纳米复合陶瓷材料研究进展_王昕.pdf

纳米复合陶瓷材料研究进展_王昕.pdf
纳米复合陶瓷材料研究进展_王昕.pdf

DOI: 10. 13801 /j . cnki . f hclxb. 1999. 01. 021

第16卷第1期复合材料学报V o l. 16 No . 1 1999年 2 月 A CT A M AT ERIA E CO M PO SI T A E SIN I CA Febr ua ry1999

纳米复合陶瓷材料研究进展

王昕孙康宁尹衍升候耀永周玉

(山东工业大学材料学院 , 济南 250061) (青岛化工学院 )( 哈尔滨工业大学 )

摘要结合部分作者的工作,综述近年国内外对纳米复合陶瓷材料的力学性能及影响因素、纳米颗粒

在基质中均匀分散和混合及材料成型工艺、内部结构、强韧化机理等方面的研究结果。关键词纳米复

合陶瓷,力学性能,制备,强韧化机理

中图分类号T Q 174. 758. 22

在结构陶瓷材料研究领域,新原皓一等[1, 2 ]率先将纳米级陶瓷颗粒作为弥散相引入微米级陶瓷基体中制得所谓纳米复合陶瓷,取得了很好的增强增韧效果。这使得过去采用微米级第二相颗粒对陶瓷进行弥散强化,效果远不及纤维、晶须补强的情况发生了根本的变化,使颗粒补强增韧这种简便易行、低价无毒的改善陶瓷性能的方法展现出更加广阔的前景。另外,随着超细粉末制备技术的飞速发展,人们可以用多种方法,如溶胶-凝胶法、微乳液法、CVD 法、自蔓延合成、原位生成法、液相分散包裹法等先进的工艺手段制备单相纳米粉末或直接制成纳米-微米复合陶瓷材料,为纳米复合陶瓷的研究、发展和应用提供了良好的基础。经过几年的努力,人们已经对纳米复合陶瓷的力学行为、制备过程、内部构造和强韧化机制有了一定的认识,同时在深入研究的过程中也出现了新的问题和不同见解,这些都是今后研究工作的基础和前鉴,值得认真加以总结和分析。

1力学性能及影响因素

1. 1纳米复合陶瓷的力学性能

表1选列了近期文献报道的纳米复合陶瓷材料力学性能。此外,莫来石基、氧化镁基和氮化铝基等系统的陶瓷经纳米复合后,常规力学性能、蠕变强度和高温性能都有大幅度提高。效果最为显著的是新原皓一等[1 ]发表的结果,不同系列的陶瓷断裂强度提高2~3倍,断裂韧性提高2~ 4倍; 最高使用温度可达 1200~ 1500℃ ,其中 Mg O /SiC( n)陶瓷使用温度提高 800℃(从原来的600℃提高到1400℃)。其它几乎所有研究结果均达不到如此高的水平。

1. 2影响性能的主要因素

复合陶瓷中的纳米相以两种形式存在,一种是分布在微米级陶瓷晶粒之间的晶间( inter-g ranular )纳米相; 另一种则“嵌入”基质晶粒内部,被称为晶内(intrag ranular )纳米相或“内晶型”结构。两种结构共同作用产生了两个显著的效应:穿晶断裂和多重界面,从而对材料的力学性能起到重要的影响。

收修改稿、初稿日期: 1998-02-16, 1997-11-10

106复合材料学报第16卷

表1纳米复合陶瓷材料力学性能

Table 1Mechanical properties of ceramic-matrix nanocomposites

Composite Fractu re Fracture Hardness References

System s Streng th /M Pa Toughness /M Pa m 1/2

Hv /GPa

Al2 O3 /SiC( n) 1520 4. 8 - [1 ]

730 - - [3 ]※

1001 3. 6 - [3 ] Si3 N4 / SiC( n) 1550 6. 5 - [2 ]

1300 7. 5 18. 3 [4 ] ZrO2 /Al2 O3( n ) 910 10. 2 12※[5 ] Al2O 3 /[ SiC+ ZrO 2 ]( n) 1700 6. 0 20. 5※[6 ]

1730 6. 3 19. 5 [7 ] ※数据是本文作者根据文献中曲线所测近似值

研究表明,纳米第二相在一定范围内增加,复合陶瓷的断裂韧性、断裂强度、硬度及高温性能均随之产生不同程度的提高[6, 7 ]。例如, Al2O3基质中加入Si3N4( n) 42vo l% ,复合陶瓷的断裂强度和硬度一直随纳米相含量的增加而提高。这部分归因于基质晶界纳米相有效地抑制了晶粒长大。但在某些陶瓷中,过细的晶粒对力学性能反而有不利影响。如Si3N4 / SiC( n)系陶瓷中,过多的SiC( n)颗粒使基体Si3N4成为等轴细晶而限制了棒状( rodlike) Si3N4晶粒的生长,使其断裂韧性大打折扣[2 ]。

近期对纳米复合陶瓷力学性能影响因素的研究还有以下几个方面[8, 9 ]:纳米弥散相尺寸分布越集中,则陶瓷晶粒越细,密度越高;较大的第二相纳米颗粒常分布在陶瓷基质晶界,而尺寸越小的纳米颗粒越易形成“内晶型”结构,其临界尺寸大约为200nm;致密化以后的纳米复合陶瓷进行机械加工、热处理(或高温氧化处理)等后处理,均可改变试样的应力状态和组织,从而对性能产生影响。

不同制备工艺也导致纳米复合陶瓷性能的变化。如采用乙醇或水作为陶瓷粉体的分散介质或悬浮液溶剂,前者使凝胶干燥后仅存在易打开的软团聚体,烧结瓷体晶粒较细,韧性较高[10 ]。对热压Al2O3/SiC( n)试样进行氮气氛热等静压( N2-HIP)处理,得到Si3N4-AlN-SiC-Al2 O3复合陶瓷 ,抗弯强度提高 35~ 95% [11 ]。

2纳米复合陶瓷的制备

制备纳米复合陶瓷的关键是使纳米颗粒均匀分散在陶瓷基质中。而纳米材料粒径小,比表面积大,界面原子数多,存在大量的悬键和不饱和键,使得纳米颗粒具有较高的化学活性,极易团聚形成带有若干弱连接界面的尺寸较大的团聚体。在致密化过程中,会导致纳米颗粒异常长大,失去纳米弥散相的独特作用。因此,克服纳米颗粒的团聚,使其充分分散,并与基质颗粒均匀混合是获得高性能复相陶瓷的前提。最近的研究在以下几方面取得了进展。

2. 1多相悬浮液分散混合法

传统的机械混合法将基质粉末与纳米粉末混在一起球磨,既不能完全破坏纳米颗粒的团聚,又不能使两者均匀混合;且在干燥的过程中,分散颗粒可能发生再度团聚,难以制备均匀分

第 1 期

王 昕等: 纳米复合陶瓷材料研究进展

107

散的纳米复合陶瓷。多相悬浮液混合法的主要过程是 ,根据胶体化学中稳定悬浮液的三种机 制 ,即静电 ( electrostatic)作用、空间位阻 ( steric)作用和电空间稳定 ( electro steric stabiliza-tion) ,先分别制备各组元的单相悬浮液并加入分散剂 ,通过调节 pH 值和分散剂加入量 ,使颗 粒表面的分散剂达饱和吸附值; 然后优选出两组元 (或多组元 )都具有良好分散性的混合悬浮 液条件 ,将各单相悬浮液混合球磨 ,得到均匀混合悬浮液; 其后体系絮凝 ,干燥 ,即可得到均匀 混合的粉体。在分散过程中对悬浮液施以大功率超声振荡 ,能提高分散效率。选择合适的分散 剂是该法的基本条件 ,近期报道的分散剂有聚合物 (如羧酸、聚乙烯亚胺 ( PEI)等 )和聚电解质

(如聚甲基丙烯酸胺 ( PM AA-N H 4 )、聚甲基丙烯酸钠 ( PM AA-Na)等 )

[ 12]

作者采用 PM AA-N H 4为分散剂制取的 Al 2 O 3 / SiC( n)系列的纳米复合陶瓷粉体 ,纳米相 分散和各组元混合的效果均令人满意。该工艺的难点在于寻找各组元都具有良好分散性的混 合悬浮液条件 (主要是 pH 值、分散剂种类和加入量 )。

