某混凝土重力坝施工导流设计

某混凝土重力坝施工导流设计
某混凝土重力坝施工导流设计

某混凝土重力坝施工导流设计

一、工程概况

本水库是该流域水利水电建设规划中的主体工程之一。坝址位于某乡上游3km处,控制流域面积317km2,坝址处多年平均流量11.1m3/s,年径流总量3.5×108m3。本工程是一座兼有防洪、灌溉、发电、水产养殖效益的综合开发的水利枢纽工程。

工程总库容为1.6×108m3,正常高水位130.0m,死水位112.0m,设计洪水位130.74m,校核洪水位132.4m,水库有效库容达1.0×108m3,为年调节性水库。

该工程拦河坝的坝型为砼重力坝,电站布臵在河床右侧的非溢流坝段的后面,为坝后式布臵,坝顶全长315m,坝顶高程135m,其中左非溢流坝坝段长度为100m,溢流坝段长度为48m,右非溢流坝段长度167m,溢流坝段布臵在河床中部偏左岸,设有3孔6m×12m的弧形工作闸门,堰顶高程124m,坝底最大宽度为54m,消能方式为挑流消能,在坝后式厂房处,非溢流坝段的最大底度为46.6m,厂房最大宽度为13.7m,厂坝联结段为4m。

电站装机容量为2×3200KW。引水压力钢管设在非溢流坝段内,进水口底板高程为95.0m,管径1.75m,采用单机供水的布臵方式。水轮机安装高程85.0m,设计工作水头36.0m,最大工作水头45.0m,最小工作水头27.0m。

工程枢纽处地形及工程布臵见图1。

二、基本资料

1.工程水文资料

该水库库容在1×108m3以上,主坝工程为二级建筑物,坝址设计洪水过程线,是根据上游3km处水文观测站实测某年最大一次洪水典型加以修正,以洪峰、洪量控制进行放大而得。现将各设计频率洪水过程线、施工设计洪水等水文资

料列于表1~表5。

表1 坝址设计洪水过程线单位:m3/s

表2 施工设计洪水成果单

位:m3/s

表3 水文站实测历年月平均流量单位:m3/s

表4 坝址水位—流量关系曲线

表5 水库容积曲线

2.坝址地形地质条件

(1)左岸:地形自然坡度为1:1.5~2.0,覆盖层2~3m,全风化带厚3~5m,强风化加弱风化带厚5m,微风化厚4m。

(2)河床:岩面较平整。冲积沙砾层厚约0~1.5m,弱风化层厚1m左右,微风化层厚3~6m。河床纵剖面地形中,迎水面坝踵处岩面高程约在86m左右,背水面坝趾处岩面高程约在83.5m左右。距坝趾下游15m处有一深潭。高程约81m,整个河床皆为微、弱风化的花岗岩组成,致密坚硬,强度高,抗冲能力强。

(3)左岸:地形自然坡度为1:2左右,覆盖层4~6m,全风化带厚6~8m,强风化带厚2~4m,弱风化带厚2~4m,微风化厚1~12m。

(4)坝基开挖:强风化层要全部挖除。坝基的开挖范围应与建筑物的底部轮廓尺寸相适应,开挖的深度按坝底应力和坝基强度而定。

(5)坝后式厂房基础:厂房设于坝后靠右岸的河床处,设计最低开挖高程为79~83m之间,全部处于微风化新鲜基岩内。

3.主要施工条件

(1)对外交通:目前已有两条三级公路分别从两岸经过坝首和坝区。

(2)施工电源:目前已有35KV输电线路有县城架至G镇,距坝址仅3km,施工用电可利用本县电网中的水电,电源充足,质量可靠。

(3)主要建筑材料:本枢纽主坝为砼重力坝,坝体砼所需的卵石,在坝址

上下游1~2km均可开采,河砂在距坝址10km处的下游采集。库内盛产竹木,自给有余。仅水泥、钢筋、机电设备等需要外购。

5.施工年限

本工程主体部分的大坝和电站厂房,施工工期为两年左右,准备工程在第一施工年度的4~7月份完成,水库在第三施工年度的汛后开始蓄水,并在10月1日并网发电。

三、施工导流设计过程

(一)施工导流设计标准选择

1.施工导流建筑物级别的选定

本工程根据《水利水电工程施工组织设计规范》(SDJ338—89),以及本工程的级别和围堰工程规模,选定施工导流建筑物为Ⅳ级。

2.施工导流设计洪水标准的选择

根据《水利水电工程施工组织设计规范》(SDJ338—89),以及导流建筑物的级别,选定导流建筑物的洪水标准为:20年一遇(P=5%)。

(二)施工导流时段选择

根据本工程的特征条件采用分段围堰法导流,中后期用临时底孔泄流来修建混凝土坝。划分为三个时段:第一时段,河水由束窄河床通过,进行第一期基坑内施工;第二时段,河水由导流底孔下泄,进行第二期基坑内施工;第三时段,坝体全面升高,可先由导流底孔下泄河水,底孔封堵以后,则河水由永久泄水建筑物下泄,也可部分或完全拦蓄在水库中,直到工程完建。

(三)施工导流设计流量及坝址处河床水位的选择

根据导流设计洪水标准和围堰施工分期,选定施工导流设计流量为Q=235

m 3/s 。根据坝址水位—流量关系曲线,采用内插法得到Q=235 m 3/s 时的水位为86.09m ,由于观测点距坝址有300m 远,考虑到坡降,选择坝址处水位为86.39m 。

(四)施工导流方案的选择

根据枢纽的自然条件及坝体的结构特点及工程的导流施工标准,选择采用分段围堰法施工,分为两段两期。第一期先围左岸,包括左岸非溢流坝段和溢流坝段,进行一期基坑内施工;第二期围河床右岸部分,包括右非溢流坝段(含厂房坝段),进行二期基坑内施工。本工程所在地,河流流量小,河床滩地宽,两岸坡度缓,采用两段两期的施工导流方式完全可以满足要求。

(五)第一期导流设计 1.河床水面宽度及束窄度

河床水面宽度由图2所示确定为64m ,束窄度取K=60%。

图2 单位(m )

2.水利计算

束窄度取K=60%,抗冲流速s m v /4=。 (1)一期束窄段河床过流能力设计 则过水断面面积:24

23575.58m w v

Q ===

(2)过水断面为梯形:假设边坡为1:1, 4=i ,03.0=n ,出口处渠底高程83.5m 。

假定水深为2.5m

则:275.675.2)5.216.24()(m h mh b w =??+=+=

m m h b x 67.31115.226.241222=+??+=++=

m R x w

14.267.3175.67=== s m R c n /84.3714.22

16

16

103

.011=?== s m Ri wc Q /2.237414.284.3775.673=???==

假定水深为2.48m 时,s m Q /2353=。 束窄段河床平均流速:

s m s m v A A Q c /4/65.375

.6795.0235

)

(21<==

=

?+ε (3)束窄河床段上游水位壅高: m Z g

v g

v c 81.081

.92)(81.9285.065.3222235

2202=

-=

-=

????

