加工的离散面、离散线、离散点,而后采用物理或化学手段,将这些离散的面、线段和点堆积而形成零件的整体形状。RP技术工艺流程如图1所示。其主要工艺方法有:SLA、SLS、FDM、TDP,具体见下表: 用粉末材料为原料,按照分层信息铺好一层粉末材料计算机控制喷头有选择性地喷射粘接剂,使部分粉末粘接形成截面层。一层完成后,工作台下降一个层厚,如此循环形成三维产品。 三快速成型技术的发展现状 3.1国外的快速成型技术的发展现状 这种为现代社会带来强大冲击和震撼的新技术起源于1988年,美国3D System 公司推出的SLA-250液态光敏树脂选择性固化成形机,标志着RP技术的诞生。目前,RP技术被广泛应用于各个领域,如航天航空、医疗、军工、艺术设计等领域,应用最为广泛的是航空零部件的快速制造,包括快速精铸技术、金属直接制造零部件、风洞模型的制造。 国外主要的航空企业都在应用RP技术研制新型航空器。例如,美国军用和商用航空发动机制造商Sundstrand公司使用RP技术制作新型燃气轮发动机进风口外壳原型(φ300×250,壁厚仅1.5),节省了4个多月的加工制造时间和超过8.8万美元的费用。

快速成型技术的现状和发展趋势

快速成型技术的现状和发展趋势 1 快速成型技术的基本成型原理 近十几年来,随着全球市场一体化的形成,制造业的竞争十分激烈。尤其是计算机技术的迅速普遍和CAD/CAM技术的广泛应用,使得快速成型技术 (Rapid Prototyping简称RP)得到了异乎寻常的高速发展,表现出很强的生命力和广阔的应用前景。 传统的加工技术是采用去材料的加工方式,在毛坯上把多余的材料去除,得到我们想要的产品。而快速成型技术基本原理是:借助计算机或三维扫描系统构建目标零件的三维数字化模型,之后将该信息传输到计算机控制的机电控制系统,计算机将模型按一定厚度进行“切片”处理,即将零件的3D数据信息离散成一系列2D轮廓信息,通过逐点逐面的增材制造方法将材料逐层堆积,获得实体零件,最后进行必要的少量加工和热处理,使零件性能、尺寸等满足设计要求。。它集机械工程、CAD、逆向工程技术、分层制造技术、数控技术、材料科学、激光技术于一身,可以自动、直接、快速、精确地将设计思想转变为具有一定功能的原型或直接制造零件,从而为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段。 目前,快速成形的工艺方法已有几十种之多,大致可分为7大类,包括立体印刷、叠层实体制造、选择性激光烧结、熔融沉积成型、三维焊接、三维打印、数码累积成型等。其基本的原理如下图所示。 图1 快速成型原理示意图 2 快速成型技术在产品开发中的应用 不断提高RP技术的应用水平是推动RP技术发展的重要方面。目前,交通大学机械学院,快速成型国家工程研究中心,教育部快速成型工程研究中心快速成