2. 2 反应烧结 ( RBAO)法

反应烧结法是先将混合均匀的多组分粉末压成素坯 ,在随后的烧结过程中各组分之间或

组分与烧结气氛之间发生化学反应 ,获得预期设计组成的复相陶瓷。例如 ,将微米级 Al 2 O 3 -

SiC 混合粉压实后烧结 ,部分 SiC 粒子表层反应生成 SiO 2 ,使 SiC 颗粒缩小为纳米级 , SiO 2又 与 Al 2 O 3结合为莫来石 ,得到 Al 2 O 3 -莫来石 -SiC( n) 纳米复合陶瓷。除此之外 , 用 Al 2 O 3、 Al 、 TiC 0. 78原料粉 ,可烧结反应为 Al 2 O 3 -TiC-AlN ( n)复合陶瓷。

该法采用的原材料成本低 ,不必加入纳米颗粒便可在烧结体中获得纳米相;制备过程中材 料几乎不再收缩 ,较低温度下即可制成致密瓷体 ,是制备复杂形状超细晶粒陶瓷件的一种方 便、低价的有效途径。

2. 3 液相分散包裹法

制备出纳米粒子外包覆一层基质组分的复合粉末很有可能是形成“内晶型”结构的有效手 段。首先使纳米颗粒充分分散在含有基质组分的溶液中 ,使系统胶凝 ,然后经煅烧可得复合粉 末。侯耀永等用此法制得 Y 2 O 3包覆纳米 ZrO 2、 Al 2 O 3包覆纳米 SiC 等纳米包团结构。近期文献 还报道了 SiO 2包覆 Al 2 O 3

[14 ]

、 SiO 2包覆 3Y-TZP

[ 15]

的研究 ,后者的工艺流程如图 1:

图 1 SiO 2包覆 3Y -TZP 工艺框图

Fig. 1 Sch edule of th e preparation of 3Y -TZP pow der coated w ith silica layers

2. 4 复合粉体法

复合粉体法是指利用化学和 /或物理过程直接制备两种或多种组分的纳米复合陶瓷粉体。 文献 [2]报道了用 CV D 技术制备 Si-C-N 复合粉末 ,再烧结成 Si 3 N 4 /SiC( n)陶瓷。最近有人采 用成本较低的简单工艺 ,即用炭黑和气凝氧化硅为起始原料 ,在高温氮气氛下进行碳热还原反 应生成

[13 ]

Si3N4/SiC( n)复合粉体[16 ]。另外,采用化学共沉淀( co precipitation)法制备ZrO2-Mg O-Y2 O 3和 ZrO2 -Y2 O3 -Mg O-Al2 O3系均匀超细复合粉末[ 17 ] ,也取得良好效果。

108复合材料学报第16卷

近来,采用有机先驱体制备复合粉体的研究有很大进展[ 1]。用热解有机先驱体聚硅氮烷( PSN)工艺制取稳定的、分布均匀的 Si-C-N复合粉体 ,粒径为 50nm ,经反应烧结获得 Si3 N4 / SiC( n)陶瓷;或者将适量有机先驱体与亚微米级的Si3N4粉及烧结助剂均匀混合,干燥后热压烧结,生成的纳米SiC自然进入Si3N4基体中。

2. 5纳米陶瓷及纳米-纳米复合陶瓷

纳米颗粒在致密化过程中的异常长大一直是纳米陶瓷及纳米-纳米复合陶瓷研究中的难点。董绍明等[18 ]采用热等静压( HIP)工艺,获得了晶粒尺寸小于100nm、结构均匀、致密的单相

SiC纳米陶瓷和晶粒尺寸为 50nm、致密均匀的 Si3 N4 ( n) /SiC( n)复相纳米陶瓷。单相 SiC 纳米陶瓷晶界有一层很薄的非晶态膜。显然,高的压力(分别为200M Pa和150M Pa)抑制了纳米颗粒的长大。

3强韧化机理

纳米级弥散相的存在使复合陶瓷产生了优异的强韧化效果,尤其是强度和高温性能,这是微米-微米复相陶瓷所难以比拟的,这也说明纳米复合陶瓷应存在着独特的增强增韧机制。3. 1微观结构特点

“内晶型”纳米相是纳米-微米复相陶瓷的结构特征。这种结构使主晶粒内部产生大量次界面和微裂纹,造成基质颗粒潜在分化,从而使主晶界的作用有所减弱,诱发穿晶断裂[6 ]。同时,晶内与晶界的纳米粒子使陶瓷基体产生大量位错群[4 ],位错群又往往被纳米粒子“钉扎”,使裂纹扩展受到阻碍或发生偏折,提高了材料的断裂能。作者的工作证实了Al2O3/SiC( n)陶瓷中存在着种类丰富的位错组态和位错结构,这在一般陶瓷中是难以见到的。值得注意的是[3 ],

Zhao 等认为 , Al2 O3 /SiC( n)材料的强韧化不是纳米 SiC的作用 ,而是机加工使瓷体表面产生压应力所致;焦绥隆等则认为改变断裂模式不是晶内纳米粒子而是晶界纳米相的贡献。

界面研究的最新结果不同于Niihara关于Si3N4/SiC( n)陶瓷相间没有玻璃相的结论[16, 19 ]。运用高分辨电镜( HRT EM )和电子能耗光谱成像( EDI)技术的研究表明, Si

3N4/ SiC( n)、 Al2 O3 /SiC( n)材料的相界面虽然比微米 -微米复相陶瓷“干净” ,但也局部存在玻璃

-- 膜。而当纳米相与基质的界面具有共格关系时(如[0001 ]Si3N4∥[110 ]Si C,( 101 0)Si3N4∥( 111) SiC ) ,相间几乎不存在玻璃相而形成牢固的键合。

3. 2残余应力

相间热膨胀系数的失配和弹性模量的差异对材料性能影响很大,其中热膨胀系数失配在第二相颗粒及周围基体内部产生残余应力场是复合陶瓷补强增韧的主要根源之一。在Al2O3 /SiC( n)系和 Mg O /SiC( n)系中 ,虽然基质的热膨胀系数比纳米相的大 ,裂纹偏转增韧程度很小,但由于残余热应力以压应力的方式作用在两相界面上,使两相界面结合牢固,这就可能实现“内晶型”纳米粒子对穿晶裂纹的二次偏转而耗散能量,从而提高材料的韧性[ 19]。

Levin等[ 20]通过 X-ray 应变分析和理论推算 ,提出 Al2 O3 / SiC( n)中随 SiC增加 ,第二相颗粒间距缩小,垂直于裂纹扩展方向的残余拉应力的振幅减小但平均值增大,使材料韧性增量下降;并提出SiC( n)为 3. 5~5w t%对应着体系最高韧性。

3. 3增韧补强机制[6,20]

纳米复相陶瓷的许多强韧化机理目前仍不清楚。现将一些提法归纳如下。新原皓一曾提出了纳米复相陶瓷的强韧化机制,近几年的研究结果表明,该材料性能的改

第1期王昕等:纳米复合陶瓷材料研究进展109

善与以下效应有关:①细化基体颗粒;②晶内纳米粒子使基体颗粒内部形成次界面,并同晶界纳米相一样具有钉扎位错的作用;③纳米粒子周围基质形成拉应力导致穿晶断裂并使穿晶裂纹二次偏转;④纳米颗粒与基质形成共格关系,结合牢固。另外,非氧化物基纳米陶瓷,如Si3N4/SiC( n)系陶瓷,还通过以下作用韧化: ①适量的纳米SiC粒子促进棒状Si3N4生长,有利于提高材料韧性;②SiC纳米相较多时,可限制Si3N4棒状生长,形成纳米-纳米复相陶瓷,获得高温下的超塑性。

4结语

纳米复合陶瓷是极具诱惑力的新型材料,但许多方面有待于进一步系统研究,特别是对纳米多相复合、“内晶型”结构形成机理及工艺条件、“内晶型”与晶间纳米相各自对性能的贡献、次界面结构及对性能的影响、简化制备工艺、强韧化机理等方面的深入研究,必将推动纳米复合陶瓷的实用化进程。