(4)上、下游一期横向围堰堰顶高程:

m d H H z 68.8670.048.25.83=++=++=δ下 m z H H z 54.8775.081.098.85=++=++=δ上

3.纵向围堰长度的拟定及围堰轴线布臵

根据施工要求及场地条件,拟定纵向围堰长度为150m 。纵向围堰轴线位臵在河床中部偏右岸约29m 处,如图2。

4.围堰断面设计

(1)纵向围堰断面构造及尺寸

图3 单位:mm

围堰主体采用块石、砂砾土料堆石体,防渗层为粘土斜墙,在粘土斜墙迎水位采用浆砌石护面。

(2)上、下游横向围堰断面尺寸 ①上游横向围堰断面构造及尺寸

图4 单位:mm

堆石体采用块石、砂砾土石料堆砌,防渗层为粘土斜墙,防冲采用浆砌石护面。

②下游横向围堰断面构造及尺寸

图5 单位:mm

5.围堰工程量的估算 上游横向围堰长度:36m

32

125.1370365.3)75.183(m V =??+?=上

下游横向围堰长度:68m 3211989683)5.613(m V =??+?=下 纵向围堰方量:长150m

32

152501505.3)173(m V =??+?=纵 325.86095250198925.1370m V =++=一期 (六)第二期导流水力计算

本工程二期采用底孔导流,为了确保泄流能力,拟定采用2个底孔。 1.底孔的布臵及断面尺寸的选择

根据水利水电工程设计规范选定:底孔布臵在主河床的溢流坝段中,底孔底板距基岩面的距离为2m 。底孔进口高程选定84.0m ,出口高程83.9m ,底孔全长57m 。

由水利学原理,判定底孔出流为有压自由出流。其泄流能力计算公式为:)(2p h T g w Q -=μ,式中D h p 85.0=,(D 为引化直径)。底孔进水口水头损失系数为1.0=进ξ,闸门槽水头损失1.0=槽ξ,沿程水头损失)/L ()c /8g (2D ?=沿ξ。

s m Q /2353=时,出口处下游水位高程为86.39m ,糙率取014.0=n 。

则底孔泄流量曲线如图6(两个底孔)。

图6 底孔泄流能力曲线图

考虑到施工强度及防洪要求,选定采用两个3×4.5的导流底孔。这样既可以满足施工期间导流的要求,又适当减小混凝土的浇筑强度。

2.二期导流水力计算

(1)上游水位壅高值

m D H Z fc fc 99.5995.35.1=?===τ

(2)上下游堰顶高程

m d H H z 68.8670.048.25.83=++=++=δ下 m z H H z 70.9275.099.598.85=++=++=δ上

3.二期纵向围堰的上、下纵段长度及围堰的轴线平面布臵

根据施工布臵要求,定出纵向围堰上纵段长54m 。纵向围堰下纵段主要靠一期工程时在溢流坝段右边导墙来承担,右导墙长38m ,再在右导墙上接24m 的土石围堰。

纵向围堰上纵段轴线布臵在一期纵向围堰轴线左边14m 处,纵向围堰下纵段轴线布臵与右导墙轴线重合。

4.围堰断面的结构及尺寸 (1)纵向围堰上纵段剖面

图7 单位(mm )

结构材料与一期一致。 (2)纵向围堰下纵段剖面

图8 单位(mm )

结构材料与一期一致。 (3)上游横向围堰剖面

图9 单位(mm )

二期上游横向围堰采用钢筋石笼护面,粘土斜墙铺盖防渗,围堰长62m 。 (4)下游横向围堰剖面

图10 单位(mm )

二期下游横向围堰结构材料与一期下游围堰相同,围堰长28m 。 5.围堰工程量计算 纵向围堰上纵段:

32

12.9331540.9)4.353(m V =??+?=上纵 纵向围堰上纵段:

32

12.781245.3)6.153(m V =??+?=下纵 上游横向围堰:

32

15.12973620.9)5.433(m V =??+?=上横

下游横向围堰: 32

17.1065285.3)57.183(m V =??+?=下横 二期围堰总方量:

36.241517.10655.129732.7812.9331m V =+++=二期

四、截流设计

1.截流时间的选择

根据表3的水文资料及工程施工条件的要求,选定截流时间在第二施工年度的9月初。此时河流水量逐渐变小,进入枯水期。

2.截流流量的确定

根据表3的水文资料,选取9月份的流量作多年经验频率曲线。

表7 截流经验频率计算表

根据表7数据绘制经验频率曲线。

流量(

频率(%)

图11 截流流量经验频率曲线图

从频率曲线上看出,曲线与大部分经验点配合较好,所以不用再进矩法配线计算。从曲线上查得P=10%时,1.15 p Q m 3/S ,即为截流设计流量。

3.截流过程设计

本工程一期施工截流可不做考虑,从一期围堰的平面布臵图上可知,上游横向围堰工程量较小,且紧靠左岸的滩地,枯水期滩地处基本无水,纵向围堰在滩地上顺水流方向填筑,而下游横向围堰可在静水中填筑。二期施工截流时,戗堤轴线选在一期上游横向围堰与纵向围堰相交的背水面坡脚处,龙口段设在主河槽偏右侧。该处河床基岩出露,抗冲能力强,截留施工采用立堵法进行。

河床右岸有一条三级公路,所以截流时从河床右岸向龙口进占,逐步束窄龙口,直至龙口合龙、闭气。然后再进行加固,填筑二期上游横向围堰,最后填筑二期下游横向围堰。

五、施工渡汛

为了确保工程能够如期完成,并保证工程在施工期间能安全渡汛,须进行施

工调洪计算。求出一、二期坝体施工时渡汛高程,以便在施工中对坝体工程和施工进度及施工强度实行严格控制。

1.坝体施工期临时渡汛洪水标准

根据《水利水电工程施工组织设计规范》(SDJ338—89)规定,选择渡汛洪水标准为20年一遇,即P=5%。

2.施工调洪计算

调洪计算方法采用单辅助线图解法,设计洪水过程线的频率P=5%,h t 6=?,起调水位为导流设计流量235=Q m 3/S 时的水位。从表1中选出P=5%,h t 6=?,作设计洪水过程线图。

流量(

图12 设计洪水位过程线(P=5%)

(1)第一期施工渡汛,能满足全年施工洪水996=Q m 3/S 的通过要求,第一期施工可不作调洪计算。

(2)第二期工程施工渡汛,查下游水位流量关系曲线,当9.1699=Q m 3/S 时,下游水位为89.93m 。经流态校核,此流量上,底孔泄流量按有压淹没出流计算。

图13 下游水位与流量关系曲线图

六、导流底孔封堵

1.底孔封堵施工方案

本工程采用下闸封孔,浇筑混凝土封堵的方式进行底孔封堵。当大坝整体高程施工达到 124m以上并能由溢流坝段泄水时,且厂房进水口闸门已安装完毕后,可进行下闸。通过对制造成本、制作工艺、启闭机械能力等方面的考虑后,决定采用钢筋混凝土整体闸门作为封孔闸门。采用电动卷扬机沉放。临时底孔是坝体的一部分,封堵时要全孔封堵,浇筑混凝土。为了确保封堵混凝土与洞壁之间有足够的抗剪力,采用键槽结合。

2.封堵时间及蓄水计划

(1)封堵时间

导流底孔的封堵时间安排在枯水期。根据本工程的施工进度要求在第三施工年度汛期后开始蓄水,并在10月1日并网发电。所以本工程的封堵时间选在第三施工年度的8月份。

混凝土重力坝施工导流工程施工设计方案

一、工程概况 本水库是该流域水利水电建设规划中的主体工程之一。坝址位于某乡上游3km处,控制流域面积317km2,坝址处多年平均流量11.1m3/s,年径流总量3.5×108m3。本工程是一座兼有防洪、灌溉、发电、水产养殖效益的综合开发的水利枢纽工程。 工程总库容为1.6×108m3,正常高水位130.0m,死水位112.0m,设计洪水位130.74m,校核洪水位132.4m,水库有效库容达1.0×108m3,为年调节性水库。 该工程拦河坝的坝型为砼重力坝,电站布置在河床右侧的非溢流坝段的后面,为坝后式布置,坝顶全长315m,坝顶高程135m,其中左非溢流坝坝段长度为100m,溢流坝段长度为48m,右非溢流坝段长度167m,溢流坝段布置在河床中部偏左岸,设有3孔6m×12m的弧形工作闸门,堰顶高程124m,坝底最大宽度为54m,消能方式为挑流消能,在坝后式厂房处,非溢流坝段的最大底度为46.6m,厂房最大宽度为13.7m,厂坝联结段为4m。 电站装机容量为2×3200KW。引水压力钢管设在非溢流坝段,进水口底板高程为95.0m,管径1.75m,采用单机供水的布置方式。水轮机安装高程85.0m,设计工作水头36.0m,最大工作水头45.0m,最小工作水头27.0m。 工程枢纽处地形及工程布置见图1。 二、基本资料 1.工程水文资料 该水库库容在1×108m3以上,主坝工程为二级建筑物,坝址设计洪水过程线,是根据上游3km处水文观测站实测某年最大一次洪水典型加以修正,以洪峰、洪量控制进行放大而得。现将各设计频率洪水过程线、施工设计洪水等水文资料列于表1~表5。 3 3 3