型技术已在工业造型、机械制造、航空航天、军事、建筑、影视、家电、轻工、医学、考古、文化艺术、雕刻、首饰等领域都得到了广泛应用。并且随着这一技术本身的发展,其应用领域将不断拓展。RP技术的实际应用主要集中在以下几个方面: 2.1 用于新产品的设计与试制。 (1)CAID应用: 工业设计师在短时间得到精确的原型与业者作造形研讨。 (2)机构设计应用: 进行干涉验证,及提早发现设计错误以减少后面模具修改工作。 (3)CAE功效:快速模具技术以功能性材料制作功能性模具,以进行产品功能性测试与研讨。 (4)视觉效果:设计人員能在短时间之便能看到设计的雛型,可作为进一步研发的基石。 (5)设计确认:可在短时间即可完成原型的制作,使设计人员有充分的时间对于设计的产品做详细的检证。 (6)复制于最佳化设计:可一次制作多个元件,可使每个元件针对不同的设计要求同时进行测试的工作,以在最短时间完成设计的最佳化。 (7)直接生产: 直接生产小型工具,或作为翻模工具 2.2 快速制模及快速铸造 快速模具制造传统的模具生产时间长,成本高。将快速成型技术与传统的模具制造技术相结合,可以大大缩短模具制造的开发周期,提高生产率,是解决模具设计与制造薄弱环节的有效途径。快速成形技术在模具制造方面的应用可分为直接制模和间接制模两种,直接制模是指采用RP技术直接堆积制造出模具,间接制模是先制出快速成型零件,再由零件复制得到所需要的模具 2.3 机械制造 由于RP技术自身的特点,使得其在机械制造领域,获得广泛的应用,多用于制造单件、小批量金属零件的制造。有些特殊复杂制件,由于只需单件生产,或少于50件的小批量,一般均可用RP技术直接进行成型,成本低,周期短。2.4 医疗中的快速成形技术 在医学领域的应用近几年来,人们对RP技术在医学领域的应用研究较多。以医学影像数据为基础,利用RP技术制作人体器官模型,对外科手术有极大的应用价值。 2.5 三维复制 快速成形制造技术多用于艺术创作、文物复制、数字雕塑等。 2.6 航空航天技术领域 航空航天产品具有形状复杂、批量小、零件规格差异大、可靠性要求高等特点,产品的定型是一个复杂而精密的过程,往往需要多次的设计、测试和改进,耗资大、耗时长,而快速成型技术以其灵活多样的工艺方法和技术优势而在现代航空航天产品的研制与开发中具有独特的应用前景。

几种常见快速成型工艺的比较

几种快速成型方式的比较 几种常见快速成型工艺的比较 在快速领域里一直站主导地位快速成型工艺主要包括:FDM, SLA, SLS, LOM等工艺,而这几种工艺又各有千秋,下面我们在主 要看一下这几种工艺的优缺点比较: FDM(fused deposition Modeling)丝状材料选择性熔覆快速原型工艺是一种不依靠激光作为成型能源、而将各种丝材(如工程塑料、聚碳酸酯)加热熔化进而堆积成型方法,简称丝状材料选择性熔覆. 原理如下:加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作平面运动,热塑性丝状材料由供丝机构送至热熔喷头,并在喷头中加热和熔化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层大约0.127mm厚的薄片轮廓。一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层画出截面轮廓,如此循环,最终形成三维产品零件。 这种工艺方法同样有多种材料可供选用,如工程塑料;聚碳酸酯、工程塑料PPSF: 以及ABS 与PC的混合料等。这种工艺干净,易于操作,不产生垃圾,并可安全地用于办公环境,没有产生毒气和化学污染的危险。适合于产品设计的概念建模以及产品的形状及功能测试。专门开发的针对医用的材料ABS-i: 因为其具有良好的化学稳定性,可采用伽码射线及其他医用方式消毒,特别适合于医用。 FDM快速原型技术的优点是: 制造系统可用于办公环境,没有毒气或化学物质的污染;1次成型、易于操作且不产生垃圾;独有的水溶性支撑技术,使得去除支撑结构简单易行,可快速构建瓶状或中空零件以及一次成型的装配结构件; 原材料以材料卷的形式提供,易于搬运和快速更换。 可选用多种材料,如各种色彩的工程塑料以及医用ABS等 快速原型技术的缺点是:成型精度相对国外先进的SLA工艺较低,最高精度、成型表面光洁度不如国外 SLA:成型速度相对较慢光敏树脂选择性固化是采用立体雕刻(Stereolithography)原理的一种工艺的简称,是最早出现的一种快速成型技术。在树脂槽中盛满液态光敏树脂,它在紫外激光束的照射下会快速固化。成型过程开始时,可升降的工作台处于液面下一个截面层厚的高度,聚焦后的激光束,在计算机的控制下,按照截面轮廓的要求,沿液面进行扫描,使被扫描区域的树脂固化,从而得到该截面轮廓的树脂薄片。然后,工作台下降一层

快速成型

快速成型 快速成型(RP)技术是九十年代发展起来的一项先进制造技术,是为制造业企业新产品开发服务的一项关键共性技术, 对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。 目录 快速原型制造技术,又叫快速成形技术,(简称RP技术); 英文:RAPID PROTOTYPING(简称RP技术),或 RAPID PROTOTYPING MANUFACTURING,简称RPM。 RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。形象地讲,快速成形系统就像是一台"立体打印机"。

