YS-系列银催化剂研究开发的新进展

YS-系列银催化剂研究开发的新进展
YS-系列银催化剂研究开发的新进展

含钼催化剂研究进展

含钼催化剂研究新进展 摘要含钼催化剂广泛用于多种化工生产过程,在含钼精细化学品的研究与开 发中占有重要地位。简要介绍了我国近年来一些含钼催化剂的研究进展和有关文献1前言 催化是现代十分重要的化工技术,据统计,发达国家近三分之一的国民经济总 产值来自催化技术。含钼催化剂在催化领域占有重要地位,广泛用于石油加工和化 工生产,如合成气制造、基本有机合成和精细化工产品等的的生产。因此,长期以 来国内外对含钼催化剂的创新和改进不断进行。这也引起我国钼业界的广泛关注, 逐渐成为我国钼深加工领域的一个新的发展方向。现仅就我国近年来含钼催化剂的 一些新进展作简要介绍。 2烷烃的化学加工催化剂 2.1烷烃芳构化催化剂 四烷无氧脱氢芳构化,为甲烷活化和转化的一个新的研究热点。王林胜等在1 993年首次报道一种以HZSM-5分子筛为载体的含钼催化剂使甲烷于无氧条件下高选择性地转化为苯。该催化剂是甲烷芳构化反应的典型催化剂。此后,对这种催化剂 的研究活跃。舒玉瑛等用机械混合、机械混合后焙烧、机械混合后微波处理等方法 制备这种催化剂,并考察了其对甲烷芳构化反应的催化性能。结果表明:机械混合 法、固相反应法和微波处理法制备的Mo/HZSM-5催化剂,比一般浸渍法能明显提高 芳烃的选择性和减少积碳生成;在不同制法的Mo/HZSM-5催化剂上,Mo物种落位不同,机械混合法、固相反应法和微波处理法能使Mo物种较多地落位于分子筛外表面 ,这对甲烷芳构化反应有利,并明显减少积碳的生成。 王军威等用浸渍法、机械混合法和水热法制备了Mo/HZSM-5催化剂,并考察了 钼含量和反应时间对丙烷芳构化反应的影响,深入研究了Mo物种对HZSM-5分子筛结构和酸性的作用。 最近,田丙伦等报道了对Mo/MCM-22催化剂用于甲烷无氧芳构化的研究结果。MCM-22为晶粒呈片状、含两种孔道结构的高硅沸石分子筛。同Mo/HZSM-5催化剂相比,Mo/MCM-22催化剂稳定性更好,苯产物的选择性较高 。用浸渍法制备的Mo担载量为6%的Mo/MCM-22催化剂性能最佳。此外,还研究了添加钴对Mo/MCM-22催化反应性能和催化剂积碳性质的影响。 2.2烷烃选择氧化催化剂 甲基丙烯酸(MAA)是重要的有机化工原料,当前主要用烯烃为原料生产。然而,饱和烃较烯烃来源广泛,更经济易得,故近年来由异丁烷氧化制MAA已成研究 与开发的新方向。采用一般热表面催化法由异丁烷选择氧化制取MAA主要存在的问 题是MAA选择性低,浓度反应产物(COx)高达40%。激光促进表面反应法是很有应用前景的光催化合成新技术。最近,陶跃武等分别采用在铋钼复合氧化物、钒钼复 合氧化物表面上激光促进异丁烷选择氧化制MAA,取得选择性达到90%和无COx产生的良好结果。

