铁蛋白在自身免疫病中的意义Ferritin in autoimmune diseases

铁蛋白在自身免疫病中的意义Ferritin in autoimmune diseases
铁蛋白在自身免疫病中的意义Ferritin in autoimmune diseases

Ferritin in autoimmune diseases

Gisele Zandman-Goddard a ,Yehuda Shoenfeld b,?,1

a

Department of Medicine C,Wolfson Medical Center,Israel

b

Department of Medicine B and The Center for Autoimmune Diseases,Sheba Medical Center;Sackler Faculty of Medicine,

Tel-Aviv University,Israel

Received 15January 2007;accepted 31January 2007

Available online 16February 2007

Abstract

Iron,an essential element for many important cellular functions in all living organisms,can catalyze the formation of potentially toxic free radicals.Excessive iron is sequestered by ferritin in a nontoxic and readily available form in a cell.Ferritin is composed of 24subunits of different proportions of two functionally distinct subunits:ferritin H and L.The expression of ferritin is under delicate control and is regulated at both the transcriptional and post-transcriptional levels by iron,cytokines,hormones,and oxidative stress.Mutations in the ferritin gene cause the hereditary hyperferritinemia-cataract syndrome and neuroferritinopathy.Hyperferritinemia is associated with inflammation,infections,and malignancies.While elevated levels of ferritin are characteristic of adult-onset Still's disease and hemophagocytic syndrome,both associated with inflammation,it has scantly been evaluated in other autoimmune diseases.In this review,we describe ferritin structure and function,hyperferritinemia in disease states and in autoimmune diseases.?2007Elsevier B.V .All rights reserved.

Keywords:Ferritin;Rheumatoid arthritis;Systemic lupus erythematosus;Multiple sclerosis;Thyroiditis;Polymyositis;Dermatomyositis

Contents 1.Introduction ..

....................................................4582.Ferritin structure....................................................4583.Ferritin regulation and function ............................................4584.Ferritin and inflammation/infection ..........................................4595.Ferritin and the immune system............................................4596.Altered ferritin levels and disease...........................................4597.Ferritin and malignancies ...............................................4598.

Hyperferritinemia in autoimmune diseases ......................................4608.1.Rheumatoid arthritis (RA).....

(460)

Autoimmunity Reviews 6(2007)457–463

https://www.360docs.net/doc/c913935093.html,/locate/autrev

?Corresponding author.Department of Medicine B and The Center for Autoimmune Diseases,Sheba Medical Center,Tel-Hashomer 52621,Israel.Tel.:+97235302652;fax:+97235352855.

E-mail address:Shoenfel@post.tau.ac.il (Y .Shoenfeld).1

Incumbent of the Laura Schwartz-Kipp Chair for Autoimmune Diseases,Tel-Aviv University,Israel.1568-9972/$-see front matter ?2007Elsevier B.V .All rights reserved.doi:10.1016/j.autrev.2007.01.016

8.2.Systemic lupus erythematosus(SLE) (460)

8.3.Multiple sclerosis(MS) (461)

8.4.Thyroiditis (461)

8.5.Polymyositis/dermatomyositis(PM/DM) (461)

9.Conclusions (461)

Take-home messages (462)

References (462)

1.Introduction

Ferritin is nature's unique and conserved approach to controlled,safe use of iron and oxygen,with protein synthesis in animals adjusted by dual,genetic DNA and mRNA sequences that selectively respond to iron or oxidant signals and link ferritin to proteins of iron, oxygen and antioxidant metabolism[1–3].

It is well established that elevated ferritin levels are found in adult Still's disease,but hyperferritinemia has been scantly investigated in other autoimmune diseases. The rationale for evaluating this protein in autoimmune diseases derives from it being an acute phase reactant (APR),and hence increased during inflammation.APRs have been found to be elevated and conducive of activity of disease,such as C-reactive protein(CRP)in rheumatoid arthritis.In SLE,other than an elevated erythrocyte sedimentation rate(ESR),APRs such as serum amyloid component P(SAP),C-reactive protein (CRP),and mannose binding lectin(MBL)are not raised,indicating a possible mechanism of antibody production that blocks their function.To investigate this hypothesis,we have previously described elevated titers of anti-SAP antibodies in44%of328SLE patients that correlated with disease activity[4].In this review we discuss ferritin and its function,altered states of ferritin leading to disease,and hyperferritinemia reported in various autoimmune diseases.

2.Ferritin structure

Ferritin is the major intracellular iron storage protein in all organisms.Ferritins share a unique protein cage structure that resembling spherical viruses that are preserved throughout species and permit storage of up to4500Fe(III)atoms.Polypeptide subunits of ferritin spontaneously fold into4helix bundles and assemble into hollow spheres with inner cavities,depending on whether there are12(mini-ferritins)or24(maxi-ferritins)subunits.When there are mini-ferritins,such as in bacteria,the catalytic site is created between2 subunits in contrast to maxi-ferritins which are pro-cessed within each subunit.Each apoferritin(iron-free ferritin)shell is assembled from24polypeptide chains of2species,the heavy subunit(H-subunit)and the light subunit(L-subunit).A single functional H gene and L gene have been identified on chromosome11q23and 19q13.3,respectively.H-ferritin plays the major role in rapid detoxification of iron and intracellular iron transport and is found in organs of low iron content including the heart and pancreas.The L-subunit is involved in iron nucleation,mineralization,and long-term storage and predominates in iron storage organs such as the liver and spleen[1,5].

3.Ferritin regulation and function

Controlling iron/oxygen chemistry in biology depends on multiple genes,regulatory messenger RNA(mRNA) structures,signaling pathways and protein catalysts. Ferritin,a protein nanocage around an iron/oxy mineral, centralizes the https://www.360docs.net/doc/c913935093.html,plementary DNA(antioxidant responsive element–/Maf recognition element—ARE/ MARE)and mRNA(iron responsive element—IRE) responses regulate ferritin synthesis rates.Maxi-ferritins concentrate iron for the bio-synthesis of iron/heme proteins,trapping oxygen;bacterial mini-ferritins,DNA protection during starvation proteins,reverse the substrate roles,destroying oxidants,trapping iron and protecting DNA[1].

The ability of cells to induce rapid ferritin synthesis prevents the effects of free radical damages to cellular components.Ferritin synthesis is regulated by intracellu-lar iron at both the transcriptional and translational levels. The translational control of ferritin synthesis is via a unique stem-loop structure,termed IRE,found in the5′untranslated region of ferritin mRNA.The IRE structure is recognized by iron-regulatory proteins(IRP1and2). Targeted deletions of IRPs in mice suggest that IRP2is the primary post-transcriptional regulator of mammalian iron metabolism in response to the iron status.This concordant regulation of transferrin receptors and ferritin is designed so a cell can obtain iron when it is needed,and sequester iron when it is in excess[1,3,5].

458G.Zandman-Goddard,Y.Shoenfeld/Autoimmunity Reviews6(2007)457–463

In addition to iron,ferritin synthesis is regulated by cytokines at various levels(transcriptional,post-tran-scriptional,and translational)during development, cellular differentiation,proliferation,and inflammation. The cellular response by cytokines to infection stimu-lates the expression of ferritin genes.Tumor necrosis factor alpha(TNFα)and interleukin-1α(IL-1α)alone or together induce the expression of the H chain of ferritin in mouse adipocytes,human muscle cells and other cell types.Translation of ferritin is induced by IL-1β,IL-6or TNFαin the HepG2hepatic cell line,and iron is required for this regulation[5].Ferritin expression is regulated by oxidative stress that acts either directly on gene expression or indirectly via modifications of IRPs activity.Expression of ferritin is also regulated by hormones,growth factors,second messengers,and hypoxia–ischemia and hyperoxia.Both oxidants and anti-oxidant response inducers regulate H-ferritin gene transcription[5].

Cytokines may also affect ferritin translation indi-rectly through their ability to induce nitric oxide synthase(iNOS)and hence increase NO.NO in turn causes the activation of both IRP1and IRP2(although effects on IRP2appear to exhibit some cell type specificity),effects that may be particularly important in inflammatory conditions.Mechanisms hypothesized to underlie NO-mediated induction of IRP binding activity include cluster disassembly(IRP1),intracellular iron chelation(IRP1and IRP2),or increased de novo synthesis(IRP2)[3].Lipopolysaccharide(LPS;endo-toxin),a component of the outer membrane of gram-negative bacteria,elicits a variety of reactions that involve ferritin[3].

Hormonal pathways are also involved in ferritin regulation.Thyroid hormone may regulate ferritin post-transcriptionally:T3modulates the activity of IRP1, affecting its ability to bind to the ferritin IRE,possibly through induction of signal transduction cascades that result in phosphorylation of IRP1.T3and TRH also induce the phosphorylation of IRP2.In addition to thyroid hormone,insulin and IGF-1have also been implicated in regulation of ferritin at the mRNA level[3].

4.Ferritin and inflammation/infection

Macrophage ferritin accumulates during inflamma-tion,when serum iron decreases and iron in specific cells increases,leading to ferritin with more iron/protein cage. Pathogen ferritins are the mini-ferritins that protect bacterial DNA when exposed to ferrous ions and hydrogen peroxide in vitro and confer cellular resistance to oxidative damage in vivo.During infection or inflammation,it is the relative“iron deficiency”created by the host redistribution of iron,with a deficit in serum and an increase in macrophages(the main stimulus for siderophore production),synthesized in response to environmental iron deficiency and associated with virulence[1].

5.Ferritin and the immune system

Ferritin has been reported to exhibit different immu-nological activities including:binding to T lymphocytes and inhibition of E-rosette formation,a concanavalin A response[6],a source for iron to catalyze oxygen radicals in the Haber–Weiss reaction,suppression of the delayed type of hypersensitivity to induce anergy[7],suppression of antibody production by B lymphocytes[8],decreasing the phagocytosis of granulocytes[9],and regulating granulomonocytopoiesis[9].

6.Altered ferritin levels and disease

Ferritin and iron homeostasis have been implicated in the pathogenesis of many diseases,including diseases involved in iron acquisition,transport and storage (primary hemochromatosis)as well as in atherosclerosis [5],Parkinson's disease[10],Alzheimer disease[11],and pulmonary disease[12].Genetic mutations of the ferritin IRE region as well as coding regions of ferritin cause some hereditary human diseases.Ferritin L IRE mutations cause the hereditary hyperferritinemia-cataract syndrome [13],which is an autosomal dominant disease character-ized by elevated ferritin levels and early-onset bilateral cataracts.Neuroferritinopathy,a dominantly inherited movement disorder characterized by decreased levels of ferritin and abnormal deposition of ferritin and iron in the brain,is caused by a mutation in the C-terminus of the ferritin L gene[14].Recently,a mutation of a hemochro-matosis associated gene(HFE),C282Y,was associated with an increased risk of coronary artery disease and cardiovascular mortality[5,15].

