锂离子电池正极材料现状与发展趋势

锂离子电池正极材料现状与发展趋势
锂离子电池正极材料现状与发展趋势

[×

阵结构组成的晶体模型来表征。晶胞

有一定数量规模的产品。

锂离子电池研究现状

锂硫电池的研究现状 近年来,随着不可再生资源的逐渐减少,清洁能源的利用逐渐得到重视,而电池作为储能装置也受到越来越多的考验。锂硫电池与传统的锂离子电池相比,优势主要在于硫的高比容量,单质硫的理论比容量为1600mAh/g ,理论比能量2600Wh/kg。并且硫是一种廉价且无毒的原材料。而与此同时,硫作为锂电池的正极材料也存在着诸多问题[1]: 1、单质硫以及最终放电产物都是绝缘的,如果与正极中掺入的导电物质结合不好,就会导致活性物质不能参与反应而失效; 2、单质硫在反应过程中会生成长链的聚硫化物离子S n2-,这种离子容易溶解在电解液中,并与锂负极反应,产生“穿梭效应”,引起自放电并使库伦效率降低; 3、在每次放电过程结束之后,都会有一些Li2S2/Li2S沉淀在正极上,并且这些不溶物随着循环次数的增加,在正极表面发生团聚,并且正极结构也会发生变化,导致这部分活性物质不能参与电化学反应而失效,并且使电池的内阻增加; 4、硫正极随充放电的进行会产生约22%的体积变化,从而导致电池物理结构破坏而失效。 针对硫作为正极材料的种种弊端,研究者们分别采用了多种方法予以解决,其中将硫与碳材料复合的研究较多。针对几种典型方法,分别举例介绍如下:一、石墨烯-硫复合材料 Wang等人采用石墨烯包覆硫颗粒的方法制作复合材料电极[2]。如图1所示,他们首先采用化学方法制备了硫单质,并利用一种特殊的表面活性剂Triton X-100在硫颗粒的表面修饰了一些PEG高分子,然后再用导电炭黑和石墨烯的分散液对硫颗粒进行包覆。这种方法的优点在于:首先,石墨烯和导电炭黑具有优异的导电性能,可以克服硫以及硫反应产物绝缘的问题;第二,导电炭黑、石墨烯和PEG高分子对硫颗粒进行了包覆,可以解决硫在电解液中溶出的问题;第三,PEG高分子具有一定的弹性,可以在一定程度上缓解体积变化带来的影响。 二、碳纳米管-硫复合材料 Zheng等人用AAO做模板制备了碳纳米管阵列[3],随后将硫加热使其浸入到碳纳米管中间,然后将AAO模板去掉,得到碳纳米管-硫复合材料,如图2所示。这种方法的优点在于碳纳米管的比表面积大,有利于硫化锂的沉积。并且长径比较大,可以较好地将硫限制在管内,防止其溶解在电解液中。碳纳米管的导电性好管壁又很薄,有利于离子导通和电子传输。同时,因为制备过程中先沉积硫,后去除模板,这样有利于使硫沉积到碳管内,减少硫在管外的残留,从而防止这部分硫的溶解。

锂电池行业发展现状及未来发展前景预测审批稿

锂电池行业发展现状及未来发展前景预测 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

2017年中国锂离子电池行业发展现状分析及未来发展前景预测 核心提示:全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下, 2016 年中国、韩国、日本三国占据了全球锂电池电芯产值总量的 %。三国的竞争策略各不相同。日本竞争 全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下, 2016 年中国、韩国、日本三国占据了全球锂电池电芯产值总量的 %。三国的竞争策略各不相同。日本竞争策略上关注技术领先。韩国更偏重于消费型锂离子电池的发展。中国锂离子电池市场规模在全球市场的份额呈现逐年上升的态势。 2010-2020 年中国及全球锂电产值 数据来源:公开资料整理 国内锂离子电池市场的发展处于行业的高速增长期。 2010 年至 2016 年我国锂离子电池下游应用占比呈现消费型电池占比逐年下降、动力类占比逐年提升的格局。 2016 年受消费电子产品增速趋缓以及电动汽车迅猛发展影响,我国锂离子电池行业发展呈现出“一快一慢”新常态。 2016 年,我国电动汽车产量达到万辆,带动我国动力电池产量达到,同比增长 %。随着储能电站建设步伐加快,锂离子电池在移动通信基站储能电池领域逐步推广, 2016 年储能型锂离子电池的应用占比达到 %。

2010-2016 年我国锂离子电池下游应用占比 数据来源:公开资料整理 业务发展方向契合政策,发展前景良好。我国锂离子电池材料及设备行业平均利润水平总体上呈现平稳波动态势,在不同应用领域及细分市场行业利润水平存在差异。一般而言,在低端负极产品和涂布机领域,门槛低,竞争充分,利润水平相对较低。而中高端负极材料、涂布机以及新兴的涂覆隔膜、铝塑包装膜,产品技术含量高,在研发、工艺改善、客户积累、资金投入等方面进入壁垒较高,附加价值较高,优质企业能够在该领域获得较好的利润率水平。 全球负极材料产业集中度极高,江西紫宸全球份额持续提升。目前锂离子电池负极材料生产企业主要在中国和日本,两国总量占全球负极材料产销量90%以上。负极材料产品市场呈现出明显的寡头垄断格局。2015 年前五强贝特瑞、日立化成、江西紫宸、上海杉杉、三菱化学的全球市场份额分别是20%、18%、13%、10%、7%,全球前五大企业市场份额合计占比为 68%。江西紫宸2016 年全球份额提升至 %,国内份额提升至 %,预计 2017 年份额维持提升趋势。江西紫宸国内排名前三,行业集中度有望进一步提高。目前国内锂电池负极材料生产企业中:贝特瑞、杉杉科技、江西紫宸为行业前三名,处于行业领先地位。未来几年,国内负极生产企业的竞争主要体现在国内领先企业与日立化成等国际企业的竞争、行业前三企业之间的竞争,行业集中度将进一步提高。 负极材料主要竞争对手