水利水电工程毕业设计英文翻译,混凝土重力坝

Concrete Gravity Dam The type of dam selected for a site depends principally on topographic, geologic,hydrologic, and climatic conditions. Where more than one type can be built, alternative economic estimates are prepared and selection is based on economica considerations.Safety and performance are primary requirements, but construction time and materials often affect economic comparisons. Dam Classification Dams are classified according to construction materials such as concrete or earth. Concrete dams are further classified as gravity, arch, buttress, or a combination of these. Earthfill dams are gravity dams built of either earth or rock materials, with particular provisions for spillways and seepage control. A concrete gravity dam depends on its own weight for structural stability. The dam may be straight or slightly curved, with the water load transmitted through the dam to the foundation material. Ordinarily, gravity dams have a base width of 0.7 to 0.9 the height of the dam. Solid rock provides the best foundation condition. However, many small concrete dams are built on previous or soft foundations and perform satisfactorily. A concrete gravity dam is well suited for use with an overflow spillway crest. Because of this advantage, it is often combined with an earthfill dam in wide flood plain sites.

混凝土重力坝施工导流施工组织设计方案

一、工程概况 本水库就是该流域水利水电建设规划中得主体工程之一。坝址位于某乡上游3km处,控制流域面积317km2,坝址处多年平均流量11.1m3/s,年径流总量3、5×108m3。本工程就是一座兼有防洪、灌溉、发电、水产养殖效益得综合开发得水利枢纽工程。 工程总库容为1、6×108m3,正常高水位130.0m,死水位112.0m,设计洪水位130.74m,校核洪水位132.4m,水库有效库容达1、0×108m3,为年调节性水库。 该工程拦河坝得坝型为砼重力坝,电站布置在河床右侧得非溢流坝段得后面,为坝后式布置,坝顶全长315m,坝顶高程135m,其中左非溢流坝坝段长度为100m,溢流坝段长度为48m,右非溢流坝段长度167m,溢流坝段布置在河床中部偏左岸,设有3孔6m×12m得弧形工作闸门,堰顶高程124m,坝底最大宽度为54m,消能方式为挑流消能,在坝后式厂房处,非溢流坝段得最大底度为46.6m,厂房最大宽度为13.7m,厂坝联结段为4m。 电站装机容量为2×3200KW。引水压力钢管设在非溢流坝段内,进水口底板高程为95.0m,管径1.75m,采用单机供水得布置方式。水轮机安装高程85.0m,设计工作水头36.0m,最大工作水头45.0m,最小工作水头27.0m。 工程枢纽处地形及工程布置见图1。 二、基本资料 1、工程水文资料 该水库库容在1×108m3以上,主坝工程为二级建筑物,坝址设计洪水过程线,就是根据上游3km处水文观测站实测某年最大一次洪水典型加以修正,以洪峰、洪量控制进行放大而得。现将各设计频率洪水过程线、施工设计洪水等水文资料列于表1~表5。 3 3 单

水利水电工程混凝土坝施工技术

摘要:在水利水电工程中,混凝土坝施工具有工程量大、施工条件复杂、温度控制严、质量及技术要求高等特点,因此极有必要对这一技术的运用进行深入研究。本文以XX水电站为例,探讨了碾压混凝土坝的施工技术。 关键词:水电站;碾压混凝土坝;施工工艺 1工程概况 XX水电站是一座主营发电、兼顾航运及生态旅游等综合利用的工程,其正常蓄水位是126.5m。该水电站的枢纽建筑包括厂房、大坝。其中,大坝由左右两岸混凝土重力坝段、左岸土石坝段、河床溢流坝段及厂房坝段组成;在河床中部,设有9孔10m×9m、单孔净宽10m的低堰式弧形闸门;电站厂房设在河床左岸,且装有3×11MW灯泡贯流式水轮发电机组;在左岸土石坝段的下游设有开关站。结合这一案例,笔者主要探讨碾压混凝土坝的施工技术。 2碾压混凝土坝施工工艺碾压 混凝土坝施工是一项工艺复杂的工事,且为了保证施工质量,要求在坝基开挖验收合格后,先按要求处理岩石涌水点,在小型用水点直接用导管引水至别处,而在涌水点密集处或大型涌水点,设集水井集中抽排,以保证浇筑面没有积水,注意将灌、回浆灌埋设在集水井内,以便在基岩固结灌浆时对引水导管、集水井回填灌浆。待准备工作就绪后,再有序进行以下施工。2.1断层与破碎带混凝土施工在清理干净建基面后,对其断层与破碎带回填混凝土,具体施工要点包括:一是先铺设一层厚2~3cm的水泥砂浆,再浇筑混

凝土;二是用自卸汽车运输混凝土到仓外后,先卸入3m3的混凝土卧罐内,再用长臂反铲传料入仓,且需设溜槽辅助作业;三是下料厚30~50cm,并用Φ100振捣器及软轴振捣器进行分层振捣。2.2溢流堰堰体施工对于左、右岸基础和堰体的混凝土,先用自卸汽车运输到仓外,再用长臂反铲传料及门机吊罐入仓,然后再按坝段进行分缝、分仓及跳仓浇筑。其中,对于堰面下的混凝土,每层浇筑厚1.5m或按设计要求分层、分台阶浇筑。入仓混凝土按厚50cm分层振捣,且选用Φ100振捣器。2.3闸墩混凝土施工在溢流坝段,闸墩顶、底面高程分别是133.3m和112.5m,其施工包括中墩、边墩施工,在墩尾、墩头处,先用3m×3m组合钢模板制成异型大钢模,再以气焊方式将横围囹焊接成墩尾、墩头的形状,然后用铁丝将横围囹与面板固定在一起。在浇筑左、右岸闸墩混凝土时,先用门机吊罐入仓,再按坝段分缝、分仓及跳仓浇筑,注意每一层浇筑厚2m,入仓混凝土按30~50cm分层振捣,且选用Φ100振捣器。2.4闸门槽混凝土施工在浇筑好闸门槽一期混凝土后,先凿毛处理,并冲洗干净,再安装边导板,然后再开始门槽二期混凝土浇筑,其施工工艺如下:一是先用门机吊罐从导管或缓降器入仓,再用Φ30、50软轴振捣器振捣密实;二是按3m一段支立二期混凝土模板,并间隔3m留设下料孔,同时按混凝土的浇筑进度支立上段模板;三是用拉筋将模板与一期混凝土的预埋锚筋拉结在一起,以便及时紧固在浇筑期间松动的模板;四是在浇筑好二期混凝土后,及时洒水养护28d,并对突出位置、棱角处进行重点保护。2.5消力池施工对于左、右岸消力池的混凝土,先用15t的自卸汽车运输到仓外,再卸入储料槽内,然后用EX350反铲传料入仓。在这一过程中,需注意下列施工要点:一是对底板混凝土进行分块、分仓及逐条浇筑,并分

