文丘里流量计

文丘里流量计
文丘里流量计

文丘里流量计原理

新一代差压式流量测量仪表,其基本测量原理是以能量守恒定律——伯努力方程和流动连续性方程为基础的流量测量方法。内文丘里管由一圆形测量管和置入测量管内并与测量管同轴的特型芯体所构成。特型芯体的径向外表面具有与经典文丘里管内表面相似的几何廓形,并与测量管内表面之间构成一个异径环形过流缝隙。流体流经内文丘里管的节流过程同流体流经经典文丘里管、环形孔板的节流过程基本相似。内文丘里管的这种结构特点,使之在使用过程中不存在类似孔板节流件的锐缘磨蚀与积污问题,并能对节流前管内流体速度分布梯度及可能存在的各种非轴对称速度分布进行有效的流动调整(整流),从而实现了高精确度与高稳定性的流量测量。

经典式文丘里的优缺点

(1)精度:如果能完全按照ASME标准精确制造,测量精度也可以达到 0.5%, 但是国产文丘里由于其制造技术问题, 精度很难保证, 国内老资格的技术力量雄厚的开封仪表厂也只能保证4% 测量精度,该厂具有国家级大流量实验室,具有研究生产的整体技术队伍,其他一些近年来发展起来的仅仅具有机械加工能力的仪表厂,生产的文丘里测量精度更难保证。

(2)国产经典式文丘里缺点1:仅仅适用于洁净的气体和液体测量, 这是由于它的取压结构所决定, 经典式文丘里负压取压侧是经过一个均压环取压,容易堵塞。

(3)对于超超临界发电的工况,这种喉管处的均压环在高温高压下使用是一个很危险的环节,不采用均压环,就不符合ASNE ISO5167标准,测量精度就无法保证,这是高压经典式文丘里制造中的一个矛盾。

经典式文丘里的缺点2: 喉管和进口/出口一样材质,流体对喉管的冲刷和磨损

严重,无法保证长期测量精度。

经典式文丘里的缺点3: 结构长度必须按ISO-5167规定制造, 否则就达不到所需精度, 例如, 出口压力恢复段锥角必须小于15o, 这就使得整体长度很长,

占用很大安装空间.

经典式文丘里的缺点4: 由于ISO-5167对经典文丘里的严格结构规定, 使得它的流量测量范围最大/最小流量比很小, 一般在 3 – 5 之间. 很难满足流量变化幅度大的流量测量.

文丘里流量计实验实验报告

文丘里流量计实验实验报告 实验日期:2011.12.22 一、实验目的: 1、学会使用测压管与U 型压差计的测量原理; 2、掌握文丘里流量计测量流量的方法和原理; 3、掌握文丘里流量计测定流量系数的方法。 二、实验原理: 流体流径文丘里管时,根据连续性方程和伯努利方程 Q vA =(常数) H g v p z =++22 γ(常数) 得不计阻力作用时的文丘里管过水能力关系式(1、2断面) h K p z p z g d d d Q ?=?????????? ??+-???? ? ?+???? ??-=γγπ221141222214 1 由于阻力的存在,实际通过的流量Q '恒小于Q 。引入一无量纲系数Q Q '=μ(μ称为流量系数),对计算所得的流量值进行修正。 h K Q Q ?=='μμ h K Q ?' =μ 在实验中,测得流量Q '和测压管水头差h ?,即可求得流量系数μ,μ一般在0.92~0.99之间。 上式中 K —仪器常数 g d d d K 214 141222???? ??-=π h ?—两断面测压管水头差 ??? ? ??+-???? ??+=?γγ2211p z p z h h ?用气—水多管压差计或电测仪测得,气—水多管压差计测量原理如下图所示。

1h ? 2h ? H 3 1H 2H 1z 2z 气—水多管压差计原理图 根据流体静力学方程 γγ22231311 p H h H h H H p = +?-+?--- 得 221121H h h H p p -?+?++=γγ 则 )()(222211212211γγγγp z H h h H p z p z p z +--?+?+++=??? ? ??+-???? ?? + 212211)()(h h H z H z ?+?++-+= 由图可知 )()(4321h h h h h -+-=? 式中,1h 、2h 、3h 、4h 分别为各测压管的液面读数。 三、实验数据记录及整理计算(附表) 文丘里流量计实验装置台号:2 d1=1.4cm d2=0.7cm 水温t=13.1℃ v=0.01226cm 2/s 水箱液面标尺值▽0=38cm 管轴线高程标尺值▽=35.7cm 实验数据记录表见附表 四、成果分析及小结: 经计算 K=17.60cm 2.5/s u=1.064 由实验计算结果看各组数据的相差较大,可以判断实验的精密度不高,实验 与理论值有偏差。误差来源主要有实验测量值的不准确,人为造成的主管因素较大。 五、问题讨论: 为什么计算流量Q 理论与实际流量Q 实际不相等? 答:因为实际流体在流动过程中受到阻力作用、有能量损失(或水头损失),而计算流量是假设流体没有阻力时计算得到的,所以计算流量恒大于实际流量。

常用流量计的选型与比较

常用流量计的选型与比较 由于商业用户的种类庞杂,不同企业的燃气用量都大小不一,因此需要根据企业的不同的情况合理的选用燃气计量表,以达到准确计量和节约成本的目的。目前计量燃气用户的燃气计量表主要包括涡轮流量计、超声波流量计、腰轮(罗茨)流量计、膜式流量计这4种,下面从这4种计量表各自的特点分析商业用户燃气计量表的选用。一.涡轮流量计 涡轮流量计属于间接式体积流量计,当气体流过管道式,依靠气体的动能推动透平叶轮作旋转运动,其转动速度与管道的流量成正比,是一种速度式流量计。 涡轮流量计由涡轮流量变速器(传感器)、前置放大器、流量显示积算仪组成,并可将数据远传到上位流量计算机。 气体涡轮流量计具有结构紧凑、精度高、重复性好、量程比宽、反应迅速、压力损失小等优点,但轴承耐磨性及其安装要求较高。涡轮流量计始动流量比较大,在一些单一的用气设备如燃气锅炉、燃气空调等大流量用气设备中。涡轮流量计有着量程范围大、计量精度很高、可以计量大流量燃气(可以达到6000m3/h 以上)等优点,国产的涡轮流量计价格也比较合理。但是在使用涡轮流量计的时候必须要求始动流量也要大,当用气设备小流量的使用燃气对其精度有很大的影响。且涡轮流量计必须有足够长度的前后直管段,以及带温压补