四种主要的锂电池正极材料

四种主要的锂电池正极材料 LiCoO2 锂离子从LiCoO2中可逆脱嵌量最多为0.5单元.Li1-xCoO2在x=0.5附近发生可逆相变,从三方对称性转变为单斜对称性。该转变是由于锂离子在离散的晶体位置发生有序化而产生的,并伴随晶体常数的细微变化。但是,也有人在x=0.5附近没有观察到这种可逆相变。当x>0.5时,Li1-x CoO2在有机溶剂中不稳定,会发生释氧反应;同时CoO2不稳定,容量发生衰减,并伴随钴的损失。该损失是由于钴从其所在的平面迁移到锂所在的平面,导致结构不稳定,使钴离子通过锂离子所在的平面迁移到电解质中。因此x的范围为0≤x≤0.5,理论容量为156mA·h/g。在此范围内电压表现为4V左右的平台。当LiCoO2进行过充电时,会生成新的结构 当校子处于纳米范围时,经过多次循环将产生阳离子无序,部分O3相转变为立方尖晶石相结构,导致容量衰减。粒子小时,由于锂离子的扩散路径短,形成的SEI膜较粒子大的稳定,因此循环性能好。例如,70nm的粒子好于300nm 的粒子。粒子大小对自放电也具有明显影响。例如粒子小,自放电速率快。粒径分布窄,粒子的球形性越好,电化学性能越佳。最佳粒子大小取决于电池的要求。 尽管LiCoO 与其它正极材料相比,循环性能比较优越,但是仍会发生衰减, 2 对于长寿命需求的空间探索而言,还有待于进一步提高循环性能。同时。研究过经过长时期的循环后,从层状结构转变为立方尖晶石结构,特别程发现,LiCoO 2 是位于表面的粒子;另外,降低氧化钴锂的成本,提高在较高温度(<65℃)下的循环性能和增加可逆容量也是目前研究的方向之一。采用的方法主要有掺杂和包覆。 作为锂离子电池正极材料的锂钴氧化物能够大电流放电,并且放电电压高,放电平稳,循环寿命长。.因此成为最早用于商品化的锉离子蓄电池的正极材料,亦是目前广泛应用于小型便携式电子设备(移动电话、笔记本电脑、小型摄像机等)的正极材料。LiCoO2具有a-NaFeO2型二维层状结构,适宜于锂离子在层间的嵌人和脱出,理论容量为274 mA·h/g。在实际应用中,该材料电化学性能优异,热稳定性好,且初次循环不可逆容量小。实际可逆容量约为120~150 mA·h/g,即可逆嵌人/脱出晶格的锂离子摩尔百分数接近55 %。 在过充电条件下,由于锂含量的减少和金属离子氧化水平的升高,降低了材料的稳定性。另外由于Co原料的稀有,使得LiCoO2的成本较高。 LiCoO2生产工艺相对较为简单,其传统的合成方法主要有高温固相合成法和低温固相合成法。 高沮固相合成法通常以Li2CO3和CoCO3为原料,按Li/Co的摩尔比为1:1配制,在700~900℃下,空气氛围中灼烧而成。也有采用复合成型反应生成LiCoO2前驱物,然后在350~450℃下进行预热处理,再在空气中于700~850℃下加热合成,所得产品的放电容量可达150 mA·h/g。唐致远等以计量比的钴化合物、锂化合物为合成原料在有机溶剂乙醇或丙酮的作用下研磨混合均匀,先在450℃的温度下处理6h.,待冷却后取出研磨,然后再在6~10 MPa压力下压成块状,最后在900℃的温度下合成12~36 h而制得。日本的川内晶介等用Co3O4和Li2 CO3做原料,按化学计量配合在650℃灼烧10h制的温定的活性物质。章福平等按计量将分析纯LiNO3和Co(NO3)2·6H2O混匀,加适量酒石酸,用氨水调

锂电池行业发展现状及未来发展前景预测

锂电池行业发展现状及未来发展前景预测 Revised by Chen Zhen in 2021

2017年中国锂离子电池行业发展现状分析及未来发展前景预测 核心提示:全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下,2016年中国、韩国、日本三国占据了全球锂电池电芯产值总量的98.11%。三国的竞争策略各不相同。日本竞争 全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下,2016年中国、韩国、日本三国占据了全球锂电池电芯产值总量的98.11%。三国的竞争策略各不相同。日本竞争策略上关注技术领先。韩国更偏重于消费型锂离子电池的发展。中国锂离子电池市场规模在全球市场的份额呈现逐年上升的态势。 2010-2020年中国及全球锂电产值 数据来源:公开资料整理 国内锂离子电池市场的发展处于行业的高速增长期。2010年至2016年我国锂离子电池下游应用占比呈现消费型电池占比逐年下降、动力类占比逐年提升的格局。2016年受消费电子产品增速趋缓以及电动汽车迅猛发展影响,我国锂离子电池行业发展呈现出“一快一慢”新常态。2016年,我国电动汽车产量达到51.7万辆,带动我国动力电池产量达到33.0GWh,同比增长65.83%。随着储能电站建设步伐加快,锂离子电池在移动通信基站储能电池领域逐步推广,2016年储能型锂离子电池的应用占比达到4.94%。 2010-2016年我国锂离子电池下游应用占比 数据来源:公开资料整理 业务发展方向契合政策,发展前景良好。我国锂离子电池材料及设备行业平均利润水平总体上呈现平稳波动态势,在不同应用领域及细分市场行业利润水平存在差异。一般而言,在低端负极产品和涂布机领域,门槛低,竞争充分,利润水平相对较低。而中高端负极材料、涂布机以及新兴的涂覆隔膜、铝塑包装膜,产品技术含量高,在研发、工艺改善、客户积累、资金投入等方面进入壁垒较高,附加价值较高,优质企业能够在该领域获得较好的利润率水平。 全球负极材料产业集中度极高,江西紫宸全球份额持续提升。目前锂离子电池负极材料生产企业主要在中国和日本,两国总量占全球负极材料产销量