混凝土重力坝设计

XXXXXX 继续教育学院 毕业论文 题目 XXX水库 混凝土重力坝枢纽设计 专业水工 层次专升本 姓名 学号

前言 关键词:重力坝剖面稳定应力细部构造地基处理 本次设计内容为河南南潘家口水利枢纽,坝型选择为混凝土重力坝,坝轴线选择和枢纽布置见1号图SG-01潘家口水库平面图所示。 整座重力坝共分53个坝段,主要有非溢流挡水坝段、溢流表孔坝段、溢流底孔坝段和电站厂房坝段。其中非溢流挡水坝段每坝段宽15米,分布于大坝两端;厂房坝段每段宽16米,布置在靠近右岸的主河床上,装机3台机组;底孔坝段每段宽22米,布置在厂房坝段左侧的主河床上;溢流坝段每段宽18米,布置在滦河主河床上。详见1号图SG-02下游立视图。 挡水坝段最大断面的底面高程为128米,坝顶高程为228米,防浪墙高1.2米,最大坝高为101.2m,属高坝类型。坝顶宽12米,最优断面的上游坝坡坡率为1:0.2,上游折坡点高程为181米,下游坝坡坡率为1:0.7,下游折坡点高程688.98英尺,详细情况参见1号图SG-03挡水坝剖面图。 溢流坝段最大断面的底面高程为126米,堰顶高程210米,溢流堰采用WES曲线设计,直线段坡率为1:0.7,反弧段半径取25.0米,鼻坎高程取159米,上游坝坡坡率取1:0.2,折坡点高程为181米,上游坝面与WES曲面用1/4椭圆相连,详细情况见1号图SG-02溢流堰标准横断面图所示。 本枢纽溢流堰采用挑流方式消能,挑角取250。止水采用两道紫铜中间加沥青井的形式。坝基防渗处理(主要依据上堵下排的原则),上游帷幕灌浆(两道),下游侧设置排水管。 以非溢流挡水坝段为计算选择断面,进行了抗滑稳定分析和应力分析,分别采用抗剪断计算法和材料力学法计算法进行计算,最终验算满足抗滑稳定,上游坝踵没有出现拉应力,设计剖面合理可行。 本次设计只是部分结构物设计,考虑问题较单一,采用基础资料一般以书本为主,跟实际情况难免有出入,敬请读者批评指正。 编者 2008.9

重力坝混凝土浇筑施工技术措施

重力坝混凝土浇筑施工技术措施 右岸重力坝混凝土施工技术措施 1.概述 香河水库拦水坝从左至右分为1#、2#、3#、4#、5#、6#坝段,布置在板老河床岸坡及台地上,沿坝轴方向总长94.0m,最低建基面高程448.0m。 根据施工进度安排要求在20xx年5月12日前完成EL76.0m 以下砼浇筑,20xx年9月12日完成重力坝混凝土浇筑施工。在重力坝上游侧布置一台DMQ540/30低架门机(1#门机)负责重力坝段混凝土施工,混凝土采用砼搅拌车从左岸拌和楼经迁江大桥运抵1#门机接料平台,经1#门机吊3m卧罐入仓。 重力坝凝土施工见附图《重力坝混凝土施工布置及分层分块图》。 2.施工布置 2.1施工道路布置 根据业主提供的场内交通条件,利用开挖出渣道路并作适当改建,本标混凝土施工主要运输线路如下: 左岸混凝土拌和系统→左岸对外公路→迁江大桥、迁江镇→右岸对外公路→右岸上坝公路→上游出渣路→ 1#门机取料平台,运距约4000m:主要为右岸重力坝段供料。 2.2施工机械布置

在重力坝段上游布置1台型号为MQ540/30型的低架门机,编号为1#门机,1#门机平行坝轴线布置,运行中心线桩号为上 0+011.50m,行走范围:0+016.00~0+056.00,安装高程 EL80.0m,起重臂杆变幅18.00m~37.00m,能控制整个重力坝。 1#门机于20xx年3月25日安装完成,安装前先用石渣填筑一个安装平台,采用50t汽车吊进行安装。1#门机负责浇筑重力坝全部混凝土18879m,20xx年9月12日完成重力坝混凝土浇筑后,采用汽车吊将1#门机拆除。 3 3 3.混凝土施工程序及施工方法 3.1混凝土施工工艺流程 配合比试验原材料检验工作面清碴、冲洗立模前测量放样基底清理下一仓混凝土验基测量放样单元工程施工准备工作钢模、木模准备模板安装钢筋制作钢筋定位安装钢筋、模板调整止水片、预埋件加工止水片、预埋件安装和观测仪器埋设混凝土生产检查验收不合格混凝土运输与入仓混凝土浇筑、振捣过程质量检验过程检验养护、拆模资料整理单元工程完工验收混凝土工程施工工艺流程图 (1)施工准备工作 1)钢模、木模准备 根据混凝土结构物的特点及施工单位的材料、设备和工艺条件,在本工程的混凝土施工中宜优先采用钢模板。对大面积的表

混凝土重力坝毕业设计计算书

1 目录 目录 (1) 第1章非溢流坝设计 (4) 1.1坝基面高程的确定 (4) 1.2坝顶高程计算 (4) 1.2.1基本组合情况下: (4) 1.2.2特殊组合情况下: (5) 1.3坝宽计算 (6) 1.4 坝面坡度 (6) 1.5 坝基的防渗与排水设施拟定 (7) 第二章非溢流坝段荷载计算 (8) 2.1 计算情况的选择 (8) 2.2 荷载计算 (8) 2.2.1 自重 (8) 2.2.2 静水压力及其推力 (8) 2.2.3 扬压力的计算 (10) 2.2.4 淤沙压力及其推力 (12) 2.2.5 波浪压力 (13) 2.2.6 土压力 (14) 第3章坝体抗滑稳定性分析 (16) 3.2 抗滑稳定计算 (17) 3.3 抗剪断强度计算 (18) 第4章应力分析 (20) 4.1 总则 (20) 4.1.1大坝垂直应力分析 (20) 4.1.2大坝垂直应力满足要求 (21) 4.2计算截面为建基面的情况 (21) 4.2.1 荷载计算 (22) 4.2.2运用期(计入扬压力的情况) (23) 4.2.3运用期(不计入扬压力的情况) (23)

4.2.4 施工期 (23) 第5章溢流坝段设计 (25) 5.1 泄流方式选择 (25) 5.2 洪水标准的确定 (25) 5.3 流量的确定 (25) 5.4 单宽流量的选择 (25) 5.5 孔口净宽的拟定 (26) 5.6 溢流坝段总长度的确定 (26) 5.7 堰顶高程的确定 (27) 5.8 闸门高度的确定 (27) 5.9 定型水头的确定 (28) 5.10 泄流能力的校核 (28) 5.11.1 溢流坝段剖面图 (29) 5.11.2 溢流坝段稳定性分析 (29) (1)正常蓄水情况 (29) (2)设计洪水情况 (30) (3)校核洪水情况 (30) 第6章消能防冲设计 (31) 6.1洪水标准和相关参数的选定 (31) 6.2 反弧半径的确定 (31) 6.3 坎顶水深的确定 (32) 6.4 水舌抛距计算 (33) 6.5 最大冲坑水垫厚度及最大冲坑厚度 (34) 第7章泄水孔的设计 (36) 7.1有压泄水孔的设计 (36) 7.11孔径D的拟定 (36) 7.12 进水口体形设计 (36) 7.13 闸门与门槽 (37) 7.14 渐宽段 (37) 7.15 出水口 (37) 7.15 通气孔和平压管 (38) 参考文献 (39)