致谢本文得到山东省科委计划项目和国家自然科学基金( 57592010)资助

参考文献

1新原皓一. セラミツクス复合体のナノ构造制御と机械的性质 . 粉体および粉末冶金, 1990, 37( 2): 348~ 351 2新原皓一 , 伊崎正宽 , 中平敦 . 高温超强度 Si3 N4-SiCナノ复合材料 . 粉体および粉末冶金 , 1990, 37( 2): 352~ 356 3焦绥隆 , Borsa C E. 氧化铝/碳化硅纳米复合陶瓷的力学性能和强化机理 . 材料导报 , 1996, 10(增 ): 89~ 93 4顾培芷 , 张伟儒 , 李勇 , 等 . 采用有机先驱体制备 Si3 N4 /SiC纳米复相陶瓷. 硅酸盐学报 , 1995, 23( 3): 266~ 271 5名和正弘 , 中本彰一 , 山崎圭一 , 等 . CeO2安定化正方晶ジルコニア / Al2 O3ナノ复合材料の作制と机械的特性. 粉体

および粉末冶金, 1996, 43( 4): 415~420

6中平敦 , 福岛由晃 , 新原皓一 . Al2 O3 -SiC-ZrO2复合セラミツクス. 粉体および粉末冶金 , 1989, 36( 2): 746~ 751

7 Niih ara K, Unal N, Nakah ira A. M echanical properties of ( Y-T ZP) -alumina-silicon carbide nanocomposites and th e

phase s tability of Y-TZP particles in it. J Ma ter Sci , 1994, 29( 2): 164~ 168

8 Jang B, Enoki M , Kishi T. Control of microstructure of alumina ceramics by disp ersion nano SiC particles. J Cer am Soc

Jp n, 1994, 102( 9): 861~ 865

9 Chou I A, Ch an H M , Harmer M P. M achining-induced su rface residual s tres s behavior in Al2O3 -SiC nan ocomposites. J

Am Ceram Soc, 1996, 79( 9): 2403~2409

10 Kitayama M , Pask J A. Formation and control of agg lomerates in alu mina pow der. J Am Cer am Soc, 1996, 79( 8): 2003

~ 2011

11 黄政仁,江东亮,谭寿洪. SiC-Al2O3基复相陶瓷的N2-HIP研究.硅酸盐学报, 1997, 25( 1): 30~34

12 Cesarano J H, Aksay I A. Processing of concen trated aqueous T-Al2O 3 sus pensions stabilized w ith polyelectrolyte. J Am

Ceram Soc, 1988, 71( 12): 1062~ 1067

13 Sak ka Y, Biding er D D, Aks ay I A. Proces sing of silicon carbide-m ullite-alumina nanocomposites. J Am Ceram Soc,

1995, 78( 2): 497~ 486

14 W ang K, Sacks M D. M ullite formation by endothermic reaction of T-Al2 O3 /silica microcomposites particles. J Am Cer -

am Soc, 1996, 79( 1): 12~16

15 王士维,黄校先,郭景坤. SiO2包裹3Y-T ZP粉体的制备工艺和热分析.现代技术陶瓷, 1996, (增): 27~30

16 李虹,黄莉萍,蒋薪,等.纳米SiC-Si3N4复合粉体制备及材料的显微结构.硅酸盐学报, 1995, 23( 5): 545~549

17 马亚鲁,王树强,谈家琪.化学共沉淀法制备微晶PSZ陶瓷的显微结构与力学性能.硅酸盐学报, 1995, 23( 5): 495~500

18 董绍明,江东亮,谭寿洪.纳米SiC及Si3N4-SiC的高温等静压研究.无机材料学报, 1997,

12( 2): 191~ 194

19 Pan X, M ayer J, Ruh le M . Silicon nitride based ceramic nanocomposites. J Am Ceram Soc, 1996, 79( 3): 585~ 590

20 Levin I, Kaplan W D, Brandon D G, et al . Effect of SiC s ubmicrometer particle size and control on fracture tough nes s of

alumina-Si C nanocomposites. J Am Ceram Soc, 1995, 78( 1): 254~ 256

成为一名机械工程师需要具备哪些知识

成为一名机械工程师需要掌握的知识 注册机械工程师资格考试基础考试大纲 一.高等数学 1.1空间解析几何向量代数直线平面柱面旋转曲面二次曲面空间曲线 1.2微分学极限连续导数微分偏导数全微分导数与微分的应用 1.3积分学不定积分定积分广义积分二重积分三重积分平面曲线积分积分应用1.4无穷级数数项级数幂级数泰勒级数傅里叶级数 1.5常微分方程可分离变量方程一阶线性方程可降阶方程常系数线性方程 1.6概率与数理统计随机事件与概率古典概型一维随机变量的分布和数字特征数理统计的基本概念参数估计假设检验方差分析一元回归分析 1.7向量分析 1.8线性代数行列式矩阵n维向量线性方程组矩阵的特征值与特征向量二次型 二.普通物理 2.1热学气体状态参量平衡态理想气体状态方程理想气体的压力和温度的统计解释能量按自由度均分原理理想气体内能平衡碰撞次数和平均自由程麦克斯韦速率分布律功热量内能热力学第一定律及其对理想气体等值过程和绝热过程的应用气体的摩尔热容循环过程热机效率热力学第二定律及其统计意义可逆过程和不可逆过程熵 2.2波动学机械波的产生和传播简谐波表达式波的能量驻波声速超声波次声波多普勒效应

2.3光学相干光的获得杨氏双缝干涉光程薄膜干涉麦克尔干涉仪惠更斯——菲涅耳原理单缝衍射光学仪器分辨本领x射线衍射自然光和偏振光布儒斯特定律马吕斯定律双折射现象偏振光的干涉人工双折射及应用 三.普通化学 3.1物质结构与物质状态原子核外电子分布原子、离子的电子结构式原子轨道和电子云离子键特征共价键特征及类型分子结构式杂化轨道及分子空间构型极性分子与非极性分子分子间力与氢键分压定律及计算液体蒸气压沸点汽化热晶体类型与物质性质的关系 3.2溶液溶液的浓度及计算非电解质稀溶液通性及计算渗透压电解质溶液的电离平衡电离常数及计算同离子效应和缓冲溶液水的离子积及ph值盐类水解平衡及溶液的酸碱性多相离子平衡溶度积常数溶解度计算 3.3周期表周期表结构周期族原子结构与周期表关系元素性质氧化物及其水化物的酸碱性递变规律 3.4化学反应方程式化学反应速率与化学平衡化学反应方程式写法及计算反应热热化学反应方程式写法化学反应速率表示方法浓度、温度对反应速率的影响速率常数与反应级数活化能及催化剂化学平衡特征及平衡常数表达式化学平衡移动原理及计算压力熵与化学反应方向判断3.5氧化还原与电化学氧化剂与还原剂氧化还原反应方程式写法及配平原电池组成及符号电极反应与电池反应标准电极电势能斯特方程及电极电势的应用电解与金属腐蚀 3.6有机化学有机物特点、分类及命名官能团及分子结构式有机物的重要化学反应:加成取代消去氧化加聚与缩聚典型有机物的分子式、性质及用途:甲烷乙炔

功能陶瓷材料研究进展综述

功能陶瓷材料的应用 研究 姓名:刘军堂___________ 学号: 23122837________ 班级: 机械1201_________ 任课老师:张志坚__________

