地下水弥散系数的野外试验研究

地下水弥散系数的野外试验研究
地下水弥散系数的野外试验研究

地下水弥散系数的野外试验研究

摘要:本文以江西某地质勘测野外试验为实例,利用单孔示踪法得到了天然流场的渗透流速以及渗透流向,采用注水-抽水法,通过监测注水以及抽水过程中钻孔内的示踪剂浓度变化,得到示踪剂浓度随时间变化的曲线,再结合地下水流速流向数据,求得了天然流场的弥散系数。

关键词:单孔示踪;流速流向;弥散系数

1.引言

通常我们将进入地下水流系统中的污染物质浓度稀释的时间、空间变化参数称为地下水弥散系数,它是描述地下水污染溶质运移及进行水质预测的重要参数,地下水弥散系数在渗流理论实践分析以及溶质运移分析、模拟与预测领域有着广泛的应用。对于地下水的弥散系数测定,在七十年代至今大都应用示踪方法进行探测。在国内示踪法在实际工程应用中也已得到了广泛的应用因此本文在野外试验中采用示踪方法对弥散系数进行探测,采用注水-抽水法,结合单孔稀释原理得到的地下水流速流向等参数,求解地层的弥散系数。

2.基本原理

2.1 示踪方法探测弥散系数

示踪方法探测弥散系数的方法是在其中一个探测孔内投放一定量的示踪剂,然后每隔一定时间在其它观测孔内探测示踪剂的浓度变化,通过绘制的浓度-时间曲线,结合探测得到的渗流场流速流向分布,从而求出地层的弥散系数。

弥散的基本假定:

(1)流场保持一维均匀恒定流动

(2)在投源孔瞬时注人单位线质量的放射性示踪源

(3)假定注入的示踪源对水的运动状态没有影响,不考虑示踪剂的吸附及其它物理化学反应。

水动力弥散的控制方程是

(3)式中的与表示纵向与横向弥散系数;表示孔隙流速(方向与轴一致);

扩散系数计算

扩散系数计算 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

扩散系数 费克定律中的扩散系数D代表单位浓度梯度下的扩散通量,它表达某个组分在介质中扩散的快慢,是物质的一种传递性质。 一、 气体中的扩散系数 气体中的扩散系数与系统、温度和压力有关,其量级为52 10/m s -。通常对于二元气体A、B 的相互扩散,A在B 中的扩散系数和B 在A 中的扩散系数相等,因此可略去下标而用同一符号D表示,即AB BA D D D ==。 表7-1给出了某些二元气体在常压下(5 1.01310Pa ?)的扩散系数。 对于二元气体扩散系数的估算,通常用较简单的由富勒(Fuller )等提出的公式: 1/31/32 [()()]A B D P v v = +∑∑ (7-19) 式中,D -A、B 二元气体的扩散系数,2 /m s ; P -气体的总压,Pa ; T -气体的温度,K; A M 、 B M -组分A、B 的摩尔质量,/kg kmol ; A v ∑、B v ∑-组分A、B 分子扩散体积,3 /cm mol 。 一般有机化合物可按分子式由表7-2查相应的原子扩散体积加和得到,某些简单物质则在表7-2种直接列出。 5 1.01310Pa ?

式7-19的相对误差一般小于10%。 二、 液体中的扩散系数 由于液体中的分子要比气体中的分子密集得多,因此也体的扩散系数要比气体的 小得多,其量级为92 10/m s -。表7-3给出了某些溶质在液体溶剂中的扩散系数。 式估算: 15 0.6()7.410 T B AB A M T D V -φ=?μ 2/m s (7-21) 式中,AB D -溶质A在溶剂B中的扩散系数(也称无限稀释扩散系数),2 /m s ; T -溶液的温度,K; μ-溶剂B的粘度,.Pa s ;

土层渗透系数K的经验值

一、土层渗透系数 土层渗透系数K的经验值 土质名称K(m/d)土质名称K(m/d) 高液限黏土<0.001 砂细1~5 黏土质砂0.001~0.05中5~20含砂低液限黏 土 0.05~0.10粗20~50含砂低液限粉 土 0.10~0.50砾类土50~150低液限黏土 (黄土) 0.25~0.50卵石100~500粉土质砂0.5~1.0漂石(无砂质充填)500~1000 按土质颗粒大小的渗透系数K经验值 土质名称K(m/d) 黏土质粉砂0.01~0.074mm颗粒多 数 0.5~1.0 均质粉砂0.01~0.074mm颗粒多 数 1.5~5.0 黏土质细砂0.074~0.25mm颗粒多 数 1.0~1.5 均质细砂0.074~0.25mm颗粒多 数 2.0~2.5 黏土质中砂0.25~0.5mm 颗粒多数 2.0~2.5均质中砂0.25~0.5mm颗粒多数35~50黏土质粗砂0.5~1.0mm颗粒多数35~40

均质粗砂0.5~1.0mm颗粒多数60~75 砾石100~125二、计算渗水量 缺水文地质资料计算渗水量: Q=F1q1+ F 2q2式中:F1—基坑底面积,m2 q1—基坑每平方米底面积平均渗水量,m3/h F 2—基坑侧面积,m2 q2—基坑每平方米侧面积平均渗水量,m3/h q1基坑每平方米底面积平均渗水量,m3/h 序号土类土的特征及粒径渗水量m3/h 1细粒土质砂、 松软粉质土 基坑外侧有地表水,内侧为岸 边干地,土的天然含水量 <20%,土粒径<0.05mm 0.14~ 0.18 2有裂隙的碎石 岩层、较密实 的粘质土 多裂隙透水的岩层,有孔隙水 的粘质土层 0.15~ 0.25 3黏土质砂、黄 土层、紧密砾 土层 细砂粒径0.05~0.25mm,大孔 土质量800~950kg/m3, 砾石土 孔隙率在20%以下 0.16~ 0.32 4中粒砂、砾砂 层 砂粒径0.25~1.0mm,砾石含量 在30%以下,平均粒径10mm以 下 0.24~0.8 5粗粒砂、砾石 层 砂粒径1.0~2.5mm,砾石含量 在30~70%,平均最大粒径 150mm以下 0.8~3.0