7.Ferritin and malignancies

Early views of the relationship between ferritin and cancer stem from work demonstrating an increase in total ferritin as well as a shift toward acidic(H-rich) ferritins in the serum of patients with various malignan-cies.However,subsequent evaluations of ferritin levels in tumor tissue itself have revealed a complex,perhaps disease-specific picture:for example,in some cases such as colon cancer,testicular seminoma,and breast cancer,

459

G.Zandman-Goddard,Y.Shoenfeld/Autoimmunity Reviews6(2007)457–463

increases in ferritin in tumor tissue versus comparable normal tissue have been reported;in other cases, including liver cancer,a decrease in ferritin is seen. New forms of ferritin may be involved in certain situations.A novel isoform of ferritin was recently described that is elevated in the serum of patients with neoplastic breast disease as well as during pregnancy and HIV infection[4].Elevated ferritin levels in the CSF indicate meningeal disease such as infection or menin-geal spread in CNS tumor disease,but cannot distin-guish between the two causes.CSF ferritin was measured in patients with benign inflammatory and non-inflammatory neurologic disorders and in patients with malignant disease with and without documented central nervous system(CNS)involvement.CSF ferritin levels were increased in the majority of patients with inflammatory neurologic disease and in patients with malignant involvement of the CNS,but not in patients with non-inflammatory neurologic disorders and in malignant disease without CNS involvement.These findings indicate that although the specificity of CSF ferritin measurement is limited,it is a highly sensitive test that may be useful in the initial evaluation of patients with malignant CNS involvement,and in assessing their response to therapy[16].

8.Hyperferritinemia in autoimmune diseases

Adult onset Still's disease(AOSD)is a systemic inflammatory disorder characterized by fever,arthritis, rash,and hyperferritinemia in89%of cases[17]. Overproduction of IL-18may contribute to the path-ogenic mechanism of AOSD,and serum sIL-2R levels may be used as a marker for monitoring disease activity in AOSD[18].Reactive hemophagocytic syndrome is not uncommon in AOSD and should be sought in a patient with AOSD with extremely elevated serum ferritin and triglyceride levels[19,20].In adult Still's disease,elevated ferritin levels are glycoylated and basic[21].

8.1.Rheumatoid arthritis(RA)

RA is an autoimmune disease involving predomi-nantly the joints,associated with inflammation and elevated cytokine production of TNFαand IL-1α. Serum levels of ferritin do not differ from those of controls,but do fluctuate within the normal range during disease activity.Elevated serum ferritin in RA patients rather reflect total stores of body iron.High concentra-tions of ferritin are found in the synovial fluid and synovial cells of RA patients[22,23].

Hyperferritinemia was reported in patients with systemic juvenile rheumatoid arthritis and correlated with disease activity and reduced steroid dosage[24].In another study,the mean ferritin was higher in the patients with RA compared to controls.There were significant correlations between serum ferritin levels and disease activity based on the disease activity DAS28 score in RA patients[25].

8.2.Systemic lupus erythematosus(SLE)

SLE is a multi-systemic autoimmune disease mani-fested by excessive autoantibody production.While a diffuse inflammatory state is obvious,APRs are not elevated,indicating abnormal function of these proteins. High concentrations of ferritin were reported in certain manifestations of lupus including in the urine of patients with nephritis[26],in the pleural fluid[6],and in the CSF of patients with meningitis[6].Four studies examined the relationship between serum ferritin levels and disease activity in patients with SLE.In one study, the relationship between serum ferritin,disease activity (utilizing the SLEDAI score),and following treatment was sought in128SLE patients compared to RA patients as controls.Serum levels of ferritin during the more active stage of SLE exceeded those of RA patients and patients at less active stages of SLE.There were no significant differences between RA patients and SLE patients with mild disease.Serum ferritin was elevated especially in serositis and hematologic manifestation.In this prospective study,changes in SLEDAI scores before and after treatment correlated significantly with serum ferritin levels and inversely to C3and C4levels [27].In a similar study,serum ferritin levels in72SLE patients were significantly higher than RA patients. There was a significant difference in ferritin levels before and after treatment.The levels of ferritin in SLE were correlated with SLEDAI scores[28].In a third study,the clinical relevance of serum levels of ferritin in SLE patients vs.controls,the correlations between such levels and clinical disease activity,anti-DNA antibody titer,and serum levels of complement were assessed. Thirty-six SLE patients were evaluated for hyperferri-tinemia,including21patients with active disease.The SLE patients exhibited higher serum levels of ferritin and lower serum levels of CRP than the RA patients. Serum levels of ferritin at the active stage of SLE exceeded those at the inactive stage.The levels of se-rum ferritin in SLE were positively correlated with the anti-DNA antibody titer and negatively correlated with CH50values[6].One study found contrasting results.The clinical history,SLEDAI,CRP and ferritin

460G.Zandman-Goddard,Y.Shoenfeld/Autoimmunity Reviews6(2007)457–463

concentrations were analysed throughout the disease course of10SLE patients.During a mean follow-up of 4.8years,10exacerbations occurred.Throughout the disease course,CRP and SLEDAI correlated positively in5patients,whereas the correlation between SLEDAI and ferritin was positive in7patients.CRP and ferritin levels remained normal during5exacerbations.From this investigation,it was concluded that despite severe disease activity,ferritin levels can remain well within the normal range,limiting its clinical usefulness as a marker for disease activity[29].

8.3.Multiple sclerosis(MS)

Over the last few years,increased evidence has supported the role of iron dysregulation in the pathogenesis of MS,as iron is essential for myelin formation and oxidative phosphorylation.MS and its animal model,experimental allergic encephalomyelitis (EAE),are autoimmune disorders resulting in demye-lination in the CNS.Data from several biochemical and pharmacological studies indicate that free radicals participate in the pathogenesis of EAE,and iron has been implicated as the catalyst leading to their formation[30].In one study,apoferritin was injected to EAE mice in order to increase plasma ferritin levels and to evaluate disease activity.Additional mice received systemic injections of iron,which induces ferritin synthesis,in order to test the effects of exogenous iron on the disease course.Although plasma levels of ferritin were found to be elevated in both apoferritin and iron-injected EAE mice,only apoferri-tin treatment resulted in a reduction in disease activity. The suppressive effects of apoferritin administration suggest that the increase in endogenous ferritin levels that have been previously observed in the CSF of chronic progressive MS patients with active disease might be functioning to limit the severity and spread of tissue damage[31].Delivery of iron to the brain traditionally has been considered the responsibility of transferring where transferrin receptors are located primarily within gray matter areas.Another report provided evidence of ferritin binding sites primarily in white matter tracts in the brain.In brain tissue from MS patients,the normal pattern of transferrin and ferritin binding distributions is disrupted.Ferritin binding is absent in the lesion itself and in the immediate periplaque region within the white matter but returns to normal as the distance from the lesion becomes greater.These data suggest loss of ferritin binding is invol-ved in or is a consequence of demyelination associated with MS[32].

One study investigated the indices of iron metabo-lism in27MS patients.Ferritin levels were significantly elevated only in chronic progressive active(CP-A) patients.Patients of the CP group had significantly higher ferritin values than the relapsing–remitting(RR) patients.Hence,the increased serum ferritin levels in nonanaemic MS patients with active disease reflect the increased iron turnover[33].In addition,ferritin levels were found to be significantly elevated in the CSF of CP-A MS patients compared to levels in normal individuals.Both ferritin and transferrin levels were elevated in patients that had high CSF IgG values but not in patients with a high IgG index.Since ferritin binds iron,the increase of CSF ferritin levels in CP MS patients could be a defense mechanism to protect against iron induced oxidative injury[34].

8.4.Thyroiditis

Hormonal pathways are involved in ferritin regula-tion.Thyroid hormone induce ferritin expression and hence hyperferritinemia could be expected in inflam-matory thyroid disease.In one study,elevated ferritin levels in patients with subacute thyroiditis correlated with disease activity and decreased following steroid therapy.These levels were higher when compared to patients with Graves'disease and Hashimoto's thyroid-itis.Elevated serum ferritin concentration significantly declined with treatment by either aspirin or prednisolone [35].

8.5.Polymyositis/dermatomyositis(PM/DM)

PM and DM are inflammatory autoimmune myopa-thies characterized by promimal muscle weakness and visceral involvement.Only one study investigated hyperferritinemia in PM/DM patients.Ferritin levels were higher in the elderly patient group compared with the younger group in79consecutive patients'char-acteristics of with polymyositis(PM)and dermatomyo-sitis(DM)[36].

9.Conclusions

Perturbations in ferritin function are not only detri-mental for iron homeostasis,but can lead to disease states by mechanisms of inflammation,infection,injury,and repair.Ferritin has been implicate in various diseases and may be important in autoimmune conditions.Hyperferri-tinemia is present in active SLE,RA,and may play a role in MS.Further investigation into the mechanisms of ferritin in this group of diseases is warranted.

461

G.Zandman-Goddard,Y.Shoenfeld/Autoimmunity Reviews6(2007)457–463

Take-home messages

?Controlling iron/oxygen chemistry in biology depends on multiple genes,regulatory messenger RNA(mRNA) structures,signaling pathways and protein catalysts.?Ferritin synthesis is regulated by cytokines(TNFαand IL-1α)at various levels(transcriptional,post-transcrip-tional,and translational)during development,cellular differentiation,proliferation,and inflammation.The cellular response by cytokines to infection stimulates the expression of ferritin genes.

?Ferritin has been reported to exhibit different immuno-logical activities including binding to T lymphocytes, suppression of the delayed type of hypersensitivity, suppression of antibody production by B lymphocytes, and decreased phagocytosis of granulocytes.?Ferritin and iron homeostasis have been implicated in the pathogenesis of many diseases,including diseases involved in iron acquisition,transport and storage (primary hemochromatosis)as well as in atheroscle-rosis,Parkinson's disease,Alzheimer disease,and restless leg syndrome.

?Mutations in the ferritin gene cause the heredi-tary hyperferritinemia-cataract syndrome and neuroferritinopathy.

?Hyperferritinemia is associated with inflammation, infections,and malignancies.

?Thyroid hormone,insulin and insulin growth factor-1 have also been implicated in regulation of ferritin at the mRNA level.

?Hyperferritinemia in SLE correlates with disease activity.

?Some evidence points to the importance of hyperfer-ritinemia in RA,MS,and thyroiditis,but further investigations are required including revelation of mechanisms.