混凝土坝工程

混凝土坝工程 概述 一.骨料生产在混凝土大坝中的地位: 1. 需要量大,每立方米砼中约需1.5立方米的骨料; 2. 骨料的质量直接影响砼坝的质量。 二.骨料质量的要求 1.粗骨料粒径划分如下: 一级配5~20mm 二级配5~20,20~40mm 三级配5~20,20~40,40~80mm 四级配5~20,20~40,40~80,80~120(150)mm 2. 骨料以细度模数控制,一般2.4~2.8 3. 最大粒径不应超过钢筋净间距2/3,构件最小边的1/4,素混凝土板厚1/2,超径小于5%,逊径小于10%,少筋获无筋结构应选用较大粗骨料粒径。 4. 其他要求,可参考规范。 三.骨料的生产方式 1. 天然骨料:成本低,但级配与砼设计级配不同 2. 人工骨料:质量好,可利用开挖出的石料,但成本高 3. 混合骨料:天然骨料为主,人工骨料为辅。 第一节 混凝土骨料制备 一.料场规划 土石坝施工中的料场规划同样适用于混凝土骨料料场,在此不再赘述。 二.毛料开采 1.毛料开采量的确定 天然砂砾料开采量:毛料开采量取决于混凝土中各种粒径的骨料需要量和天然砂砾料中各种粒径骨料的含量。混凝土通常都有几种标号,每种混凝土都有各自的配合比用量。 设某工程共有j 种标号混凝土,每一种混凝土的工程量V j ,混凝土共有几个骨料粒径组,各粒径组的需要量e ij 。则第i 组骨料总需要量q i 为 ()∑+=j j ij c i V e K q 1(m 3,以松方计) 式中K c 为混凝土出机后的损失系数,约为0.01~0.02。 为满足第i 组骨料(净料)的总需要量q i ,则需要开采的砂砾料总量Q i (m 3,天然方计) ()i p i i p K q K Q +=1 式中K 为骨料生产过程的损耗系数,是各生产环节损耗系数的总和,包括开采、加工、运输、混凝土生产过程;

《水工建筑物课程设计》-混凝土重力坝设计

《水工建筑物课程设计》 题目:混凝土重力坝设计 学习中心:江苏扬州市邗江区教师进修学校奥鹏学 习中心[11]VIP

1 项目基本资料 1.1 气候特征 根据当地气象局50年统计资料,多年平均最大风速14 m/s,重现期为50年的年最大风速23m/s,吹程:设计洪水位 2.6 km,校核洪水位3.0 km 。 最大冻土深度为1.25m。 河流结冰期平均为150天左右,最大冰厚1.05m。 1.2 工程地质与水文地质 1.2.1坝址地形地质条件 (1)左岸:覆盖层2~3m,全风化带厚3~5m,强风化加弱风化带厚3m,微风化厚4m。 (2)河床:岩面较平整。冲积沙砾层厚约0~1.5m,弱风化层厚1m左右,微风化层厚3~6m。坝址处河床岩面高程约在38m左右,整个河床皆为微、弱风化的花岗岩组成,致密坚硬,强度高,抗冲能力强。 (3)右岸:覆盖层3~5m,全风化带厚5~7m,强风化带厚1~3m,弱风化带厚1~3m,微风化厚1~4m。 1.2.2天然建筑材料 粘土料、砂石料和石料在坝址上下游2~3km均可开采,储量足,质量好。粘土料各项指标均满足土坝防渗体土料质量技术要求。砂石料满足砼重力坝要求。 1.2.3水库水位及规模 ①死水位:初步确定死库容0.30亿m3,死水位51m。 ②正常蓄水位:80.0m。 注:本次课程设计的荷载作用只需考虑坝体自重、静水压力、浪压力以及扬压力。 表一 本设计仅分析基本组合(2)及特殊组合(1)两种情况: 基本组合(2)为设计洪水位情况,其荷载组合为:自重+静水压力+扬压力+泥沙

压力+浪压力。 特殊组合(1)为校核洪水位情况,其荷载组合为:自重+静水压力+扬压力+泥沙压力+浪压力。 1.3大坝设计概况 1.3.1工程等级 本水库死库容0.3亿m3,最大库容未知,估算约为5亿m3左右。根据现行《水电枢纽工程等级划分及设计安全标准》(DL5180-2003),按水库总库容确定本工程等别为Ⅱ等,工程规模为大(2)型水库。枢纽主要建筑物挡水、泄水、引水系统进水口建筑物为2级建筑物,施工导流建筑物为3级建筑物。 1.3.2坝型确定 坝型选择与地形、地质、建筑材料和施工条件等因素有关。确定本水库大坝为混凝土重力坝。 1.3.3基本剖面的拟定 重力坝承受的主要荷载是水压和自重,控制剖面尺寸的主要指标是稳定和强度要求。由于作用于上游面的水压力呈三角形分部,所以重力坝的基本剖面是三角形,根据提供的资料,确定坝底宽度为43.29m(约为坝高的0.8倍),下游边坡m=0.8,上游面为铅直。

重力坝毕业设计

第一章设计基本资料及任务 第一节设计基本资料 一、枢纽任务 本工程同时兼有防洪、发电、灌溉、渔业等综合利用。水电站装机容量为21.75万kW,装3台机组。正常蓄水位为110.5m,死水位为86.5m,三台机满载时的流量为405m3/s。采用坝后式厂房。工程建成后,可增加保灌面积90万亩,减轻洪水对下游城市和平原的威胁。在遇P=0.02%和P=0.1%频率的洪水时,经水库调节后,洪峰流量可由原来的18200m3/s、14100 m3/s分别削减为6800 m3/s和6350 m3/s;水库蓄水后形成大面积水域,为发展养殖业创造有利条件。 二、基本资料 1、规划数据 本重力坝坝高86.9m,坝全长368m,溢流坝位于大坝中段长度73米,非溢流坝分别接溢流坝两侧各147.5m,坝顶宽度8m,坝底宽度80.5m,坝底高程28m,坝顶高程114.9m,正常蓄水位110.5m,死水位86.5m。 坝址处的河床宽约120m,水深约1.5~4m。河谷近似梯形,两岸基本对称,岸坡取约35o。 2、工程地质 坝基岩性为花岗岩,风化较深,两岸达10m左右。新鲜花岗岩的饱和抗压强度为100~200MPa,风化花岗岩为50~80Mpa。坝址处无大的地质构造。 3、其他资料 - 1 -

(1)风向吹力:实测最大风速为24m/s,多年平均最大风速为20m/s,风向基本垂直坝轴线,吹程为4km。 (2)本坝址地震烈度为7度。 (3)坝址附近卵砾石、碎石及砂料供应充足,质量符合规范要求。 三、表格 表1比选数据 - 2 -

表2岩石物理力学性质 四、参考文献 1.混凝土重力坝设计规范水利电力部编 2.水工建筑物任德林河海大学出版社 3.水工设计手册泄水与过坝建筑物水利电力出版社 4.混凝土拱坝及重力坝坝体接缝设计与构造水电部黄委会编 第二节设计任务 一、枢纽布置 (1)拟定坝址位置 - 3 -