它可以在无需准备任何模具、刀具和工装卡具的情况下,直接接受产品设计(CAD)数据,快速制造出新产品的样件、模具或模型。因此,RP 技术的推广应用可以大大缩短新产品开发周期、降低开发成本、提高开发质量。由传统的"去除法"到今天的"增长法",由有模制造到无模制造,这就是RP技术对制造业产生的革命性意义。 具体是如何成形出来的呢? 形象地比喻:快速成形系统相当于一台"立体打印机"。 它可以在没有任何刀具、模具及工装卡具的情况下,快速直接地实现零件的单件生产。根据零件的复杂程度,这个过程一般需要1~7天的时间。换句话说,RP技术是一项快速直接地制造单件零件的技术。 RP系统的基本工作原理 RP系统可以根据零件的形状,每次制做一个具有一定微小厚度和特定形状的截面,然后再把它们逐层粘结起来,就得到了所需制造的立体的零件。当然,整个过程是在计算机的控制下,由快速成形系统自动完成的。不同公司制造的RP系统所用的成形材料不同,系统的工作原理也有所不同,但其基本原理都是一样的,那就是"分层制造、逐层叠加"。这种工艺可以形象地叫做"增长法"或"加法"。 每个截面数据相当于医学上的一张CT像片;整个制造过程可以比喻为一个"积分"的过程。 RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。RP技术的基本原理

几种常见快速成型工艺优缺点比较

几种常见快速成型工艺优缺点比较 FDM 丝状材料选择性熔覆(FusedDepositionModeling)快速原型工艺是一种不依靠激光作为成型能源、而将各种丝材加热溶化的成型方法,简称FDM。 丝状材料选择性熔覆的原理室,加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作X-Y平面运动。热塑性丝状材料(如直径为1.78mm的塑料丝)由供丝机构送至喷头,并在喷头中加热和溶化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层大约0.127mm厚的薄片轮廓。一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层"画出"截面轮廓,如此循环,最终形成三维产品零件。 这种工艺方法同样有多种材料选用,如ABS塑料、浇铸用蜡、人造橡胶等。这种工艺干净,易于操作,不产生垃圾,小型系统可用于办公环境,没有产生毒气和化学污染的危险。但仍需对整个截面进行扫描涂覆,成型时间长。适合于产品设计的概念建模以及产品的形状及功能测试。由于甲基丙烯酸ABS(MABS)材料具有较好的化学稳定性,可采用加码射线消毒,特别适用于医用。但成型精度相对较低,不适合于制作结构过分复杂的零件。 FDM快速原型技术的优点是: 1、制造系统可用于办公环境,没有毒气或化学物质的危险。 2、工艺干净、简单、易于材作且不产生垃圾。 3、可快速构建瓶状或中空零件。 4、原材料以卷轴丝的形式提供,易于搬运和快速更换。 5、原材料费用低,一般零件均低于20美元。 6、可选用多种材料,如可染色的ABS和医用ABS、浇铸用蜡和人造橡胶。

FDM快速原型技术的缺点是: 1、精度较低,难以构建结构复杂的零件。 2、垂直方向强度小。 3、速度较慢,不适合构建大型零件。 SLA 敏树脂选择性固化是采用立体雕刻(Stereolithography)原理的一种工艺,简称SLA,也是最早出现的、技术最成熟和应用最广泛的快速原型技术。 在树脂液槽中盛满液态光敏树脂,它在紫外激光束的照射下会快速固化。成型过程开始时,可升降的工作台处于液面下一个截面层厚的高度,聚焦后的激光束,在计算机的控制下,按照截面轮廓的要求,沿液面进行扫描,使被扫描区域的树脂固化,从而得到该截面轮廓的塑料薄片。然后,工作台下降一层薄片的高度,以固化的塑料薄片就被一层新的液态树脂所覆盖,以便进行第二层激光扫描固化,新固化的一层牢固的粘结在前一层上,如此重复不已,知道整个产品成型完毕。最后升降台升出液体树脂表面,即可取出工件,进行清洗和表面光洁处理。 光敏树脂选择性固化快速原型技术适合于制作中小形工件,能直接得到塑料产品。主要用于概念模型的原型制作,或用来做装配检验和工艺规划。它还能代替腊模制作浇铸模具,以及作为金属喷涂模、环氧树脂模和其他软模的母模,使目前较为成熟的快速原型工艺。 SLA快速原型技术的优点是: 1、系统工作稳定。系统一旦开始工作,构建零件的全过程完全自动运行,无需专人看管,直到整个工艺过程结束。 2、尺寸精度较高,可确保工件的尺寸精度在0.1mm以内。 3、表面质量较好,工件的最上层表面很光滑,侧面可能有台阶不平及不同层面间的曲面不平。