各种锂离子电池正极材料分析

锂离子电池现使用的正极材料有如下几种: 1、钴酸锂 钴酸锂也是目前应用最为广泛的正极材料,钴产生3.9V(vs. Li)的电势平 台,对钴酸锂而言,对应于其理论容量,高达274mAh/g,实际容量可达155mAh/g,具有很高的能量密度。主要应用于便携电池领域:如手机,PDA;移动DVD; MP3/MP4、笔记本电脑。 1)结构缺陷 对钴酸锂(LixCoO2,00.55 时,材料的容量发生严重的退化,其层状结构倾向于塌陷,使得实际可利用的容量不超过155mAh/g,为了能够更多的利用LiCoO2 中的锂离子,人们采用掺杂、包覆等办法对其改性。目前,有多种元素应用于LiCoO2 掺杂,但只有Mn 和Al 表现出较好的效果。 在Li 过分脱出时(E>4.2V 时),LiCoO2 发生严重的过充现象,化学键发生断 裂而释出O2,导致体系的不稳定,甚至有使电池爆炸的危险。 2)资源缺乏 钴在我国属于稀缺资源,我国钴矿矿床规模较小,矿区储量大于2 万吨的只 有甘肃金川和青海德尔尼两处,矿区储量大于1 万吨的有河北、四川、海南、新 疆4 省。截至2006 年底,我国探明钴储量47.1 万吨。由于连年开采,我国钴储 量逐年减少。我国钴产量应该在4900 吨左右。2002 年我国钴消费量为4845 吨,比2001 年增加了22%。从2002 年起,电池行业已超过硬质合金行业,成为我国 钴消费的第一大行业。由于目前我国未发现大规模有开采价值的钴矿,我国锂电池正极材料用钴酸锂的生产基本上是从国外进口价格昂贵钴原料。 2、镍酸锂 Ni4+/Ni3+电对能产生3.75V 的电势平台。它能可逆的嵌脱0.7Li,具有接 近200mAh/g 的循环容量,但在实际中,很难得到这个结果。首先在高温下,由于Li 的挥发,很难合成化学计量比LiNiO2,高温时六方相的LiNiO2 很容易向立方相的LiNiO2 转变,这种锂镍置换的立方相的没有电化学活性,而且这个反应的逆过程很慢并且不完全。此外在充放电过程中,LiNiO2 还会发生一系列的结构变化,而导致嵌锂容量的损失。实际上镍酸锂无太大实用价值。 3、镍钴二元材料和多元复合材料 LiCoO2 价格昂贵,LiNiO2 合成困难,如果能够结合二者的优点,用价格相 对低廉的Ni 替代部分Co,合成具有LiCoO2 一样优良电化学性能地电极材料,那么将具有广阔的应用前景。由于半径相近,Ni 和Co 几乎可以以任何比例形成 固溶体。近几年来,多元混合掺杂的层状氧化物得到了大量的研究,不同金属原子比例的镍钴锰多元材料得到了研究,但是颗粒形貌和粒度分布不得到有效的控制,只有在足够高的电势下(大于4.5V)才能获得180mAh/g 的容量,此外没有从根本上改变钴系材料的特点。 4、尖晶石锰酸锂 尖晶石锰酸锂能够产生4.0 V 的电压平台,与钴酸锂相当,理论容量 148mAh/g,实际容量120mAh/g 左右,比现在所用的钴酸锂稍低。早在上世纪80

锂离子电池及其电极材料的发展现状

锂离子电池及其电极材料的发展现状 锂离子电池由于其高比能量和高电压的优点,受到了人们的极大关注,已成为国际电池界商品化开发的热点和重点可充电锂电池技术发展的推动力主要来自三个方面:消费电子产品电动车和可移植医疗器具(如人工心脏) 锂离子电池的发展可以追溯到上世纪70年代。 第一个商品化的可充式锂-二硫化钼电池于1979年研究成功,1987年投产。 不幸的是1989年8月,日本电信电话公司(NTT)的汽车移动电话在使用该电池时发生了起火事件,原因是锂枝晶的形成导致正负极间的隔膜穿孔引起电池短路,后来该电池被迫停产。 70年代末,法国的Armand 先后提出了两种解决途径: 1.采用聚合物固体电解质,它不与锂发生反应,可制备全固态锂金属 二次电池; 2.采用很低电压就能使锂离子嵌入脱出的材料来代替金属锂,从而发展为正极和负极采用锂离子嵌入材料的锂离子二次电池 根据第二条解决途径,1991年,日本Sony公司推出了第一代商业化锂离子电池,成为锂离子电池发展史上的一个里程碑。和以往不同的是,这一代的锂离子电池分别用两种不同的插层化合物作电极,在正极上采用的是LiCoO2,而负极则用石墨替代了原先的Li金属。负