实验:水分子扩散系数

《计算材料学》实验讲义 实验二:分子动力学模拟-水分子扩散系数 一、前言 分子动力学模拟的基本思想是将物质看成是原子和分子组成的粒子系统(many-body systems ),设置初始位能模型,通过分析粒子的受力状况,计算粒子的牛顿运动方程,得到粒子的空间运动轨迹,可以求得复杂体系的热力学参数以及结构和动力学性质。分子动力学模拟的理论是统计力学中的各态历经假说(Ergodic Hypothesis),即保守力学系统从任意初态开始运动,只要时间足够长,它将经过相空间能量曲面上的一切微观运动状态,系统力学量的系综平均等效力学量的时间平均,因此可以通过计算系综的经典运动方程来得到力学量的性质。比如,由N 个粒子组成的系综的势能计算函数为: int U U U VDW += (1-1) VDW U 表示粒子内和粒子之间的Van der Waals 相互作用;int U 表示粒子的内部势能(键角弯曲能,键伸缩能、键扭转能等);根据经典力学方程,系统中第i 个粒子的受力大小为: U k z j y i x U F i i i i i ??? ? ????+??+??-=-?= (1-2) 那么第i 个粒子的加速度可以通过牛顿第二定律得到: ()()i i i m t F t a = (1-3) 由于体系有初始位能,每个粒子有初始位置和速度,那么加速度对时间进行积分,速度对时间积分就可以获得各个任意时刻粒子的速度和位置: i i i a v dt d r dt d ==22 (1-4) t a v v i i i +=0 (1-5) 2002 1t a t v r r i i i i ++= (1-6) i r 和v 分别是系统中粒子t 时刻的位置和速度,0i r 和0i v 分别是系统中粒子初始时刻的位置和速度。依据各态历经假说,可获得任意物理量Q 的系综平均,因此得到体系的相关性质:

扩散系数计算

7.2.2扩散系数 费克定律中的扩散系数D代表单位浓度梯度下的扩散通量,它表达某个组分在介质中扩散的快慢,是物质的一种传递性质。 一、气体中的扩散系数 气体中的扩散系数与系统、温度和压力有关,其量级为52 10/m s -。通常对于二元气体 A、B 的相互扩散,A在B 中的扩散系数和B 在A 中的扩散系数相等,因此可略去下标而用同一符号D表示,即AB BA D D D ==。 表7-1给出了某些二元气体在常压下(5 1.01310Pa ?)的扩散系数。 对于二元气体扩散系数的估算,通常用较简单的由富勒(Fuller )等提出的公式: 1/31/32 [()()]A B D P v v = +∑∑ (7-19) 式中,D -A、B 二元气体的扩散系数,2 /m s ; P -气体的总压,Pa ; T -气体的温度,K; A M 、 B M -组分A、B 的摩尔质量,/kg kmol ; A v ∑、 B v ∑-组分A、B 分子扩散体积,3 /cm mol 。 一般有机化合物可按分子式由表7-2查相应的原子扩散体积加和得到,某些简单物质则在表7-2种直接列出。 5 1.01310Pa ?

式7-19的相对误差一般小于10%。 二、液体中的扩散系数 由于液体中的分子要比气体中的分子密集得多,因此也体的扩散系数要比气体的小得 多,其量级为92 10/m s 。表7-3给出了某些溶质在液体溶剂中的扩散系数。

对于很稀的非电解质溶液(溶质A+溶剂B),其扩散系数常用Wilke-Chang 公式估算: 15 0.6()7.410 T B AB A M T D V -φ=?μ 2/m s (7-21) 式中,AB D -溶质A在溶剂B中的扩散系数(也称无限稀释扩散系数),2 /m s ; T -溶液的温度,K; μ-溶剂B的粘度,.Pa s ; B M -溶剂B的摩尔质量,/kg kmol ; φ-溶剂的缔合参数,具体值为:水2.6;甲醇1.9;乙醇1.5;苯、乙醚等不缔合的溶剂 为1.0; A V -溶质A 在正常沸点下的分子体积,3/ cm mol ,由正常沸点下的液体密度来计 算。若缺乏此密度数据,则可采用Tyn-Calus 方法估算: 1.048 0.285c V V =,其中c V 为物质 的临界体积(属于基本物性),单位为3 /cm mol ,见表7-4。