氮化物作为催化剂的研究进展

氮化物作为催化剂的研究进展 内容摘要:近年来,被誉为“准铂催化剂”的过渡金属氮化物因其优良的催化活性已受到世界各国学者的广泛关注。大量的研究表明,过渡金属氮化物在氨的合成与分解、加氢精制等许多涉氢反应中都表现出良好的催化活性。过渡金属氮化物的制备方法有高温法和程序升温氮化法, 程序升温氮化法的显著优点是可以制备出高比表面积的金属氮化物。研究人员不仅对金属氮化物催化剂的制备方法进行了大量的研究,并且发现负载型金属氮化物具有负载量低、比表面积大等优点。因此, 金属氮化物的负载化研究正成为目前的研究热点。 关键词:过渡金属、氮化物、催化剂、结构、性能、工业 Nitride as a catalyst research progress Grade: grade 09 Applied Chemistry Specialty Name: Hong Huaiyong number: 122572009003 Abstract:In recent years, known as the" Platinum" transition metal nitride because of its excellent catalytic activity has been subjected to extensive concern of scholars all over the world. A large number of studies show that, transition metal nitride in ammonia synthesis and decomposition, hydrogenation and so many wading hydrogen reaction showed good catalytic activity. Preparation of transition metal nitride has high temperature method and temperature-programmed nitridation, temperature-programmed nitridation method has the advantages of preparation of high specific surface area of the metal nitride. The researchers not only on the metal nitride catalyst preparation method was studied, and found that the load type metal nitride having load low, large specific surface area and other advantages. Therefore, a metal nitride load research is becoming the research hotspot at present. Key word:Transition metal, nitride, catalyst, structure, performance, industry 引言 过渡金属氮化物是元素N插入到过渡金属晶格中所生成的一类金属间充型化合物,它兼具有共价化合物、离子晶体和过渡金属三种物质的性质,从而表现出优良的物理和化学性能。它作为一类具有很高硬度、良好热稳定性和抗腐蚀特性的新型功能材料,已经在各种耐高温、耐磨擦和耐化学腐蚀分机械领域得到应用。而且它在氨合成与分解、加氢脱硫/脱氮(HDS/HDN)、F-T合成等许多涉氢反应都具有优良的催化活性,不逊色于Pt和Rh等贵金属催化剂的性能,被誉为“准铂催化荆”。过渡金属氮化物作为一种有应用前景的新型加氢精制催化剂已引起人们的广泛关注,成为国际催化荆新材料领域的研究热点。本章概述了这一催化新材料的最新研究进展。 1.过渡金属氮化物的结构和电子特征 过渡金属氮化物是一种间充化合物,是由于氮原子填隙似的融进过渡金属的晶格中形成的,它们倾向于形成组成可在一定范围内变动的非计量间隙化合物。其固态化学特征类似于纯金属,具有简单的晶体结构特征。其中的金属原子形成

聚丙烯催化剂研发进展及发展趋势

聚丙烯催化剂研发进展及发展趋势(一) 自20世纪50年代Ziegler-Natta(Z-N)催化剂问世以来,聚丙烯催化剂经过不断 改进得到了很大的发展,目前已经从需要脱灰、脱无规物的第一代催化剂发展到高活性、高立构规整性的高效第五代催化剂。催化剂的活性已由最初的几十倍提高到几百万倍,聚丙烯等规指数已达98%以上,生产工艺得到了简化。目前,催化剂仍是推动聚丙烯技术发展的主要动力,Z-N催化剂和单活性中心催化剂都将继续发展。Z-N催化剂将在高活性、高定向性的基础上向系列化、高性能化发展,不断开发性能更好的新产品;茂金属和非茂单活性中心催化剂(SSC)在聚丙烯领域的应用得到深入发展,其发展目标是进一步实现技术的工业化和启动需求量较大的通用产品市场。 1 Ziegler-Natta催化剂 目前,世界上PP生产所用的大多数催化剂仍是基于Ziegler-Natta(Z-N)催化体 系,即TiCl 3 沉积于高比表面和结合Lewis碱的MgCl 2 结晶载体上,助催化剂是 Al(C 2 H 5 ) 2 Cl等烷基铝类化合物,其特点是高活性(通常在50kgPP/g催化剂左右)、 高立构规整性、长寿命和产品结构的稳定性好。20世纪90年代以来,美国、西欧和日本等世界主要的PP生产商研究开发工作的重点主要集中于该类催化剂体系的改进上。 早在第一代Z-N催化剂出现后,人们就发现添加第三组分(多为给电子体,又称 为Lewis碱)对烯烃聚合行为和聚合物性能都会产生很大的影响。只有改变催化剂中的给电子体(分为内给电子体和外给电子体两类),才能最大可能地改变催化剂活性中心的性质,从而最大程度地改变催化剂的性能。因此,新型给电子体的开发一直是5开发的热点。 1.1内给电子体 目前,内给电子体主要有1,3-二酮、异氰酸酯、1,3-二醚、烷氧基酮、烷氧基 酯、丙二酸酯、琥珀酸酯、1,3-二醇酯、戊二酸酯、邻苯二甲酸高级酯、卡宾类化合物以及环烷二元酸酯等,其中使用最多的是1,3-二醚、琥珀酸酯和1,3-二醇酯类。 (1)以1,3-二醚类化合物为内给电子体的催化剂。1,3-二醚类化合物内给 电子体是由Basell公司开发的。以1,3-二醚类化合物为内给电子体的丙烯聚合 催化剂具有高活性、高氢调敏感性及窄相对分子质量分布等特点,并且在聚合过程中不加入外给电子体时仍可以得到高等规度的PP。在较高温度和较高压力下,用该类催化剂可使丙烯抗冲共聚物中的均聚PP基体具有较高的等规度,提高了结晶度。即使熔体流动指数很高时,PP的刚性也很好,非常适合用作洗衣机内桶专用料。目前,Basell公司已经开发了一系列基于二醚类内给电子体的催化剂,据称催化剂的活性超过100 kg/g(以每克催化剂生产的聚合物的质量计),聚合物的等规指数大于99%。