极材料的改变解决了长期困扰锂电池的Li枝晶问题,从而大大提高了电池的安全性。 锂离子电池商业化的成功,引起了全世界的广泛关注,多年来,各国 政府都投入了大量的人力物力进行研究和开发,有力地促进了锂离子电池的商业化发展。十几年来,锂离子电池不仅在产量和产值取得了 巨大的飞跃,而且其应用领域也大大拓宽了。 目前,锂离子电池已经被广泛应用于移动通讯、便携式笔记本电脑、 摄像机、便携式仪器仪表等领域。随着这些电器的高能化,轻量化, 对锂离子电池的需求也越来越迫切。 除了适应电器市场向微型化发展以外,锂离子电池也在向大型电动设备方向发展,被看作是未来电动汽车动力电源的重要候选者之一,并在空间技术、国防工业等大功率电源方面展示出广阔的应用前景。 锂离子电池是以Li+嵌入化合物为正负极的二次电池, 实际上是一个锂离子浓差电池,正负极由两种不同的锂离子嵌入化合 物组成。 通常正极采用锂化合物,负极采用锂-碳层间化合物。电介质为锂盐的有机电解液。在充放电过程中,Li+在两个电极之间往返嵌入和脱出,被形象地称之为“摇椅式电池”。 充电时,Li+从正极脱嵌经过电解质嵌入负极,正极处于贫锂态,同 时电子的补偿从外电路供给到碳负极,保证负极的电荷平衡。放电时,Li+从负极脱嵌经过电解质嵌入正极,正极处于富锂态。

锂离子电池三元镍钴锰正极材料研究现状综述

三元系锂电池正极材料研究现状 摘要:综述了近年来锂离子电池层状Li-Ni-Co-Mn-O正极材料的研究进展,重点介绍了正极材料LiNi l/3Co l/3Mn l/3O其合成方法电化学性能以及掺杂、包覆改性等方面的研究结果。 三元系正极材料的结果: LiMn x Co y Ni1-x-y O2具有α-2NaFeO2层状结构。Li原子占据3a位置,Ni、Mn、Co随机占据3b位置,氧原子占据6c位置。其过渡金属层由Ni、Mn、Co 组成,每个过渡金属原子由6 个氧原子包围形成MO6 八面体结构,而锂离子嵌入过渡金属原子与氧形成的(MnxCo yNi1-x-y) O2层之间。在层状锂离子电池正极材料中均有Li+与过渡金属离子发生位错的趋势,特别是以结构组成中有Ni2+存在时这种位错更为突出。抑制或消除过渡金属离子在锂层中的位错现象是制备理想α-2NaFeO2结构层状正极材料的关键,在LiMn x Co y Ni1-x-y O2结构中, Ni2+的半径( rNi2+=0.069nm)与Li+的( rLi+=0.076nm)半径接近,因此晶体结构会发生位错,即过渡金属层中的镍原子占据锂原3a的位置,锂原子则进驻3b位置。在Li+层中,Ni2+的浓度越大,则Li+在层状结构中脱嵌越困难,电化学性能越差。而相对于LiNiO2及LiNi x Co1-x-y O2 ,LiMn x Co y Ni1-x-y O2中这种位错由于Ni 含量的降低而显著减少。同时由于Ni2 + 的半径( rNi2 + =0. 069nm) 大于Co3+ ( rCo3+ = 0. 0545nm) 和Mn4 + ( rMn4 + =0. 053nm) ,LiMnxCo yNi1 - x - yO2 的晶格常数有所增加。 由于充分综合镍酸锂的高比容量、钴酸锂良好的循环性能和锰酸

锂离子电池正极材料技术进展_孙玉城.

锂离子电池正极材料技术进展 孙玉城 1, 2 (1. 青岛科技大学新材料研究重点实验室 , 山东青岛 266042; 2. 青岛新正锂业有限公司 摘要 :概述了国内外近 30a 有关锂离子电池正极材料的研究进展以及笔者在锰系正极材料方面的研究结果 ; 比较了几种主要正极材料的性能优缺点 ; 阐明了正极材料发展方向。近期镍钴锰酸锂三元材料将逐步取代钴酸锂 , 而改性锰酸锂和镍钴锰酸锂三元材料以及两者的混合体将在动力型锂离子电池中获得广泛使用。在未来 5~10a , 高容量的层状富锂高锰型正极材料或许会是下一代锂离子电池正极材料的有力竞争者。 关键词 :锂离子电池 ; 正极材料 ; 技术进展 中图分类号 :TQ131.11文献标识码 :A 文章编号 :1006-4990(2012 04-0050-05 Technology development in cathode materials of lithium ion battery Sun Yucheng 1, 2 (1. Novel Material Research Focus Laboratory , Qingdao University of Science and Technology , Qingdao 266042, China ; 2. Qingdao LNCM Company Abstract :The technology development in the main cathode materials of lithium ion battery at home and abroad of the past 30 years and the author ′ s research results of Mn-based cathode materials were discussed respectively.Advantages and disadvan -tages of the main cathode materials and opinions of the development trend in the cathode materials of lithium ion battery were summarized.It was believed that Li (Mn , Co , Ni O 2is going to replace LiCoO 2and LiMn 2-x A x O 4or Li (Mn , Co , Ni O 2or the mixture