地下水污染试验研究进展

2005年2月SHUILI XUEBAO第2期 文章编号: 0559-9350(2005)02-0251-05 地下水污染试验研究进展 叶为民,金麒,黄雨,唐益群 (同济大学岩土工程重点实验室,上海 200092) 摘要:本文在总结国内外众多学者有关污染物在含水层中的运移规律研究成果的基础上,介绍了地下水污染试验研究的最新进展;并据此认为,三维弥散,各向异性含水层介质中污染物的迁移,非饱和土层中的污染物多相迁移和吸力的关系等将成为今后地下水污染传播研究的主要问题。 关键词:地下水污染;弥散;NAPL;污染物 中图分类号:X523 文献标识码:A 由于人类活动的长期影响,在全世界范围内地下水环境均表现出不同的恶化趋势。日本环境厅对全国地下水进行了调查,结果发现很多地方的地下水中三氯乙烯和四氯乙烯的含量已严重超过世界卫生组织(WHO)所规定的饮用水标准[1]。而我国的污染情况更不容乐观。据《中国统计年鉴》(1996年),我国每年排放的工业废水、污水总量205.9亿t。这些废水、污水的75%左右未经处理直接排放入水域。同时,随着地表水体的污染、下渗,许多城市附近,如北京、天津、太原、郑州、许昌、淄博等,地下水污染日益严重,浅层地下水已不能饮用[2]。 为此,国内外许多学者对污染物在含水层中的运移、控制、修复进行了大量的研究工作。其中包括:(1)污染物在地下水中运移的模拟及预测。利用室内或野外试验测定相关参数,结合数学模型,为地下水资源管理和已污染含水层的修复提供定量依据。(2)防止污染源扩散的方案设计。通过计算分析,选择最佳治理方案。(3)海水入侵问题。对人工开采地下水后海水与地下水过渡带的运移分析。(4)高辐射性核废料处置库的选址问题。选择合适的处理库使核废料在其半衰期内与人类生存空间及环境隔离。(5)饱气带中污染物的运移问题。评价农田施用化肥、农药、污水回灌对地下水水质的影响,以及了解土壤盐碱化过程,并确定排盐改碱过程。(6)已污染含水层的修复研究。包括工程措施(客土、换土、隔离法、清洗法、热处理和电化法等)、施加改良剂(沉淀作用、抑制剂、吸附剂等)、农业措施(增施有机肥、控制土壤水分、选择合适形态的化肥等)、生物修复技术。 1 国外研究现状 国外对污染物在地下水中运移的研究和应用从20世纪初即已开始了[3]。许多学者研究了多维弥散、重力分异、吸附效应等水动力弥散问题。由于石油在开采、储运和炼制的过程中常会发生外泄事故,渗漏的成品油会对地下水土壤造成严重的污染。目前这已经成为世界普遍关心的问题,于是国外学者把注意力转向了包括石油在内的非亲水相液体(Nonaqueous phase liquid,简称NAPL),对NAPL在地下水中的运移、控制、修复等方面开展了大量的研究工作(如表1所示)。 收稿日期:2003-10-31 基金项目:上海市教委青年科学项目基金(01QN17);教育部留学回国人员科研启动基金资助项目 作者简介:叶为民(1963-),男,安徽枞阳人,博士,教授,博导,从事环境地质、非饱和土力学研究工作。

扩散系数计算

7、2、2扩散系数 费克定律中的扩散系数D代表单位浓度梯度下的扩散通量,它表达某个组分在介质中扩散的快慢,就是物质的一种传递性质。 一、气体中的扩散系数 气体中的扩散系数与系统、温度与压力有关,其量级为5 2 10/m s -。通常对于二元气体A、B 的相互扩散,A在B 中的扩散系数与B 在A 中的扩散系数相等,因此可略去下标而用同一符号D表示,即AB BA D D D ==。 表7-1给出了某些二元气体在常压下(5 1.01310Pa ?)的扩散系数。 对于二元气体扩散系数的估算,通常用较简单的由富勒(Fuller)等提出的公式 : 1/31/32 [()()]A B D P v v = +∑∑ (7-19) 式中,D -A、B 二元气体的扩散系数,2 /m s ; P -气体的总压,Pa ; T -气体的温度,K; A M 、 B M -组分A、B 的摩尔质量,/kg kmol ; A v ∑、B v ∑-组分A、B 分子扩散体积,3 /cm mol 。 一般有机化合物可按分子式由表7-2查相应的原子扩散体积加与得到,某些简单物质则在表7-2种直接列出。 5 1.01310Pa ?

式7-19的相对误差一般小于10%。 二、液体中的扩散系数 由于液体中的分子要比气体中的分子密集得多,因此也体的扩散系数要比气体的小得多, 其量级为92 10/m s -。表7-3给出了某些溶质在液体溶剂中的扩散系数。 对于很稀的非电解质溶液(溶质A+溶剂B),其扩散系数常用Wilke-Chang 公式估算: 15 0.6()7.410 T B AB A M T D V -φ=?μ 2/m s (7-21) 式中,AB D -溶质A在溶剂B中的扩散系数(也称无限稀释扩散系数),2 /m s ;

总传热系数经验值

浸没在液体中的盘管总传热系数大致值.W/(m2 带有夹套的容器总传热系数大致值.W/(m2

空气冷却器总传热系数大致值.W/(m2

不同压力下水的汽化潜热 水在一个大气压(0.1MPa)100℃时的汽化潜热为2257.2kJ/kg 饱和水和饱和水蒸气热力性质表(按压力排列) 压力/MPa 温度/℃汽化潜热kJ/kg 0.001 6.9491 2484.1 0.002 17.5403 2459.1 0.003 24.1142 2443.6 0.004 28.9533 2432.2 0.005 32.8793 2422.8 0.006 36.1663 2415 0.007 38.9967 2408.3

0.008 41.5075 2402.3 0.009 43.7901 2396.8 0.01 45.7988 2392 0.015 53.9705 2372.3 0.02 60.065 2357.5 0.025 64.9726 2345.5 0.03 69.1041 2335.3 0.04 75.872 2318.5 0.05 81.3388 2304.8 0.06 85.9496 2293.1 0.07 89.9556 2282.8 0.08 93.5107 2273.6 0.09 96.7121 2265.3 0.1 99.634 2257.6 0.12 104.81 2243.9 0.14 109.318 2231.8 0.16 113.326 2220.9 0.18 116.941 2210.9 0.2 120.24 2201.7 0.25 127.444 2181.4 0.3 133.556 2163.7 0.35 138.891 2147.9 0.4 143.642 2133.6 0.5 151.867 2108.2 0.6 158.863 2086 0.7 164.983 2066 0.8 170.444 2047.7 0.9 175.389 2030.7 1 179.916 2014.8 1.1 184.1 1999.9 1. 2 187.995 1985.7 1. 3 191.64 4 1972.1 1.4 195.078 1959.1 1. 5 198.327 1946. 6 1.6 201.41 1934.6 1. 7 204.346 1923 1. 8 207.151 1911.7 1. 9 209.838 1900.7