References

[1]Hintze KJ,Theil EC.Cellular regulation and molecular interac-

tions of the ferritins.Cell Mol Life Sci2006;63:591–600. [2]Pantopoulos K.Iron metabolism and the IRE/IRP regulatory

system:an update.Ann NY Acad Sci2004;1012:1–13.

[3]Torti FM,Torti SV.Regulation of ferritin genes and protein.

Blood2002;99:3505–16.

[4]Zandman-Goddard G,Blank M,Langevitz P,Slutsky L,Pras M,

Levy Y,et al.Anti-serum amyloid component P antibodies in patients with systemic lupus erythematosus correlate with disease activity.Ann Rheum Dis2005;64:1698–702.

[5]You SA,Wang Q.Ferritin in atherosclerosis.Clin Chim Acta

2005;357:1–16.

[6]Nishiya K,Hashimoto K.Elevation of serum ferritin levels as a

marker for active systemic lupus erythematosus.Clin Exp Rheumatol1997;15:39–44.

[7]Morikawa K,Oseko F,Morikawa S.H and L-rich ferritins

suppress antibody production,but not proliferation of human B lymphocytes in vitro.Blood1994;83:737–43.

[8]Hann HWL,Stahlhut MW,Lee S,London WT,Hann RS.Effects

of isoferritins on human granulocytes.Cancer1989;63:2492–6.

[9]Broxmeyer HE,Bognacki J,Dorner MH,De Sousa M.

Identification of leukemia-associated inhibitory activity as acidic isoferritins.A regulatory role for acidic isoferritins in the production of granulocytes and macrophages.J Exp Med 1981;153:1426–44.

[10]Linert W,Jameson GNL.Redox reactions of neurotransmitters

possibly involved in the progression of Parkinson's disease.

J Inorg Biochem2000;79:319–26.

[11]Kondo T,Shirasawa T,Itoyama Y,Mori H.Embryonic genes

expressed in Alzheimer's disease.Neurosci Lett1996;209: 157–60.

[12]Ryan TP,Krzesicki RF,Blakeman DP,Chin JE,Griffins RL,

Ruchards IM,et al.Pulmonary ferritin:differential effects of hyperoxic lung injury on subunit mRNA levels.Free Radic Biol Med1997;22:901–8.

[13]Beaumont C,Leneuve P,Devaux I,Scoazec JY,Berthier M,

Loiseau MN,et al.Mutation in the iron responsive element of the L ferritin mRNA in a family with dominant hyperferritinemia and cataract.Nat Genet1995;11:444–6.

[14]Curtis ARJ,Fey C,Morris CM,Bindoff LA,Chinnery Ince PG,

et al.Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease.Nat Genet 2001;28:350–4.

[15]Rasmussen ML,Folsom AR,Catellier DJ,Tsai MY,Garg U,

Eckfeldt JH.A prospective study of coronary heart disease and the hemochromatosis gene(HFE)C282Y mutation:the Athero-sclerosis Risk in Communities(ARIC)study.Atherosclerosis 2001;154:739–46.

[16]Zandman-Goddard G,Matzner Y,Konijn AM,Hershko C.

Cerebrospinal fluid ferritin in malignant CNS involvement.

Cancer1986;58:1346–9.

[17]Uppal SS,Al-Mutairi M,Hayat S,Abraham M,Malayiya A.

Ten years of clinical experience with adult onset Still's disease: is the outcome improving?Clin Rheumatol2006[epub ahead of print].

[18]Choi JH,Suh CH,Lee YM,Suh YJ,Lee SK,Kim SS,et al.

Serum cytokine profiles in patients with adult onset Still's disease.J Rheumatol2003;30:2422–7.

[19]Arlet JB,le TH,Marinho A,Amoura Z,Wechsler B,Papo T,

Piette JC.Reactive haemophagocytic syndrome in adult-onset Still's disease:a report of six patients and a review of the literature.Ann Rheum Dis2006;65:1596–601.

[20]Coffernils M,Soupart A,Pradier O,Feremans W,Neve P,

Decaux G.Hyperferritinemia in adult-onset Still's disease and the hemophagocytic syndrome.J Rheumatol1992;19:1425–7.

[21]van-Reeth C,Moel GL,Lasne Y,Revenant MC,Agneray J,Kahn

MF,et al.Serum ferritin and isoferritins are tools for diagnosis of active adult Still's disease.J Rheumatol1994;21:890–5. [22]Blake DR,Bacon PA,Eastham EJ,Brigham K.Synovial fluid

ferritin in rheumatoid arthritis.Br Med J1980;281:715–6. [23]Muirden KD.Ferritin in synovial cells in patients with

rheumatoid arthritis.Ann Rheum Dis1966;25:387–401. [24]Pelkonen P,Swanjung K,Siimes MA.Ferritinemia as an

indicator of systemic disease activity in children with systemic juvenile rheumatoid arthritis.Acta Paediatr Scand1986;75:64–8.

[25]Yildirim K,Karatay S,Melikoglu MA,Gureser G,Ugur M,

Senel K.Associations between acute phase reactant levels and

462G.Zandman-Goddard,Y.Shoenfeld/Autoimmunity Reviews6(2007)457–463

disease activity score (DAS28)in patients with rheumatoid arthritis.Ann Clin Lab Sci 2004;34:423–6.

[26]Nishiya K,Kawabata F,Ota Z.Elevated urinary ferritin in lupus nephritis.J Rheumatol 1989;16:1513–4.

[27]

Lim MK,Lee CK,Ju YS,Cho YS,Lee MS,Yoo B,et al.Serum ferritin as a serological marker of activity in systemic lupus erythematosus.Rheumatol Int 2001;20:89–93.

[28]

Beyan E,Beyan C,Demirezer A,Ertugrul E,Uzuner A.The relationship between serum ferritin levels and disease activity in systemic lupus erythematosus.Scand J Rheumatol 2003;32:225–8.

[29]

Hesselink DA,Aarden LA,Swak AJG.Profiles of the acute-phase reactants C-reactive protein and ferritin related to the disease course of patients with systemic lupus erythematosus.Scand J Rheumatol 2003;32:151–5.

[30]

Levine SM,Chakrabarty A.The role of iron in the pathogenesis of experimental allergic encephalomyelitis and multiple sclero-sis.Ann NY Acad Sci 2004;1012:252–66.

[31]

LeVine SM,Maiti S,Emerson MR,Pedchenko TV .Apoferritin attenuates experimental allergic encephalomyelitis in SJL mice.Dev Neurosci 2002;24:177–83.

[32]Hulet SW,Powers S,Connor JR.Distribution of transferring and

ferritin binding in normal and multiple sclerotic human brains.J Neurol Sci 1999;165:48–55.

[33]Sfagos C,Makis AC,Chaidos A,Hatzimichael EC,Dalamaga A,

Kosma K,et al.Serum ferritin,transferrin and soluble transferring receptor levels in multiple sclerosis patients.Mult Scler 2005;11:272–5.

[34]LeVine SM,Lynch SG,Ou CN,Wulser MJ,Tam E,Boo N.

Ferritin,transferring and iron concentrations in the cerebrospinal fluid of multiple sclerosis patients.Brain Res 1999;821:511–5.[35]Sakata S,Nagai K,Maekawa H,Kimata Y ,Komaki T,Nakamura

S,et al.Serum ferritin concentration in subacute thyroiditis.Metabolism 1991;40:683–8.

[36]Marie I,Hatron PY ,Levesque H,Hachulla E,Hellot MF,

Michon-Pasturel U,et al.Influence of age on characteristic of polymyositis and dermatomyositis in adults.Medicine (Balti-more)1999;78:139–47.

Anti-gp210and anti-centromere antibodies are different risk factors for the progression of primary biliary cirrhosis.

The predictive role of antinuclear antibodies (ANAs)remains elusive in the long-term outcome of primary biliary cirrhosis (PBC).Here,Nakamura M.et.al.(Hepatology 2007;45:118-27)evaluated the progression of PBC in association with ANAs using stepwise Cox proportional hazard regression and an unconditional stepwise logistic regression model based on the data of 276biopsy-proven,definite PBC patients who have been registered to be the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ).When death of hepatic failure/liver transplantation (LT)was defined as an end-point,positive anti-gp210antibodies (Hazard ratio (HR)=6.742,95%confidence interval (CI):2.408,18.877),the late stage (Scheuer's stage 3,4)(HR =4.285,95%CI:682,10.913)and male sex (HR =3.266,95%CI:1.321,8.075)were significant risk factors at the time of initial liver biopsy.When clinical progression to death of hepatic failure/LT (i.e.,hepatic failure type progression)or to the development of esophageal varices or hepatocellular carcinoma without developing jaundice (i.e.,portal hypertension type progression)was defined as an end-point in the early stage (Scheuer's stage 1,2)PBC patients,positive anti-gp-210antibodies was significant risk factor for hepatic failure type progression,whereas positive anti-centromere antibodies was a significant risk factor for portal hypertension type progression.Histologically,positive anti-gp-210antibodies were most significantly associated with more severe interface hepatitis and lobular inflammation,whereas positive anti-centromere antibodies were most significantly associated with more severe ductular reaction.These results indicate two different progression types in PBC,hepatic failure type and portal hypertension type progression,which may be represented by positive-anti-gp210and positive-anti-centromere antibodies,respectively.