偿的体积修正仪。 主要适用于液化石油气及天然气的计量上,因此,大多运用在工矿企业的炉、窑等热负荷相对恒定的用气设备上。 二.超声波流量计 超声波流量计是通过检测流体流动对超声束(或超声脉冲)的作用,测量体积流量的速度式测量仪表,天然气超声波流量计的测量原理是传播时间差法。在测量管内安装一组超声波传感器;同时测量彼此之间的声波到达时间。 由于是全电子式,无机械部分,不受机械磨损、故障影响,产品的可靠性和精度进步很多。体积小、重量轻,重复性好,压损小,不易老化,使用寿命长;智能化,全电子式的结构,可以扩展为预支费表或无线抄表功能。特殊功能是微小流量可测,有管道泄漏感知功能,压力损失为零。 主要特点:1.能实现双向流束的测量; 2.过程参数(压力,温度等)不影响测量结果; 3.无接触测量系统,流量计量过程无压力损失; 4.可精确测量脉动流; 5.重复性好,速度误差≤5mm/s; 6.量程比很宽,qmin/qmax=1/40~1/60; 7.可不考虑整流,只在上游100mm,下游50mm余留安装间隙即可;

罗斯蒙特流量计选型

罗斯蒙特流量计选型 流量计在选型时要充分考虑各方面的因素,以保证应用。为帮助大家解决流量计如何选型的问题,特汇总了以下内容,以供参考。 在流量计如何选型的问题中,不同种类的流量计选型方法和参照因素也不相同,要根据其具体的作用和性能来参考选择。 1.电磁流量计选型 测量各种酸、碱、盐等腐蚀液体;各种易燃,易爆介质;各种工业污水,纸浆,泥浆等。电磁流量计不能用于测量气体、蒸气以及含有大量气体的液体.不能用来测量电导率很低的液体介质,不能测量高温高压流体。 2.涡街流量计选型(旋涡流量计) 涡街流量计,主要用于工业管道介质流体的流量测量,如气体、液体、蒸气等多种介质。其特点是压力损失小,量程范围大,精度高,在测量工况体积流量时几乎不受流体密度、压力、温度、粘度等参数的影响。 来源关键词:罗斯蒙特流量计选型流量计如何选型 ⒊浮子流量计选型(转子流量计) 它可以用来测量液体、气体、以及蒸汽的流量,特别适宜低流速小流量的介质流量测量。⒋科氏力质量流量计选型 质量流量计广泛应用于石化等领域,是当今世界上的流量测量仪表之一, ⒌热式(气体)质量流量计选型 适合单一气体和固定比例多组份气体的测量。 ⒍超声波流量计选型 目前我国只能用于测量200℃以下的流体。强腐蚀性、非导电性、放射性及易燃易爆介质的流量测量问题。 ⒎涡轮流量计选型 涡轮流量计广泛应用于以下一些测量对象:石油、有机液体、无机液、液化气、天然气、煤气和低温流体等。 流量计选型不可能做到十全十美,因为.每种型式都有它特有的优缺点,只能根据不同的测量方式和结构,要求不同的测量操作、使用方法和使用条件来选择安生可靠

又经济耐用的型式。 流量计选型之前要做好以下准备工作: 1、测流体的名称、特性(腐蚀性、粘稠度、磨损性等) 2、工作流量(正常流量、流量、小流量) 3、工作压力(、小工作压力),如果有负压形成要特别注意 4、工作温度(温度、温度) 5、流体的电导率,要求必须具备一定的导电性,电导率≥5μS/cm 6、安装地点 7、供电方式 8、工艺管道尺寸 9、与中控室之间的通讯方式

流量计性能测试实验(DOC)

中南大学 仪器与自动检测实验报告 冶金科学与工程院系冶金专业班级 姓名学号同组者同班同学 实验日期2013 年 4 月 08 日指导教师 实验名称:流量计性能测试实验 一、实验目的 1.掌握流量计性能测试的一般实验方法; 2.了解倒U型压差计的使用方法; 3.应用体积法,测定孔板流量计、文丘里流量计的标定曲线; 4.验证孔板流量计、文丘里流量计的孔流系数C0与雷诺数Re的关系曲线。 二、实验原理 流体流过孔板流量计或文丘里流量计时,都会产生一定的压差,而这个压差与流体流过的流速存在着一定的关系。 1.孔板流量计或文丘里流量计的标定 流体在管内的流量可用体积法测量: V= a·?h /τ(1) 式中:V——管内流体的流量,L/s; a——体积系数,即计量筒内水位每增加1cm所增加的水的体积,本实验中a=0.6154 L/cm;

?h ——计量筒液位上升高度,?h = h1- h0,cm ; h1——计量筒内水位的初始读数,cm ; h0——计量筒内水位的终了读数,cm ; τ ——与?h 相对应的计量时间,s 。 测出与V 相对应的孔板流量计(或文丘里流量计)的压差读数R ,即可在直角坐标纸上标绘出对应流量计的V ~R 标定曲线。 其中, R ——孔板流量计(或文丘里流量计)的压差读数,cm 。 2.孔流系数C0与雷诺数Re 关系测定 流体在管内的流量和被测流量计的压差R 存在如下的关系: 3 00102??? ?=ρ P C A V (2) 其中,2 10-???=?g R P ρ (3) 2 00102??= Rg A V C (4) 式中: A0——孔板流量计的孔径(或文丘里流量计喉径)的截面积,m2,本实验中孔板孔d0=17.786mm ,文丘里流量计喉径d0=19.0mm ; C0——孔板流量计(或文丘里流量计)的孔流系数; g ——重力加速度,g=9.807m/s2。 又知 μ ρ du = Re (5) 式中: Re ——雷诺数; d ——水管的内径,m ,本实验中d =0.0238m ; ρ—— 流体的密度,kg/m3; μ—— 流体的粘度,Pa ·s 。 u ——水管内流体流速,m/s,

流量计实验报告

流量计实验报告

中国石油大学(华东)工程流体力学实验报告 实验日期:成绩: 班级:学号:姓名:教师:李成华 同组者: 实验三、流量计实验 一、实验目的(填空) 1.掌握孔板、文丘利节流式流量计的工作原理及用途; 2.测定孔板流量计的流量系数 ,绘制流量计的校正曲线; 3.了解两用式压差计的结构及工作原理,掌握其使用方法。 二、实验装置 1、在图1-3-1下方的横线上正确填写实验装置各部分的名称: 本实验采用管流综合实验装置。管流综合实验装置包括六根实验管路、电磁流量计、文丘利流量计、孔板流量计,其结构如图1-3-1示。