扩散系数计算

它表达某个组分在介质中扩 0.0101T 1.75 (7—19) 722扩散系数 费克定律中的扩散系数D 代表单位浓度梯度下的扩散通量, 散的快慢,是物质的一种传递性质。 一、气体中的扩散系数 气体中的扩散系数与系统、温度和压力有关,其量级为 10 m 2/s 。通常对于二元气体 A 、 B 的相互扩散,A 在 B 中的扩散系数和 B 在A 中的扩散系数相等,因此可略去下标而 用同一符号D 表示,即 D AB = D BA =D 。 表7 — 1给出了某些二元气体在常压下( 1.013 105Pa )的扩散系数。 对于二元气体扩散系数的估算,通常用较简单的由富勒( Fuller )等提出的公式: p[c V A )1/3 e V B )1/3]2 2 式中,D —A 、B 二元气体的扩散系数, m /s ; P —气体的总压,Pa ; T —气体的温度,K ; M A 、M B —组分 A 、 B 的摩尔质量,kg/kmol ; 7 V A 7 V B 3 、 —组分A 、B 分子扩散体积,cm 3 /mol 。 一般有机化合物可按分子式由表7-2查相应的原子扩散体积加和得到, 某些简单物质 则在表7-2种直接列出。 表7-1某些二元气体在常压下(5 )的扩散系数 系统 温度/K 扩散系数/(10-5m 2 /s) 系统 温度/K - 5 2 扩散系数/(10 m/s) H 2—空气 273 6.11 甲醇一空气 273 1.32 He —空气 317 7.56 乙醇一空气 273 1.02 02—空气 273 1.78 正丁醇-空气 273 0.703 Cl 2 —空气 273 1.24 苯-空气 298 0.962 H 2O —空气 273 2.20 甲醇一空气 298 0.844 298 2.56 H 2— CO 273 6.51 332 3.05 H 2— CO 2 273 5.50 NH 3 —空气 273 1.98 H 2— N 2 273 6.89 CO 2 —空气 273 1.38 294 7.63 298 1.64 H 2— NH 3 298 7.83 SO 2 —空气 293 1.22 He — Ar 298 7.29 7-2 原子扩散体积 3 v/(cm /mol) 分子扩散体积 3 工 V /( cm /mol) 原子扩散体积 3 v/(cm /mol) 分子扩散体积 3 工 V /( cm /mol) C 15.9 He 2.67 S 22.9 CO 18.0

部分常用岩土经验值

常用部分岩土参数经验值1岩土的渗透性 (1)渗透系数

《水利水电工程水文地质勘察规范》SL373-2007 62~63页 《水利水电工程地质勘察规范》GB50287-99 附录J 66页 (2)单位吸水量 各种构造岩的单位吸水量(ω值) 弱透水;糜棱岩和断层泥不透水或微透水。 摘自高等学校教材天津大学《水利工程地质》第三版113页

摘自高等学校教材天津大学《水利工程地质》第三版118页 注:透水率1Lu(吕荣)相当于单位吸水量0.01。 (3)简易钻孔抽注水公式 1)简易钻孔抽水公式 根据水位恢复速度计算渗透系数公式 1.57γ(h2-h1) K= ——————— t (S1+S2) 式中: γ---- 井的半径;h1---- 抽水停止后t1时刻的水头值;h2---- 抽水停止后t2时刻的水头值;S1、S2---- t1或t2时刻从承压水的静止水位至恢复水位的距离; H---- 未抽水时承压水的水头值或潜水含水层厚度。 《工程地质手册》第三版927页 2)简易钻孔注水公式 当l/γ<4时 0.366Q 2l K= ———— lg ——— Ls γ 式中:K—渗透系数(m/d);l---试验段或过滤器长度(m);Q---稳定注水量(m3/d);s---孔中水头高度(m);γ---钻孔或过滤器半径(m)。 《工程地质手册》第三版936页 (4)水力坡降 允许水力坡降等于临界水力坡降被安全系数除,一般安全系数值取2.0~3.0, 即Ⅰ 允= Ⅰ 临 /2.0~3.0。 摘自长春地质学院《中小型水利水电工程地质》1978年139页

土层与混凝土建筑物接触面间发生接触冲刷时的破坏比降除以1.5安全系数得出在无渗流出口保护情况下地基允许渗流比降见上表。 摘自《堤防工程地质勘察与评价》水规总院李广诚司富安杜忠信等。42页 (5)土毛细水上升值 摘自长春地质学院《中小型水利水电工程地质》1978年79页 k 摘自《工程地质手册》(第三版)937页 2土分类及状态、密实度 (1)分类

多孔介质中溶质运移的尺度问题

多孔介质中溶质运移的尺度问题 近年来由于人类活动的影响, 地下水污染受到了严重的威胁工业“三废”的大排放;农业上各种农药和化肥的大量使用; 核废料安全处置; 海水入侵日益严重; 垃圾填埋造成的污水下渗; 输油管道老化而引起的渗漏等。解决这些地下水问题, 都需要大空间尺度和长时间跨度的地下水溶质运移进行预测。对于溶质运移中弥散中的尺度问题, 倍受研究者关注。 1尺度效应多孔介质水动力弥散尺度效应是指空隙介质中弥散度随着溶质运移距离增加而增大的现象。多孔介质中水动力弥散尺度效应的具体表现是弥散度随着溶质运移距离的增大而增大。目前一直认为认为产生多孔介质介质水动力弥散尺度效应的主要原因是: 多孔介质的非均质性。野外条件下介质的不均匀性造成了室内试验结果与野外试验结果之间相差很大, 相差可达几个数量级。[1] 对于多孔介质中的水动力弥散尺度效应的机制和规律这一问题, 许多研究者进行了深入的研究。归纳以下四个方面。 (1)确定性方法, 从微观尺度研究溶质在空隙介质中运移物理机制, 重新检验对流―弥散方程的可行性, 特别是空隙介质中引入费克定律的可靠性。 (2)随机方法,其基本依据是含水层非均质的事实, 在非均质含水层的物理性质、水力性质和溶质溶质运移性质按某种