金属催化剂的研究进展

金属催化剂的研究进展 1前言 催化技术作为现代化学工业的基础,正日益广泛和深入地渗透于石油炼制、化学、高分子材料、医药等工业以及环境保护产业中,起着举足轻重的作用。长期以来,工业上使用的传统催化剂往往存在着活性低、选择性差等缺点,同时常需要高温、高压等苛刻的反应条件,且能耗大,效率低,不少还对环境造成污染。为此人们在不断努力探索和研究新的高效的环境友好的绿色催化剂[1]。本文重点讲解金属催化剂的作用机理,以及金属催化剂在甲醇气相羰基化合成碳酸二甲酯的应用、茂金属催化剂的应用以及金属催化剂在乙烯环氧化合成环氧乙烷的应用。 2金属催化剂的作用机理 2.1 金属催化剂的吸附作用 众所周知,吸附是非均相催化过程中重要的环节,过渡金属能吸附O2、C2H4、C2H2、CO、H2、CO2、N2等气体,强化学吸附能力与过渡金属的特性有关,是因为过渡金属最外层电子层中都具有d空轨道或不成对d电子,容易与气体分子形成化学吸附键,吸附活化能较小,能吸附大部分气体,需主要的是d轨道半充满或者全充满,较稳定,不易与气体分子形成化学吸附键。由此可知,过渡金属的外层电子结构和d轨道对气体的化学吸附起决定作用,有空穴的d轨道的金属对气体有较强的化学吸附能力,而没有d轨道的金属对气体几乎没有化学吸附能力,由多相催化理论,不能与反应物气体分子形成化学吸附的金属不能作催化剂的活性组分。 催化反应中,金属催化剂先吸附一种或多种反应物分子,从而使后者能够在金属表面上发生化学反应,金属催化剂对某一种反应活性的高低与反应物吸附在催化剂表面后生成的中间物的相对稳定性有关,一般情况下,处于中等强度的化学吸附态的分子会有最大的催化活性,因为太弱的吸附使反应物分子的化学键不能松弛或断裂,不易参与反应;而太强的吸附则会生成稳定的中间化合物将催化剂表面覆盖而不利于脱附[2]。 2.2 金属-载体间的相互作用 我们课题组研究的是甲醇气相氧化羰基化合成碳酸二甲酯,使用的是负载型

光催化剂

光催化剂研究进展 李少坤 (化学院11级材料化学3班,20110480) 【摘要】:本文主要介绍了近几年工业上光催化剂的最新研究进展,主要涉及到纳米TiO2光催化剂的改性进展,光催化制氢用纳米结构光催化剂的研究进展以及新型光催化剂ZrW2O7(OH)2(H2O)2的光解水产氢产氧性能等。 【关键词】:纳米TiO2;光催化剂;水分解;改性 自从1972年Fujishima A 等发现TiO 2 单晶电极可以实现光分解水以来,多相光催化反应一直是催化领域的一个极其重要的研究课题,光催化分解水制氢,光 催化还原CO 2 制备有机物、光降解有机污染物等重要光催化过程向人们展示了诱人的应用前景。30多年来,光催化研究无论是在理论上还是在应用研究方面都取得了重要的进展。 一、纳米TiO2光催化剂的改性进展 1.纳米TiO 2 光催化的反应机理 纳米TiO 2 多相光催化过程是指TiO2材料吸收外界辐射光能,激发产生导带电子(e-)和价带空穴(h+),进而与吸附在催化剂表面上的物质发生一系列化学反应 的过程。如锐钛矿型TiO 2 的禁带宽度为3.2 eV,它具有较强的光活性,当它吸收了波长小于或等于387.5 nm的光子后,价带中的电子就会被激发到导带,形成带负电的高活性电子e-,同时在价带上产生带正电的空穴h+,在电场的作用下,电子与 空穴发生分离,迁移到粒子表面的不同位置。分布在表面的h+可以将吸附在TiO 2 表面的OH-和H 2 O分子氧化成·OH自由基。·OH自由基的氧化能力是水体系中存在的氧化剂中最强的,可破坏有机物中C—C键、C—H键、C—N键、C—O键、O—H键和N—H键,因而能氧化大多数的有机污染物及部分无机污染物,将其最终降解为 CO 2、H 2 O等无害物质[1, 2]。 2、纳米TiO2光催化剂的改性