快速成型技术的发展和应用

快速成型技术的发展和应用 摘要:科技飞速发展的今天,人类对制造业也提出了更高的要求,行业竞争也日趋激烈。 快速成型技术也应运而生,并且展现了它强大的生命力和广阔的应用前景。目前,快速成型技术已在工业造型、机械制造、航空航天、军事、建筑、影视、家电、轻工、医学、考古、文化艺术、雕刻、首饰等领域都得到了广泛应用。并且随着这一技术本身的发展,其应用领域将不断拓展。 The rapid development of science and technology today, the human is put forward higher requirements on manufacturing, industry competition is increasingly fierce. Rapid prototyping technology also arises at the historic moment, and shows its strong vitality and broad application prospects. At present, the modelling of rapid prototyping technology has been in the industry, machinery manufacturing, aerospace, military, architecture, film and television, home appliances, light industry, medicine, archaeology, cultural art, sculpture, jewelry, and other fields has been widely used. And with the development of the technology itself, and will continue to expand its application field. 关键词:快速成型,堆积法,高集成性、高柔性、高速性,自动、直接、快速、精确。 前言: 21世纪是以知识经济和信息社会为特征的时代,随着科学技术的发展和社会需求的多样化,全球统一市场和经济全球化的逐步形成,产品的竞争更加激烈。在工业化的国家中,60%—80%的财富是由制造业提供的。制造业是衡量一个国家实力水平的重要标志之一,也是创造社会财富和国民经济赖以生存发展的重要支柱产业。 现代制造已不仅仅是机械制造,而且具有大制造,全过程,多科学的新特点。大制造应包括机电产品的制造,工业流程制造,材料科学制造等等,所以它是一个广义的制造概念。 我国在先进制造技术方面和国外有比较大的差距,特别是我国制造业的自动化,信息化水平不高。大力发展和应用先进制造技术,勇气改造传统产业和形成高技术,提升我国制造业得产业结构,产品结构和组织结构,增强其技术创新能力,产品开发,和市场竞争能力。是制造业,特别是机械制造业走出困局的关键性措施。这样才能保证我们世界工厂地位的确立,实现由制造业大国向制造业强国的转变。 快速成型技术的诞生 快速成型技术作为一个专用名词在20世纪80年代末期,美国为了加强其制造业的竞争力与促进国民经济的增长,根据其制造业面临的挑战与机遇,并对其制造业存在的问题进行深刻反省提出来的。快速成型技术是集成制造技术,电子技术,信息技术,自动化技术,能源晕技术,材料科学以及现在管理技术等众多技术的交叉,融合和渗透而发展起来的,涉及到制造业中的产品设计,加工装配,检验测试,经营管理等产品生命周期全过程,已实现优质,高效,低耗,清洁,灵活生产,提高对动态多变,细分的市场的适应能力和竞争能力的一项综合技术。 快速成型技术是顺应这一潮流而出现的先进制造技术,它能自动,直接,快速,精确的将设计思想物转化具有一定功能的原型或直接制造零件,快速成型技术是先进制造技术的重要组成部分,也是制造技术在制造理论的一次革命性飞跃,快速成型技术目前在美国,欧洲,日本等地已被广泛应用,受到制造业界及各类用户的普遍重视。 世界上第一台快速成形机于自1988年诞生于美国。快速成型制造技术是国外20世纪80年