锂电池几种正极材料的优缺点

锂电池几种正极材料的优缺点 锂离子电池的性能主要取决于所用电池内部材料的结构和性能。这些电池内部材料包括负极材料、电解质、隔膜和正极材料等。其中正、负极材料的选择和质量直接决定锂离子电池的性能与价格。因此廉价、高性能的正、负极材料的研究一直是锂离子电池行业发展的重点。负极材料一般选用碳材料,目前的发展比较成熟。而正极材料的开发已经成为制约锂离子电池性能进一步提高、价格进一步降低的重要因素。在目前的商业化生产的锂离子电池中,正极材料的成本大约占整个电池成本的40%左右,正极材料价格的降低直接决定着锂离子电池价格的降低。对锂离子动力电池尤其如此。比如一块手机用的小型锂离子电池大约只需要5克左右的正极材料,而驱动一辆公共汽车用的锂离子动力电池可能需要高达500千克的正极材料。 衡量锂离子电池正极材料的好坏,大致可以从以下几个方面进行评估:(1)正极材料应有较高的氧化还原电位,从而使电池有较高的输出电压;(2)锂离子能够在正极材料中大量的可逆地嵌入和脱嵌,以使电池有高的容量;(3)在锂离子嵌入/脱嵌过程中,正极材料的结构应尽可能不发生变化或小发生变化,以保证电池良好的循环性能;(4)正极的氧化还原电位在锂离子的嵌入/脱嵌过程中变化应尽可能小,使电池的电压不会发生显著变化,以保证电池平稳地充电和放电;(5)正极材料应有较高的电导率,能使电池大电流地充电和放电;(6)正极不与电解质等发生化学反应;(7)锂离子在电极材料中应有较大的扩散系数,便于电池快速充电和放电;(8)价格便宜,对环境无污染。 锂离子电池正极材料一般都是锂的氧化物。研究得比较多的有LiCoO2,LiNiO2,LiMn2O4,LiFePO4和钒的氧化物等。导电聚合物正极材料也引起了人们的极大兴趣。 1、LiCoO2 在目前商业化的锂离子电池中基本上选用层状结构的LiCoO2作为正极材料。其理论容量为274mAh/g,实际容量为140mAh/g左右,也有报道实际容量已达155mAh/g。该正极材料的主要优点为:工作电压较高(平均工作电压为3.7V)、充放电电压平稳,适合大电流充放电,比能量高、循环性能好,电导率高,生产工艺简单、容易制备等。主要缺点为:价格昂贵,抗过充电性较差,循环性能有待进一步提高。 2、LiNiO2

车用锂电池市场现状及未来发展趋势(精)

车用锂电池市场现状及未来发展趋势锂电池指的是具有各种特性的可充电(二次充电电池种类,这些特性会影响电池的能量密度,功率密度,预期寿命以及安全性。这些特性会因材料不同而有所不同——比如电解质以及电极(阳极和阴极——通常被用作为电池的各类组件。 从 2009年至 2010年,混合动力汽车,电动汽车以及插电式混合动力汽车的锂电池市场增长了 5倍之多,营收达到 5.018亿美元。 2011年锂离子电池市场销售额为20亿美元, 2012年电动车用锂电池总销售额为 160亿美元。 其中,大部分的增长源于人们对诸如雪弗兰伏特、尼桑 LEAF 等汽车上市的急切盼望,这些都是环保、经济型家用车的代表;这些汽车的产量都高于之前的汽车。混合动力汽车之前使用的是镍金属氢化物技术,而现在很大部分已转为使用锂电池技术。 未来一段时期内, 预计锂电池市场会经历一次显著的增长。美国派克研究公司(Pike Research 日前发布报告称, 到 2017年底锂离子电池成本将削减超过三分之一,下降为每千瓦时能量成本 523美元,同时车用锂离子电池销售额将增至当前的700%以上,有望达到 146亿美元, 到 2020年,锂离子电池造价还将进一步下降至每千瓦时 447美元,而用于电动车的锂离子电池全球年销售额则将达到 220亿美元。另据赛迪信息产业 (集团发布的报告显示, 2013年中国锂电池整体市场规模将达到741.7亿元,同比增长 33.2%,并且未来三年市场规模增速将会保持在 30%以上。到2015年, 整个中国锂电池的市场规模将突破 1000亿 元,达到 1251.5亿元。 尽管如此,目前,锂离子电池的价格和安全性仍然是制约当前电动汽车发展的主要因素。这是由于有限的生产水平以及各大公司开展的研发理想电池(阳极,阴极以及电解质的结合配置工作所共同造成的。在没有标准的情况下, 原本可行性较高的电池交换和二次应用的实践操作就变得十分复杂困难了。除此以外,电池能量密度、充电设施等也成为了限制电动车市场增长的因素。