功能陶瓷材料的应用研究 1.选择一个课题进行相关检索,要求对课题作简要分析,并在分析的基础上确定检索词,准确描述检索过程。(10分)(可选择其他课程中以论文方式考核的科目,如无此类题目,可自选或用备选题目) 功能陶瓷 功能陶瓷材料是具有特殊优越性能的新型材料,各国在基础与应用研究以及工程化方面,均给予了特殊重视,特别是在信息、国防、现代交通与能源产业中均将其置于重要地位。根据功能陶瓷材料的应用前景,本文介绍了功能陶瓷新材料的性能、应用范围,市场的开发应用现状和开发应用新领域,以及正在研发的高性能陶瓷材料;同时介绍了功能陶瓷材料今后的发展趋势。 关键词:功能陶瓷材料;应用现状;趋势 检索过程 第一步:进入“中国知网”主页,网址是“https://www.360docs.net/doc/d71996027.html, 第三步:登录成功后会进入操作界面, 第四步:选择要检索的文献数据库。在操作界面上,中国知网将其文献分成了不同的库,我们根据自己的文献范围属性进行选择。 第五步:检索参数设置。在操作界面的上部,有搜索参数设置对话框。最好逐一填写。(1)检索项,系统对文献进行了检索编码,每一个文献都有一一对应的编码,一个编码就是一种检索项。点击检索项框右边的向下箭头,就能弹出所有检索项,选中一个就好。(2)检索词,填入要求系统搜索的内容。没有明确严格要求,不一定是词语。但是需要考虑到它应当与你选中的检索项相一致。如检索项用了“关键词”,就不能用一个长句等作检索词了。(3)文献时间选择,根据文献可能出现的年代,点击对话框右边的小三角就可以选了。需要说明的是,中国知网建立时间是1994年,所以1994年及其后的数据才是最全的。现在他们在逐渐补充1994年以前的文献数据,但是,全面性可能要差些。(4)排序,提示系统将找到的文献按什么顺序呈现。(5)匹配,即要求系统按自己的检索要求进行哪种精确程度的检索。如果你确定你的文献参数,那么选择“精确”,如果不确定,就选择“模糊”。 第六步:点击“搜索”就完成了第一阶段的操作了。然后就进入检索结果呈现的界面:中国知网2.rar(点击打开查看),中国知网的结果呈现表中,对文献的基本信息:文献题目、文献的载体、发表时间及在中国知网中的收藏库名进行了说明。

《机械工程材料(第4版)》课程大纲

“工程材料基础”课程教学大纲 英文名称:Fundamentals of Engineering Materials 课程编号:MATL300102(10位) 学时:52 (理论学时:44 实验学时:8 上机学时:课外学时:(课外学时不计入总学时)) 学分:3 适用对象:本科生 先修课程:大学物理、材料力学 使用教材及参考书: [1] 沈莲,范群成,王红洁.《机械工程材料》.北京:机械工业出版 社,2007. [2] 席生岐等。《工程材料基础实验指导书》.西安:西安交通大学出 版社.2014 [3] 朱张校等。《工程材料》.北京:清华大学出版社.2009 一、课程性质和目的(100字左右) 性质:专业基础课 目的:为机械、能动、航天、化工等学院本科生讲解材料的基础理论和工程应用,使学生了解材料的成分-组织-结构-性能的内在关系,培养学生根据零构件设计的性能指标选择合适材料,做到“知材、懂材”并能合理使用材料。 二、课程内容简介(200字左右) 工程材料基础是面向机类、近机类及口腔医学专业开设的材

料基础理论课程。课程主要向学生讲授典型零件的失效方式及抗力指标、金属材料、陶瓷材料、高分子材料、复合材料、功能材料的基本知识,使学生掌握材料成分-工艺-组织-性能的内在关系,掌握工程材料实际应用的原则,培养学生“知理论、懂性能、会选材”的基本能力和素质。 课程实验主要包括金相试样制备和显微镜使用、铁碳合金组织的观察与分析、碳钢热处理与性能综合实验。 一、教学基本要求 (1) 了解机械零构件的常见失效方式及其对性能指标的要求。 (2) 掌握碳钢、铸铁、合金钢、有色金属的成分、组织、热处理、性能特点及工程应用的基本知识。 (3) 掌握陶瓷材料、高分子材料、复合材料、功能材料的成分、组织、性能特点及常用材料的种类和用途。 (4) 学生具有根据零构件的服役条件、失效方式和性能要求选择材料及编写冷热加工工艺路线的基本能力。 (5) 了解新材料、新工艺的基本概况及发展趋势。 三教学内容及安排 绪论(1学时) 工程材料在机械设计及制造工程中的作用,工程材料的分类本课程的目的及任务,课程的基本内容,考核要求等。(1学时) 第一章机械零件失效方式及抗力指标(5学时) 1) 掌握:常温静载下的过量变形及抗力指标;静载和冲击载荷下的

现代陶瓷研究进展

材料与化工学院 2012级材料科学与工程二班 课程作业:无机非金属材料工艺学学生姓名:刘健 学生学号: 授课老师:

目录 1.传统陶瓷材料------------------------------------------------------------------------------------------------3 2.新型陶瓷材料------------------------------------------------------------------------------------------------3 2.1生物陶瓷材料------------------------------------------------------------------------------------------4 2.1.1生物陶瓷研究背景------------------------------------------------------------------------------4 2.1.2生物陶瓷研究的一些成果---------------------------------------------------------------------4 2.1.3生物陶瓷在国外的研究动态和发展趋势-------------------------------------------------4 2.1.4我国生物陶瓷材料研究设想与展望--------------------------------------------------------5 2.2高温压电陶瓷材料-------------------------------------------------------------------------------------5 2.2.1改性钛酸铅压电陶瓷----------------------------------------------------------------------------5 2.2.2 PZT基多元系压电陶瓷--------------------------------------------------------------------------6 2.3超级亲水易洁陶瓷材料-------------------------------------------------------------------------------6 2.4热障涂层陶瓷材料--------------------------------------------------------------------------------------7 2.4.1几类热障陶瓷涂料研究近况-------------------------------------------------------------------7 2.4.1.1氧化物稳定的ZrO2---------------------------------------------------------------------------7 2.4.1.2焦绿石或萤石结构A2B2O7陶瓷----------------------------------------------------------7 2.4.2需要达到的目标------------------------------------------------------------------------------------8 3.结语----------------------------------------------------------------------------------------------------------------8

机械工程材料基本知识点

晶体缺陷: 点缺陷(空位、间隙原子、异类原子微观影响:晶格畸变)线缺陷(位错;极为重要的晶体缺陷,对金属强度、塑性、扩散及相变有显著影响)面缺陷(晶界、亚晶界) 合金相结构 :相是指系统中均匀的、与其他部分有界面分开的部分。相变:相与相的转变。按结构特点:固溶体、化合物、非晶相。 固溶体:指溶质原子溶入溶剂中所形成的均一结晶相。其晶体结构与溶剂相同。置换固溶体(溶质原子占溶剂晶格结点位置形成的固溶体)间隙固溶体:溶质原子处于溶剂晶格间隙所形成的固溶体 结晶: 材料从液态向固态的凝固成晶体的过程。 基本规律:晶核形成和长大交替进行。包括形核和核长大俩个过程, 影响形核率和成长率的因素:过冷度、不容杂志、振动和搅拌 变质处理:金属结晶时,有意向金属溶液中加入某种难溶物质,从而细化晶粒,改善金属性能 调质处理:淬火和高温回火 同素异构转变;固态金属由一种晶体结构向另一种晶体结构的转变。 合金的组织决定合金的性能 金属材料的强化 本质;阻碍晶体位错的运动 强化途径:形变强化(冷加工变形)、固溶强化(形成固溶体)、第二相强化、细晶强化(晶粒粒度的细化) 钢的热处理 预先热处理:正火和退火 最终热处理:淬火和回火 退火:将钢加热到适当温度,保温一段时间,然后缓慢冷却,以获得接近平衡组织的热处理工艺。目的:降低硬度,提高塑性,改善切削性能;消除钢中内应力;细化晶粒,改善组织,为随后的热处理做组织上的准备。常用:完全退火Ac3以上30-50度(适用亚共析钢和合金钢,不适应低碳钢和过共析钢)得到组织为铁素体和珠光体,等温退火:适用某些奥氏体比较稳定的合金钢,加热和保温同完全退火,使奥氏体转变为珠光体,球化退火:温度略高于Ac1,适用过共析钢和合金工具钢,得到组织球状珠光体,去应力退火:Ac1以下100-200度,不发生组织变化,另外还有再结晶退火和扩散退火。 正火:亚共析钢Ac3以上30-50度,过共析钢Accm以上30-50度,保温后空冷获得细密而均匀的珠光体组织。目的:调整钢的硬度,改善加工性能;消除钢中内应力,细化晶粒,改善组织,为随后的热处理做组织上的准备。主要作用:作为低、中碳钢的预先热处理;消除过共析钢中的网状二次渗碳体,为球化退火做准备;作为普通件的最终热处理。 退火和正火区别:冷却速度不同,正火快,得到珠光体组织细,因而强度和硬度也高。实际中,如果俩者均能达到预先热处理要求时,通常选正火 淬火:加热到Ac1或Ac3以上某个温度,保温后以大于临界冷却速度冷却,使A转变为M 的热处理工艺.目的:获得马氏体或下贝氏体组织。温度:亚共析钢Ac3上30-50度,组织为M+少量A残,共析钢和过共析钢Ac1上30-50度,组织M+粒状Fe3C+少量A残 要求:淬火冷却速度必须大于临界冷却温度Vk.常用方法;单液、双液、分级、等温、局部淬火 回火:淬火以后的工件加热到Ac1以下某个温度,保温后冷却的一种热处理工艺.目的:降