快速成型技术及应用论文

基于激光快速成型技术的金属快速成型技术 摘要:文章详细介绍了金属粉末快速成型的研究现状 ,分析了金属粉末选择性激光烧结的工艺特点,对这些工艺的影响因素进行了讨论。 关键词:选区激光烧结;金属零件;影响因素。 引言 快速制造 (Rapid Manufacturing) 金属零件一直受到国内外的广泛重视 , 是当今快速成型领域的一个重要研究方向。到目前为止 ,用于直接成型金属材料、制备三维金属零件的技术主要有激光近形制造与金属粉末的选择性激光烧结技术。激光近形制造(LENS) ,又称激光熔覆制造或熔滴制造 ,它将激光熔覆工艺与激光快速成型技术相结合 , 利用激光熔覆工艺逐层堆积累加材料,形成具有三维形状的三维结构。在该方面 ,美国的Aeromet、德国的汉诺威激光中心以及清华大学激光加工研究中心等均进行了大量的研究 , 并得到了具有一定形状的三维实体零件。有异于激光近形制造 ,选择性激光烧结则有选择地逐层烧结固化粉末金属得到三维零件。在这一领域,美国的DTM丶德国的汉诺威激光中心等进行了多元金属的烧结研究。就选区激光烧结(SelectiveLaser Sintering , SLS)而言 ,根据成型用金属粉末的不同 , 人们又开发出多种工艺途径来实现金属零件的烧结成型 ,主要有三种途径:一是利用金属粉末与有机粘结剂粉末共混粉体的间接烧结,金属粉末与有机粘结剂粉末均匀共混,烧结中,低熔点的粘结剂粉末熔化并将高熔点的金属粉末粘结,形成原型(“绿件”),经后处理,烧失粘结剂,形成“褐件”,最后通过金属熔渗工艺得到致密的金属件;二是利用金属混合粉末的直接烧结 , 其中一种粉末具有较低的熔点(如铜粉) ,另一种粉末熔点较高 (如铁粉) ,烧结中低熔点的金属粉末铜熔化并将难熔的铁粉粘结在一起 , 这种方法同样需要较大功率激光器;三是利用单一成分金属粉末的直接烧结,这种方法目前主要用于低熔点金属粉末的烧结,对熔点高的金属粉末,需采用大功率激光器。本文分别对上述的间接和直接烧结成型工艺进行了初步的研究。 1 SLS的烧结原理 激光选择性烧结快速成型技术是使用激光束熔化或烧结粉末材料 ,利用分层的思想 ,把计算机中的 CAD 模型直接成型为三维实体零件。它的创新之处在于将激光、光学、温度控制和材料相联系。SLS烧结原理如图1所示,烧结过程可分为三部分: (1)首先在粉体床上铺一薄层粉体 , 并压实 , 可以根据需要 ,在激光烧结前进行预热; (2)激光照射粉体层 ,烧结粉体,形成所设计零件一层的形状;(3) 粉体床下降一个薄层厚度的距离;重复上面的过程 ,直到原型零件完成。 SLS对粉末烧结的明显优势在于: (1) 和其它的加工方法比较,能获得优良的材料性能,同时,它的加工材料范围比较宽 (聚合物、金属、陶瓷、铸造砂等);(2) 易于实现液相烧结 , 烧结周期比较短; (3) 比传统的烧结方法更易得到密实的以粉末金属为原料的产品;(4)工艺比较简单 , 烧结路线、烧结温度便于控制。

快速成型典型工艺简介

快速成形典型工艺简介 关键词及简称 光固化成形(简称:SLA或AURO)光敏树脂为原料 熔融挤压成形(简称:FDM或MEM)ABS丝为原料 光固化成形 光固化成形是最早出现的快速成形工艺。其原理是基于液态光敏树脂的光聚合原理工作的。这种液态材料在一定波长(x=325nm)和强度(w=30mw)的紫外光的照射下能迅速发生光聚合反应, 分子量急剧增大, 材料也就从液态转变成固态。 图1光固化工艺原理图 工艺过程为:液槽中盛满液态光固化树脂,激光束在偏转镜作用下, 能在液体表面上扫描, 扫描的轨迹及激光的有无均由计算机控制, 光点扫描到的地方, 液体就固化。成型开始时,工作平台在液面下一个确定的深度,液面始终处于激光的焦平面,聚焦后的光斑在液面上按计算机