随机模型分布的假定下, 建立溶质运移随机方程和水动力弥散系数的表达式。 (3)室内与野外试验,通过设计专项的水动力弥散试验, 深入研究尺度效应的影响因素。 (4)避免或者减少小尺度效应而进行的方法性探讨[2] 。 2尺度效应的分形特征不同的尺度下多孔介质结构具有相 似性, 因而尺度效应也具有自相似性, 即从小尺度岩体到大尺度的研究区具有自相似性。传统的观点承认多孔的非均质性 是产生尺度效应的主要原因并引入了典型单元体的抽象概念。 尽管传统观念认为不同尺度的多孔介质对应着不同大小的典型 单元体, 但典型单元体既不稳定又不具可测性, 无法定量解释尺度效应的变化规律。分形理论提供了一种新的手段, 用不同尺度溶质运移距离去测量裂隙介质中动力弥散过程, 可得到不同的弥散度。分维是分形的定量表示。若把单位长度扩大到2倍,并假定它能成为具有2D倍的量,那么此量也称为D维数的量。若把具有D维测定的量假定为,长度为, 则关系式 (1) 根据上面的分维的定义, 可将弥散度与基准尺度的关系标绘在双对数坐标纸上。若为直线则从另一角度说明尺度效应具有分形特征, 直线的斜率即为尺度效应的分维。 3尺度问题的分类 李国敏提出将空隙介质水动力弥散划分为4 中尺度:空隙,

水文地质试验常用野外试验

水文地质试验常用野外试验 水文地质试验是水文地质调查中不可缺少的重要手段,许多水文地质资料,都需通过水文地质试验才能获得。常用的水文地质试验主要有抽水试验、渗水试验、注水试验、压水试验、流速测定试验、连通试验、弥散试验。 抽水试验是通过从钻孔或水井中抽水,来定量评价含水层富水性,测定含水层水文地质参数和判断某些水文地质条件的一种野外试验工作。 随着水文地质勘查阶段由浅入深,在整个勘查费用中,抽水试验所占比重越来越大,费用仅次于钻探工作;有时,整个钻探工程主要是为了抽水试验而进行的。 抽水试验的目的: (1)确定含水层及越流层的水文地质参数:渗透系数K、导水系数T、给水度μ、弹性释水系数μ*、导压系数a、弱透水层渗透系数K'、越流系数b、越流因素B、影响半径R 等。 (2)通过测定井孔涌水量及其与水位下降(降深)之间的关系,分析确定含水层的富水程度、评价井孔的出水能力。 (3)为取水工程设计提供所需的水文地质数据,如影响半径、单井出水量、单位出水量、井间干扰出水量、干扰系数等,依据降深和流量选择适宜的水泵型号。 (4)确定水位下降漏斗的形状、大小及其随时间的增长速度;直接评价水源地的可开采量。 (5)查明某些手段难以查明的水文地质条件,如确定各含水层间以及与地表水之间的水力联系、边界的性质及简单边界的位置、地下水补给通道、强径流带位置等。 按抽水井与观测井的关系可分: (1)单孔抽水试验:仅在一个试验孔中抽水,用以确定涌水量与水位降深的关系,概略取得含水层渗透系数。多用于普查和初步勘探阶段。 (2)多孔抽水试验:在一个主孔内抽水,在其周围设置若干个观测孔观测地下水位。通过多孔抽水试验可以求得较为确切的水文地质参数和含水层不同方向的渗透性能及边界条件等。少量用于初步勘探阶段,更多用于详细勘探阶段。 按贯穿含水层的程度及进水条件可分为: (1)完整井:贯穿整个含水层,在全部含水层厚度上都安装有过滤器并能全断面进水的井。完整井的井流理论较完善,故一般尽量用完整井作试验。 (2)非完整井:未揭穿整个含水层、只有井底和含水层的部分厚度上能进水或进水部分仅揭穿部分含水层的井。只有当含水层厚度很大又是均质层,为了节省费用才进行非完整井抽水。或为了专门研究过滤器“有效长度”时,则做非完整井抽水试验。 按是否隔离不同含水层可分为: (1)混合抽水试验:将两个以上含水层不加隔离,在同一个钻孔中同时进行抽水。允许条件:a.对含水层的性质及相互关系已基本弄清,抽水试验的目的只是为了解生产孔的出水量;b.勘探要求不高,而且数个含水层静止水位相差不超过1m。 (2)分层抽水试验:将钻孔中所揭露的数个含水层加以隔离,逐层单独抽水。

水文地质实验

(一)原则、内容与要求 1、环境水文地质勘察与试验是在充分收集已有相关资料和地下水环境现状调查的基础上,针对某些需要进一步查明的环境水文地质问题和为获取预测评价中必要的水文地质参数而进行的工作。 2、除一级评价应进行环境水文地质勘察与试验外,对环境水文地质条件复杂而又缺少资料的地区,二级、三级评价也应在区域水文地质调查的基础上对评价区进行必要的水文地质勘察。 3、环境水文地质勘察可采用钻探、物探和水土化学分析以及室内外测试、试验等手段,具体参见相关标准与规范。 4、环境水文地质试验项目通常有抽水试验、注水试验、渗水试验、浸溶试验、土柱淋滤试验、弥散试验、流速试验(连通试验)、地下水含水层储能试验等,有关试验原则与方法参见附录E。在地下水环境影响评价工作中可根据评价等级及资料占有程度等实际情况选用。 5、进行环境水文地质勘察时,除采用常规方法外,可配合地球物理方法进行勘察。 (二)野外试验 1、抽水试验抽水试验可确定抽水孔的特征曲线、实际涌水量,评价含水层的富水性,推断和计算井孔的最大用水量和单位用水量;可以确定含水层的水文地质参数,为评价地下水资源提供依据;通过抽水试验可确定抽水影响半径、确定合理井距,确定降落漏斗形态及其扩展情况,了解地下水与地表水及不同含水层之间的水力联系等。抽水实验是目前水文地