F1——文丘里流量计;F2——孔板流量计;F3——电磁流量计;C——量水箱;V——阀门;K——局部阻力实验管路 图1-3-1 管流综合实验装置流程图

说明:本实验装置可以做流量计、沿程阻力、局部阻力、流动状态、串并联等多种管流实验。其中V8为局部阻力实验专用阀门,V10为排气阀。除V10外,其它阀门用于调节流量。 另外,做管流实验还用到汞-水压差计(见附录A)。 三、实验原理 1.文丘利流量计 文丘利管是一种常用的量测有压管道流量的装置,见图1-3-2属压差式流量计。它包括收缩段、喉道和扩散段三部分,安装在需要测定流量的管道上。在收缩段进口断面1-1和喉道断面2-2上设测压孔,并接上比压计,通过量测两个断面的测压管水头差,就可计算管道的理论流量Q ,再经修正得到实际流量。 2.孔板流量计 如图1-3-3,在管道上设置孔板,在流动未经孔板收缩的上游断面1-1和经孔板收缩的下游断面2-2上设测压孔,并接上比压计,通过量测两个断面的测压管水头差,可计算管道的理论流量

各种流量计选型的原则和方法

一、流量计选型得原则 选择流量计得原则首先就是要深刻地了解各种流量计得结构原理与流体特性等方面得知识,同时还要根据现场得具体情况及考察周边得环境条件进行选择。也要考虑到经济方面得因素、一般情况下,主要应从下面五个方面进行选择: ①流量计得性能要求; ②流体特性; ③安装要求; ④环境条件; ⑤流量计得价格、 1、流量计得性能要求 流量计得性能方面主要包括:测量流量(瞬时流量)还就是总量(累积流量);准确度要求;重复性;线性度;流量范围与范围度;压力损失;输出信号特性与流量计得响应时间等。 (1)测流量还就是总量 流量测量包括两种,即瞬时流量与累积流量,比如对分输站管道得原油属于贸易交接或石油化工 管道进行连续配比生产或生产流程得过程控制等需要计量总量,间或辅以瞬时流量得观察、在有得工作场所对流量进行控制则需配备瞬时流量测量。因此,要根据现场计量得需要进行选择、有些流量计比如容积式流量计,涡轮流量计等,其测量原理就是以机械计数或脉冲频率输出直接得到总量,其准确度较高,适用于计量总量,如配有相应得发讯装置也可输出流量。电磁流量计、超声流量计等就是以测量流体流速推导出流量,响应快,适用于过程控制,如果配以积算功能后也可以获得总量。 (2)准确度 流量计准确度等级得规定就是在一定得流量范围内,如果使用在某一特定得条件下或比较窄得流量范围内,比如,仅在很小得范围内变化,此时其测量准确度会比所规定得准确度等级高。如用涡轮流量计计量油品装桶分发,在阀门全开得情况下使用,流量基本恒定,其准确度可能会从0。5级提高到0。25级、 用于贸易核算、储运交接与物料平衡如果要求测量准确度较高时,应考虑准确度测量得持久性,一般用于上述情况下得流量计,准确度等级要求为0、2级。在这样得工作场所一般就是现场配备计量标准设备(比如体积管),对所使用得流量计进行在线检测。近几年由于原油得日趋紧张与各单位对原油计量得高要求,对原油计量提出实行系数交接,即除了每半年对流量计进行一次周期检测后,贸易交接双方协商每1个月或2个月对流量计进行检定确定流量系数,每天根据流量计计量得数据与流量计流量系数计算出数据进行交接,以提高流量计得准确度,也称为零误差交接。 准确度等级一般就是根据流量计得最大允许误差确定得。各制造厂提供得流量计说明书中会给出。一定要注意其误差得百分率就是指相对误差还就是引用误差、相对误差为测量值得百分率,常用“%R”表示、引用误差则就是指测量上限值或量程得百分率,常用“%FS”。许多制造厂说明书中并未注明。比如,浮子流量计一般都就是采用引用误差,电磁流量计有得型号也有采用引用误差得。 流量计如果不就是单纯计量总量,而就是应用在流量控制系统中,则检测流量计得准确度要在整个系统控制准确度要求下确定、因为整个系统不仅有流量检测得误差,还包含有信号传输、控制调节、操作执行等环节得误差与各种影响因素。比如,操作系统中存在有2%左右得回差,对所采用得测量仪表确定过高得准确度(0.5级以上)就就是不经济与不合理得。就仪表本身来说,传感器与二次仪表之间得准确度也应该适当相配,比如说设计出来未经实际标定得均速管误差如在±2。5%~±4%之间,配上0.2%~0、5%高准确度得差压计就意义不大了、 还有一个问题就就是对于检定规程或制造厂说明书中对流量计所规定得准确度等级指得就是其流量计得最大允许误差。但就是由于流量计在现场使用时受环境条件、流体流动条件与动力条件等变化得影响,将会产生一些附加误差。因此,现场使用得流量计应就是仪表本身得最大允许误差与附加误差得合成,一定要充分考虑到这个问题,有时候可能现场得使用环境范围内得误差会超过流量计得最大允许误差。 (3)重复性

流量计示值修正(补偿)