的指令逐点扫描即逐点固化。当一层扫描完成后,未被照射的地方仍是液态树脂。然后升降台带动平台下降一层高度,已成型的层面上又布满一层树脂,刮平器将粘度较大的树脂液面刮平,然后再进行下一层的扫描,新固化的一层牢固地粘在前一层上,如此重复直到整个零件制造完毕, 得到一个三维实体原型。 光固化工艺的设备做出的零件其优点是精度较高、表面效果好,零件制作完成打磨后,将层层的堆积痕迹去除。光固化工艺是运行费用最高,且强度低无弹性,无法进行装配。光固化工艺设备的原材料很贵,种类不多。光固化设备的零件制作完成后,还需要在紫外光的固化箱中二次固化,用以保证零件的强度。液漕内的光敏树脂经过半年到一年的时间就要过期,所以要有大量的原型服务以保证液漕内的树脂被及时用完,否则新旧树脂混在一起会导致零件的强度下降、外形变形。如需要更换不同牌号的材料就需要将一个液漕的光敏树脂全部更换,工作量大、树脂浪费很多。一年内液漕光敏树脂必须用完否则将会变质,用户需要重新投入近十万元采购光敏树脂。三十万的端面泵浦固体紫外激光器只能用1万小时,使用两年后激光器更换需要二次投入三十万的费用。振镜系统也是有易损件,再次更换需要十几万元的投入。由于设备的运行费用高,这种设备一般被大型集团或有足够资金的企业采购。 熔融挤压成形 熔融挤压成形工艺是利用热塑性材料的热熔性、粘结性,在计算机控制下层层堆积成型。熔融挤压成形工艺原理是材料先抽成丝状,通过送丝机构送进喷头,在喷头内被加热熔化,喷头沿零件截面轮廓和填充

常用快速成型基本方法简介

1前言 快速成型(Rapid Prototyping)是上世纪80年代末及90 年代初发展起来的高新制造技术,是由三维CAD模型直接驱动的快速制造任意复杂形状三维实体的总称。它集成了CA D技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。由于它把复杂的三维制造转化为一系列二维制造的叠加,因而可以在不用模具和工具的条件下生成几乎任意复杂的零部件,极大地提高了生产效率和制造柔性。 与传统制造方法不同,快速成型从零件的CAD几何模型出发,通过软件分层离散和数控成型系统,用激光束或其他方法将材料堆积而形成实体零件。通过与数控加工、铸造、金属冷喷涂、硅胶模等制造手段相结合,已成为现代模型、模具和零件制造的强有力手段,在航空航天、汽车摩托车、家电等领域得到了广泛应用。 2 快速成型的基本原理 快速成型技术采用离散/堆积成型原理,根据三维CAD模型,对于不同的工艺要求,按一定厚度进行分层,将三维数字模型变成厚度很薄的二维平面模型。再将数据进行一定的处理,加入加工参数,产生数控代码,在数控系统控制下以平面加工方式连续加工出每个薄层,并使之粘结而成形。实际上就是基于“生长”或“添加”材料原理一层一层地离散叠加,从底至顶完成零件的制作过程。快速成型有很多种工艺方法,但所有的快速成型工艺方法都是一层一层地制造零件,所不同的是每种方法所用的材料不同,制造每一层添加材料的方法不同。

快速成型的基本原理图 快速成型的工艺过程原理如下: (1)三维模型的构造:在三维CAD设计软件中获得描述该零件的CAD文件。一般快速成型支持的文件输出格式为STL模型,即对实体曲面做近似的所谓面型化(Tessellation)处理,是用平面三角形面片近似模型表面。以简化CAD模型的数据格式。便于后续的分层处理。由于它在数据处理上较简单,而且与CAD系统无关,所以很快发展为快速成型制造领域中CAD系统与快速成型机之间数据交换的标准,每个三角面片用四个数据项表示。即三个顶点坐标和一个法向矢量,整个CAD模型就是这样一个矢量的集合。在一般的软件系统中可以通过调整输出精度控制参数,减小曲面近似处理误差。如Pre/1E软件是通过选定弦高值(ch-chordheight)作为逼近的精度参数。 (2)三维模型的离散处理:在选定了制作(堆积)方向后,通过专用的分层程序将三维实体模型(一般为STL模型)进行一维离散,即沿制作方向分层切片处理,获取每一薄层片截面轮廓及实体信息。分层的厚度就是成型时堆积的单层厚度。由于分层破坏了切片方向CAD模型表面的连续性,不可避免地丢失了模型的一些信息,导致零件尺寸及形状误差的产生。切片层的厚度直接影响零件的表面粗糙度和整个零件的型面精度,每一层面的轮廓信息都是由一系列交点顺序连成的折线段构成。所以,分层后所得到的模型轮廓已经是近似的,层与层之间的轮廓信息已经丢失,层厚越大丢失的信息越多,导致在成型过程中产生了型面误差。