机械工程材料基础知识大全

《机械工程材料》 基础篇 一:填空 1. 绝大多数金属具有体心立方、面心立方、和密排立方三种类型,α-Fe是体心立方类型,其实际原子数为 2 。 2.晶体缺陷有点缺陷、线缺陷、和面缺陷。 3.固溶体按溶质原子在晶格位置分为置换固溶体、间隙固溶体。 4.铸造时常选用接近共晶成分(接近共晶成分、单相固溶体)的合金。5.金属的塑性变形对金属的组织与性能的影响晶粒沿变形方向拉长,性能趋于各向异性、晶粒破碎,位错密度增加,产生加工硬化、织构现象的产生。6.金属磨损的方式有粘着磨损、磨粒磨损、腐蚀磨损。 7.金属铸件否(能、否)通过再结晶退火来细化晶粒。 8.疲劳断裂的特点有应力低于抗拉极限也会脆断、断口呈粗糙带和光滑带、塑性很好的材料也会脆断。 9.钢中含硫量过高的最大危害是造成热脆。 10.珠光体类型的组织有粗珠光体、索氏体、屈氏体。 11.正火和退火的主要区别是退火获得平衡组织;正火获得珠光体组织。 12. 淬火发生变形和开裂的原因是淬火后造成很大的热应力和组织应力。 13. 甲、乙两厂生产同一批零件,材料均选用45钢,甲厂采用正火,乙厂采用调质,都达到硬度要求。甲、乙两厂产品的组织各是铁素体+珠光体、回火索氏体。 14.40Cr,GCr15,20CrMo,60Si2Mn中适合制造轴类零件的钢为 40Cr 。15.常见的普通热处理有退火、正火、淬火、回火。 16.用T12钢制造车刀,在切削加工前进行的预备热处理为正火、 球化退火。 17.量具钢加工工艺中,在切削加工之后淬火处理之前可能的热处理工序为调质(退火、调质、回火)。 18.耐磨钢的耐磨原理是加工硬化。 19.灰口铸铁铸件薄壁处出现白口组织,造成切削加工困难采取的热处理措施为高温退火。 20、材料选择的三原则一般原则,工艺性原则,经济性原则。 21.纯铁的多晶型转变是α-Fe→γ-Fe→δ-Fe 。 22.面心立方晶胞中实际原子数为 4 。 23.在立方晶格中,如果晶面指数和晶向指数的数值相同时,那么该晶面与晶向间存在着晶面与晶向相互垂直关系。 24.过冷度与冷却速度的关系为冷却速度越大过冷度越大。 25.固溶体按溶质原子在晶格中位置可分为间隙固溶体、置换固溶体。26.金属单晶体滑移的特点是滑移只能在切应力下发生、滑移总是沿原子密度最大的晶面和晶向进行、滑移时必伴随着晶体向外力方向转动。 27.热加工对金属组织和性能的影响有消除金属铸态组织的缺陷、改变内部夹杂物的形态与分布。

机械制造技术基础知识点整理讲解学习

机械制造技术基础知 识点整理

1.制造工艺过程:技术准备,机械加工,热处理,装配等一般称为制造工艺过程。 2.机械加工由若干工序组成。工序又可分为安装,工位,工步,走刀。 3.按生产专业化程度不同可将生产分为三种类型:单件生产,成批(小批,中批,大批)生产,大量生产。 4.材料去除成型加工包括传统的切削加工和特种加工。 5.金属切削加工的方法有车削,钻削,镗削,铣削,磨削,刨削。 6.工件上三个不断变化的表面待加工表面,过渡表面(切削表面),已加工表面。(详见P58) 7.切削用量是以下三者的总称。 (1)切削速度,主运动的速度。 (2)进给量,在主运动一个循环内刀具与工件之间沿进给方向相对移动的距离。 (3)背吃刀量工件上待加工表面和已加工表面件的垂直距离。 8.母线和导线统称为形成表面的发生线。 9.形成发生线的方法成型法,轨迹法,展成法,相切法。 10.表面的成型运动是保证得到工件要求的表面形状的运动。 11.机床的分类:(1)按机床万能性程度分为:通用机床,专门化机床,专用机床。 (2)按机床精度分为:普通机床,精密机床,高精度机床。 (3)按自动化程度分为:一般机床,半自动机床,自动机床。 (4)按重量分为:仪表机床,一般机床,大型机床,重型机床。 (5)按机床主要工作部件数目分为:单刀机床,多刀机床,单轴机床,多轴机床。 (6)按机床具有的数控功能分:普通机床,一般数控机床,加工中心,柔性制造单元等。 12.机床组成:动力源部件,成型运动执行件,变速传动装置,运动控制装置,润滑装置,电气系统零部件,支承零部件,其他装置。

13.机床上的运动:(1)切削运动(又名表面成型运动),包括: 1、主运动使刀具与工件产生相对运动,以切削工件上多余金属的基本运 动。 2、进给运动不断将多余金属层投入切削,以保证切削连续进行的运 动。(可以是一个或几个) (2)辅助运动。分度运动,送夹料运动,控制运动,其他各种空程运动 14.刀具分类: (1)按刀具分为切刀,孔加工刀具,铣刀,拉刀,螺纹刀具,齿轮刀具,自动化加工刀具。 (2)按刀具上主切削刃多少分为单刃刀具,多刃刀具。 (3)按刀具切削部分的复杂程度分为一般刀具,复杂刀具。 (4)按刀具尺寸和工件被加工尺寸的关系分为定尺寸刀具,非定尺寸刀具。 (5)按刀具切削部分本身的构造分为单一刀具和复杂刀具。 (6)按刀具切削部分和夹持部分之间的结构关系分为整体式刀具和装配式刀具。 15.切刀主要包括车刀,刨刀,插刀,镗刀。 16.孔加工刀具有麻花钻,中心钻,扩孔钻,铰刀等。 17.用得最多的刀具材料是高速钢和硬质合金钢。 18.高速钢分普通高速钢和高性能高速钢。 19.高性能高速钢分钴高速钢,铝高速钢,高钒高速钢。 20.刀具的参考系分为静止(标注)角度参考系和工作角度参考系。 21.静止(标注)角度参考系由主运动方向确定,工作角度参考系由合成切削运动方向确定。 22.构成刀具标注角度参考系的参考平面有基面,切削平面,正交平面,法平面,假定工作平面,背平面。

特种陶瓷材料的研究进展[1]