水利工程混凝土坝工程

第五章混凝土工程 至今,混凝土坝在高坝中占的比重较大,特别是重力坝、拱坝应用最普遍。混凝土坝施工中,大量砂石骨料的采集、加工,水泥和各种掺和料、外加剂的供应是基础,混凝土制备、运输和浇筑是施工的主体,模板、钢筋作业是必要的辅助。 第一节骨料料场规划和生产加工 砂石骨料是混凝土最基本的组成成分。 一骨料料场规划 骨料料场规划是骨料生产系统的基础。砂石骨料的质量是料场选择的首要前提。 1. 骨料料场规划的原则 搞好砂石料场规划应遵循如下的原则. 1) 满足水工混凝土对骨料的各项质量要求,其储量力求满足各设计剂级配的需求,并有必要的富裕量。 2) 选用的料场,特别是主要料场,应该地开阔,高程适宜,储量大,质量好、开采季节长,主辅料场应能兼顾洪枯季节互为备用的要求。 3) 选用可采率高,天然级配与设计级配较为接近,用人工骨料调整级配数量少的料场。 4) 料场附近有足够的回车和堆料场地,且占用农田少。 5) 选择开采准备工作小,施工简便的料场。 2、骨料的加工过程 天然的骨料需要通过筛分分级,人工骨料需要通过破碎、筛分。 3、骨料开采量的确定 骨料开采量取决于混凝土中各种粒料的需要量。若第i组骨料所需的净料量为q,则要求开采天然的总量Qi可按下式计算: Qi=(1+k)qi/pi

式中 k——骨料生产过程中的损失系数,为各生产环节损失系数的总和,即k=k1+k2+k3+k4;其中k1,k2,k3,k4参见表5-1 pi——天然骨料中第I种骨料粒径含量的百分数。 第i 种骨料净料需要量qi与第j种标号混凝土的工程量vj有关,也与该标号混凝土中第种粒径骨料的单位用量eij有关。于是,第I种骨料的净料需要量qi可表达为: qi=(1+kc)eijVj 式中,kc为混凝土出机后运输、浇筑中的损失系数,约为1%-2%。 4、骨料生产能力的确定 严格来说,骨料生产能力由其需求量来确定,实际需求量与各阶段混凝土浇筑强度有关,也与上一阶段结束时的储存量有关。若骨料还需销售,则销售量也是供需平衡的一个因素。据此可确定骨料加工的生产能力P(m3/h) 式中 V——骨料生产高峰期的总产量,m3。 T——骨料生产高峰时段的月数。 K1——高峰时段骨料生产的不均匀系数,可取1.0-1.4; K2——时间利用系数,可取0.8-0.9; m——每月有效工作时数,可取20h; n——每月有效工作日数,可取25-28d。 5、天然骨料的开采设备 天然骨料开采,在河滩多用索铲。采砂船是在一定水深中采掘沙砾石的机械。二骨料加工和加工设备 将采集到的毛料加工,一般需要通过破碎、筛选和冲洗,制成符合级配,除去杂质的碎石和人工砂。根据骨料加工工艺流程,组成骨料加工厂。 1、骨料的破碎 使用破碎机械碎石,常用的设备有颚板式、反击式和锥式三种碎石机。 2、骨料的筛分 为了分级,需将采集的天然毛料或破碎后的混合料筛分,分级的方法有水力赛分和机械筛分两种。大规模的筛分多用机械筛分,有偏心振动和惯性振动两种。 3、砂的水力分级

水利专业混凝土重力坝毕业论文中英文资料外文翻译文献

混凝土重力坝 中英文资料外文翻译文献 混凝土重力坝基础流体力学行为分析 摘要:一个在新的和现有的混凝土重力坝的滑动稳定性评价的关键要求是对孔隙压力和基础关节和剪切强度不连续分布的预测。本文列出评价建立在岩石节理上的混凝土重力坝流体力学行为的方法。该方法包括通过水库典型周期建立一个观察大坝行为的数据库,并用离散元法(DEM)数值模式模拟该行为。一旦模型进行验证,包括岩性主要参数的变化,地应力,和联合几何共同的特点都要纳入分析。斯威土地,Albigna 大坝坐落在花岗岩上,进行了一个典型的水库周期的特定地点的模拟,来评估岩基上的水流体系的性质和评价滑动面相对于其他大坝岩界面的发展的潜力。目前大坝基础内的各种不同几何的岩石的滑动因素,是用德国马克也评价模型与常规的分析方法的。裂纹扩展模式和相应扬压力和抗滑安全系数的估计沿坝岩接口与数字高程模型进行了比较得出,由目前在工程实践中使用的简化程序。结果发现,在岩石节理,估计裂缝发展后的基础隆起从目前所得到的设计准则过于保守以及导致的安全性过低,不符合观察到的行为因素。 关键词:流体力学,岩石节理,流量,水库设计。 简介:评估抗滑混凝土重力坝的安全要求的理解是,岩基和他们上面的结构是一个互动的系统,其行为是通过具体的材料和岩石基础的力学性能和液压控制。大约一个世纪前,Boozy大坝的失败提示工程师开始考虑由内部产生渗漏大坝坝基系统的扬压力的影响,并探讨如何尽量减少其影响。今天,随着现代计算资源和更多的先例,确定沿断面孔隙压力分布,以及评估相关的压力和评估安全系数仍然是最具挑战性的。我们认为,观察和监测以及映射对大型水坝的行为和充分的仪表可以是我们更好地理解在混凝土重力坝基础上的缝张开度,裂纹扩展,和孔隙压力的发展。 图.1流体力学行为:(一)机械;(二)液压。

重力坝毕业设计

目录 摘要: (1) 前言 (2) 第一部分设计说明书 (3) 1基本资料 (3) 1.1自然条件及工程 (3) 1.2坝址与地形情况 (3) 1.3工程枢纽任务与效益 (4) 2枢纽布置 (5) 2.1枢纽组成建筑物及其等级 (5) 2.2坝线、坝型选择 (5) 2.3枢纽布置 (8) 3洪水调节 (10) 3.1基本资料 (10) 3.2洪水调节基本原则 (13) 3.3调洪演算 (14) 3.4调洪计算结果 (17) 4非溢流坝剖面设计 (18) 4.1设计原则 (18) 4.2剖面拟订要素 (19) 4.3抗滑稳定分析与计算 (21) 4.4应力计算 (22) 5溢流坝段设计 (24) 5.1泄水建筑物方案比较 (24) 5.2工程布置 (25)

5.3溢流坝剖面设计 (25) 5.4消能设计与计算 (28) 6细部构造设计 (32) 6.1坝顶构造 (32) 6.2廊道系统 (33) 6.3坝体分缝 (34) 6.4坝体止水与排水 (35) 6.5基础处理 (36) 6.6混凝土重力坝的分区 (38) 第二部分计算说明书 (39) 1洪水调节 (39) 1.1调洪演算 (39) 1.2调洪计算结果及分析 (55) 2非溢流坝段计算 (57) 2.1非溢流坝段经济剖面尺寸拟定 (57) 2.2抗滑稳定分析 (60) 2.3 应力分析计算 (65) 3消能防冲设计 (68) 3.1消力池的水力计算 (68) 3.2辅助消能工设计 (71) 致谢....................................................... 错误!未定义书签。参考文献. (73)