快速成型技术的介绍

快速成型技术的介绍 ————3D打印技术的介绍及设计 摘要:快速成型制造技术是九十年代发展起来的一项先进制造技术,自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。3D打印即快速成型技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术;3D打印现在运用在生产生活的各个领域。 关键词:快速成型;3D打印 1 快速成型制造技术 1.1 简介 快速原型制造技术,又叫快速成形技术,(简称RP技术)。 RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。形象地讲,快速成形系统就像是一台"立体打印机"。 1.2 产生背景 随着全球市场一体化的形成,制造业的竞争十分激烈,产品的开发速度日益成为主要矛盾。在这种情况下,西安交通大学机械学院,快速成型国家工程研究中心,教育部快速成型工程研究中心自主快速产品开发(快速设计和快速工模具)的能力(周期和成本)成为制造业全球竞争的实力基础。 制造业为满足日益变化的用户需求,要求制造技术有较强的灵活性,能够以小批量甚至单件生产而不增加产品的成本。因此,产品的开发速度和制造技术的柔性就十分关键。 从技术发展角度看,计算机科学、CAD技术、材料科学、激光技术的发展和普及为新的制造技术的产生奠定了技术物质基础。 1.3 技术特点 (1) 制造原型所用的材料不限,各种金属和非金属材料均可使用; (2) 原型的复制性、互换性高; (3) 制造工艺与制造原型的几何形状无关,在加工复杂曲面时更显优越; (4) 加工周期短,成本低,成本与产品复杂程度无关,一般制造费用降低50%,加工周期节约70%以上; (5) 高度技术集成,可实现了设计制造一体化。 1.4 基本原理 快速成形技术是在计算机控制下,基于离散、堆积的原理采用不同方法堆积材料,最终完成零件的成形与制造的技术。

快速成型技术及其发展综述

计算机集成制造技术与系统——读书报告 题目名称: 专业班级: 学号: 学生姓名: 指导老师

快速成型技术及其发展 摘要:快速成型技术兴起于20世纪80年代,是现代工业发展不可或缺的一个重要环节。本文介绍了快速成型技术的产生、技术原理、工艺特点、设备特点等方面,同时简述快速成型技术在国内的发展历程。 关键词:快速成型烧结固化叠加发展服务 1 快速成形技术的产生 快速原型(Rapid Prototyping,RP)技术,又称快速成形技术,是当今世界上飞速发展的制造技术之一。快速成形技术最早产生于二十世纪70年代末到80年代初,美国3M公司的阿伦赫伯特于1978年、日本的小玉秀男于1980年、美国UVP公司的查尔斯胡尔1982年和日本的丸谷洋二1983年,在不同的地点各自独立地提出了RP的概念,即用分层制造产生三维实体的思想。查尔斯胡尔在UVP的继续支持下,完成了一个能自动建造零件的称之为Stereolithography Apparatus (SLA)的完整系统SLA-1,1986年该系统获得专利,这是RP发展的一个里程碑。同年,查尔斯胡尔和UVP的股东们一起建立了3D System公司。与此同时,其它的成形原理及相应的成形系统也相继开发成功。1984年米歇尔法伊杰提出了薄材叠层(Laminated Object Manufacturing,以下简称LOM)的方法,并于1985年组建Helisys 公司,1992年推出第一台商业成形系统LOM-1015。1986年,美国Texas大学的研究生戴考德提出了选择性激光烧结(Selective Laser Sintering,简称SLS)的思想,稍后组建了DTM 公司,于1992年开发了基于SLS的商业成形系统Sinterstation。斯科特科瑞普在1988年提出了熔融成形(Fused Deposition Modeling,简称FDM)的思想,1992年开发了第一台商业机型3D-Modeler。 自从80年代中期SLA光成形技术发展以来到90年代后期,出现了几十种不同的RP技术,但是SLA、SLS和FDM几种技术,目前仍然是RP技术的主流,最近几年LJP(立体喷墨打印)技术发展迅速,以色列、美国、日本等国的RP设备公司都力推此类技术设备。 2基本原理 快速成形技术是在计算机控制下,基于离散、堆积的原理采用不同方法堆积材料,最终完成零件的成形与制造的技术。 1、从成形角度看,零件可视为“点”或“面”的叠加。从CAD电子模型中离散得到“点”或“面”的几何信息,再与成形工艺参数信息结合,控制材料有规律、精确地由点到面,由面到体地堆积零件。 2、从制造角度看,它根据CAD造型生成零件三维几何信息,控制多维系统,通过激光束或其他方法将材料逐层堆积而形成原型或零件。 3快速成型技术特点 RP技术与传统制造方法(即机械加工)有着本质的区别,它采用逐渐增加材料的方法(如凝固、焊接、胶结、烧结、聚合等)来形成所需的部件外型,由于RP技术在制造产品的过程中不会产生废弃物造成环境的污染,(传统机械加工的冷却液等是污染环境的),因此在当代讲究生态环境的今天,这也是一项绿色制造技术。 RP技术集成了CAD、CAM、激光技术、数控技术、化工、材料工程等多项技术,解决了传统加工制造中的许多难题。 RP技术的基本工作原理是离散与堆积,在使用该技术时,首先设计者借助三维CAD或者