流量计示值修正(补偿)公式 我公司能源计量的流量计示值单位规定为20℃,101.325kPa标准状态的流量,如设计选型使用了不同流量计示值单位,则根据设计的流量单位(质量流量kg/h、0℃,101.325kPa及20℃,101.325kPa标准状态或工作状态)选用对应的温度、压力修正(补偿)公式;不同测量原理的流量计,应根据其流量计流量方程(公式)选用对应的温度、压力修正(补偿)公式。 1. 气体流量测量的温度、压力修正(补偿)公式: 1.1 差压式流量计的温度、压力修正(补偿)实用公式:一般气体体积流量(标准状态20℃,101.325kPa),根据差压式流量计流量方程,可得干气体在标准状态(20℃,101.325kPa)的积流流量 : )()()()(15.273T325.101p15.273T325.101pqqvN vN (1)式中:q'vN——标准状态下气体实际体积流量;qvN——标准状态下气体设计体 积流量;p' ——气体实际压力,kPa;p ——气体设计压力,kPa;T'——气体实际温度,℃;T ——气体设计温度,20℃。 1.2 一般气体质量流量的温度、压力修正(补偿)公式: TpTpqqm m (2)式中:q'vN——标准状态下气体实际体积流量;qvN——标准状态下气体设计体积流量;p' ——气体实际压力,绝对压力;p ——气体设计压力,绝对压力;T'——气体实际温度,绝对温度;T ——气体设计温度,绝对温度。1.3 蒸汽的温度、压力修正(补偿)公式:根据差压式流量计流量方程,可得蒸汽的质量流量 : (3)式中:q'm——蒸汽实际质量流量;qm——蒸汽设计质量流量;ρ' ——蒸汽实 测时密度;ρ ——蒸汽设计时密度;依据水和水蒸汽热力性质IAPWS-IF97公式其密度计算模型,工业常用范围内水蒸汽的密度为: ) (1000 1 0 iJ1 Ii431 ii50In)(. T540 1MPap 式中:,ρ 为水蒸汽密度;P 为压力, MPa ;v 为比体积,m3/ kg;T为温度,K;R为水物质气体常数,0. 461526kJ?kg-1 ?K-1;ni、Ii、Ji为公式系数见“表1”。利用IAPWS-IF97计算的水和水蒸汽单相区( 1-3区) 比容的不确定性在±0. 05%左右。应用上述公式只需安装有温度、压力变送器, 不需要判断是饱和蒸汽还是过热蒸汽就可以准确测量。对于确定是饱和蒸汽的场合,只需要测温或测压, 利用IAPWS-97公式第4区中给出的方程组计算出饱和压力或饱和温度, 再代入上述公式中, 也可准确计算饱蒸汽密度。 表1: 公式的指数和系数数值 2. 涡街流量计、旋进旋涡流量计和涡轮流量计的温度、压力修正(补偿)公式一般气体体积流量(标准状态20℃,101.325kPa),根据差压式流量计流量方程,可得干气体在标准状态(20℃,101.325kPa)的积流流量: )()()()(15.273T325.101p15.273T325.101pqqvNvN(4)式中:q'vN——标准状态下气体实际体积流量; qvN——标准状态下气体设计体积流量;p' ——气体实际压力,kPa;p ——气体设计压

各种流量计选型的原则和方法

一、流量计选型的原则 选择流量计的原则首先是要深刻地了解各种流量计的结构原理和流体特性等方面的知识,同时还要根据现场的具体情况及考察周边的环境条件进行选择。也要考虑到经济方面的因素。一般情况下,主要应从下面五个方面进行选择: ①流量计的性能要求; ②流体特性; ③安装要求; ④环境条件; ⑤流量计的价格。 1、流量计的性能要求 流量计的性能方面主要包括:测量流量(瞬时流量)还是总量(累积流量);准确度要求;重复性;线性度;流量范围和范围度;压力损失;输出信号特性和流量计的响应时间等。 (1)测流量还是总量 流量测量包括两种,即瞬时流量和累积流量,比如对分输站管道的原油属于贸易交接或石油化工管道进行连续配比生产或生产流程的过程控制等需要计量总量,间或辅以瞬时流量的观察。在有的工作场所对流量进行控制则需配备瞬时流量测量。因此,要根据现场计量的需要进行选择。有些流量计比如容积式流量计,涡轮流量计等,其测量原理是以机械计数或脉冲频率输出直接得到总量,其准确度较高,适用于计量总量,如配有相应的发讯装置也可输出流量。电磁流量计、超声流量计等是以测量流体流速推导出流量,响应快,适用于过程控制,如果配以积算功能后也可以获得总量。 (2)准确度 流量计准确度等级的规定是在一定的流量范围内,如果使用在某一特定的条件下或比较窄的流量范围内,比如,仅在很小的范围内变化,此时其测量准确度会比所规定的准确度等级高。如用涡轮流量计计量油品装桶分发,在阀门全开的情况下使用,流量基本恒定,其准确度可能会从级提高到级。 用于贸易核算、储运交接和物料平衡如果要求测量准确度较高时,应考虑准确度测量的持久性,一般用于上述情况下的流量计,准确度等级要求为级。在这样的工作场所一般是现场配备计量标准设备(比如体积管),对所使用的流量计进行在线检测。近几年由于原油的日趋紧张和各单位对原油计量的高要求,对原油计量提出实行系数交接,即除了每半年对流量计进行一次周期检测后,贸易交接双方协商每1个月或2个月对流量计进行检定确定流量系数,每天根据流量计计量的数据与流量计流量系数计算出数据进行交接,以提高流量计的准确度,也称为零误差交接。 准确度等级一般是根据流量计的最大允许误差确定的。各制造厂提供的流量计说明书中会给出。一定要注意其误差的百分率是指相对误差还是引用误差。相对误差为测量值的百分率,常用“%R”表示。引用误差则是指测量上限值或量程的百分率,常用“%FS”。许多制造厂说明书中并未注明。比如,浮子流量计一般都是采用引用误差,电磁流量计有的型号也有采用引用误差的。 流量计如果不是单纯计量总量,而是应用在流量控制系统中,则检测流量计的准确度要在整个系统控制准确度要求下确定。因为整个系统不仅有流量检测的误差,还包含有信号传输、控制调节、操作执行等环节的误差和各种影响因素。比如,操作系统中存在有2%左右的回差,对所采用的测量仪表确定过高的准确度(级以上)就是不经济和不合理的。就仪表本身来说,传感器与二次仪表之间的

流体力学实验 文丘里实验报告单

文丘里流量计实验 一、实验目的和要求 1.通过测定流量系数,掌握文丘里流量计量测管道流量的技能; 2.掌握气一水多管压差计量测压差的技能; 3.通过实验与量纲分析,了解应用量纲分析与实验结台研究水力学问题的途径,进而掌握文丘里流量计水力特征。 二、实验原理 根据能量方程式和连续性方程式,可得不计阻力作用时的文丘里管过水能力关系式 h K p Z p Z g d d d q V ?=+-+-= )]/()/[(21 )( 422114 2 12 1 γγπ ‘ (6-9) 1)/(/ 24 4 212 1 -= d d g d K π )()(2 21 1γ γ p Z p Z h + -+ =? 式中:h ?为两断面测压管水头差,m 。 由于阻力的存在,实际通过的流量V q 恒小于' V q 。今引入一无量纲系数’ V V q q =μ (μ称为流量系数),对计算所得的流量值进行修正。 即 h K q q V V ?=' =μμ (6-10) 另外由水静力学基本方程可得气—水多管压差计的h ?为 4321h h h h h -+-=? 三、实验装置 本实验的装置如图6-10 所示。 在文丘里流量计的两个测量断面上,分别有4个测压孔与相应的均压环连通,经均压环均压后的断面压强由气-水多管压差计9测量(亦可用电测仪量测)。