463

G.Zandman-Goddard,Y.Shoenfeld /Autoimmunity Reviews 6(2007)457–463

免疫球蛋白五项的临床意义资料

检验通讯: 免疫球蛋白五项 免疫球蛋白五项指的是IgA、IgG、IgM、补体C3和C4。其浓度在不同年龄段有差异。在某些疾病情况下,这些指标的浓度将出现升高或降低,从而具有疾病诊断的价值。 IgG 在正常情况下,脐血IgG含量为7.6~17gL;血IgG含量新生儿为7.0~14.8 gL,0.5~6个月为3~10.0 gL,6个月~2岁为5~12 gL,2~6岁为5~13gL,6~12岁为7~16.5gL,12~16岁为7~15.5gL,成人为6~16gL。患慢性肝病、亚急性或慢性感染、结缔组织疾病、IgG骨髓瘤、无症状性单克隆IgG病等,会出现IgG增高;在遗传性或获得性抗体缺乏症、混合性免疫缺陷综合征、选择性IgG缺乏症、蛋白丢失性肠病、肾病综合症、强直性肌营养不良、免疫抑制剂治疗等情况下,会出现IgG降低。 IgA 在正常情况下脐血IgA含量为0~50mgL; 血内IgA含量新生儿为0~22mgL,0.5~6个月为3~820mgL,7个月~2岁为140~1080 mgL,2~6岁为230~1900mgL,6~12岁为290~2700mgL,12~16岁为810~ 2320mgL,成人为760~3900mgL。在慢性肝病,亚急性或慢性感染性疾病(如结核、真菌感染等)、自身免疫性疾病(如SLE、类风湿关节炎)、囊性纤维化、家族性嗜中性粒细胞减少症、乳腺癌、IgA肾病、IgA骨髓瘤等情况下,IgA 会增高;在遗传性或获得性抗体缺乏症、免疫缺陷病、选择性IgA缺乏症、无γ-球蛋白血症、蛋白丢失性肠病、烧伤、抗IgA抗体综合症、免疫抑制剂治疗、妊娠后期等情况下,IgA会降低。 IgM 在正常情况下,脐血IgM含量为40~240mgL,血内IgM含量新生儿为50~300mgL,0.5~6个月为150~1090mgL,6个月~2岁为430~ 2390mgL,2~6岁为500~1990mgL,6~12岁为500~2600mgL,12~16岁为450~2400mgL,成人为400~3450mgL。在胎儿宫内感染、新生儿TORC H综合症、慢性或亚急性感染、疟疾、传染性单核细胞增多症、支原体肺炎、肝病、结缔组织疾病、巨球蛋白血症,无症状性单克隆IgM病等情况下,IgM会增高;在遗传性或获得性抗体缺乏症、混合性免疫缺陷综合症、选择性IgM缺乏症、蛋白丢失性肠病、烧伤、抗Ig抗体综合症(混合性冷球蛋白血症)、免疫抑制等情况下,IgM会降低。 补体C3和C4正常情况下,人血内C3(β1C-球蛋白)含量为800~1550mgL,C4(β1E-球蛋白)含量为130~370mgL。血液补体含量与活度在许多病理情况下都会发生变化。所以,临床上应动态观察补体水平的变化。补体含量下降并不一定代表免疫功能障或免疫缺陷,因为在缺血、凝固性坏死和中毒性坏死时,组织能释放较多的蛋白分解酶,导致补体溶血活度和补体分组下降。一般血补体浓度升高见于各种炎症性疾病、阻塞性黄疸、急性心肌梗死、溃疡性结肠炎、糖尿病、急性痛风、急性甲状腺炎、急性风湿热、皮肌炎、多发性肌炎、混合性结缔组织病、结节性动脉周围炎等。

铁蛋白结构与功能

铁蛋白结构与功能 摘要:铁元素是生物体中的半微量元素,铁元素子生物体内的平衡对生物体的健康有着很重要的作用,而作为可以调节体内铁元素平衡的铁蛋白很早就出现在学者的研究中。铁蛋白不仅直接在人体内发挥作用,也通过植物食物的铁元素积累影响着人类的健康,所以通过阅读了几篇文献后,简单概括一下目前对铁蛋白的结构和功能的研究情况。 关键词:铁蛋白结构功能 铁是生物体很重要的一种半微量元素,对生物体的健康有着极为重要的作用,铁在动物体内参与造血、运输氧气、免疫和防御等生理过程,在植物体内则参与叶绿素的形成,但是铁含量超标则会造成消化功能紊乱、生长受阻等。所以,维持生物体体内铁含量平衡至关重要。铁蛋白是生物体内的铁贮藏蛋白质,起着调节生物体铁平衡的作用。 目前,在动物、植物和微生物体内都对铁蛋白进行了大量研究[1],除了对其基因[2]、结构和功能做了大量研究之外,也在不断探索研究铁蛋白的方法[3]、铁蛋白的新作用[4-5]以及铁蛋白的作用方法等6-7]。由于铁元素在生物体内的重要作用和植物性食物的铁含量很低,甚至在某些地区有缺铁现象的发生,为了提高植物食物中的铁含量,有学者已经开始了通过转基因技术,将豌豆铁蛋白基因专人水稻[8-9]。

虽然铁蛋白对动物和植物都很重要,但是无论是存在分布、结构和功能上,动物和植物体内的铁蛋白都不同[10]。与动物铁蛋白相比,植物铁蛋白具有两个显着的特点:首先,植物铁蛋白在其N端具有一个独特的EP 肽段;其次,植物铁蛋白只含有H型亚基,且有两种不同的H型亚基组成。 1.铁蛋白的结构 铁蛋白分子通常由24个亚基形成一个中空的球状蛋白质外壳,内径通常为7~8nm,外径为12~13nm,厚度为2~。每个球状铁蛋白分子大约有4500个三价铁原子储存在其中。每两个铁蛋白亚基反向平行形成一组,再由这十二组亚基对构成一个近似正八面体,成4-3-2重轴对称的球状分子 (图1)。每个铁蛋白亚基外形成空心的柱状(长约5nm,直径约,且由一个两两成反向平行的4个α螺旋簇 (A、B和C、D)、C末端第五个较短α螺旋(E)以及N末端的伸展肽段 (EP) 构成。B和C螺旋之间由一段含18个氨基酸的BC环连接,E螺旋位于4α螺旋簇的尾端并与之成60° 夹角 (图2)。每个铁蛋白分子形成12个二重轴通道、8个三重轴通道和6个四重轴通道,这些通道被认为是铁蛋白内部与外部离子出入铁蛋白的必经之路,起着联系铁蛋白内部空腔与外部环境的作用。

自身免疫性疾病(专业知识值得参考借鉴)

本文极具参考价值,如若有用请打赏支持我们!不胜感激! 自身免疫性疾病(专业知识值得参考借鉴) 一概述自身免疫性疾病是指机体对自身抗原发生免疫反应而导致自身组织损害所引起的疾病。许多疾病相继被列为自身免疫性疾病,值得提出的是,自身抗体的存在与自身免疫性疾病并非两个等同的概念,自身抗体可存在于无自身免疫性疾病的正常人特别是老年人,如抗甲状腺球蛋白抗体、甲状腺上皮细胞抗体、胃壁细胞抗体、细胞核DNA抗体等。有时,受损或抗原性发生变化的组织可激发自身抗体的产生,如心肌缺血时,坏死的心肌可导致抗心肌自身抗体形成,但此抗体并无致病作用,是一种继发性免疫反应。 二病因1.自身抗原的出现 (1)隐蔽抗原的释放。 (2)自身抗原发生改变。 2.免疫调节异常 (1)多克隆刺激剂的旁路活化。 (2)Th1和Th2细胞功能失衡。 3.交叉抗原 (1)柯萨奇病毒→糖尿病。 (2)链球菌感染→急性肾小球肾炎,风湿性心脏病。 4.遗传因素。 三临床表现1.器官特异性自身免疫病 组织器官的病理损害和功能障碍仅限于抗体或致敏淋巴细胞所针对的某一器官。主要有慢性淋巴细胞性甲状腺炎、甲状腺功能亢进、胰岛素依赖型糖尿病、重症肌无力、溃疡性结肠炎、恶性贫血伴慢性萎缩性胃炎、肺出血肾炎综合征、寻常天疱疮、类天疱疮、原发性胆汁性肝硬化、多发性脑脊髓硬化症、急性特发性多神经炎等,其中常见者将分别于各系统疾病中叙述。 2.系统性自身免疫病 由于抗原抗体复合物广泛沉积于血管壁等原因导致全身多器官损害,称系统性自身免疫病。习惯上又称之为胶原病或结缔组织病,这是由于免疫损伤导致血管壁及间质的纤维素样坏死性炎症及随后产生多器官的胶原纤维增生所致。事实上无论从超微结构及生化代谢看,胶原纤维大多并无原发

(整理)免疫球蛋白检测的临床意义

免疫球蛋白检测的临床意义 免疫球蛋白IgG检测临床意义: 生理性变化:胎儿出生前可从母体获得IgG,在孕期22-28周间,胎儿血IgG浓度与母体血IgG浓度相等,出生后母体IgG逐渐减少,到第3、4月胎儿血IgG降至最低,随后胎儿逐渐开始合成IgG,血清IgG逐渐增加,到16岁前达到成人水平。 病理性变化: (1)IgG增高:IgG增高是再次免疫应签的标志。常见于各种慢性感染、慢性肝病、胶原血管病、淋巴瘤以及自身免疫性疾病如系统性红斑狼疮、类风湿关节炎;单纯性IgG增高主要见于免疫增殖性疾病,如IgG型分泌型多发性骨髓瘤等。 (2)IgG降低:见于各种先天性和获得性体液免疫缺陷病、联合免疫缺陷病、重链病、轻链病、肾病综合征、病毒感染及服用免疫抑制剂的患者。还可见于代谢性疾病,如甲状腺功能亢进和肌营养不良也可有血IgG浓度降低。 正常参考值:7.0-16.6g/L. 免疫球蛋白IgA检测临床意义: 生理性变化:儿童的IgA水平比成人低,且随年龄的增加而增加,到16岁前达成人水平。 病理性变化: (1)IgA增高:见于IgA型多发性骨髓瘤、系统性红斑狼疮、类风湿性关节炎、肝硬化、湿疹和肾脏疾病等;在中毒性肝损伤时,IgA浓度与炎症程度相关。 (2)IgA降低:见于反复呼吸道感染、非IgA型多发性骨髓瘤、重链病、轻链病、原发性和继发性免疫缺陷病、自身免疫性疾病和代谢性疾病(如:甲状腺功能亢进、肌营养不良)等。 正常参考值:0.7-3.5g/L. 免疫球蛋白IgM检测临床意义: 生理性变化:从孕20周起,胎儿自身可合成在量IgM,胎儿和新生儿IgM浓度是成人水平的10%,随年龄的增加而增高,8-16岁前达成人水平。 病理性变化:

贫血三项检测及临床意义

叶酸检测及临床意义叶酸是由喋呤啶、对氨基苯甲酸和谷氨酸等组成的化合物,是一种水溶性B族维生素。叶酸对人体的重要营养作用早在1948年即已得到证实,人类(或其他动物)如缺乏叶酸可引起巨幼红细胞性贫血以及叶酸检测及临床意义叶酸是由喋呤啶、对氨基苯甲酸和谷氨酸等组成的化合物,是一种水溶性B族维生素。叶酸对人体的重要营养作用早在1948年即已得到证实,人类(或其他动物)如缺乏叶酸可引起巨幼红细胞性贫血以及白细胞减少症,还会导致身体无力、易怒、没胃口以及精神病症状。此外,研究还发现,叶酸对孕妇尤其重要。如在怀孕头3个月内缺乏叶酸,可导致胎儿神经管发育缺陷,从而增加裂脑儿,无脑儿的发生率。其次,孕妇经常补充叶酸,可防止新生儿体重过轻、早产以及婴儿腭裂(兔唇)等先天性畸形。叶酸缺乏时,脱氧胸苷酸,嘌呤核苷酸的形式及氨基酸的互变受阻,细胞内DNA合成减少,细胞的分裂成熟发生障碍,引起巨幼红细胞性贫血。维生素B12和叶酸缺乏的临床表现基本相似,都可引起巨幼红细胞性贫血、白细胞和血小板减少,以及消化道症状如食欲减退、腹胀、腹泻及舌炎等,以舌炎最为突出,舌质红、舌乳头萎缩、表面光滑,俗称“牛肉舌”,伴疼痛。维生素B12缺乏时常伴神经系统表现,如乏力、手足麻木、感觉障碍、行走困难等周围神经炎、亚急性或慢性脊髓后侧索联合变性表现,后者多见于恶性贫血,小儿和老年患者常出现精神症状,如无欲、嗜睡或精神错乱。叶酸缺乏可引起情感改变,补充叶酸即可消失。孕妇缺乏叶酸,可使先兆子痫、胎盘剥离的发生率增高,患有巨幼红细胞贫血的孕妇易出现胎儿宫内发育迟缓、早产及新生儿低出生体重。怀孕早期缺乏叶酸,还易引起胎儿神经管畸形(如脊柱裂、无脑畸形等)。叶酸缺乏可引起高同型

免疫球蛋白五项的临床意义

检验通讯 : 免疫球蛋白五项 免疫球蛋白五项指的是IgA、IgG、IgM、补体C3和C4其浓度在不同年龄段有差异。在某些疾病情况下,这些指标的浓度将出现升高或降低,从而具有疾病诊断的价值。 IgG在正常情况下,脐血IgG含量为7.6?17gL;血IgG含量新生儿为 7.0?14.8 gL , 0.5?6个月为3?10.0 gL , 6个月?2岁为5?12 gL , 2?6岁为5?13gL, 6?12岁为7?16.5gL , 12?16岁为7?15.5gL,成人为6?16gL。患慢性肝病、亚急性或慢性感染、结缔组织疾病、IgG骨髓瘤、无症状性单克隆 IgG病等,会出现IgG增高;在遗传性或获得性抗体缺乏症、混合性免疫缺陷综合征、选择性IgG 缺乏症、蛋白丢失性肠病、肾病综合症、强直性肌营养不良、免疫抑制剂治疗等情况下,会出现 IgG 降低。 IgA 在正常情况下脐血IgA含量为0?50mgL;血内IgA含量新生儿为 0?22mgL 0.5?6个月为3?820mgL 7个月?2岁为140?1080 mgL, 2?6岁为 230?1900mgL 6?12 岁为290?2700mgL 12?16 岁为810?2320mgL 成人为760?3900mgL 在慢性肝病,亚急性或慢性感染性疾病(如结核、真菌感染等)、自身免疫性疾病(如SLE类风湿关节炎)、囊性纤维化、家族性嗜中性粒细胞减少症、乳腺癌、IgA肾病、IgA骨髓瘤等情况下,IgA会增高;在遗传性或获得性抗体缺乏症、免疫缺陷病、选择性IgA缺乏症、无丫-球蛋白血症、 蛋白丢失性肠病、烧伤、抗IgA 抗体综合症、免疫抑制剂治疗、妊娠后期等情况下,IgA会降低。 IgM在正常情况下,脐血IgM含量为40?240mgL血内IgM含量新生儿为 50? 300mgL 0.5?6个月为150?1090mgL 6个月?2岁为430?2390mgL 2? 6岁为 500?1990mgL 6 ?12岁为 500?2600mgL 12?16岁为 450?2400mgL 成人为400?3450mgL 在胎儿宫内感染、新生儿TORCH综合症、慢性或亚急性感染、疟疾、传染性单核细胞增多症、支原体肺炎、肝病、结缔组织疾病、巨球蛋白血症无症状性单克隆 IgM 病等情况下 IgM 会增高;在遗传性或获得性抗体缺乏症、混合性免疫缺陷综合症、选择性IgM缺乏症、蛋白丢失性肠病、烧伤、抗Ig抗体综合症(混合性冷球蛋白血症)、免疫抑制等情况下,IgM会降低。 补体C3和C4正常情况下,人血内C3(B 1C—球蛋白)含量为800? 1550mgL C4 (B 1E—球蛋白)含量为130?370mgL血液补体含量与活度在许多病理情况下都会发生变化。所以临床上应动态观察补体水平的变化。补体含量下降并不一定代表免疫功能障或免疫缺陷因为在缺血、凝固性坏死和中毒性坏死时组织能释放较多的蛋白分解酶导致补体溶血活度和补体分组下降。一般血补体浓度升高见于各种炎症性疾病、阻塞性黄疸、急性心肌梗死、溃疡性结肠炎、糖尿病、急性痛风、急性甲状腺炎、急性风湿热、皮肌炎、多发性肌炎、混合性结缔组织病、结节性动脉周围炎等。 收费价格:30 元/项,共计 150元。每天检测。

血清铁总铁结合力测定的临床意义

血清铁(IRON)、总铁结合力(TIBC)测定的临床意义 人体内含铁量为4克左右,其中三分之二存在于红血球的血红蛋白当中,其余三分之一储备在肝、脾和骨髓中。血清中的铁离子全部与转铁蛋白结合,是铁离子的运输形式,称为血清铁(IRON或Fe)。通常血清中内有三分之一转铁蛋白结合,其余转铁蛋白结合铁的潜力称为不饱和铁结合力(UIBC)。血清转铁蛋白结合最大铁量称为总铁结合力(TIBC)它等于血清铁与不饱和铁结合之和。 一、血清铁(IRON或Fe) 正常参考值:-μmol/l 成人男子-μmol/l 成人女子-μmol/l 儿童-μmol/l 老人-μmol/l 临床意义: 1、血清铁增高:红细胞破坏增多,如溶血性贫血;红细胞再生成熟障碍性疾病,如再生障 碍性贫血,巨幼红细胞性贫血等;铁的利用率减低,如铅中毒或维生素B6缺乏引起的造血功能减退;贮存铁释放增加,如急性肝细胞损害、坏死性肝炎等;铁的吸收率增加,如血色素沉着症、含铁血黄素沉着症、反复输血或铁剂治疗。 2、血清铁降低:机体摄取不足,如营养不良、胃肠道病、慢性腹泻等;失铁增加,如失血; 生理成长所需补充不足,如妊娠、婴儿生长期;铁释放减少,如急性玫慢性感染、尿毒症等;某些药物治疗所致。 二、血清总铁结合力(TIBC)正常参考值:—μmol/l 临床意义: 1、血清总铁结合力增高:转铁蛋白合成增加,如缺铁性贫血;转铁蛋白释放增加,如肝细 胞坏死。 2、血清总铁结合力降低:转铁蛋白丢失,如肾病、尿毒症等;转铁蛋白合成不足,如遗传 性转铁蛋白缺乏症。 三、未饱和铁结合力(UIBC) 正常参考值:-μmol/l 参考下图可助说明:

β2-微球蛋白临床意义

2013年检验科开展新技术、新项目 β2-微球蛋白临床意义 β2-MG是一种低分子蛋白质,其分子量为11800,是由100个氨基酸残基组成的一条多肽链,易被肾小球滤过。β2-MG从肾小球滤过后,其中99.9%的部分由近曲小管以胞饮方式摄取,转运到溶解体降解为氨基酸,所以滤过的β2-MG 并不回到血循环中。正常人血中β2-MG含量极微,且合成和分泌非常稳定。血中β2-MG反映肾脏的滤过功能,是判断肾脏早期受损敏感而特异的指标。β2-MG 是检查肾功能的一种方法,估计肾小球滤过率(GFR)较SCr敏感,可以早期判断肾脏受损。临床上检测血或尿中的β2-MG浓度为临床肾功能测定、肾移植成活、糖尿病肾病、重金属镉、汞中毒以及某些恶性肿瘤的临床诊断提供较早、可靠和灵敏的指标。脑脊液中β2-MG的检测对脑膜白血病的诊断有特别的意义。 1、评价肾功血β2-MG是反映肾小球滤过功能的灵敏指标,各种原发性或继发性肾小球病变如累及肾小球滤过功能,均可致血β2-MG升高。 (1)长期糖尿病引起肾小球动脉硬化,使肾小球滤过机能下降,从而导致血β2-MG增高,动态地观察糖尿病人血清β2-MG变化对于早期糖尿病性肾病的诊断、治疗及预后有极其重要的意义。 (2)血清β2-MG含量随原发性高血压患者的病程增长而增加,其原因可能是肾小动脉硬化的数量增多,致使肾小球滤过明显降低,肾小管重吸收功能障碍所致,因此,高血压患者检测血清β2-MG有利于发现早期轻度肾功能损害程度。 (3)长期血液透析病人血β2-MG升高与淀粉样变、淀粉骨关节病及腕综合征的发生相关。 (4)血β2-MG有助于动态观察、诊断早期肾移植排斥反应。 2、诊断恶性肿瘤 (1)血β2-MG是以淋巴细胞增殖性疾病的主要标志物,如多发性骨髓瘤、慢性淋巴性白血病等,血β2-MG浓度明显增加。 (2)可用于评价骨髓瘤的预后及治疗效果 3、评估自身免疫性疾病的活动程度 自身免疫性疾病时血β2-MG增高,尤其是系统性红斑狼疮(SLE)活动期。50%类风湿关节炎患者血β2-MG升高,并且和关节受累数目呈正相关。目前认为测定血β2-MG可用于评估自身免疫性疾病的活动程度,并可作为观察药物疗效的指标。 其他:病毒感染,如人巨细胞病毒、EB病毒、乙肝或丙肝病毒及HIV感染时,血β2-MG可增高。 4、收费及应用 1、β2-MG价格20元; 2、设在肾功Ⅱ