文章编号:1006-2874(2010)05-0071-04 特种陶瓷材料的研究进展 葛伟青 (唐山学院,唐山:063000) 中图分类号:TQ174.75文献标识码:A 特种陶瓷也称为先进陶瓷、现代陶瓷、新型陶瓷、高性能陶瓷、高技术陶瓷和精细陶瓷,突破了传统陶瓷以黏土为主要原料的界限,主要以氧化物、炭化物、氮化物、硅化物等为主要原料,有时还可以与金属进行复合形成陶瓷金属复合材料,是一种采用现代材料工艺制备的、具有独特和优异性能的陶瓷材料。已成为现代高性能复合材料的一个研究热点。特种陶瓷于二十世纪发展起来,在近二、三十年内,新产品不断涌现,在现代工业技术,特别是在高技术、新技术领域中的地位日趋重要。许多科学家预言:特种陶瓷在二十一世纪的科学技术发展中,必将占据十分重要的地位。 特种陶瓷不同的化学组成和组织结构决定了它不同的特殊性质和功能,可作为工程结构材料和功能材料应用于机械、电子、化工、冶炼、能源、医学、激光、核反应、宇航等领域。一些经济发达国家,特别是日本、美国和西欧国家,为了加速新技术革命,为新型产业的发展奠定物质基础,投入大量人力、物力和财力研究开发特种陶瓷,因此,特种陶瓷的发展十分迅速,在技术上也有很大突破。 1概述 特种陶瓷通常包括结构陶瓷、功能陶瓷(电子陶瓷)和生物陶瓷等.结构陶瓷具有高强度、高硬度、高耐磨、耐高温、耐腐蚀等特性,功能陶瓷具有导电、半导性、绝缘、压电、透光、光电、电光、声光、磁光等性能,生物陶瓷具有医疗(人工关节.骨、牙齿等)和催化等功能,在现代工业技术,特别是在高新技术领域中的地位日趋重要。 中国科学院上海硅酸盐研究所所长罗宏杰在佛山市加快发展特种陶瓷推介会上发言说,特种陶瓷具备传统陶瓷不具备的多种特性,消耗低、利润高,应用前景十分广阔。预计2010年全国的市场规模将达到400亿元。世界的市场规模将达到1500亿美元。中国经济的高速发展,将为特种陶瓷制造业提供广阔的市场与发展空间。 目前,高温结构陶瓷研究的主要目标仍然是燃气轮机、活塞发动机和磁流体发电机用的材料。高温结构陶瓷的应用在汽车、飞机、火箭等领域获得了成功。福特公司研制的汽车用轮机的机头、定子和叶轮都是用氮化硅制作的,热交换器是用蜂窝状结构的结晶化玻璃制成的。超音速飞机发动机和火箭燃烧室内壁、隔热衬层等高温部位都利用到了陶瓷材料。美国研制成功了AGT100和AGT101型全陶瓷汽车发动机,其进口温度分别达到了1290℃和1370℃,比超合金高200 ~260℃。 2粉末制备技术进展情况 目前最引人注目的粉末制备技术是超高温技术。利用超高温技术可廉价地研制特种陶瓷。 超高温技术具有如下优点:能生产出用以往方法所不能生产的物质,能够获得纯度极高的物质,生产率会大幅度提高,可使作业程序简化、易行。目前,在超高温技术方面居领先地位的是日本。此外,溶解法制备粉末、化学气相沉积法制备陶瓷粉末、溶胶-凝胶法生产莫来石超细粉末以及等离子体气相反应法等也引起了人们的关注。 3特种陶瓷成形方法及特点 3.1干法成型 干法成型包括钢模压制成型、等静压成型、超高压成型、粉末电磁成型等方法。 3.1.1钢模压制成型(干压法) 将含有少量增塑剂、具有一定粒度配比的陶瓷粉末放在金属模内,在压机上受压,使之密实成型。钢模压制的优点是易于实现自动化,所以在工业生产中得到较大的应用。 3.1.2等静压成型 等静压成型是通过施加各项同性压力而使粉料一边压缩一边成型的方法。等静压力可达300MPa左右。在常温下成型时称为冷等静压成型,在几百摄氏度到2000℃温区内成型时称为热等静压成型。等静压有两种方式:干袋法和湿袋法。湿袋法是将粉末或颗粒密封于成型橡胶模型内,置于高压容器 收稿日期:2010-04-15 通讯联系人:葛伟青,E-mail:hbtsgwq@https://www.360docs.net/doc/d71996027.html, CHINACERAMICINDUSTRYOct.2010Vol.17,No.5 中国陶瓷工业 2010年10月第17卷第5期

陶瓷简介

陶瓷 陶瓷是陶器和瓷器的总称。人早在约公元前8000年前的新石器时代就发明了陶器。陶瓷材料大多是氧化物、氮化物、硼化物和碳化物等。常见的陶瓷材料有粘土、氧化铝、高岭土等。陶瓷材料一般硬度较高,但可塑性较差。除了在食器、装饰的使用上,在科学、技术的发展中亦扮演重要角色。陶瓷原料是地球原有的大量资源黏土经过淬取而成。而粘土的性质具韧性,常温遇水可塑,微干可雕,全干可磨;烧至700度可成陶器能装水;烧至1230度则瓷化,可几乎完全不吸水且耐高温耐腐蚀。其用法之弹性,在今日文化科技中有各种创意的应用。 陶瓷英文Ceramic(或者China);陶瓷拼音Táocí;陶瓷是以天然粘土以及各种天然矿物为主要原料经过粉碎混炼、成型和煅烧制得的材料的各种制品。以前人们把用陶土制作成的在专门的窑炉中高温烧制的物品称作陶瓷,陶瓷是陶器和瓷器的总称。陶瓷的传统概念是指所有以粘土等无机非金属矿物为原料的人工工业产品。它包括由粘土或含有粘土的混合物经混炼,成形,煅烧而制成的各种制品。由最粗糙的土器到最精细的精陶和瓷器都属于它的范围。对于它的主要原料是取之于自然界的硅酸盐矿物(如粘土、石英等),因此与玻璃、水泥、搪瓷、耐火材料等工业,同属于“硅酸盐工业”的范畴。陶瓷的主要产区为景德镇、醴陵、高安、丰城、萍乡、黎川、佛山、潮州、德化、淄博、北流等地。 早在欧洲掌握制瓷技术之前一千多年,中国已能制造出相当精美的瓷器。从我国陶瓷发展史来看,一般是把“陶瓷”这个名词一分为二,为陶和瓷两大类。中国传统陶瓷的发展,经历过一个相当漫长的历史时期,种类繁杂,工艺特殊,所以,对中国传统陶瓷的分类除考虑技术上的硬性指标外,还需要综合考虑历来传统的习惯分类方法,结合古今科技认识上的变化,才能更为有效地得出归类结论。 作为汉族传统文化之一的陶瓷文化,在民族母体中孕育、成长与发展,它以活生生的凝聚着创作者情感、带着泥土的芬芳、留存着创作者心手相应的意气的艺术形象,表现着汉族文化,叙述着一个个动听的故事,展现着广阔的社会生活画卷,记录着芸芸众生的悲欢离合,描述着民族的心理、精神和性格的发展与变化,伴随着民族的喜与悲而前行。 新石器时期彩陶中的陶塑作品,记录着先民生存的愿望。那陶塑的猪、牛、狗,模仿着打猎而来或者豢养而食的动物形象,演示着与大自然搏斗的酷烈,表达着文明的演化与发展。摩娑这些与实物逼真无二的作品,想象着先民的困惑、喜悦和奋争,那在洪荒、野蛮中奔突与呼叫的景象,撼人心魄。

机械工程材料应用基础解答题

细化晶粒的方法?为什么要细化晶粒? 方法:增加过冷度;变质处理;附加振动 原因:常温下金属的晶粒越小,强度硬度则越大.同时塑 形韧性也越好.细化晶粒可以大大提高金属材料的常温力学性能. 什么退火?退火操作有? 将组织偏离平衡状态的金属和合金,加热到适当的温度,保持一定时间,然后慢慢冷却以获得平衡状态的热处理工艺称为退火. 操作:均匀化退火;完全退火和等温退火;不完全退火;球 化退火;去应力退火 钢丝和铅丝 钢丝的再结晶温度大于室温,反复弯折相当于对其冷加 工致使加工硬化,所以越弯折越硬.而铅丝的再结晶温度 小于室温,属于对其进行热加工使其硬化消失所以始终保软态. 金属经冷塑性变形后,组织和性能发生什么变化? 纤维组织的产生;晶粒破碎,位错密度增大,产生加工硬化;结构现象的产生;残余内应力的产生 用20CrMnTi钢制造变速箱齿轮工艺路线及热处理作用 路线:锻造-正火-加工齿形-局部镀铜-渗碳-预冷淬火, 低温回火-喷丸-磨齿(精磨) 正火:消除锻造状态的不正常组织,以利切削加工,保证齿形合格. 淬火+低温回火:使其面层具有很高的硬度和耐磨性,使其心部具有高强度和足够的冲击韧度 淬火的目的?方法? 目的:提高工具渗碳工件和其他高强度耐磨机器零件等的强度,硬度和耐磨性;提高结构钢的综合力学性能;提高少数工件的物理和化学性能. 方法:单介质淬火;双介质淬火;分级淬火;等温淬火;冷处理. 共析钢加热时,奥氏体的形成过程有那几个步骤? 奥氏体晶核形成;奥氏体晶核的长大;残余渗碳体的溶解;奥氏体均匀化. 回火操作?指出各种回火操作得到的组织及性能. 低温回火;回火马氏体;高硬度和高耐磨性 中温回火;回火托氏体;较高的弹性极限和屈服极限并具有一定韧性. 高温回火;活活索氏体;较高强度,良好的塑性和韧性. 为什么铸造合金常选接近共晶成分合金? 因为温度间隔与成分间隔愈大的合金其流动性愈差,分散缩孔愈多,凝固后的枝晶偏析也愈严重.而对于共晶系来说,共晶成分合金熔点低,且凝固在常温下进行,流动性好,分散缩孔少,热裂倾向也小.故~ 塑性变形造成哪几种残余应力? 宏观内应力(第一);微观内应力(第二);晶格畸变内应力(第三) 用W18Cr4V制造铣刀,加工路线及热处理作用? 路线:下料-锻造-球化退火-机械加工-淬火+560°C三次回火-喷砂-磨削加工-成品 退火:便于加工,为淬火做好准备 淬火+回火:使其具有高硬度,高耐磨性及热硬性. 700℃,760℃,840℃,1100℃ 700<727 不发生相变(在相变温度线以下);F+P 760 在G点下载Ac1~Ac3之间,原为A+F,A-M,F保留;F+M+A'(残余) 840 Ac3以 上,A-M+A'(残余);M+A' 1100 A晶粒粗化-粗片状M+A'