快速成型技术及应用学习心得doc

《快速成型技术及应用》学习心得 对于本学期黄老师的《快速成型技术及应用》学习心得,主要从RP技术的应用现状和发展趋势、主要的RP成型工艺分析和RP技术在当代模具制造行业的应用三个方面进行说明: 一、RP技术的应用现状与发展趋势 快速成型(Rapid Prototyping)技术是由三维CAD模型直接驱动的快速制造任意复杂形状三维实体的总称。它集成了CAD 技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。 目前,快速成型技术已在工业造型、机械制造、航空航天、军事、建筑、影视、家电、轻工、医学、考古、文化艺术、雕刻、首饰等领域都得到了广泛应用。 RP技术虽然有其巨大的优越性,但是也有它的局限性,由于可成型材料有限,零件精度低,表面粗糙度高,原型零件的物理性能较差,成型机的价格较高,运行制作的成本高等,所以在一定程度上成为该技术的推广普及的瓶颈。从目前国内外RP 技术的研究和应用状况来看,快速成型技术的进一步研究和开发的方向主要表现在以下几个方面: (1)大力改善现行快速成型制作机的制作精度、可靠性和制作能力,提高生产效率,缩短制作周期。尤其是提高成型件的表面质量、力学和物理性能,为进一步进行模具加工

和功能试验提供平台。 (2)开发性能更好的快速成型材料。材料的性能既要利于原型加工,又要具有较好的后续加工性能,还要满足对强度和刚度等不同的要求。 (3)提高RP 系统的加工速度和开拓并行制造的工艺方法。目前即使是最快的快速成型机也难以完成象注塑和压铸成型的快速大批量生产。 (4)RPM 与CAD、CAM、CAPP、CAE 以及高精度自动测量、逆向工程的集成一体化。该项技术可以大大提高新产品的第一次投入市场就十分成功的可能性,也可以快速实现反求工程。 (5)研制新的快速成型方法和工艺。除了目前SLA、LOM、SLS、FDM 外,直接金属成型工艺将是以后的发展焦点。 二、几种常见RP工艺 1、FDM,丝状材料选择性熔覆(Fused Deposition Modeling)快速原型工艺是一种不依靠激光作为成型能源、而将各种丝材(如工程塑料ABS、聚碳酸酯PC等)加热熔化进而堆积成型方法,简称FDM。 2、SLA,光敏树脂选择性固化是采用立体雕刻(Stereolithography)原理的一种工艺,简称SLA,是最早出现的一种快速成型技术。 3、SLS,粉末材料选择性烧结(Selected Laser

相关文档
最新文档