血清铁蛋白

约占体内贮存铁的1/3,而血循环中的铁蛋白又被肝细胞清除,所以肝病时可造成血清铁蛋白升高。另外恶性肿瘤细胞合成铁蛋白量增加,所以铁蛋白也是恶性肿瘤的标志物之一。 临床意义: 铁蛋白升高:原因是铁蛋白的来源增加或存在清除障碍。如患肝癌、肺癌、胰癌、白血病等时,癌细胞合成的铁蛋白增加,使血清铁蛋白升高。患肝病时肝细胞受损功能下降,使血清铁蛋白升高。 铁蛋白降低:缺铁性贫血、失血、长期腹泻造成的铁吸收障碍等。参考值: M (男)15-20μg/LF(女)12-150μg/L注:因试剂及方法不规范,各实验室要有自己的参考值。 血清铁蛋白(SF)测定意义 1.血清铁蛋白降低见于: ⑴缺铁性贫血,具有早期诊断价值。 ⑵营养不良、严重慢性疾病体内贮存铁减少导致的继发性贫血。 2.血清铁蛋白增高见于: ⑴体内铁贮存过多,如长期接受输血和不恰当的铁剂治疗; ⑵恶性肿瘤; ⑶急性感染和炎症; ⑷肝脏疾病如肝硬化、肝坏死和心肌梗死等。 3.红细胞体积分布宽度(RDW)意义 1.根据MCV、RDW值可将贫血分为6种: ⑴小细胞均一性贫血:MCV减小,RDW正常,如轻型珠蛋白生成障碍性贫 血。 ⑵小细胞不均一性贫血:MCV减小,RDW增大,如缺铁性贫血 ⑶正细胞均一性贫血:MCV、RDW均正常,如各种慢性疾病所致的贫血。 ⑷正细胞不均一性贫血:MCV正常,RDW增大,如早期缺铁性贫血、营养 性贫血。 ⑸大细胞均一性贫血:MCV增大,RDW正常,如再生障碍性贫血。 ⑹大细胞不均一性贫血:MCV、RDW均增大,如巨幼红细胞性贫血。 2.用于缺铁性贫血治疗时的观察。缺铁性贫血RDW值增大,当给予铁剂 治疗有效时, RDW值可一过性进一步增大,随后再逐渐降到正常。 4.血小板比容(PCT)意义 1. 血小板比容增高见于:骨髓纤维化、脾切除、慢性粒细胞性白血病等; 2. 血小板比容降低见于:再生障碍性贫血、血小板减少症、化疗后等。 5.平均血小板体积(MPV)意义 1.平均血小板体积增大见于:骨髓纤维化、原发性血小板减少性紫癜、血栓性疾病、脾切除、慢性粒细胞性白血病、巨血小板综合征、镰刀细胞性贫血等。 2.平均血小板体积减小见于:再生障碍性贫血、巨幼细胞性贫血、脾亢、化疗后等。 6.血小板体积分布宽度(PDW)意义 1.血小板体积分布宽度增大见于:巨幼红细胞性贫血、慢性粒细胞性白血

β2微球蛋白临床意义

β2—微球蛋白(β2-MG)临床意义 临床上检测血或尿中的β 2-MG 浓度为临床肾功能测定、肾移植成活、糖尿病肾病、重金属镉、汞中毒以及某些恶性肿瘤的临床诊断提供较早、可靠和灵敏的指标。脑脊液中β 2-MG 的检测对脑膜白血病的诊断有特别的意义。 血β 2-MG 检测的临床意义 1 、肾功能是影响血β 2-MG 浓度的最主要因素,用血β 2-MG 估测肾功能。 ( 1 )血β 2-MG 是反映肾小球滤过功能的灵敏指标,各种原发性或继发性肾小球病变如累及肾小球滤过功能,均可致血β 2-MG 升高。 ( 2 )血β 2-MG 是反映高血压病和糖尿病肾功能受损的敏感指标。 ( 3 )长期血液透析病人血β 2-MG 升高与淀粉样变、淀粉骨关节病及腕综合征的发生相关。 ( 4 )血β 2-MG 有助于动态观察、诊断早期肾移植排斥反应。 2 、恶性肿瘤时的血β 2-MG 。 ( 1 )血β 2-MG 是以淋巴细胞增殖性疾病的主要标志物,如多发性骨髓瘤、慢性淋巴性白血病等,血β 2-MG 浓度明显增加。 ( 2 )可用于评价骨髓瘤的预后及治疗效果。 3 、病毒感染,如人巨细胞病毒、 EB 病毒、乙肝或丙肝病毒及 HIV 感染时,血β 2-MG 可增高。 4 、自身免疫性疾病时血β 2-MG 增高,尤其是系统性红斑狼疮( SLE )活动期。 50% 类风湿关节炎患者血β 2-MG 升高,并且和关节受累数目呈正相关。目前认为测定血β 2-MG 可用于评估自身免疫性疾病的活动程度,并可作为观察药物疗效的指标。 尿β 2-MG 检测的临床意义 尿β 2-MG 浓度主要与肾小管功能有关。 1 、检测尿β 2-MG 是诊断近曲小管损害敏感而特异的方法。当近曲小管轻度受损时,尿β 2-MG 明显增加,且与肾小管重吸收率呈正相关。 2 、尿蛋白 / 尿β 2-MG 比值有助于鉴别肾小球或肾小管病变。单纯肾小球病变时,尿蛋白 / 尿β 2-MG 比值大于 300 ;单纯肾小管病变时,比值小于 10 ;混合性病变时,其比值介于两者之间。 3 、用于鉴别上、下尿路感染。上尿路感染时,尿液β 2-MG 浓度明显增加;而下尿路感染时,则基本正常。 4 、用于判断肾移植的排斥反应。肾移植无排斥反应者,尿β 2-MG 浓度常无明显增高;当出现急性排斥反应,在排斥前数天即见尿β 2-MG 明显增加,在排斥高危期,连续测定有一定预示价值。 5 、糖尿病、高血压病人早期尿β 2-MG 与其肾功能损害程度显著相关。 6 、恶性肿瘤、自身免疫性疾病肾损害时,尿中β 2-MG 明显增高。 7 、重金属中毒肾损害的流行病调查,尿β 2-MG 可用为筛选试验。

铁蛋白测定方法及临床意义

铁蛋白测定方法及临床意义 铁蛋白广泛分布于人体组织细胞内和体液中。是一种贮铁蛋白质。1972年Addison等人建立血清铁蛋白放射免疫测定方法后,相继对外周血细胞及体液中铁蛋白也能测定。其定义为机体内一种贮存铁的可溶组织蛋白,正常人血清中含有少量铁蛋白,但不同的检测法有不同的正常值,一般正常均值男性约80- 130ug/L(80-130ng/ml)女性约35-55ug/L (35-55ng/ml),血清铁水平在妊娠期 及急性贫血时降低,急慢性肝脏损害和肝癌时升高,国内报道肝癌患者阳性率高达90%。 一、铁蛋白的分子结构和功能 铁蛋白分子量为450000,由24个多肽亚单位组成一个中间空心的球形蛋白质。其外壳即为去铁铁蛋白。中空核心部分是贮存铁胶体分子团(羟基磷酸化高铁)的地,核心中铁原子含量不等。平均2000个,最多可达4500个。去铁铁蛋白可摄取Fe++,经其6个通道进入核心,氧化成Fe+++沉积下来,铁原子释放时要经还原剂的作用。铁本身又可刺激去铁铁蛋白的合成。 铁蛋白存在于体内各组织和细胞,特别在肝、脾、骨髓中含量高,脑组织中也含有,外周血细胞包括红细胞、白细胞和血小板都含有铁蛋白。不同组织来源的铁蛋白有明显的异质性。人体的铁蛋白达20种以上。总称为异铁蛋白(isoferritin).它由两种不同的亚单位(L和H).按不同比例构成,L和H亚单位的分子量和所带电荷量不同,前者分子量为19000.后者为21000,心型铁蛋白为酸性铁蛋白,主要由H亚单位组成,等电点4.8~5.2.与心肌铁蛋白抗体结合力强;脾型铁蛋白为碱性铁蛋白,主要由L亚单位组成。等电点5.3~5.8, 与睥铁蛋白抗体结合力强:肾铁蛋白介于两者之闻。碱性铁蛋白存在于正常成人肝细胞厦肝、脾、骨髓等网状内皮细胞中。酸性铁蛋白见于正常成人心肌,肾,胰及胎肝中。血清铁蛋白主要由网状内皮系统的吞噬细胞释放出来。由碱性铁蛋白和微量酸性铁蛋白所组成。在血循环中半寿期为27~30小时。为肝实质细胞所清除。正常人外周血细饱内铁蛋白含量甚微,红细咆内铁蛋白台量碱性铁蛋白为0.025fg/细胞。酸性铁蛋白比前者高10倍;白细胞碱性铁蛋白;多形核粒 细胞6.6fg/细胞,淋巴细胞为8.0fg/细胞单核细胞含量最高为54.6fg/细胞。血小板中含量甚微。 铁蛋白的生理功能:(1)作为铁的贮存库用于血红蛋白合成:(2)将铁保存在中空的球形蛋白内,防止细胞内游离铁过多而产生有害作用。成熟红细胞内铁蛋白是幼红细胞铁蛋白残留下来的。其碱性铁蛋白和持存有关,酸性铁蛋白则起铁转运作用。 二、血清铁蛋白测定 (一)血清铁蛋白(SF)测定方法有多种,如放射免疫双抗体法,放射免疫标记抗体法,碱性磷酸酶或辣根过氧化酶标记抗体酶联免疫法及直接乳胶凝集法。

冷球蛋白检测的临床意义

冷球蛋白检测的临床意义 冷球蛋白(cryoglobulin,CG)是指血清中的一种病理性蛋白质,该蛋白在4℃不溶解,在30℃易于聚合,而在37℃时又溶解。冷球蛋白分为3 型:I 型为单克隆冷球蛋白,由IgM、IgG、IgA 或本-周蛋白组成,占25%;Ⅱ型,混合冷球蛋白,由单克隆Ig与自身IgG组成,分为Ig M-IgG、IgG-IgG 、IgA-IgG,占25%;Ⅲ型,混合多克隆冷球蛋白,Ig M-IgG、IgM-IgG-IgA ,占50%。冷球蛋白血症可存在于许多临床疾病中,其病理作用尚不完全清楚。混合型冷球蛋白可固定补体,易引起炎症,其作用类似于免疫复合物引起的炎症。冷球蛋白阳性可见于15%~35%的系统性红斑狼疮患者,周围血管损害以及肢端青紫患者,部分患者可无症状。通常单克隆型冷球蛋白引起大血管损害,而混合型多引起皮肤和肾脏等小血管损害,常见的症状包括皮肤紫癜、坏死、溃疡、寒冷性荨麻疹、雷诺现象、关节痛、感觉麻木、肌力减退等,肾脏可有肾小球损害的表现,深部血管受累可有肝脾肿大、肝功能异常、腹痛等。检测冷球蛋白的方法有二:一种是定性方法,即红细胞比积管法,一种是定量法,为分光光度计法。 参考值:阴性(红细胞比积管法);<80 mg/L(分光光度计法)。 临床意义 Ⅰ型冷球蛋白血症见于骨髓瘤、淋巴瘤、原发性冷球蛋白血症、慢性淋巴细胞性白血病;Ⅱ型冷球蛋白血症见于类风湿关节炎、干燥综合征、血管炎、淋巴增殖性疾病;Ⅲ型冷球蛋白血症见于系统性红斑狼疮、类风湿关节炎、干燥综合征、传染性单细胞增多症、巨细胞病毒感染、急性病毒性肝炎、链球菌感染后肾炎、原发性胆汁肝硬化、慢性活动性肝炎、麻风、黑热病等