分子筛催化剂的发展及研究进展

分子筛催化剂的发展及研究进展 摘要:分子筛是一种具有特定空间结构的新型催化剂,具有活性高、选择性好、稳定性和抗毒能力强等优点,因此,近几十年来它作为一种化工新材料发展的很快,应用也日益广泛。特别是在石油的炼制和石油化工方面作为工业催化剂发挥了很重要的作用。本文介绍了几种常见的分子筛及应用前景,并对分子筛的性能做了详尽的概述[1]。 关键词:分子筛;催化剂;应用;性能 Development and research of the molecular sieve catalyst Abstract:Zeolite is a new catalyst with specific spatial structure, with high activity, good selectivity, advantages, stability and antitoxic ability etc. Therefore, in recent decades, as a kind of new material chemical development soon, have been widely applied in. Especially as industrial catalysts in refining and petrochemical petroleum plays a very important role. This paper introduces the composition and application of molecular sieve, and the properties of molecular sieves as described in detail. Key words:Molecular sieve;catalyst;application;performance 1.分子筛的发展现状 所谓分子筛催化剂,就是将气体或液体混合物分子按照不同的分子特性彼此分离开的一类物质,实际上是一些具有实际工业价值且具有分子筛作用的沸石分子筛,构成沸石分子筛基本结构特征主要是硅氧四面体和铝氧四面体,这些四面体交错排列形成空间网状结构,存在大量空穴,在这些空穴内分布着可移动的水分和阳离子。基本组成物质为:Na2O、Al2O3、SiO2。上世纪50年代末发现小分子的催化反应可以在分子筛的孔道中进行,才使得这种材料得以迅速的发展。美国的多家公司,具有代表的是Linder公司、Exxon公司、联合碳化公司(UCC )模拟天然沸石的类型与生成条件,开发了一系列低硅铝和中硅铝的人工合成沸石。 上世纪60年代左右,上海试剂五厂开展沸石分子筛的研制开发工作,合成出A型、X型、Y型沸石分子筛。上世纪80年代,金陵石化有限公司炼油厂首次工业化生产ZSM-5沸石分子筛。已有南开大学、北京石科院、兰化炼油厂等单位纷纷开展ZSM -5沸石分子筛的开发生产,并将其广泛应用催化裂解、辛烷值助剂、柴油、润滑油降凝、芳烃烷基化、异构化及精细化工等领域。 近几年来市场对各类分子筛催化剂的需求不断增加,国内合成分子筛的规模也在不断扩大。中科院大连物化所自上世纪80年代以来开展沸石分子筛的合成及改性研究工作,开发出二甲醚裂解制低碳烯烃催化剂。已完成中试放大实验,据称,该研究所采用改性SAPO-34分子筛催化剂可使二甲醚单程转化率大于97%,低碳烯烃选择性达90%。1988年首次合成了具有十八环的VPI-5分子筛,孔径达1.3nm,实现了大孔分子筛的合成。上海骜芊科贸发展有限公司生产经营ZSM-5高硅沸石分子筛结晶粉体、疏水晶态ZSM-5吸附剂等系列分子筛。南开大学催化剂厂主要生产了NFK-5分子筛(直接法合成ZSM-5分子筛)、Beta分子筛、Y型分子筛以及以其为载体的获得国家级发明奖的各类催化剂。 2.分子筛的性能 一切固体物质的表面都有吸附作用,只有多孔物质或表面积很大的物质,才有明显的吸附效应,才是良好的吸附剂。常用的固体吸附剂活性炭、硅胶,活性氧化铝和分子筛等都有很大的表面积。其中沸石分子筛在吸附分离方面有十分重要的地位,它除了有很高的吸附量外,还有独特的选择性吸附性能。这是由于它具有规整的微孔结构,这些均匀排列的孔道和尺寸固定的孔径,决定了能进入沸石分子筛内部的分子的大小。