某混凝土重力坝施工导流施工组织设计方案

某混凝土重力坝施工导流设计 一、工程概况 本水库是该流域水利水电建设规划中的主体工程之一。坝址位于某乡上游3km处,控 制流域面积317km2,坝址处多年平均流量11.1m3/s,年径流总量3.500击。本工程是一座兼有防洪、灌溉、发电、水产养殖效益的综合开发的水利枢纽工程。b5E2RGbCAP 工程总库容为1.6X 108m,正常高水位130.0m,死水位112.0m,设计洪水位130.74m, 校核洪水位132.4m,水库有效库容达1.0 X 108m,为年调节性水库。p1EanqFDPw 该工程拦河坝的坝型为砼重力坝,电站布置在河床右侧的非溢流坝段的后面,为坝后式布置,坝顶全长315m 坝顶高程135m其中左非溢流坝坝段长度为100m溢流坝段长度为48m右非溢流坝段长度167m溢流坝段布置在河床中部偏左岸,设有3孔6m X 12m的弧形 工作闸门,堰顶高程124m坝底最大宽度为54m消能方式为挑流消能,在坝后式厂房处,非溢流坝段的最大底度为46.6m,厂房最大宽度为13.7m,厂坝联结段为4m。DXDiTa9E3d 电站装机容量为2X 3200KW引水压力钢管设在非溢流坝段内,进水口底板高程为 95.0m,管径1.75m,采用单机供水的布置方式。水轮机安装高程85.0m,设计工作水头 36.0m,最大工作水头45.0m,最小工作水头27.0m。RTCrpUDGiT 工程枢纽处地形及工程布置见图1。 二、基本资料 1.工程水文资料 该水库库容在1X 108m以上,主坝工程为二级建筑物,坝址设计洪水过程线,是根据上游3km处水文观测站实测某年最大一次洪水典型加以修正,以洪峰、洪量控制进行放大而得。现将各设计频率洪水过程线、施工设计洪水等水文资料列于表1?表5。5PCzVD7HxA 表1 坝址设计洪水过程线单位:m3/s 表3 水文站实测历年月平均流量单位:m/s

TL混凝土重力坝设计

网络教育学院 本科生毕业论文(设计) 题目: TL混凝土重力坝设计 学习中心:奥鹏远程教育 层次:专科起点本科 专业:水利水电工程

内容摘要 重力坝是一种古老而迄今应用很广的坝型,因主要依靠自重维持稳定而得名。重力坝的断面基本呈三角形,筑坝材料为混凝土或浆砌石。在中国的坝工建设中,混凝土重力坝也占有较大的比重。 本次设计为TL混凝土重力坝设计,设计的准备工作主要包括基本资料的分析、坝型选择和枢纽布置。设计的主要内容首先是进行坝体的设计,进行坝型选择,设计采用混凝土重力坝方案,设计内容包括挡水坝段的设计,溢流坝段的设计,底孔坝段的设计等。然后是细节构造与坝基处理,有坝基清理、坝基加固、坝基防渗及坝基排水设计、断层处理等。 关键词:水利工程;混凝土重力坝;剖面设计;荷载计算;应力分析 目录

引言1 1 设计资料2 1.1 某重力坝基本资料2 1.1.1 流域概况2 1.1.2 地形地质2 1.1.3 建筑材料2 1.1.4 水文条件2 1.1.5 气象条件3 1.2 某重力坝工程综合说明3 2 坝型及坝址选择5 2.1 坝型选择5 2.2 坝址选择5 3 挡水建筑物设计7 3.1 非溢流坝剖面设计7 3.1.1 坝顶高程的拟定7 3.1.2 坝顶宽度的拟定9 3.1.3 坝坡的拟定9 3.1.4 上、下游起坡点位置的确定9 3.2 荷载计算及组合9 3.2.1 自重10 3.2.2 静水压力10 3.2.3 扬压力10 3.2.4 泥沙压力11 3.2.5 浪压力11 3.2.6 荷载组合12 3.2.7.荷载计算成果14 3.3 抗滑稳定分析20 3.4 应力分析21

混凝土重力坝毕业设计计算书

1 兵团广播电视大学开放教育(专科) 题目:混凝土重力坝设计 分校: 姓名: 学号: 专业: 指导教师:

目录 目录 (1) 第一章非溢流坝设计 (5) 1.1坝基面高程的确定 (5) 1.2坝顶高程计算 (5) 1.2.1基本组合情况下: (5) 1.2.1.1 正常蓄水位时: (5) 1.2.1.2 设计洪水位时: (6) 1.2.2特殊组合情况下: (6) 1.3坝宽计算 (7) 1.4 坝面坡度 (7) 1.5 坝基的防渗与排水设施拟定 (8) 第二章非溢流坝段荷载计算 (9) 2.1 计算情况的选择 (9) 2.2 荷载计算 (9) 2.2.1 自重 (9) 2.2.2 静水压力及其推力 (9) 2.2.3 扬压力的计算 (11) 2.2.4 淤沙压力及其推力 (13) 2.2.5 波浪压力 (14) 2.2.6 土压力 (15) 第三章坝体抗滑稳定性分析 (17) 3.1 总则 (17) 3.2 抗滑稳定计算 (18) 3.3 抗剪断强度计算 (19) 第四章应力分析 (21) 4.1 总则 (21) 4.1.1大坝垂直应力分析 (21) 4.1.2大坝垂直应力满足要求 (22) 4.2计算截面为建基面的情况 (22)

3 4.2.1 荷载计算 (23) 4.2.2运用期(计入扬压力的情况) (24) 4.2.3运用期(不计入扬压力的情况) (24) 4.2.4 施工期 (24) 第五章溢流坝段设计 (26) 5.1 泄流方式选择 (26) 5.2 洪水标准的确定 (26) 5.3 流量的确定 (26) 5.4 单宽流量的选择 (27) 5.5 孔口净宽的拟定 (27) 5.6 溢流坝段总长度的确定 (27) 5.7 堰顶高程的确定 (28) 5.8 闸门高度的确定 (29) 5.9 定型水头的确定 (29) 5.10 泄流能力的校核 (29) 5.11.1 溢流坝段剖面图 (30) 5.11.2 溢流坝段稳定性分析 (30) (1)正常蓄水情况 (30) (2)设计洪水情况 (31) (3)校核洪水情况 (31) 第六章消能防冲设计 (32) 6.1洪水标准和相关参数的选定 (32) 6.2 反弧半径的确定 (32) 6.3 坎顶水深的确定 (33) 6.4 水舌抛距计算 (34) 6.5 最大冲坑水垫厚度及最大冲坑厚度 (35) 第七章泄水孔的设计 (37) 7.1有压泄水孔的设计 (37) 7.2孔径D的拟定 (37) 7.3 进水口体形设计 (37) 7.4 闸门与门槽 (38) 7.5渐宽段 (38)

155590 混凝土拦挡坝的施工方案

1 至 4 号坝拦挡坝砼分项工程施 工方案 编制目录 1、工程概况 2、工程规模 3、管理人员及用工配置

4、投入施工机械

5、所需材料用量概算 6、计划工期及工期安排 7、施工布置 8、施工方法 9、施工技术要求 10、质量保证措施 11、施工安全保证措施 12、环境保护措施 13、文明施工措施 混凝土拦挡坝施工方案 、工程概 、工程规模 1、基槽开挖土石方概算量:?m3 2、C30砼概算量:?m3 3、墙高?m-? m之间; 4、模板工程概算量为:m 2;

5、脚手架工程概算量为: 三、管理人员及用工配置 1、项目经理: 2.项目副经理: 3、技术负责人: 4、测量负责人: 5、施工(兼)质检负责人: 6、现场及安全负责人: 7、资料(兼)试验负责人: 8、机维修工:人(两个班) 9、混凝土工:人(两个班) 10、模工、架子工:人 11. 钢筋工:人 四、投入施工机械 1、挖掘机二台(),基槽土石方开挖及场平回填 使用; 2、压路机一台,场平土石方回填时使用; 3、装载机一台(),转运材料、收整料场; 4、运输车6 辆(), 土石方转运和材料转运使用; 5 强制式式搅拌机台(),砼搅拌使用; 6、三相振动棒台 五、所需材料用量概算 一)、主材概算量