铁代谢指标检测临床意义修订稿

铁代谢指标检测临床意 义 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

一、铁的代谢 (1)铁的来源 铁的正常来源为食物以及衰老的红细胞中释放的铁。铁在整个消化道均可被吸收,但主要部位是十二指肠及空肠上段。铁是以二价离子的形式被吸收的。(2)铁在生物体内转运 吸收入血的Fe2+→经铜蓝蛋白氧化为Fe3+→与血浆中的转铁蛋白结合,才被转运到各组织中去。 (3)铁在体内的分布 铁在人体的分布很广,以肝脾组织含量最高,在人体内可分为两类:一是功能铁,包括血红蛋白、肌红蛋白、少量含铁酶及转运蛋白中所含的铁。另一类是贮存铁,包括铁蛋白及含铁血黄素。 (4)铁的排泄 正常人排铁量很少,主要通过肾脏、粪便、和汗腺排泄,另外女性月经期、哺乳期也将丢失部分铁。 二、铁代谢检测指标 ?未饱和铁=总铁结合力—血清铁 ?转铁饱和度=血清铁/总铁结合力 (1)血清铁 概念:即与转铁蛋白结合的铁,其含量不仅取决于血清中铁的含量,还受转铁蛋白的影响。 临床意义: 血清铁增高: 1.红细胞破坏增多,如溶血性贫血; 2.红细胞再生成熟障碍性疾病,如再生障碍性贫血,巨幼红细胞性贫血等; 3.铁的利用率减低,如铅中毒或维生素B6缺乏引起的造血功能减退; 4.贮存铁释放增加,如急性肝细胞损害、坏死性肝炎等; 5.铁的吸收率增加,如血色素沉着症、含铁血黄素沉着症、反复输血或铁剂治疗。 血清铁增高: 1.红细胞破坏增多,如溶血性贫血; 2.红细胞再生成熟障碍性疾病,如再生障碍性贫血,巨幼红细胞性贫血等; 3.铁的利用率减低,如铅中毒或维生素B6缺乏引起的造血功能减退; 4.贮存铁释放增加,如急性肝细胞损害、坏死性肝炎等; 5.铁的吸收率增加,如血色素沉着症、含铁血黄素沉着症、反复输血或铁剂治疗。 (2)转铁蛋白(TRF): 概念:是血浆中主要的含铁蛋白质,负责运载由消化道吸收的铁和由红细胞降解释放的铁。体内仅有1/3的转铁蛋白呈饱和状态。每分子转铁蛋白可与2个Fe3+结合。转铁蛋白主要在肝脏中合成。

免疫缺陷病与自身免疫病

第八章免疫缺陷病与自身免疫病 第一节免疫缺陷病 免疫系统中任何一个成分的缺失或功能不全而导致免疫功能障碍所引起的疾病,称免疫缺陷病(immunodeficiency disease, IDD) 。 免疫缺陷病按机体免疫系统是否发育成熟分为原发性( 或先天性) 免疫缺陷病(primary immunodeficiency disease, PIDD) 和继发性( 或获得性) 免疫缺陷病(secondary immunodeficiency disease, SIDD) 。原发性免疫缺陷病是由于机体的免疫系统存在遗传缺陷或发育异常,导致免疫细胞和/ 或免疫分子的数量减少、功能异常而引起的永久性免疫功能缺陷。继发性免疫缺陷病是由于感染、衰老、肿瘤和药物等原因抑制了机体成熟的免疫系统的功能表达所致。临床上继发性免疫缺陷病远较原发性免疫缺陷病多见。 免疫缺陷病的共同特点是:①对各种病原体的易感性增加。患者可出现严重的、持续的反复感染。一般体液免疫缺陷、吞噬细胞缺陷、补体缺陷者易发生化脓性细菌感染,而细胞免疫缺陷者易发生病毒、真菌、胞内寄生菌和原虫等细胞内感染。②易发生恶性肿瘤。尤其是细胞免疫缺陷病患者,恶性肿瘤的发病率比同龄正常人群高100~300 倍。③易并发自身免疫病。免疫缺陷病患者并发自身免疫病的概率可高达14% ,以并发系统性红斑狼疮、类风湿性关节炎较多见。④遗传倾向性。原发性免疫缺陷病大多有遗传倾向,其中1/3 为常染色体隐性遗传,1/5 为X 性联隐性遗传。 一、原发性免疫缺陷病 原发性免疫缺陷病是一种罕见病,多发生于婴幼儿。其中,体液免疫缺陷约占50% ,联合免疫缺陷约占20% ,细胞免疫缺陷约占18% ,吞噬细胞缺陷约占10% ,补体缺陷约占2%( 表9-1) 。 表9-1 原发性免疫缺陷病

常见的自身免疫性疾病

常见的自身免疫性疾病 常见的自身免疫性疾病自身免疫性疾病是指机体对自 身抗原发生免疫反应而导致自身组织损害所引起的疾病。许多疾病相继被列为自身免疫性疾病,值得提出的是,自身抗体的存在与自身免疫性疾病并非两个等同的概念,自身抗体可存在于无自身免疫性疾病的正常人特别是老年人,如抗甲状腺球蛋白抗体、甲状腺上皮细胞抗体、胃壁细胞抗体、细胞核DNA抗体等。有时,受损或抗原性发生变化的组织可激发自身抗体的产生,如心肌缺血时,坏死的心肌可导致抗心肌自身抗体形成,但此抗体并无致病作用,是一种继发性免疫反应。病因1.自身抗原的出现(1)隐蔽抗原的释放。(2)自身抗原发生改变。2.免疫调节异常(1)多克隆刺激剂的旁路活化。(2)Th1和Th2细胞功能失衡。3.交叉抗原(1)柯萨奇病毒→糖尿病。(2)链球菌感染→急性肾小球肾炎,风湿性心脏病。4.遗传因素。(1)DR3个体易患重症肌无力(2)DR4与类风湿有关(3)B27与强直性脊柱炎(4)DR2与肺出血肺炎综合症有关。 常见自身免疫病主要临床表现一、自身免疫性溶血性贫血(AIHA):机体免疫功能异常,或服用某些药物后,红细胞表面抗原性发生变化,产生抗红细胞膜表面抗原的自身抗体。自身抗体与自身抗原结合,激活补体,破坏红细胞,导

致贫血。特点:(1)体内出现抗红细胞自身抗体。(2)抗人球蛋白试验(Coombstest)阳性。(3)红细胞寿命缩短。(4)AIHA多见于中年女性。(5)继发性者多继发于淋巴系统恶性病、结缔组织病、感染和药物应用后。(6)引起AIHA的药物有青霉素、奎尼丁、异烟肼、对氨基水杨酸、磺胺类、甲基多巴等。抗红细胞抗体可分为三类:①温抗体,为IgG 型,37°C可与RBC结合,不聚集RBC.②冷凝集素,为IgG 型,低温时与RBC结合使其凝集,引起冷凝集素综合征。 ③DonathLaidsteiner抗体,为IgG型,低温时与两种补体成分结合,温度升高至37°C时,激活补体链,导致溶血,引起陈发性冷性血红蛋白尿症(PCH)。PCH继发于梅毒或病毒感染后。病毒感染后引起的多见于儿童或年轻患者。二、免疫性血小板减少性紫癜(ITP):主要表现为皮肤黏膜紫癜,血小板↓,骨髓中巨核细胞可增多,女性多发,发病率1/lOO00,患者有抗血小板抗体,其使血小板寿命缩短。三、重症肌无力(MG): 患者体内存在神经肌肉接头乙酰胆碱受体的自身抗体,该抗体结合到横纹肌细胞的乙酰胆碱受体上,使之内化并降解,使肌细胞对运动神经元释放的乙酰胆碱的反应性降低。引起骨骼肌运动无力。 四、肺出血肾炎综合征(Goodpasture综合征): 患者体内可检到抗肾小球基底膜Ⅳ型胶原抗体,由于肺泡基

铁代谢指标检测临床意义

一、铁的代谢 (1)铁的来源 铁的正常来源为食物以及衰老的红细胞中释放的铁。铁在整个消化道均可被吸收, 但主要部位是十二指肠及空肠上段。铁是以二价离子的形式被吸收的。 (2)铁在生物体内转运 吸收入血的Fe2+→经铜蓝蛋白氧化为Fe3+→与血浆中的转铁蛋白结合,才被转运到 各组织中去。 (3)铁在体内的分布 铁在人体的分布很广,以肝脾组织含量最高,在人体内可分为两类:一是功能铁,包 括血红蛋白、肌红蛋白、少量含铁酶及转运蛋白中所含的铁。另一类是贮存铁,包括铁蛋 白及含铁血黄素。 (4)铁的排泄 正常人排铁量很少,主要通过肾脏、粪便、和汗腺排泄,另外女性月经期、哺乳期也将丢失部分铁。 二、铁代谢检测指标 ?未饱和铁=总铁结合力—血清铁 ?转铁饱和度=血清铁/总铁结合力 (1)血清铁 概念:即与转铁蛋白结合的铁,其含量不仅取决于血清中铁的含量,还受转铁蛋白的影响。临床意义: 血清铁增高: 1.红细胞破坏增多,如溶血性贫血; 2.红细胞再生成熟障碍性疾病,如再生障碍性贫血,巨幼红细胞性贫血等; 3.铁的利用率减低,如铅中毒或维生素B6缺乏引起的造血功能减退; 4.贮存铁释放增加,如急性肝细胞损害、坏死性肝炎等; 5.铁的吸收率增加,如血色素沉着症、含铁血黄素沉着症、反复输血或铁剂治疗。 血清铁增高: 1.红细胞破坏增多,如溶血性贫血; 2.红细胞再生成熟障碍性疾病,如再生障碍性贫血,巨幼红细胞性贫血等; 3.铁的利用率减低,如铅中毒或维生素B6缺乏引起的造血功能减退; 4.贮存铁释放增加,如急性肝细胞损害、坏死性肝炎等; 5.铁的吸收率增加,如血色素沉着症、含铁血黄素沉着症、反复输血或铁剂治疗。 (2)转铁蛋白(TRF): 概念:是血浆中主要的含铁蛋白质,负责运载由消化道吸收的铁和由红细胞降解释放的铁。体内仅有1/3的转铁蛋白呈饱和状态。每分子转铁蛋白可与2个Fe3+结合。转铁蛋白主要在肝脏中合成。 临床意义: 1.血浆中TRF水平可用于贫血的诊断和对治疗的监测。在缺铁性的低血色素贫血中TRF 的水平增高(由于其合成增加),但其铁的饱和度很低(正常值在30%-38%)。相反,如 果贫血是由于红细胞对铁的利用障碍(如再生障碍性贫血),则血浆中TRF正常或低下, 但铁的饱和度增高。在铁负荷过量时,TRF水平正常,但铁饱和度可超过50%,甚至达90% 。 2.妊娠及口服避孕药或雌激素注射可使血浆TRF升高。