1.自循环供水器; 2.实验台 3.可控硅无级调速器 4.恒压水箱 5.有色水水管 6.稳水孔板 7.文丘里实验管段 8.测压计气阀 9.测压计10.滑尺11.多管压差计12.实验流量调节阀 图6—10文丘里流量计实验装置图 四、实验方法与步骤 1.测记各有关常数。 2.开电源开关,全关阀12,检核测管液面读数 4321h h h h -+-是否为0,不为0时,需查出原因并予以排除。 3.全开调节阀12检查各测管液面是否都处在滑尺读数范围内?否则,按下列步骤调节:拧开气阀8,将清水注入测管2、3,待2432≈=h h cm ,打开电源开关充水,待连通管无气泡,渐关阀12,并调开关3至5.2821≈=h h cm ,即速拧紧气阀8。 4.全开调节阀门,待水流稳定后,读取各潮压管的液面读数1h 、2h 、3h 、4h ,并用秒表、量筒测定流量。 5.逐次关小调节阀,改变流量7~9次,重复步骤4,注意调节阀门应缓慢。 6.把测量值记录在实验表格内,并进行有关计算。 7.如测管内液面波动时,应取时均值。 8.实验结束,需按步骤2校核压差计是否回零。 五、实验结果处理及分析 1.记录计算有关常数。 实验装置台号No____ =1d m , =2d m , 水温=t ℃, =ν m 2/s , 水箱液面标尺值=?0 cm , 管轴线高程标尺值=? cm 。 2 整理记录计算表6-9 6-10

水力学实验报告思考题答案(想你所要)..

实验二不可压缩流体恒定流能量方程(伯诺利方程)实验 成果分析及讨论 1.测压管水头线和总水头线的变化趋势有何不同?为什么? 测压管水头线(P-P)沿程可升可降,线坡J P可正可负。而总水头线(E-E)沿程只降不升,线坡J 恒为正,即J>0。这是因为水在流动过程中,依据一定边界条件,动能和势能可相互转换。测点5至测点7,管收缩,部分势能转换成动能,测压管水头线降低,Jp>0。测点7至测点9,管渐扩,部分动能又转换成势能,测压管水头线升高,J P<0。而据能量方程E1=E2+h w1-2, h w1-2为损失能量,是不可逆的,即恒有h w1-2>0,故E2恒小于E1,(E-E)线不可能回升。(E-E) 线下降的坡度越大,即J越大,表明单位流程上的水头损失越大,如图2.3的渐扩段和阀门等处,表明有较大的局部水头损失存在。 2.流量增加,测压管水头线有何变化?为什么? 有如下二个变化: (1)流量增加,测压管水头线(P-P)总降落趋势更显著。这是因为测压管水头 ,任一断面起始时的总水头E及管道过流断面面积A为定值时,Q增大, 就增大,则必减小。而且随流量的增加阻力损失亦增大,管道任一过水断面上的总水头E相应减 小,故的减小更加显著。 (2)测压管水头线(P-P)的起落变化更为显著。 因为对于两个不同直径的相应过水断面有 式中为两个断面之间的损失系数。管中水流为紊流时,接近于常数,又管道断面为定值,故Q增大,H亦增大,(P-P)线的起落变化就更为显著。 3.测点2、3和测点10、11的测压管读数分别说明了什么问题? 测点2、3位于均匀流断面(图2.2),测点高差0.7cm,H P=均为37.1cm(偶有毛细影响相差0.1mm), 表明均匀流同断面上,其动水压强按静水压强规律分布。测点10、11在弯管的急变流断面上,测压管水头差为7.3cm,表明急变流断面上离心惯性力对测压管水头影响很大。由于能量方程推导时的限制条件之一是“质量力只有重力”,而在急变流断面上其质量力,除重力外,尚有离心惯性力,故急变流断面不能选作能量方程的计算断面。在绘制总水头线时,测点10、11应舍弃。 4.试问避免喉管(测点7)处形成真空有哪几种技术措施?分析改变作用水头(如抬高或降低水箱的水位)对喉管压强的影响情况。 下述几点措施有利于避免喉管(测点7)处真空的形成: (1)减小流量,(2)增大喉管管径,(3)降低相应管线的安装高程,(4)改变水箱中的液位高度。

流量计校核实验报告

流量计校核实验报告 一、实验目的 1、熟悉孔板流量计和文氏流量计的构造及工作原理; 2、掌握流量计标定方法之一——称量法; 3、测定孔板流量计和文氏流量计的孔流系数,掌握孔流系数随雷诺数的变化规律; 4、测定孔板流量计和文氏流量计的流量与压差的关系。 二、实验原理 常用的流量计大都按标准规范制造,出厂前厂家需通过实验为用户提供流量曲线:或给出规定的流量计算公式用的流量系数,或将流量读数直接刻在显示仪表上。如果用户遗失出厂的流量曲线;或被测流体的密度与工厂标定所用流体不同;或流量计经长期使用而磨损;或使用自制的非标准流量计时,都必须对流量计进行标定。 孔板流量计和丘里流量计是应用最广的节流式流量计,本实验就是通过测定节流元件前后的压差及相应的流量来确定流量系数。 (一)孔板流量计 孔板流量计的构造原理如图1-1所示,在管路中装有一块孔板,孔板两侧接出测压管,分别与U 形压差计相连接。 孔板流量计是利用流体通过锐孔的节流作用,使流速增大,压强减小,造成孔板前后压强差,作为测量的依据。 若管路直径为1d ,孔板锐孔直径为0d ;流体流经孔板后所形成缩脉的直径为2d ;流体密度为ρ。 在截面积I 、II 处,即孔板前导管处和缩脉处的速度和压强分别为1212u u p p ,与,,根据柏努利方程可得: 222112 2u u p p ρ --= (1) 或 = (2) 由于缩脉位置因流速而变,截面积2S 又难于知道,而孔板孔径的面积0S 是已知的,测压器的位置在设置一旦制成后也是不变的。因此,用孔板孔径处流速0u 来代替式(2)中的 2u ;又考虑到实际流体因局部阻力所造成的能量损失,故需用系数C 加以校正。式(2)就 可改写为: 图1-1 孔板流量计构造原理图