质勘查中用来确定含水层水文地质参数的一种重要手段,可获得多项水文地质参数,评价中常用到的是渗透系数。抽水试验包括稳定流抽水试验和非稳定流抽水试验两类,可以通过单孔、多孔和群孔进行。 下面介绍一下潜水完整井单井稳定流简易抽水试验方法。 (1)仪器设备 根据水位埋深和预估的涌水量,准备潜水泵、离心泵或深井泵。出水管口接水量表,供观测抽水流量用;另备电表、测绳供观测井内水位用;按要求准备好记录用表格等记录工具。 (2)试验落程 正式抽水试验一般进行三个落程。当精度要求不高或含水层水量不大时,也可以做两个落程或一次最大落程。 进行三次落程抽水试验时,最大降深S3应等于1/3—1/2潜水层厚度;若单纯为求取水文地质参数,宜采用小降深抽水,各次落程的差值应不小于1米。 (3)稳定延续时间和稳定标准 抽水试验稳定时间的长短,直接关系到抽水试验质量和资料的利用。稳定时间的长短,应根据勘查目的要求和水文地质复杂程度而定。按稳定流公式计算参数时,降深(S)和流量(Q)需保持相对稳定数小时至数天,有观测孔时,最远观测孔水位稳定时间不小于2—4小时。

扩散系数计算

扩散系数 费克定律中的扩散系数D代表单位浓度梯度下的扩散通量,它表达某个组分在介质中扩散的快慢,是物质的一种传递性质。 一、气体中的扩散系数 气体中的扩散系数与系统、温度和压力有关,其量级为5 2 10/m s -。通常对于二元气体A、B 的相互扩散,A在B 中的扩散系数和B 在A 中的扩散系数相等,因此可略去下标而用同一符号D表示,即AB BA D D D ==。 表7-1给出了某些二元气体在常压下(5 1.01310Pa ?)的扩散系数。 对于二元气体扩散系数的估算,通常用较简单的由富勒(Fuller )等提出的公式: 1/31/32 [()()]A B D P v v = +∑∑ (7-19) 式中,D -A、B 二元气体的扩散系数,2 /m s ; P -气体的总压,Pa ; T -气体的温度,K; A M 、 B M -组分A、B 的摩尔质量,/kg kmol ; A v ∑、B v ∑-组分A、B 分子扩散体积,3 /cm mol 。 一般有机化合物可按分子式由表7-2查相应的原子扩散体积加和得到,某些简单物质则在表7-2种直接列出。 5 1.01310Pa ?

式7-19的相对误差一般小于10%。 二、液体中的扩散系数 由于液体中的分子要比气体中的分子密集得多,因此也体的扩散系数要比气体的小得多,其量级为9 2 10/m s -。表7-3给出了某些溶质在液体溶剂中的扩散系数。 对于很稀的非电解质溶液(溶质A+溶剂B),其扩散系数常用Wilke-Chang 公式估算: 15 0.6()7.410 T B AB A M T D V -φ=?μ 2/m s (7-21) 式中,AB D -溶质A在溶剂B中的扩散系数(也称无限稀释扩散系数),2 /m s ; T -溶液的温度,K; μ-溶剂B的粘度,.Pa s ; B M -溶剂B的摩尔质量,/kg kmol ; φ-溶剂的缔合参数,具体值为:水;甲醇;乙醇;苯、乙醚等不缔合的溶剂为; A V -溶质A 在正常沸点下的分子体积,3/cm mol ,由正常沸点下的液体密度来计算。 若缺乏此密度数据,则可采用Tyn-Calus 方法估算: 1.048 0.285c V V =,其中c V 为物质的临界

用单位出水量计算渗透系数

第一章 用单位出水量计算渗透系数的可行性研究概况 在铁路建设中,为了提高预测生产井出水量的精度,同时不使用观测孔,又节省勘探费用和缩短勘探周期。本文在搜集国内外关于单孔抽水试验计算渗透系数的理论公式和经验公式,重点分析裘布依公式的基本假定和适用范围,找出影响传统计算方法精度的主要因素,结合铁路一般供水站用水量较小的特点,寻求单孔抽水试验计算水文地质参数简单可行的新方法。 该方法主要根据勘探孔的抽水试验资料,建立Q —S 抛物线方程,用数值方法求算S=1m 时的单位出水量q 值,然后求算渗透系数K 值,再代入裘布依公式中求算引用补给半径R 值。在计算过程当中,使用了数理统计方法。此外,还使用了基姆公式,以便解决只做一次水位降深时求算S=1m 时的近似单位出水量q 值。从而用小口径(≤146mm )勘探试验孔的水文地质参数K ,R 值,预测大口径(>146mm )生产井(大口井、管井、结合井、干扰井、渗渠即水平集水管)等的出水量。 第二章 渗透系数和影响半径传统计算公式与存在问题 第一节 裘布依公式的假设条件和使用范围 自1863年法国水力学家裘布依提出潜水井和承压水井公式以来历经百余年, 至今仍然被广泛使用着。实践证明,该公式诞生以来,在指导人类开发地下水资源方面起到了举足轻重的作用,促进了社会进步并获得了经济效益。但是长期以来在使该公式时,由于种种原因,常常忽视了该公式的适用范围和条件,因而造成系列误差,影响了渗透系数和引用补给半径的计算成果。 一?裘布依公式 1,承压水完整孔 r R MS Q K ln 2π= (2-1) 2,潜水完整孔 r R h H Q K ln )2 2-= (π (2-2) 式中 K —含水层渗透系数(m/d ); Q —钻孔出水量 (m 3/d); S —水位降深(m ); M —承压含水层厚度(m ); H —天然情况下潜水含水层厚度 (m ); h —潜水含水层在抽水试验时的孔内剩余厚度(m ); R —含水层半径,即应用补给半径(m ); r —过滤管半径(m )。