机械工程师知识要求教学提纲

机械工程师知识要求

机械工程师的知识要求: Ⅰ.基本要求 1.熟练掌握工程制图标准和表示方法。掌握公差配合的选用和标注。 2.熟悉常用金属材料的性能、试验方法及其选用。掌握钢的热处理原理,熟悉常用金属材料的热处理方法及其选用。了解常用工程塑料、特种陶瓷、光纤和纳米材料的种类及应用。3.掌握机械产品设计的基本知识与技能,能熟练进行零、部件的设计。熟悉机械产品的设计程序和基本技术要素,能用电子计算机进行零件的辅助设计,熟悉实用设计方法,了解现代设计方法。 4.掌握制订工艺过程的基本知识与技能,能熟练制订典型零件的加工工艺过程,并能分析解决现场出现的一般工艺问题。熟悉铸造、压力加工、焊接、切(磨)削加工、特种加工、表面涂盖处理、装配等机械制造工艺的基本技术内容、方法和特点并掌握某些重点。熟悉工艺方案和工艺装备的设计知识。了解生产线设计和车间平面布置原则和知识。 5.熟悉与职业相关的安全法规、道德规范和法律知识。熟悉经济和管理的基础知识。了解管理创新的理念及应用。 6.熟悉质量管理和质量保证体系,掌握过程控制的基本工具与方法,了解有关质量检测技术。 7.熟悉计算机应用的基本知识。熟悉计算机数控(CNC)系统的构成、作用和控制程序的编制。了解计算机仿真的基本概念和常用计算机软件的特点及应用。 8.了解机械制造自动化的有关知识。 Ⅱ.考试内容 一、工程制图与公差配合 1.工程制图的一般规定 (1)图框 (2)图线 (3)比例 (4)标题栏 (5)视图表示方法 (6)图面的布置 (7)剖面符号与画法 2.零、部件(系统)图样的规定画法 (1)机械系统零、部件图样的规定画法(螺纹及螺纹紧固件的画法齿轮、齿条、蜗杆、蜗轮及链轮的画法花键的画法及其尺寸标注弹簧的画法) (2)机械、液压、气动系统图的示意画法(机械零、部件的简化画法和符号管路、接口和接头简化画法及符号常用液压元件简化画法及符号) 3.原理图

陶瓷材料的研究进展

论文 题目:陶瓷材料的研究进展 姓名: 专业:化学工程与工艺 学号: 日期:2009-6-21

陶瓷材料的研究进展 摘要:近年来,随着科学的进步,陶瓷材料越来越多的进入我们的生产和生活,并且在性能和作用上体现出出乎意料的优越性。就我所知,陶瓷材料大体上可以分为四个类型:传统工艺陶瓷,结构陶瓷,功能陶瓷和生物陶瓷。本文仅对后三种新型陶瓷材料的研究进展做一个简单综述。 关键词:结构陶瓷功能陶瓷生物陶瓷纳米技术Abstract: In recent years, along with the science progress, the ceramic material more and more entered our production and the life, and manifested the superiority unexpectedly in the performance and the function. I know, the ceramic material may divide into four types on the whole: Traditional process ceramics, structure ceramics, functional ceramic and biological ceramics. This article only makes a simple summary to the latter three kind of new ceramic material's research development. Key word: Structure ceramics,functional ceramic,biology ceramics ,nanotechnology

机械工程材料总结

机械工程材料总结 通过这一学期的学习,对各种材料也有了了解,比如说,在机械工程材料中,金属材料最重要的。掌握了常用机械工程材料的性能与应用,具有选择常用机械工程材料和改变材料性能的方法。了解了与本课程有关的新材料,新技术,新工艺及其发展概况。 材料是人类生产和生活的物质基础。人类社会发展的历史表明,生产技术的进步和生活水平的提高与新材料的应用息息相关。每一种新材料的发明和应用,都使社会生产和生活发生重大的变化,并有力地推动着人类文明的进步。例如,合成纤维的研制成功改变了化学、纺织工业的面貌,人类的衣着发生重大变化;超高温合金的发明加速了航空航天技术的发展;超纯半导体材料的出现使超大规模集成电路技术日新月异,促进了计算机工业的高速发展;光导纤维的开发使通信技术产生了重大变革;高硬度、高强度等新材料的应用使机械产品的结构和制造工艺发生了重大变化。因此,历史学家常以石器时代、铜器时代、铁器时代划分历史发展的各个阶段,而现在人类已跨进人工合成材料的新时代。 学完了整册书,对本书有了深刻了解。通过对第一章的力学性能的学习,了解了要正确,合理地使用金属材料,必须了解其性能。金属材料的性能包括使用性能和工艺性能。使用性能是指金属材料在各种加工进程中所表现出来的性能,主要有力学性

能、物理性能和化学性能。在机械行业中选用材料时,一般以力学性能为主要依据。在第二章的学习中,了解了金属的晶体结构和结晶,固体材料按内部原子聚集状态不同,分为晶体和非晶体两大类。固态金属基本上都是晶体物质。材料的性能主要取决于其内部结构。因此,研究纯金属与合金的内部结构,对了解和掌握金属的性能是非常重要的。 在深入的了解中我又学到了金属不但能结晶,而且还能再结晶。为了获得预期组织结构与性能,我们通常采用热处理来实现这一方法。热处理是提高金属使用性能和改善工艺性能的重要加工工艺方法,因此,在机械制造中绝大多数的零件都要进行热处理。一般应用以下方面:1.作为最终热处理,正火可以细化晶粒,使组织均匀化,使珠光体含量增多并细化,从而提高钢的强度、硬度和韧性。对于普通结构钢零件,力学性能要求不是很高时,可以正火作为最终热处理。2.作为预先热处理,截面较大的合金结构钢件,在淬火或调质处理前长行正火,以清除魏氏组织或带状组织,并获得细小而均匀的组织,对于过共析钢可减少二次渗碳体量,并使其不形成连续网状,为球化退火作组织准备。3.改善切削加工性能,低碳钢或低碳钢退火后硬度太低,不便于切削加工。正火可提高其硬度,改善其切削加工性能。 实践证明,生产中往往会由于选材不当或热处理不妥,使机械零件的使用性能不能达到规定的技术要求,从而导致零件在使用中因发生过量变形,过早磨损或断裂等而早期失效。所以,在