流量计的选型指导

一、自动化仪表选型的一般原则 检测仪表(元件)及控制阀选型的一般原则如下: 1.工艺过程的条件 工艺过程的温度、压力、流量、粘度、腐蚀性、毒性、脉动等因素是决定仪表选型的主要条件,它关系到仪表选用的合理性、仪表的使用寿命及车间的防火、防爆、保安等问题。 2.操作上的重要性 各检测点的参数在操作上的重要性是仪表的指示、记录、积算、报警、控制、遥控等功能选定依据。一般来说,对工艺过程影响不大,但需经常监视的变量,可选指示型;对需要经常了解变化趋势的重要变量,应选记录式;而一些对工艺过程影响较大的,又需随时监控的变量,应设控制;对关系到物料衡算和动力消耗而要求计量或经济核算的变量,宜设积算;一些可能影响生产或安全的变量,宜设报警。 3.经济性和统一性 仪表的选型也决定于投资的规模,应在满足工艺和自控的要求前提下,进行必要的经济核算,取得适宜的性能/价格比。为便于仪表的维修和管理,在选型时也要注意到仪表的统一性。尽量选用同一系列、同一规格型号及同一生产厂家的产品。 4.仪表的使用和供应情况 选用的仪表应是较为成熟的产品,经现场使用证明性能可靠的;同时要注意到选用的仪表应当是货源供应充沛,不会影响工程的施工进度。

流量仪表的选型 <一>一般原则1刻度选择 仪表刻度宜符合仪表刻度模数的要求,当刻度读数不是整数时,为读数换算方便,也可按整数选用。 (1)方根刻度范围 ?最大流量不超过满刻度的95%; ?正常流量为满刻度的70%~85%; ?最小流量不小于满刻度的30%。 (2)线性刻度范围 ?最大流量不超过满刻度的90%; ?正常流量为满刻度的50%~70%; ?最小流量不小于满刻度的10%。 2仪表精确度 用作能源计量的流量计,应符合《企业能源计量器具配备和管理通则(试行)》的规定。 (1)用于燃料进出厂结算的计量,±0.1%; (2)用于车间班组、工艺过程的技术经济分析的计量,±0.5%~2%; (3)用于工业及民用水的计量,±2.5%; (4)用于包括过热蒸汽和饱和蒸汽的蒸汽计量,±2.5%; (5)用于天然气、瓦斯及家用煤气的计量,±2.0%; (6)用于重点用能设备及工艺过程控制的油的计量,±1.5%;

流量计如何选型

流量计如何选型?流量计在选型时要充分考虑各方面的因素,以保证应用。为帮助大家解决流量计如何选型的问题,世界泵阀网特汇总了以下内容,以供参考。 在流量计如何选型的问题中,不同种类的流量计选型方法和参照因素也不相同,要根据其具体的作用和性能来参考选择。 1. 电磁流量计选型 测量各种酸、碱、盐等腐蚀液体;各种易燃,易爆介质;各种工业污水,纸浆,泥浆等。电磁流量计不能用于测量气体、蒸气以及含有大量气体的液体.不能用来测量电导率很低的液体介质,不能测量高温高压流体。 2. 涡街流量计选型(旋涡流量计) 涡街流量计,主要用于工业管道介质流体的流量测量,如气体、液体、蒸气等多种介质。其特点是压力损失小,量程范围大,精度高,在测量工况体积流量时几乎不受流体密度、压力、温度、粘度等参数的影响。 ⒊浮子流量计选型(转子流量计) 它可以用来测量液体、气体、以及蒸汽的流量,特别适宜低流速小流量的介质流量测量。 ⒋科氏力质量流量计选型 质量流量计广泛应用于石化等领域,是当今世界上最先进的流量测量仪表之一, ⒌热式(气体)质量流量计选型 适合单一气体和固定比例多组份气体的测量。 ⒍超声波流量计选型 目前我国只能用于测量200℃以下的流体。强腐蚀性、非导电性、放射性及易燃易爆介质的流量测量问题。 ⒎涡轮流量计选型 涡轮流量计广泛应用于以下一些测量对象:石油、有机液体、无机液、液化气、天然气、煤气和低温流体等。 流量计选型不可能做到十全十美,因为.每种型式都有它特有的优缺点,只能根据不同的测量方式和结构,要求不同的测量操作、使用方法和使用条件来选择安生可靠又经济耐用的最佳型式。

流量计选型之前要做好以下准备工作: 1、测流体的名称、特性(腐蚀性、粘稠度、磨损性等) 2、工作流量(正常流量、最大流量、最小流量) 3、工作压力(最大、最小工作压力),如果有负压形成要特别注意 4、工作温度(最高温度、最低温度) 5、流体的电导率,要求必须具备一定的导电性,电导率≥5μS/cm 6、安装地点 7、供电方式 8、工艺管道尺寸 9、与中控室之间的通讯方式

6 文丘里流量计实验

文丘里流量计实验 一、实验目的要求 1.通过测定流量系数,掌握文丘里流量计量测管道流量的技术和应用气—水多管压差计量测压差的技术; 2.通过实验与量纲分析,了解应用量纲分析与实验结合研究水力学问题的途径,进而掌握文丘里流量计的水力特性。 文丘里流量计实验装置图 1. 自循环供水器 2. 实验台 3. 可控硅无级调速器 4. 恒压水箱 5. 溢流板 6. 稳水孔板 7. 文 丘里实验管段8. 测压计气阀9. 测压计10. 滑尺11. 多管压差计 二、实验原理 根据能量方程式和连续性方程式,可得不计阻力作用时的文氏管过水能力关系式