扩散系数计算

. 7.2.2扩散系数 费克定律中的扩散系数D代表单位浓度梯度下的扩散通量,它表达某个组分在介质中扩散的快慢,是物质的一种传递性质。 一、气体中的扩散系数 ?52s10m/。通常对于二元气体气体中的扩散系数与系统、温度和压力有关,其量级为中的扩散系数相等,因此可略去下标而B在AA、B的相互扩散,A在B中的扩散系数和D?D?D。用同一符号D表示,即BAAB5Pa?101.013)的扩散系数。表7-1给出了某些二元气体在常压下(Fuller)等提出的公式:对于二元气体扩散系数的估算,通常用较简单的由富勒 ??1/321/3]vv))?(P[(BA(7-19)(111.75?0.0101TMM BA?D 2m/sD;二元气体的扩散系数,式中,-A、B PaP;-气体的总压,T-气体的温度,K;MMkg/kmol;的摩尔质量,、-组分A、B BA??vv BA3molcm/、-组分A、B分子扩散体积,。某些简单物质一般有机化合物可按分子式由表7-2查相应的原子扩散体积加和得到,则在表5 表7-2原子扩散体积和分子扩散体积 1 / 4 .

注:已列出分子扩散体积的,以后者为准。 式7-19的相对误差一般小于10%。二、液体中的扩散系数由于液体中的分子要比气体中的分子密集得多,因此也体的扩散系数要比气体的小得2?9s10m/。表7-3给出了某些溶质在液体溶剂中的扩散系数。多,其量级为表7-3溶质在液体溶剂中的扩散系数(溶质浓度很低) Wilke-Chang公式估算:(溶质A+溶剂B),其扩散系数常用对于很稀的非电解质溶液 T T?M)(15?B10?7.4D?AB0.6V?2sm/(7-21)A D2sm/-溶质A在溶剂B中的扩散系数(也称无限稀释扩散系数);,式中,AB T-溶液的温度,K; ?sPa.-溶剂B的粘度,;Mkmol/kg;-溶剂B的摩尔质量,B?;苯、乙醚等不缔合的溶剂;乙醇1.91.5-溶剂的缔合参数,具体值为:水2.6;甲醇 1.0;为V3molcm/,由正常沸点下的液体密度来计-溶质A在正常沸点下的分子体积,A1.048VV0.285V?为物质的方法估算:则可采用算。若缺乏此密度数据,Tyn-Calus,其中cc2 / 4 . 3C

渗透系数经验值

毛昶熙主编《堤防工程手册》所给经验值: 土质类别K(cm/s) 土质类别K(cm/s) 粗砾1~0.5 黄土(砂质)1e-3~1e-4 砂质砾0.1~0.01 黄土(泥质)1e-5~1e-6 粗砂5e-2~1e-2 黏壤土1e-4~1e-6 细砂5e-3~1e-3 淤泥土1e-6~1e-7 黏质砂2e-3~1e-4 黏土1e-6~1e-8 沙壤土1e-3~1e-4 均匀肥黏土1e-8~1e-10 表2 岩石和岩体的渗透系数 岩块K(实验室测定,cm/s)岩体K(现场测定,cm/s)砂岩(白垩复理层)1e-8~1e-10 脉状混合岩 3.3e-3 粉岩(白垩复理层)1e-8~1e-9 绿泥石化脉状页岩0.7e-2 花岗岩2e-10~5e-11 片麻岩 1.2e-3~1.9e-3 板岩 1.6e-10~7e-11 伟晶花岗岩0.6e-3 角砾岩 4.6e-10 褐煤层 1.7e-2~2.39e-2 方解岩9.3e-8~7e-10 砂岩1e-2 灰岩 1.2e-7~7e-10 泥岩1e-4 白云岩 1.2e-8~4.6e-9 鳞状片岩1e-2~1e-4 砂岩 1.2e-5~1.6e-7 1个吕荣单位裂隙宽 度0.1mm间距1m和 不透水岩块的岩体 0.8e-4 砂泥岩2e-6~6e-7 细粒砂岩2e-7 蚀变花岗岩0.6e-5~1.5e-5 岩土类别渗透系数K(cm/s)孔隙率n 给水度资料来源砾240 0.371 0.354 瑞士工学研究所粗砾160 0.431 0.338 砂砾0.76 0.327 0.251 砂砾0.17 0.265 0.182 砂砾7.2e-2 0.335 0.161 中粗砂 4.8e-2 0.394 0.18 含黏土的砂 1.1e-4 0.397 0.0052 含黏土1%的砂砾 2.3e-5 0.394 0.0036 含黏土16%的砂砾 2.5e-6 0.342 0.0021 重粉质壤土d50=0.02mm 2e-4 0.442 0.007 南京水利科学研 究院 中细砂d50=0.2mm 1.7e-3~6.1e-4 0.438~0.392 0.074~0.039 粗砾d50=5mm 613 0.392 0.36 砂砾石料 2.4e-3 0.302 0.078

换热器的传热系数K汇总

介质不同,传热系数各不相同我们公司的经验是: 1、汽水换热:过热部分为800~1000W/m2.℃ 饱和部分是按照公式K=2093+786V(V是管内流速)含污垢系数0.0003。 水水换热为:K=767(1+V1+V2)(V1是管内流速,V2水壳程流速)含污垢系数0.0003 实际运行还少有保守。有余量约10% 冷流体热流体总传热系数K,W/(m2.℃) 水水 850~1700 水气体 17~280 水有机溶剂 280~850 水轻油 340~910 水重油60~280 有机溶剂有机溶剂115~340 水水蒸气冷凝1420~4250 气体水蒸气冷凝30~300 水低沸点烃类冷凝 455~1140 水沸腾水蒸气冷凝2000~4250 轻油沸腾水蒸气冷凝455~1020 不同的流速、粘度和成垢物质会有不同的传热系数。K值通常在