2017年中国锂电池行业发展现状及未来发展前景预测

2017年中国锂离子电池行业发展现状分析及未来发展前景预测 核心提示:全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下,2016年中国、韩国、日本三国占据了全球锂电池电芯产值总量的98.11%。三国的竞争策略各不相同。日本竞争 全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下,2016年中国、韩国、日本三国占据了全球锂电池电芯产值总量的98.11%。三国的竞争策略各不相同。日本竞争策略上关注技术领先。韩国更偏重于消费型锂离子电池的发展。中国锂离子电池市场规模在全球市场的份额呈现逐年上升的态势。 2010-2020年中国及全球锂电产值 数据来源:公开资料整理 国内锂离子电池市场的发展处于行业的高速增长期。2010年至2016年我国锂离子电池下游应用占比呈现消费型电池占比逐年下降、动力类占比逐年提升的格局。2016年受消费电子产品增速趋缓以及电动汽车迅猛发展影响,我国锂离子电池行业发展呈现出“一快一慢”新常态。2016年,我国电动汽车产量达到51.7万辆,带动我国动力电池产量达到33.0GWh,同比增长65.83%。随着储能电站建设步伐加快,锂离子电池在移动通信基站储能电池领域逐步推广,2016年储能型锂离子电池的应用占比达到4.94%。 2010-2016年我国锂离子电池下游应用占比 数据来源:公开资料整理 业务发展方向契合政策,发展前景良好。我国锂离子电池材料及设备行业平均利润水平总体上呈现平稳波动态势,在不同应用领域及细分市场行业利润水平存在差异。一般而言,在低端负极产品和涂布机领域,门槛低,竞争充分,利润水平相对较低。而中高端负极材料、涂布机以及新兴的涂覆隔膜、铝塑包装膜,产品技术含量高,在研发、工艺改善、客户积累、资金投入等方面进入壁垒较高,附加价值较高,优质企业能够在该领域获得较好的利润率水平。 全球负极材料产业集中度极高,江西紫宸全球份额持续提升。目前锂离子电池负极材料生产企业主要在中国和日本,两国总量占全球负极材料产销量90%以上。负极材料产品市场呈现出明显的寡头垄断格局。2015年前五强贝特瑞、日立化成、江西紫宸、上海杉杉、三菱化学的全球市场份额分别是20%、18%、13%、10%、7%,全球前五大企业市场份额合计占比为68%。江西紫宸2016年全球份额提升至10.5%,国内份额提升至14.8%,预计2017年

锂离子电池正极相关材

锂离子电池具有工作电压高、无记忆效应、环境友好等优点,已经成为21世纪绿色电池的首选。锂离子电池的关键材料之一是正极材料,目前商品化锂离子电池的正极材料主要是LiCoO2,但存在成本高、实际比容量偏低、抗过充电性能差、安全性能不佳等问题,严重阻碍了锂离子电池的进一步发展,限制了它在更广领域的应用,迫切需要研究者开发出成本低、性能优良、安全性高的锂离子电池正极材料以满足电动汽车等新兴行业的需求。 锂离子电池是绿色环保电池,是二次电池中的佼佼者。与镍镉电池(Cd.Ni)和镍氢电池(Ni.H)相比,锂离子电池具有工作电压高、比能量大、充放电寿命长、自放电率低等显著优点,且没有Cd-Ni电池中镉的环境污染问题。锂离子电池的上述特点,使其可以向小型化方向发展,因而适合于小型便携式电器电源,如移动电话、笔记本电脑、照相机等。这些电器与人们的商务活动和日常生活紧密相连,使用的群体广,新旧换代快。锂离子电池还可以用于电动工具和电动车电源替代Cd.Ni电池和铅酸电池,一方面Cd-Ni电池和铅酸电池的原材料上涨,成本提高,发展受限,我国出口退税政策调整;另一方面欧盟在2005和2006年相继出台了两项与化学品相关的RollS和REACH法令,前者限制了铅、镉等6种化学元素的使用,后者则规定上万种化学药品要重新注册。所以这为锂离子电池行业发展带来了新的机遇【l】。此外,锂离子电池也是航空航天和军事等领域要求空间上移动使用的新一代清洁安全能源,以及作为家庭和交通照明、备用电源、储能电站等时间上移动使用的储能调峰电源。因此锂离子电池有非常广阔的应用范围。 1.2锂离子电池发展简况 锂离子电池的发展可以追迥到锂二次电池,锂二次电池的研究最早始于20世纪60--70年代的石油危机,当时主要集中在以金属锂及其合金为负极的锂二次电池体系,但锂在充放电过程中由于电极表面的凹凸不平,导致表面电位分布不均匀,造成了锂的不均匀沉积。这种不均匀沉积导致锂在一些部位沉积过快,产生锂枝晶,当锂枝晶发展到一定程度时,一方面会发生折断,造成锂的不可逆损失;另一方面锂枝晶的产生会刺穿电池的隔膜,将正极与负极连接起来,引起短路,产生大电流进而生成大量的热,引起电池着火甚至爆炸,从而引发严重的安全问题,因此这种电池未能实现商品化【2】。锂二次电池的突破性发展源于Armand 的“摇椅电池(Rocking chair batteries)”的构想,即采用低插锂电势的嵌锂化合物代替会属锂为负极,与高插锂电势的嵌锂化合物组成二次锂离子电池。Scrosati等【3】以LiWO2或Li6FeO3为负极,以TiS2、WO3、NbS2或V2O5为正极组装成二次电池。1987年,Aubom等【4】装配了以MoO2或WO2为负极,LiCoO2为正极的“摇椅式”电池。与金属锂为负极的二次锂电池相比,这些电池的安全性能和循坏性能大大提高。但由于MoO2和WO2等负极材料的嵌锂电位较高(07~2.0 V vs Li+/Li),因此未能得到实际应用。1990年日本Sony能源技术公司首先推出实用型锂离子电池。该电池既克服了二次锂电池循环寿命短、安全性差的缺点,又较好地保持了二次锂电池高电压、高比能量的优点。由此,二次锂离子电池在全世界范围内掀起了研究开发热潮,并取得了巨大的进展净。 锂离子电池的关键材料之一是正极材料,所以锂离子电池对正极材料的要求也很高。从上世纪70年代开发锂电池起,经过30多年的研究,多种嵌锂化合物可作为锂离子电池的正极材