式中: 为两断面测压管水头差。 由于阻力的存在,实际通过的流量 恒小于 。今引入一无量纲系数 (μ称为 流量系数),对计算所得的流量值进行修正。 即 另,由水静力学基本方程可得气—水多管压差计的为 三、实验方法与步骤 1.测记各有关常数。 2.打开电源开关,全关阀12,检核测管液面读数h 1-h 2+h 3-h 4是否为0,不为0时,需查出原因并予以排除。 3.全开调节阀12检查各测管液面是否都处在滑尺读数范围内?否则,按下列步序调节:拧开气阀8,将清水注入测管2、3,待h 2=h 3≈24cm,打开电源开关充水,待连通管无气泡,渐关阀12,并调开关3至h 1=h 2≈28.5cm,即速拧紧气阀8。 4.全开调节阀门,待水流稳定后,读取各测压管的液面读数h 1、h 2、h 3、h 4,并用秒表、量筒测定流量。 5.逐次关小调节阀,改变流量7~9次,重复步骤4,注意调节阀门应缓慢。 6.把测量值记录在实验表格内,并进行有关计算。 7.如测管内液面波动时,应取时均值。 8.实验结束,需按步骤2校核压差计是否回零。

新版流量计标定实验讲义

实验二 流量计的标定 一、实验目的 1、了解孔板流量计和文丘里流量计的操作原理和特性,掌握流量计的一般标定方法; 2、测定孔板流量计和文丘里流量计的流量系数的C 0和Cv 与管内Re 的关系。 3、通过C 0和Cv 与管内Re 的关系,比较两种流量计。 二、基本原理 工厂生产的流量计大都是按标准规范生产的,出厂时一般都在标准技术状况下(101325Pa ,20℃)以水或空气为介质进行标定,给出流量曲线或按规定的流量计算公式给出指定的流量系数,或将流量读数直接刻在显示仪表上。然而在使用时,所处温度、压强及被测介质的性质与标定状况多数并不相同,因此为了测量准确和方便使用,应在现场进行流量计的标定或校正。对已校正过的流量计,在长时间使用磨损较大时也需要再次校正。对于自制的非标准流量计,则必须进行校正,以确定其流量系数C 0或C v 。本实验通过改变流体流量q 和压差ΔP f ,获得一系列Re 与C 0或C v ,采用半对数坐标绘制出C 0或C v 与Re 的关系曲线进而实现流量计的标定或校正。 1、流体在管内Re 的测定: 式中:ρ、μ— 流体在测量温度下的密度和粘度 [Kg/m 3 ]、[Pa ·s] q — 管内流体体积流量 [m 3/s] 2、孔板流量计和文丘里流量计 孔板流量计和文丘里流量计是应用最广的节流式流量计,其结构如图2-1所示。 a 孔板流量计 b 文丘里流量计 图2-1 节流式流量计结构 孔板流量计是利用动能和静压能相互转换的原理设计的,它是以消耗大量机械能为代价的。孔板的开孔越小、通过孔口的平均流速u 0越大,孔前后的压差ΔP 也越大,阻力损失也随之增大。为了减小流体通过孔口后由于突然扩大而引起的大量旋涡能耗,在孔板后开一渐扩形圆角。因此孔板流量计的安装是有方向的。若是方向弄反,不光是能耗增大,同时其流量系数也将改变,实际上这样使用没有意义。 以孔板流量计为例,若用f P ?表示节流前后两截面之间的压差,根据两截面之间的柏努利方程,可知: 222222121 1u P gZ u P gZ ++=++ρρ,则有:ρ f P u u ?=-22122 以孔口速度u 0代替上式中的u 2,并将质量守恒式u 1A 1= u 0A 0代入,得:

流体力学实验文丘里实验报告单

文丘里流量计实验 一、实验目的与要求 1.了解文丘里流量计的构造与原理,掌握用文丘里流量计量测管道流量的方法与应用 气一水压差计测压差的技术。掌握测定文丘里流量计的流量系数μ的方法。 2.通过测量与计算,掌握用方格纸绘制Q-Δh 与Re-μ曲线(分别取Δh 、μ为纵坐标 的方法) 3.比较体积法与文丘里流量计测流量的精度。 二、实验原理 根据能量方程式与连续性方程式,可得不计阻力作用时的文丘里流量计理论流量计算式: h K p Z p Z g d d d Q ?=+-+-= )]/()/[(21)(4'221142 12 1γγπ 1)/(/24 42121-= d d g d K π )()(2 21 1γ γp Z p Z h + -+ =? 式中:h ?为两断面测压管水头差,m 。d ?、d ?为喉部收缩前后管道的内径。 由于阻力的存在,实际通过的流量Q 恒小于'Q 。今引入流量系数’ Q =μ (μ称为流量系数),对计算所得的流量值进行修正。 即: h K Q Q ?=' =μμ 另外由水静力学基本方程可得气—水多管压差计的h ?为 4321h h h h h -+-=? 三、实验装置 本实验的装置如图所示。 在文丘里流量计的两个测量断面上,分别有4个测压孔与相应的均压环连通,经均压环均压后的断面压强由气-水多管压差计9测量(亦可用电测仪量测)。

1、自循环供水器; 2、实验台 3、可控硅无级调速器 4、恒压水箱 5、有色水水管 6、稳水孔板 7、文丘里实验管段8、测压计气阀9、测压计10、滑尺11、多管压差计12、实验流量调节阀 文丘里流量计实验装置图 四、实验步骤 1、打开无极调速器向恒压水箱中注水至满,全关流量调节阀12,检核测管液面读数 4321h h h h -+-就是否为0,不为0时,需查出原因并予以排除。 2、全开调节阀12检查各测管液面就是否都处在滑尺读数范围内。否则,按下列步骤调节:拧开气阀8,将清水注入测管2、3,待2432≈=h h cm,打开电源开关充水,待连通管无气泡,渐关阀12,并调开关3至5.2821≈=h h cm,即速拧紧气阀8。 3、全开调节阀门,待水流稳定后,读取各潮压管的液面读数1h 、2h 、3h 、4h ,并用秒表、量筒测定流量。 4、逐次关小调节阀,改变流量7~9次,重复步骤(4),注意调节阀门应缓慢。 5、把测量值记录在实验表格内,并进行有关计算。 6、如测管内液面波动时,应取时均值。 7、实验结束,需按步骤2校核压差计就是否回零。 五、实验结果处理及分析 1、记录计算有关常数。 =1d m, =2d m, 水温=t ℃, =ν m 2/s, 水箱液面标尺值=?0 cm, 管轴线高程标尺值=? cm 。 2、实验数据记录 记录表