1、矿渣水泥:T 2、河砂:m 3; 3、碎石:m 3 4、施工用水:T ;(二)、辅助材料概算量 1、模板:m 2 ? 2、钢管脚手架:m ; 3、扭扣:颗 4、扣件:个 5、锚头:套 6、锚固拉杆:①14 钢筋长m ,合计kg 7、①100PVC管m; 8 、沉降缝泡沫塑料板:m 2; 9 、 铁丝:kg? 六、计划工期及工期安排: 计划总工期历时90 天,施工时间段为2011 年月日至2011 年月日 1、基槽开挖时间:计划天,2011 年月日至2011 年月日; 2、砼拦挡坝浇筑时间:计划天,2011 年月日至2011 年月日; 3、格宾石笼回填时间:计划天,2011 年月日至2011 年

水库混凝土重力坝设计书

水库混凝土重力坝设计书 第1章基本资料 一、枢纽工程概况: P水库位于TS和CD两地区交界处,坝址位于X河桥上游十公里干流上。控制流域面积3.37万km2,总库容为14.39亿m3。 P水库枢纽由主坝、电站及泄水底孔等组成,水库主要任务是调节水量,供TJ和TS地区工农业用水和城市人民生活用水,结合引水发电。并兼顾防洪,要求:尽可能使其工程提前受益,尽早建成。 根据水库的工程规模及其在国民经济中的作用,枢纽定为一等工程,主坝为Ⅰ级建筑物,其它均按Ⅱ级建筑物考虑。 二、气象: P库区年平均气温为10℃左右,一月份最低月平均气温为零下6.8℃,绝对最低气温达零下21.7℃(1969年);7月份最高月平均气温25℃,绝对最气温高达39℃(1955年),多年平均气温见下表(表五)。 表一多年平均气温、水温表单位:℃ 本流域无霜期较短(90—180天),冰冻期较长(120—200天),P站附近河道一般12月封冻,次年3月上旬解冻,封冻期约70—100天,冰厚0.4—0.6米,岸边可达1米。流域冬季盛行偏北风,风速可达七、八级,有时更大些,春秋两季风向变化较大,夏季常为东南风,多年平均最大风速为21.5m/s,水库吹程D=3km。

流域多年平均降雨量约为400—700mm,多年平均降水天数及降水量见表六: 表二多年月平均降水天数及降水量表单位:mm 三、水文分析: 1、年径流:栾河水量较充沛,多年平均年径流量为24.5亿m3,占全流域的53%。年分配很不均匀,主要集中汛期七、八月份。丰水年时占全年50—60%,枯水年占30—40%,而且年际变化也很大。 2、洪水:多发生在七月下旬至八月上旬,有峰高量大涨落迅速的特点,据调查,近一百年来有六次大洪水。其中1883年最大,由洪痕估算洪峰流量约为24400—27400 m3/s,实测的45年资料中最大洪峰流量发生在1962年为18800 m3/s。洪峰历时三天左右,由频率分析法求得:几个重现期所对应的洪峰流量值(见下表表三、表四所示)。 表三 表四

混凝土重力坝施工导流设计方案

混凝土重力坝施工导流 设计方案 一、工程概况 本水库是该流域水利水电建设规划中的主体工程之一。坝址位于某乡上游

3km处,控制流域面积317km2,坝址处多年平均流量11.1m3/s,年径流总量3.5×108m3。本工程是一座兼有防洪、灌溉、发电、水产养殖效益的综合开发的水利枢纽工程。 工程总库容为1.6×108m3,正常高水位130.0m,死水位112.0m,设计洪水位130.74m,校核洪水位132.4m,水库有效库容达1.0×108m3,为年调节性水库。 该工程拦河坝的坝型为砼重力坝,电站布置在河床右侧的非溢流坝段的后面,为坝后式布置,坝顶全长315m,坝顶高程135m,其中左非溢流坝坝段长度为100m,溢流坝段长度为48m,右非溢流坝段长度167m,溢流坝段布置在河床中部偏左岸,设有3孔6m×12m的弧形工作闸门,堰顶高程124m,坝底最大宽度为54m,消能方式为挑流消能,在坝后式厂房处,非溢流坝段的最大底度为46.6m,厂房最大宽度为13.7m,厂坝联结段为4m。 电站装机容量为2×3200KW。引水压力钢管设在非溢流坝段内,进水口底板高程为95.0m,管径1.75m,采用单机供水的布置方式。水轮机安装高程85.0m,设计工作水头36.0m,最大工作水头45.0m,最小工作水头27.0m。 工程枢纽处地形及工程布置见图1。 二、基本资料 1.工程水文资料 该水库库容在1×108m3以上,主坝工程为二级建筑物,坝址设计洪水过程线,是根据上游3km处水文观测站实测某年最大一次洪水典型加以修正,以洪峰、洪量控制进行放大而得。现将各设计频率洪水过程线、施工设计洪水等水文资料列于表1~表5。 表1 坝址设计洪水过程线单位:m3/s

水利工程施工——混凝土坝工程

第五章混凝土坝工程 教学目的和要求:本章目的主要让学生深入了解混凝土工程施工特点,以及混凝土工程施工的注意事项。掌握混凝土工程施工方法。要求熟悉混凝土工程的模板、钢筋作业,熟悉混凝土的制备;掌握常态、碾压混凝土的施工工艺。 重点与难点:1.混凝土的制备 2.常态混凝土的施工工艺 3.碾压混凝土的施工工艺 4.大体积混凝土的温度控制与预防措施等 教具与参考:1.水利施工图片 2.[1]朱伯芳. 大体积混凝土温度应力与温度控制. 北京:中国电力出版社,1999 [2]李冬升. 混凝土冬季施工. 北京:中国水利水电出版社, 主要教学方法:讲解法讨论法实验法 大中型水利水电工程混凝土坝占有很大比重,特别是重力坝、拱坝应用最为普遍。而其共有特点为:工程量大、质量要求高、与施工导流关系密切、施工季节性强、浇筑强度大、温度控制严格、施工条件复杂等。 目前混凝土坝的施工方法主要为现场浇筑。而现场分仓浇筑又可分为传统的分层分块浇筑和薄层碾压浇筑。到目前为止,前者应用最普遍,后者是一种高效、低成本、具有发展前途的施工方法。 本章侧重介绍重力坝和拱坝这两种坝型的现场浇筑技术,也对新兴的碾压混凝土施工技术加以介绍。混凝土坝的施工过程和施工方法基本相同,主要包括准备工作、施工导流、基础开挖与处理、坝体混凝土工程、金属结构安装工程等。在混凝土坝施工中,大量砂石骨料的采集、加工,水泥和各种掺和料、外加剂的供应是基础,混凝土制备、运输和浇筑是施工的主体,模板、钢筋作业是必要的辅助。因此,如何提高混凝土坝施工的综合机械化和管理水平,采用大型、高效、可靠的施工机械设备,认真研究混凝土坝工程施工是保证混凝土质量,加快施工进度,降低工程成本具有重要意义。 混凝土坝工程其坝体的施工工艺流程如图5-1所示。 用混凝土筑坝具有很多优点,特别是建设高坝,是坝工设计人员优先选择的坝型之一。我国建设的大中型水利工程中,混凝土坝占有很大的比重,特别是重力坝、拱坝应该最普遍。三峡水利枢纽、云南澜沧江上的小湾电站、广西红水河上的龙滩碾压混凝土电站、四川境内的锦屏电站、溪洛渡电站等都是混凝土工程。Array 20世纪80年代以来,我国相继修建了一批 混凝土高坝,规模不断突破以往记录,施工 工艺不断完善,创造了具有我国特色的施工 技术和建设经验。 第一节骨料料场规划和生产加工 教学目的和要求:介绍骨料料场规划和骨料

相关文档
最新文档