电池现状及发展趋势分析

中国电池行业调查分析及市场前景预测报 告(2016-2022年) 报告编号:1635198

行业市场研究属于企业战略研究范畴,作为当前应用最为广泛的咨询服务,其研究成果以报告形式呈现,通常包含以下内容: 一份专业的行业研究报告,注重指导企业或投资者了解该行业整体发展态势及经济运行状况,旨在为企业或投资者提供方向性的思路和参考。 一份有价值的行业研究报告,可以完成对行业系统、完整的调研分析工作,使决策者在阅读完行业研究报告后,能够清楚地了解该行业市场现状和发展前景趋势,确保了决策方向的正确性和科学性。 中国产业调研网https://www.360docs.net/doc/d0751989.html,基于多年来对客户需求的深入了解,全面系统地研究了该行业市场现状及发展前景,注重信息的时效性,从而更好地把握市场变化和行业发展趋势。

一、基本信息 报告名称:中国电池行业调查分析及市场前景预测报告(2016-2022年) 报告编号:1635198←咨询时,请说明此编号。 优惠价:¥7380 元可开具增值税专用发票 网上阅读:https://www.360docs.net/doc/d0751989.html,/R_JiXieDianZi/98/DianChiShiChangDiaoYanYuQianJingYu Ce.html 温馨提示:如需英文、日文等其他语言版本,请与我们联系。 二、内容介绍 21世纪的电池具有大容量、高功率、长寿命、无污染、安全可靠、轻便的特点,是高科技、高产出、高利润、高创汇产品,被国外专家称为21世纪十大高科技之一。随着信息时代的到来,资讯产业蓬勃发展,在迈入电子、资讯、通讯的“3C”时代后,电子产品朝着“短、小、轻、薄”的趋势发展,对可携带的要求越来越高,作为可携带式电子产品不可或缺的能源——电池,其重要性也越来越显著。 电池工业是我国具有综合优势的传统产业,中国既是电池生产大国,也是电池消费大国,近年来,中国电池行业发展迅速,已逐渐发展成为世界电池生产、加工和贸易中心。 2012年,电池产业受国内外经贸环境影响面临较大困难。国内信贷紧缩、原材料及人工成本上涨等因素使电池生产成本上涨,电池企业销售利润大幅下滑;与此同时,铅蓄电池行业准入条件、铅酸蓄电池生产及再生污染防治技术政策、淘汰落后产能等措施的具体实施,对电池产业的影响作用逐步显现。2012年全国电池行业累计完成工业总产值同比增长19.56%。 2013年全国电池行业产销增长平稳,规模以上企业完成工业增加值同比增长10.3 0%;电池出口交货值完成834.88亿元;主营业务收入同比增长11.38%。 据中国产业调研网发布的中国电池行业调查分析及市场前景预测报告(2016-2022年)显示,2014年,我国电池制造业主要产品中,锂离子电池累计完成产量52.9亿自然只,产量与上年持平;我国电池制造业累计完成出口交货值同比下降 3.2%,累计产

锂电池行业发展现状及未来发展前景预测精编版

锂电池行业发展现状及未来发展前景预测 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

2017年中国锂离子电池行业发展现状分析及未来发展前景预测 核心提示:全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下, 2016 年中国、韩国、日本三国占据了全球锂电池电芯产值总量的 98.11%。三国的竞争策略各不相同。日本竞争全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下, 2016 年中国、韩国、日本三国占据了全球锂电池电芯产值总量的 98.11%。三国的竞争策略各不相同。日本竞争策略上关注技术领先。韩国更偏重于消费型锂离子电池的发展。中国锂离子电池市场规模在全球市场的份额呈现逐年上升的态势。 2010-2020 年中国及全球锂电产值 数据来源:公开资料整理国内锂离子电池市场的发展处于行业的高速增长期。 2010 年至2016 年我国锂离子电池下游应用占比呈现消费型电池占比逐年下降、动力类占比逐年提升的格局。 2016 年受消费电子产品增速趋缓以及电动汽车迅猛发展影响,我国锂离子电池行业发展呈现出“一快一慢”新常态。 2016 年,我国电动汽车产量达到 51.7 万辆,带动我国动力电池产量达到 33.0GWh,同比增长 65.83%。随着储能电站建设步伐加快,锂

离子电池在移动通信基站储能电池领域逐步推广, 2016 年储能型锂离子电池的应用占比达到 4.94%。 2010-2016 年我国锂离子电池下游应用占比 数据来源:公开资料整理业务发展方向契合政策,发展前景良好。我国锂离子电池材料及设备行业平均利润水平总体上呈现平稳波动态势,在不同应用领域及细分市场行业利润水平存在差异。一般而言,在低端负极产品和涂布机领域,门槛低,竞争充分,利润水平相对较低。而中高端负极材料、涂布机以及新兴的涂覆隔膜、铝塑包装膜,产品技术含量高,在研发、工艺改善、客户积累、资金投入等方面进入壁垒较高,附加价值较高,优质企业能够在该领域获得较好的利润率水平。 全球负极材料产业集中度极高,江西紫宸全球份额持续提升。目前锂离子电池负极材料生产企业主要在中国和日本,两国总量占全球负极材料产销量 90%以上。负极材料产品市场呈现出明显的寡头垄断格局。2015 年前五强贝特瑞、日立化成、江西紫宸、上海杉杉、三菱化学的全球市场份额分别是20%、18%、13%、10%、7%,全球前五大企业市场份额合计占比为 68%。江西紫宸 2016 年全球份额提升至 10.5%,国内份额提升至 14.8%,预计 2017 年份额维持提升趋势。江西紫宸国内排名前三,行业集中度有望进一步提高。目前国内锂电池负极材料生产企业中:贝特瑞、杉杉科技、江西紫宸为行业前三名,处于行业领先地位。