文丘里流量计实验

文丘里流量计实验(新) 一、实验目的和要求、 1、掌握文丘里流量计的原理。 2、学习用比压计测压差和用体积法测流量的实验技能。 3、利用量测到的收缩前后两断面1-1和2-2的测管水头差h ?,根据理论公式计算管道 流量,并与实测流量进行比较,从而对理论流量进行修正,得到流量计的流量系数 μ,即对文丘里流量计作出率定。 一、实验装置 1. 仪器装置简图 12 4567 321 8 9101112 1234 图一 文丘里流量计实验装置图 1. 自循环供水器 2. 实验台 3. 可控硅无级调速器 4. 恒压水箱 5. 溢流板 6. 稳水孔板 7. 文丘里实验管段 8. 测压计气阀 9. 测压计 10. 滑尺 11. 多管压差计 12. 实验流量调节阀

[说明] 1. 在文丘里流量计7的两个测量断面上, 分别有4个测压孔与相应的均压环连通, 经均压环均压后的断面压强,由气—水多管压差计9测量, 也可用电测仪测量。 2. 功能 (1) 训练使用文丘里管测量管道流量和采用气—水多管压差计测量压差的技术; (2) 率定流量计的流量系数μ, 供分析μ与雷诺数Re的相关性; (3) 可供实验分析文氏流量计的局部真空度, 以分析研究文氏空化管产生的水力条件与构造条件及其他多项定性、定量实验。 3. 技术特性 (1) 由可控硅无级调速器控制供水流量的自循环台式装置实验仪; (2) 恒压供水箱、文丘里管及实验管道采用丘明有机玻璃精制而成。文丘里管测压断面上设有多个测压点和均压环; (3) 配有由有机玻璃测压管精制而成的气 水多管压差计, 扩充了测压计实验内容; (4) 为扩充现代量测技术, 配有压差电测仪, 测量精度为0.01; (5) 供电电源: 220V、50HZ; 耗电功率:100W; (6) 流量: 供水流量0~300ml/s, 实验管道过流量0~200ml/s; (7) 实验仪专用实验台: 长×宽=150cm×55cm 。 二、安装使用说明: 1. 安装仪器拆箱以后, 按图检查各个部件是否完好, 并按装置图所示安装实验仪, 各测点与测压计各测管一一对应,并用连通管联接, 调速器及电源插座可固定在实验台侧壁或图示位置, 调速器及电源插座位置必须高于供水器顶; 2. 通电试验加水前先接上220V交流市电, 顺时针方向打开调速器旋钮, 若水泵启动自如, 调速灵活, 即为正常。请注意, 调速器旋钮逆时针转至关机前的临界位置, 水泵转速最快, 即出水流量最大; 3. 加水 (1) 供水器内加水加水前,需先把供水器及水箱等擦干净, 水质要求为洁净软水, 经过滤净化更佳,若水的硬度过大, 最好采用蒸馏水。加水量以使水位刚接近自循环供水器与回水管接口为宜,并检查供水器是否漏水。 (2) 多管压差计内加水做实验之前需对多管压差计内加水, 先打开气阀8, 在测管2、3内注水至h2=h3 ≈ 24.5cm, 并检查测压计管1与管2、管3与管4之间是否连通, 再检查管2、3之间底部,若有气泡, 也需排除。 4. 排气开启水泵供水, 待水箱溢流后, 来回开关实验流量调节阀数次, 待

各种流量计选型差异

各种流量计选型差异 没有一种流量计是完美的,对任何流体、工况都完全适应的,每种流量计都有自己的特点,有着其适应的条件,因此对于各种测量方法和仪表特性作比较全面了解的前提下,选择出最适合、最稳定可靠又经济的最佳形式。 1. 电磁流量计: 根据电磁感应定律,在非磁性管道中,利用测量导电流体平均速度而显示流量的流量计。可用于测量各种酸、碱、盐等腐蚀液体,各种易燃、易爆介质,各种工业污水、纸浆和泥浆等。优点:无压力损失;测量范围大,电磁流量变送器的口径从2.5mm到2.6m;不受流体的温度、压力、密度和粘度的影响; 缺点:电磁流量计不能用于测量气体、蒸汽以及含有大量气体的液体,不能用来测量电解率很低的液体介质,不能测量高温高压流体;电磁流量计的安装与调试比其它流量计复杂,且要求更严格;用来测量带有污垢的粘性液体时,粘性物或沉淀物附着在测量管内壁或电极上,使变送器输出电势变化,带来测量误差,电极上污垢物达到一定厚度,可能导致仪表无法测量。 2. 涡街流量计: 在流体中安放一个非流线型旋涡发生体,使流体在发生体两侧交替地分离,释放出两串规则地交错排列的旋涡,且在一定范围内旋涡分离频率与流量成正比的流量计。主要用于工业管道介质流体的流量测量,如:气体、液体和蒸汽等多种介质。 优点:是压力损失小,量程范围大,精度高,受流体温度、密度、压力、粘度影响小。 缺点:对于存在两相流和振动的工况就不适合。 3. 浮子流量计: 在由下向上扩大的圆锥形内孔的垂直管子中,浮子的重量由自下而上的流体所产生的力承受,并由管子中浮子的位置来表示流量示值的变面积流量计。 优点:用于液体、气体以及蒸汽的测量,特别适宜低速小流量的介质流量测量,结构简单,价格低廉。 缺点:浮子流量计不能应用于大管径,最大管径150mm;使用流体和出厂标定流体不同时,要作流量示值修正。 4. 科氏力质量流量计: 直接或间接测量在旋转管道中流动的流体所产生的科氏力就可以测得质量流量。这就是科里奥利质量流量计的基本原理。 优点:可广泛应用于石化等领域,是目前较先进的测量系统直接测量质量流量,有很高的测量精确度,可测量流体范围广泛,包括高粘度液的各种液体、含有固形物的浆液、含有微量气体的液体、有足够密度的中高压气体。测量管的振动幅小。对应对迎流流速分布不敏感,因而无上下游直管段要求。测量值对流体粘度不敏感,流体密度变化对测量值得值的影响微小。 缺点:质量流量计零点不稳定形成零点漂移;不能用于测量低密度介质和低压气体;无法测量气液两相流介质,对于安装要求高。 5. 热式(气体)质量流量计: 热式流量计有两个温度传感器被置于介质中时,其中一个传感器被加热到环境温度以上的的温度,另一个温度传感器用于感应介质温度。介质流速增加,介质带走的热量增多,两个温度传感器的温度差将随介质的流速变化而变化,根据温度差与介质流速的比例关系,可得出

相关文档
最新文档