陶瓷材料

简介 陶瓷材料是用天然或合成化合物经过成形和高温烧结制成的一类无机非金属材料。它具有高熔点、高硬度、高耐磨性、耐氧化等优点。可用作结构材料、刀具材料,由于陶瓷还具有某些特殊的性能,又可作为功能材料。 编辑本段分类 陶瓷材料分为普通陶瓷(传统陶瓷)材料和特种陶瓷(现代陶瓷)材料两大类。 普通陶瓷材料 采用天然原料如长石、粘土和石英等烧结而成,是典型的硅酸盐材料,主要组成元素是硅、铝、氧,这三种元素占地壳元素总量的90%,普通陶瓷来源丰富、成本低、工艺成熟。这类陶瓷按性能特征和用途又可分为日用陶瓷、建筑陶瓷、电绝缘陶瓷、化工陶瓷等。 特种陶瓷材料 采用高纯度人工合成的原料,利用精密控制工艺成形烧结制成,一般具有某些特殊性能,以适应各种需要。根据其主要成分,有氧化物陶瓷、氮化物陶瓷、碳化物陶瓷、金属陶瓷等;特种陶瓷具有特殊的力学、光、声、电、磁、热等性能。本节主要介绍特种陶瓷。 编辑本段性能特点 力学性能 陶瓷材料是工程材料中刚度最好、硬度最高的材料,其硬度大多在1500HV以上。陶瓷的抗压强度较高,但抗拉强度较低,塑性和韧性很差。 热性能 陶瓷材料一般具有高的熔点(大多在2000℃以上),且在高温下具有极好的化学稳定性;陶瓷的导热性低于金属材料,陶瓷还是良好的隔热材料。同时陶瓷的线膨胀系数比金属低,当温度发生变化时,陶瓷具有良好的尺寸稳定性。 电性能 大多数陶瓷具有良好的电绝缘性,因此大量用于制作各种电压(1kV~110kV)的绝缘器件。铁电陶瓷(钛酸钡BaTiO3)具有较高的介电常数,可用于制作电容器,铁电陶瓷在外电场的作用下,还能改变形状,将电能转换为机械能(具有压电材料的特性),可用作扩音机、电唱机、超声波仪、声纳、医疗用声谱仪等。少数陶瓷还具有半导体的特性,可作整流器。 化学性能 陶瓷材料在高温下不易氧化,并对酸、碱、盐具有良好的抗腐蚀能力。 光学性能 陶瓷材料还有独特的光学性能,可用作固体激光器材料、光导纤维材料、光储存器等,透明陶瓷可用于高压钠灯管等。磁性陶瓷(铁氧体如:MgFe2O4、CuFe2O4、Fe3O4)在录音磁带、唱片、变压器铁芯、大型计算机记忆元件方面的应用有着广泛的前途。 编辑本段常用特种陶瓷材料 根据用途不同,特种陶瓷材料可分为结构陶瓷、工具陶瓷、功能陶瓷。 1.结构陶瓷 氧化铝陶瓷主要组成物为Al2O3,一般含量大于45%。氧化铝陶瓷具有各种优良的性能。耐高温,一般可要1600℃长期使用,耐腐蚀,高强度,其强度为普通陶瓷的2~3倍,高者可达5~6倍。其缺点是脆性大,不能受受突然的环境温度变化。用途极为广泛,可用作坩埚、发动机火花塞、高温耐火材料、热电偶套管、密封环等,也可作刀具和模具。氮化硅陶瓷主要组成物是Si3N4,这是一种高温强度高、高硬度、耐磨、耐腐蚀并能自润滑的高温陶瓷,线膨胀系数在各种陶瓷中最小,使用温度高达1400℃,具有极好的耐腐蚀性,除氢氟酸外,能耐其它各种酸的腐蚀,并能耐碱、各种金属的腐蚀,并具有优良的电绝缘性和耐

机械工程材料应用基础 题库

一:名词解释 1、回复:冷塑性变形的金属材料在加热温度较低时,其光学显微组织发生改变前晶体内部所产生的某些变化,(保留加工硬化,消除参与内应力) 再结晶:当冷塑性变形金属材料被加热到回复温度以上时,原子外形由破碎、拉长、变形的 2、晶粒或完整的等轴状的晶粒(消除加工硬化) 3、冷处理:把淬冷至室温的钢继续冷却到-70~-80℃,保持一段时间,使残余奥氏体继续冷却过程中转变为马氏体 4、热处理:将钢在固态时进行加热、保温、冷却三个基本过程,以改变钢的内部结构组织,从而获得所需性能的一种加工工艺 5、热加工:在材料再结晶温度以上所进行的塑性变形加红 6、冷加工:在再结晶温服一下所进行的塑性变形 7、正火:将钢件加热到临界温度以上,温度适当后的较快冷却速度冷却,以获得珠光体型组织的热处理工艺 8、退火:将钢件加热到临界温度以上,保温适当时间后缓慢冷却,以获得接近平衡的珠光体组织 9、淬火:将钢件加热到临界温度Ac1或Ac3以上,保温并随之以大于临界冷却温度(Uk)冷却,已得到介稳状态的马氏体或下贝氏组织的热处理工艺 10、残余奥氏体 11、相:在金属或合金中,凡成分相同,结构相同并与其它部分有界面分开的均匀组织部分 12、固溶体:以合金中某一元素作为溶剂,其它组作为溶质,所形成的与溶剂有相同晶体结构的固相 13、变质处理:在液态金属结晶前,加入一些细小的固态颗粒称为变质剂形核剂,可作为现成晶核或用以抑制长大速度以细化金属晶粒的处理方法 14、调质处理:将淬火和室温回火想结合的热处理 15、加工硬化:随着变形量的加大,由于晶粒破碎和位错密度增加,晶体的塑性变形形抗力迅速增大,强度和硬度明显提高,塑性和韧性下降的现象 16.弥散强化:脆性的第二相颗粒呈弥散粒子均分布在基体上,犹豫第二相粒子的位错交互或用,阻碍方位错运动,从而提高了金属的塑性变形抗力,则可显著想提高合金的强度的强化方式。 17.固溶强化:由于溶*元素的作用,造成晶格畸形,便使其塑性变形抗力增加,强度硬度提高,而塑性韧性下降。 18.晶内偏析:由于非平衡结晶造成晶体内化学成分不均匀的现象。{一般采用均匀退火消除或改善} 19.比重偏析:当合金组成相与合金溶液之间密度相差比较大时,初生相便会在液体中上浮或下沉而造成偏析,这种由于比重而导致的偏析称为比重偏析。 20.过冷度:理论结晶温度与实际结晶温度的差。 21.同素异构转度:将同一元素或同一成分和合金,在固态下随温度变化而具有不同晶体结构形态的转度。 22.淬透性:奥氏体化吼的钢在淬火时获得马氏体的能力,{其大小用钢在一定条件下淬火获得的有效淬硬深度表示} 23.淬硬性:钢淬火时的樱花能力,{用淬马氏体可能得到的最高硬度表示} 24.奥氏体:碳溶于Fe种所形成的间隙溶体。 25.过冷奥氏体:当奥氏体过冷到临界点以下{727℃}时,获得的不稳定状态的组织 26.临界冷却速度{淬火}:得到完全马氏体组织的最小冷却速度。

第1章机械工程材料基本知识

第1章机械工程材料基本知识 1.1 金属材料的力学性能 任何机械零件或工具,在使用过程中,往往要受到各种形式外力的作用。如起重机上的钢索,受到悬吊物拉力的作用;柴油机上的连杆,在传递动力时,不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件要受到弯矩、扭力的作用等等。这就要求金属材料必须具有一种承受机械荷而不超过许可变形或不破坏的能力。这种能力就是材料的力学性能。金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在外力作用下表现出力学性能的指标。 1.1.1 强度 强度是指金属材料在静载荷作用下抵抗变形和断裂的能力。强度指标一般用单位面积所承受的载荷即力表示,符号为σ,单位为MPa。 工程中常用的强度指标有屈服强度和抗拉强度。屈服强度是指金属材料在外力作用下,产生屈服现象时的应力,或开始出现塑性变形时的最低应力值,用σs 表示。抗拉强度是指金属材料在拉力的作用下,被拉断前所能承受的最大应力值,用σb表示。 对于大多数机械零件,工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件,而用抗拉强度作为其强度设计的依据。 1.1.2 塑性 塑性是指金属材料在外力作用下产生塑性变形而不断裂的能力。 工程中常用的塑性指标有伸长率和断面收缩率。伸长率指试样拉断后的伸长量与原来长度之比的百分率,用符号δ表示。断面收缩率指试样拉断后,断面缩小的面积与原来截面积之比,用 表示。 伸长率和断面收缩率越大,其塑性越好;反之,塑性越差。良好的塑性是金属材料进行压力加工的必要条件,也是保证机械零件工作安全,不发生突然脆断的必要条件。 1.1.3 硬度

相关文档
最新文档