锂离子电池正极材料的分析研究现状和展望

本文由兰大材料物理贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 维普资讯 https://www.360docs.net/doc/d0751989.html, 第36卷第3期2007年3月 化 工 技 术 与 开 发 V0.6No313. Ma.07r20 Tehooy&DeeometoeclIdsrcnlgvlpnfChmianuty 锂离子电池正极材料的研究现状和展望 曹艳军,龙翔云,云峰程 < 广西大学化学化工学院,广西南宁 摘 500)304 要:介绍了锂离子正极材料氧化钴锂、氧化镍锂、酸铁锂等的研究开发现状,磷对其特性进行了总结。 文献标识码:A文章编号:6190 < 070—06017—9520)301—3 关键词:锂离子电池;正极材料;容量 中图分类号:91TM1 锂离子电池是以2种不同的能够可逆地插入及脱出锂离子的嵌锂化合物分别作为电池的正极和负极的2次电池体系。充电时,锂离子从正极材料的晶格中脱出,经过电解质后插入到负极材料的晶格中,使得负极富锂,正极贫锂;放电时锂离子从负极材料的晶格中脱出,过电解质后插入到正极材料经的晶格中,使得正极富锂,负极贫锂。这样正负极材料在插入及脱出锂离子时相对于金属锂的电位的差值,就是电池的工作电压【ll。锂离子电池是性能卓越的新一代绿色高能电池已成为高新技术发展的重点之一。锂离子电2,池具有以下特点:高电压、高容量、低消耗、无记忆效应、无公害、体积小、内阻小、自放电少、循环次数多。因其上述显著特点,锂离子电池已应用到移动电话、笔记本电脑、摄像机、数码相机等众多民用及军事领域。另外,国内外也在竞相开发电动汽车、航天和储能等方面所需的大容量锂离子电池【3 ̄锂离子电池的主要构成材料包括电解液、隔离 ①层状或隧道结构,以利于锂离子的脱嵌,且 在锂离子脱嵌时无结构上的变化,以保证电极具有 良好的可逆性能; ②锂离子在其中的嵌入和脱出量大,电极有较高的容量,并且锂离子脱嵌时,电极反应的自由能变化不大,以保证电池充放电电压平稳;③锂离子在其中应有

锂离子电池技术发展现状与趋势

锂离子电池技术发展现状与 趋势

一、文献综述 1、前言 现阶段,日本、韩国、美国等国家引领锂离子动力电池技术的发展。日本的行业技术水平具有领先优势,韩国的动力电池制造能力处于领先地位,美国则具有引领前沿的科研能力。 2、国外发展现状 2·1日本 2·11 2009年,日本政府推出了RISING计划(创新型蓄电池尖端科学基础研究事业)和U~EAD项目(汽车用下一代高性能电池系统),并于2013年更新了动力电池技术发展路线图(RM2013),具体指标有2020年电池的续航里程实现250~350km·电池系统总电量达到25~35kW·h,电池能量密度实现250Wh· kg-1,功率密变达到1500W·kg-1,循环寿命达到1000-1500次,价格成本降低到2万日元/W·h。RM2013指明了电极材料的发展方向,正极材料要发展xLiMn03·(1~x)LiMO2(M=Ni,Co,Mn,0≤x≤1)、LizMSi0s、LiNiosMn1s04、LiCnP04、Li2MSO·F、LiMO2(M=Ni,Co,Mn);负极材料要发展Sn~CoC合金,Si基负极包括Si/C和Si0,以及Si基合金。 2·12日本具有代表性的锂离子动力电池企业为松下电池公司。松下是动力电池行业的领导者,作为Tesla最主要的动力电池供应商,凭借Tesla的发展稳居市场领导者地位,全球市场份额在20%左右。目前松下电池主要给ModelS和MndelX提供18650圆柱电池,正极采用镍钴铝三元材料(NCA),负极使用硅碳复合材料,单体能量密度可达252Wh·kg-1,而即将使用在Mode13上的21700圆柱形电池单体能量密度更是提高到300Wh·kg-1·是目前行业内能量密度最高的电池。 2·2韩国 2·21 2011年,韩国启动了包含锂离子电池关键材料、应用技术研究、评价及测试基础设施以及下一代电池研究的二次电池技术研发项目。LG化学和三星SDI是具有代表性的韩国锂离子动力电池企业,也是动力电池领域的后起之秀,两者凭借先

锂离子电池正极材料锰酸锂的研究现状

锂离子电池正极材料尖晶石型锰酸锂的研究进展 摘要:尖晶石型锰酸锂能量密度高、成本低、无污染、安全性好、资源丰富,是最有发展潜力的锂离子电池正极材料之一。但是循环过程中容量衰减较快成为制约其发展的主要因素。本文详细阐述了锰酸锂的各种制备方法及其优缺点,综述了近几年来在表面修饰和体相掺杂改性方面的研究进展。 关键词:锂离子电池;锰酸锂;正极材料;表面改性 Research Progress of Lithium Manganate as Cathode Material for Lithium Ion Batteries Abstract: Spinel LiMn2O4is a potential cathode material for lithium ion batteries due to its high energy density,low cost,no pollution to environment and safety performance. The various preparation methods of lithium manganese acid and its advantages and disadvantages were detailed. The research achievements on phase doping modification,surface modification of LiMn2O4 were reviewed. Key words: lithium ion battery; lithium manganate;anode material; surface modification 1前言 锂离子电池是性能卓越的新一代绿色环保、可再生的化学能源,目前正以其它电池所不可比拟的优势迅速占领了移动电话、笔记本电脑、小型摄像机、数码照相机、电动工具、电动汽车等应用领域,

相关文档
最新文档