800~2200W/m2·℃范围内。 列管换热器的传热系数不宜选太高,一般在800-1000 W/m2·℃。螺旋板式换热器的总传热系数(水—水)通常在1000~2000W/m2·℃范围内。 板式换热器的总传热系数(水(汽)—水)通常在3000~5000W/m2·℃范围内。 1.流体流径的选择 哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例) (1) 不洁净和易结垢的流体宜走管内,以便于清洗管子。 (2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。 (3) 压强高的流体宜走管内,以免壳体受压。 (4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。 (5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。 (6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。 (7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)

渗透系数经验值

毛昶熙主编《堤防工程手册》所给经验值: 土质类别 K(cm/s) 土质类别 K(cm/s) 粗砾 1~0.5 黄土(砂质) 1e-3~1e-4 砂质砾 0.1~0.01 黄土(泥质) 1e-5~1e-6 粗砂 5e-2~1e-2 黏壤土 1e-4~1e-6 细砂 5e-3~1e-3 淤泥土 1e-6~1e-7 黏质砂 2e-3~1e-4 黏土 1e-6~1e-8 沙壤土 1e-3~1e-4 均匀肥黏土 1e-8~1e-10 表2 岩石和岩体的渗透系数 岩块 K (实验室测定, cm/s ) 岩体 K (现场测定,cm/s ) 砂岩(白垩复理层) 1e-8~1e-10 脉状混合岩 3.3e-3 粉岩(白垩复理层) 1e-8~1e-9 绿泥石化脉状页岩 0.7e-2 花岗岩 2e-10~5e-11 片麻岩 1.2e-3~1.9e-3 板岩 1.6e-10~7e-11 伟晶花岗岩 0.6e-3 角砾岩 4.6e-10 褐煤层 1.7e-2~2.39e-2 方解岩 9.3e-8~7e-10 砂岩 1e-2 灰岩 1.2e-7~7e-10 泥岩 1e-4 白云岩 1.2e-8~4.6e-9 鳞状片岩 1e-2~1e-4 砂岩 1.2e-5~1.6e-7 1个吕荣单位裂隙宽度0.1mm 间距1m 和不透水岩块的岩体 0.8e-4 砂泥岩 2e-6~6e-7 细粒砂岩 2e-7 蚀变花岗岩 0.6e-5~1.5e-5 表3 各种岩土的给水度 岩土类别 渗透系数K (cm/s ) 孔隙率n 给水度 资料来源 砾 240 0.371 0.354 瑞士工学研究所 粗砾 160 0.431 0.338 砂砾 0.76 0.327 0.251 砂砾 0.17 0.265 0.182 砂砾 7.2e-2 0.335 0.161 中粗砂 4.8e-2 0.394 0.18 含黏土的砂 1.1e-4 0.397 0.0052 含黏土1%的砂砾 2.3e-5 0.394 0.0036 含黏土16%的砂砾 2.5e-6 0.342 0.0021 重粉质壤土d50=0.02mm 2e-4 0.442 0.007 南京水利科学研 中细砂d50=0.2mm 1.7e-3~6.1e-4 0.438~0.392 0.074~0.039 粗砾d50=5mm 613 0.392 0.36 砂砾石料 2.4e-3 0.302 0.078

扩散系数

布朗运动的扩散系数 刘佳杰 201202008010 摘 要:布朗运动即为分子无规则的运动,布朗运动中的扩散系数与分子的大小形状有何关系,我们设计了试验,进行求解。 关键词:布朗运动 扩散系数 因素 一、气体扩散系数 挥发性液体之气体扩散系数可藉由Winklemann’s method 来检测,在有限内径的垂直毛细管中保持固定的温度和经过毛细管顶部的空气流量,可确定液体表面的分子扩散到气体中的蒸气分压。 已知质传速率: ???? ????? ??=Bm T A A C C L C D 'N (1) D = 扩散速率 (m 2/s) C A = A 物质于界面间的饱和浓度 (kmol/m 3) L =质传有效距离(mm) C Bm =蒸气的对数平均莫耳浓度 (kmol/m 3) C T = 总莫耳浓度=C A +C Bm (kmol/m 3) 液体的蒸发速率: (2) ρL = 液体密度 ??? ????? ??=dt dL M ρ'N L A

???? ????? ??=??? ????? ??Bm T A L C C L C D dt dL M ρ (3) at t=0 , L=L 0 做积分 t C C C ρMD 2L L Bm T A L 202??? ? ?????? ??=- (4) ()()t C C C ρMD 2L 2L L L L Bm T A L 000??? ? ?????? ??=+-- (5) ()()0A T Bm L 0A T Bm L 0L C MDC C ρL L C C C MD 2ρL L t ???? ??+-???? ????? ??=- (6) M = 分子量 、 t = 时间 其中 ???? ????? ??=a abs T T T Vol kmol C 1 , 其中 Vol =22.4 m 3 (7) T 1B C C = (8) T a v a 2B C P P P C ??? ? ??-= (9) )C ln()C (C C B2 B1B2B1Bm -= (10) T a v A C P P C ??? ? ??= (11) (二)线型最小平方法 最小平方法或称最小平方差法 (least-squares method) 的最基础型──线型的 (linear)。今有一组实验数据基本上呈现线型的态势,则若以b ax y +=表示直线方程式,其中a 代表斜率 (slope),b 代表截距 (intercept),则最小平方法就是在使误差的平方和达到最小,即使下式最小化 (minimize) ()[]2 n 1i i i b ax y E ∑+-== 因此

相关文档
最新文档