最新自身免疫性疾病概述电子教案

自身免疫性疾病 Autoimmunity Diseases 一概述 (一)自身免疫性疾病的概念: 自身免疫性疾病——是免疫系统对宿主自身抗原发生正性应答、造成其组织或器官的病理性损伤、影响其生理功能、并最终导致各种临床症状的状态。(二)自身免疫性疾病的基本特征: 1.多数自身免疫病是自发或特发性的,感染、药物等外因可能有一定的影响;2.患者血清中有高水平的γ-球蛋白; 3.患者血液中有高效价的自身抗体或出现与自身抗原反应的致敏淋巴细胞;4.病损部位有变性的免疫球蛋白沉积,呈现以大量淋巴细胞和浆细胞浸润为主的慢性炎症; 5.病程一般较长,发作与缓解交替出现,仅有少数为自限性; 6.女性多于男性,老年多于青少年; 7.有遗传倾向; 8.应用肾上腺皮质激素等免疫抑制剂有效; 9.常有其它自身免疫病同时存在; 10.可复制出相似的动物疾病模型。 (三)确认自身免疫性疾病的条件: 1.证实自身抗体或自身反应性T细胞的存在; 2.找到自身抗原; 3.用该自身抗原免疫动物能够诱发同样的自身免疫病; 4.通过被动转移实验证实抗体或者T细胞的致病能力。 (四)自身免疫性疾病的分类: 1. 器官特异性自身免疫病:局限某特定器官,器官特异性抗原引起的免疫应答导 致自身免疫病。 2. 非器官特异性自身免疫病:病变见于多种器官及结缔组织;又称结缔组织病或 胶原病。 二、自身免疫性疾病发病的相关因素

(一)自身抗原的出现:1. 隐蔽抗原的释放。2. 自身抗原改变。 3. 分子模拟。 4. 决定基扩展。 (二)免疫系统异常 1. 淋巴细胞多克隆的非特异性活化: (1)内因:淋巴细胞生长控制机制紊乱,如MRL-lpr小鼠为SLE的动物模型,其FAS基因突变,FAS蛋白胞浆区无信号转导作用,不能诱导T细胞调亡。 (2)外因:各种淋巴细胞的活化物质,如IL-2等细胞因子的应用及LPS和超抗原的作用。 2.辅助刺激因子表达异常: APC辅助刺激因子表达异常,刺激自身反应性T细胞,引发自身免疫病。T-B 细胞之间的旁路活化。 原因(1)病毒感染B细胞。 (2)来自细菌或病毒的超抗原。 (3)B细胞表面的MHC-II分子被修饰。 (三)免疫调节网络失调:Th1和Th2细胞功能紊乱:Th1细胞功能亢进促进器官特异性自身免疫病的发展,如 IDDM等。Th2细胞功能亢进促进抗体介导的全身性自身免疫病发展,如SLE等。 (四)病源微生物感染。 三. 自身免疫性疾病免疫损伤机制 1.发病机制主要为:Ⅱ型、Ⅲ型、Ⅳ型超敏反应。 2.特点:1. 靶分子的多样性;2. 反应细胞的多样性 ; 3. 自身免疫应答包括初次应 答和再次应答。 3. 自身抗体引起的细胞破坏: 抗体与细胞结合激活补体、调理吞噬、介导ADCC破坏 细胞。如自身免疫性溶血性贫血、药物过敏性血细胞减少症。 4. 抗受体抗体与受体结合:刺激或阻断细胞的功能。如Graves 病、重症肌无力。 5. 抗细胞外成分自身抗体与相应的物质结合: 激活补体、调理吞噬作用杀伤破坏自 身细胞。如肺出血肾炎综合征。 6. 自身抗体与自身抗原形成IC沉积局部: 活化补体引起组织、细胞损伤。如系统性 红斑狼疮、类风湿性关节炎。

β微球蛋白临床意义

β2—微球蛋白(β2-M G)临床意义 临床上检测血或尿中的β 2-MG 浓度为临床肾功能测定、肾移植成活、糖尿病肾病、重金属镉、汞中毒以及某些恶性肿瘤的临床诊断提供较早、可靠和灵敏的指标。脑脊液中β 2-MG 的检测对脑膜白血病的诊断有特别的意义。 血β 2-MG 检测的临床意义 1 、肾功能是影响血β 2-MG 浓度的最主要因素,用血β 2-MG 估测肾功能。 ( 1 )血β 2-MG 是反映肾小球滤过功能的灵敏指标,各种原发性或继发性肾小球病变如累及肾小球滤过功能,均可致血β 2-MG 升高。 β 2-MG 浓度明显 β 2-MG 升 1 、检测尿β 2-MG 是诊断近曲小管损害敏感而特异的方法。当近曲小管轻度受损时,尿β 2-MG 明显增加,且与肾小管重吸收率呈正相关。 2 、尿蛋白/ 尿β 2-MG 比值有助于鉴别肾小球或肾小管病变。单纯肾小球病变时,尿蛋白/ 尿β 2-MG 比值大于300 ;单纯肾小管病变时,比值小于10 ;混合性病变时,其比值介于两者之间。 3 、用于鉴别上、下尿路感染。上尿路感染时,尿液β 2-MG 浓度明显增加;而下尿路感染时,则基本正常。 4 、用于判断肾移植的排斥反应。肾移植无排斥反应者,尿β 2-MG 浓度常无明显增高;当出现急性排斥反应,在排斥前数天即见尿β 2-MG 明显增加,在排斥高危期,连续测定有一定预示价值。

5 、糖尿病、高血压病人早期尿β 2-MG 与其肾功能损害程度显著相关。 6 、恶性肿瘤、自身免疫性疾病肾损害时,尿中β 2-MG 明显增高。 7 、重金属中毒肾损害的流行病调查,尿β 2-MG 可用为筛选试验。 解,不再返流入血。正常人B2微球蛋白的合成速度和细胞膜释放的量是非常恒定的,从而使B2微球蛋白含量保持稳定水平。而许多疾病,肝炎、肾炎、类风湿关节炎,以及恶性肿瘤、免疫性疾病等,均可使血B2微球蛋白升高。 血和尿B2微球蛋白的意义如下: 1、血β2-微球蛋白升高而尿β2-微球蛋白正常,主要由于肾小球滤过功能下降,常见于急、慢性肾炎,肾功能衰竭等。

最新β微球蛋白临床意义(精品收藏)

错误!未定义书签。β2-微球蛋白(β2-MG)临床意义 临床上检测血或尿中的β 2—MG浓度为临床肾功能测定、肾移植成活、糖尿病肾病、重金属镉、汞中毒以及某些恶性肿瘤的临床诊断提供较早、可靠和灵敏的指标。脑脊液中β 2-MG的检测对脑膜白血病的诊断有特别的意义. 血β 2-MG检测的临床意义?1、肾功能是影响血β2—MG 浓度的最主要因素,用血β2-MG估测肾功能. ( 1 )血β2—MG 是反映肾小球滤过功能的灵敏指标,各种原发性或继发性肾小球病变如累及肾小球滤过功能,均可致血β 2-MG 升高. ?( 2 )血β 2-MG 是反映高血压病和糖尿病肾功能受损的敏感指标. ?( 3 )长期血液透析病人血β 2-MG 升高与淀粉样变、淀粉骨关节病及腕综合征的发生相关。?( 4 )血β 2-MG 有助于动态观察、诊断早期肾移植排斥反应。 2 、恶性肿瘤时的血β 2-MG。 ( 1)血β 2-MG是以淋巴细胞增殖性疾病的主要标志物,如多发性骨髓瘤、慢性淋巴性白血病等,血β 2-MG 浓度明显增加。?( 2 )可用于评价骨髓瘤的预后及治疗效果。 3 、病毒感染,如人巨细胞病毒、 EB 病毒、乙肝或丙肝病毒及HIV 感染时,血β 2-MG 可增高. 4 、自身免疫性疾病时血β 2-MG 增高,尤其是系统性红斑狼疮( SLE )活动期. 50%类风湿关节炎患者血β2—MG 升高,并且和关节受累数目呈正相关.目前认为测定血β 2-MG 可用于评估自身免疫性疾病的活动程度,并可作为观察药物疗效的指标. ?尿β 2-MG 检测的临床意义?尿β 2-MG浓度主要与肾小管功能有关。

? 1 、检测尿β 2-MG 是诊断近曲小管损害敏感而特异的方法。当近曲小管轻度受损时,尿β 2—MG明显增加,且与肾小管重吸收率呈正相关。 2 、尿蛋白/ 尿β 2-MG比值有助于鉴别肾小球或肾小管病变。单纯肾小球病变时,尿蛋白/ 尿β 2—MG 比值大于 300;单纯肾小管病变时,比值小于10 ;混合性病变时,其比值介于两者之间。?3、用于鉴别上、下尿路感染。上尿路感染时,尿液β 2-MG 浓度明显增加;而下尿路感染时,则基本正常。?4、用于判断肾移植的排斥反应。肾移植无排斥反应者,尿β2—MG 浓度常无明显增高;当出现急性排斥反应,在排斥前数天即见尿β2—MG 明显增加,在排斥高危期,连续测定有一定预示价值。 5、糖尿病、高血压病人早期尿β 2—MG 与其肾功能损害程度显著相关。 6 、恶性肿瘤、自身免疫性疾病肾损害时,尿中β 2—MG 明显增高. 7 、重金属中毒肾损害的流行病调查,尿β 2-MG 可用为筛选试验。 B2微球蛋白的基本信息说明 B2微球蛋白是一种内源性低分子量血清蛋白质, 由淋巴细胞和其它大多数的有核细胞分泌。它存 在于尿、血浆、脑脊液及淋巴细胞、多核中性粒 细胞及血小板的表面,量极微。血清B2微球蛋白

相关文档
最新文档