合成甲醇催化剂研究进展

化学反应工程论文 合成甲醇催化剂的研究进展 摘要:了解甲醇工业的发展现状及前景。从催化剂组成、种类、各组分功能及失活方式对甲醇催化剂进行探究,同时探索甲醇合成的新方法和新工艺,并对甲醇合成催化剂的动力学研究进行总结。 关键词:甲醇合成、催化剂种类、失活、三相床、生物质秸秆、动力学 1.1甲醇工业发展现状 能源问题已经成为制约我国国民经济发展的战略问题。从国家安全角度看,能源资源的稳定供应始终是一个国家特别是依赖进口的国家关注的重点,是国家安全的核心内容。随着中国工业化、城市化进程的加快以及居民消费结构的升级,石油、天然气等清洁高效能源在未来中国能源消费结构中将会占据越来越重要的地位。目前中国石油消费严重依赖进口,石油资源已经和国家安全紧密联系起来,并成为中国能源安全战略的核心o 在我国能源探明储量中,煤炭占94%,石油占5.4%,天然气占0.6%,这种“富煤贫油少气”的能源结构特点,决定了我国能源生产与消费以煤为主的格局将长期占主导地位。国民经济的持续发展,对能源产品尤其是清洁能源的需求持续增长。结合我国以煤为主的能源结构现状,大力发展煤基能源化工成为我国解决能源问题的主要途径。以煤气化为核心的多联产系统则是针对我国面临的能源需求增长、液体燃料短缺、环境污染严重等一系列问题,提出的一条解决我国能源领域可持续发展的重要途径煤经气化后成为合成气,净化以后可用于生产化工原料、液体燃料(合成油、甲醇、二甲醚)和电力。多联产系统所生产的液体燃料,尤其是甲醇和二甲醚可作为煤基车用替代燃料,可以部分缓解我国石油的短缺。同时,甲醇还可以用来生产烯烃和丙烯,以煤化工产品“替代”一部分传统的石油化工产品,对减少石油的消耗量具有重要意义。 甲醇是一种重要的化工原料,又是一种潜在的车用燃料和燃料电池的燃料,因此合成甲醇的研究和探索在国际上一直受到重视。特别是近年来,随着能源危机的出现、C1化学的兴起,作为C1化学重要物质的甲醇,它的应用得到不断的开发,用量猛增,甲醇工业得到了迅猛发展,在世界基础有机化工原料中,甲醇用量仅次于乙烯、丙烯和苯,居第四位。 1.2甲醇发展前景 甲醇作为一种基础化工原料,在化工、医药、轻纺等领域有着广泛的用途。主要用于制造甲醛、氯甲烷、醋酸、甲胺、甲基丙烯酸甲酯、甲酸甲酯(MF)、二甲醚(DME)、碳酸二甲酯(DMC)、对苯二甲酸二甲酯(DMT)、甲基叔丁基醚(MTBE)等一系列有机化工产品。随着甲醇深加工产品的不断增加和化学应用领域的不断开拓,甲醇在许多领域有着广阔的应用前景:

光催化剂

光催化剂论文纳米催化剂 液相法制备纳米TiO2光催化剂的研究进展论文 [摘要]论述不同的液相法制各纳米二氧化钛的过程,并且分析不同制备方法的优缺点、以及许多影响样品的粒径大小和分散性、结晶度和纯度等性质的因素(原料、水解方法、沉淀剂、元素掺杂、反应温度和压力、焙烧温度等);并且论述不同的方法的操作条件和复杂程度以及工业化应用前景。 [关键词]纳米二氧化钛粉体液相法制备 一、前言 纳米TiO2一般有三种晶体结构类型:板钛型、锐钛型和金红石型:纳米TiO2具有表面活性大,光催化、吸收性能好,分散性好,悬浮液稳定等优点,因此在环境保护、光电材料等方面具有广泛的应用前景。 液相法制各纳米TiO2具有其他的制备方法所不具有的优点:合成温度低、所得样品的粒径较小、连续性强、易操作和设备简单、成本低、反应时间短等;目前实验室和工业上广泛应用的液相法制备纳米TiO2粉体。纳米TiO2颗粒的粒度分布和均匀性、形貌、几何形态、分散性对于其光催化活性影响较大,分析不同的制各纳米粉体的液相法优缺点以及提出新的可能的研究领域是很有必要的。 二、液相法制备纳米二氧化钛 液相法是目前研究最广泛的制各纳米TiO2的方法:它又一般分为沉淀法、水热法、W/O微乳液法、溶胶一凝胶法等几种方法:它一般以TiCl4、Ti(SO4)2、钛的醇盐等为原料水解生成TiO2水合物,经干燥、高温焙烧后得到纳米二氧化钛粉体。同时纳米TiO2粉体在制备的过程中也存在一些缺点:反应器局部存在浓度和温度不均匀、粉体颗粒易发生团聚现象、难分离、成本高,以及某些表面湿润性、光性和反应特性较差。 (一)沉淀法制备纳米二氧化钛粉体 沉淀法是制各纳米TiO2的一种简便方法,一般以无机钛盐和有机钛盐为原料,向反应体系中加入沉淀剂(如(NH4)2CO3、NH4OH)后,于一定温度下使溶液发生水解,形成不溶性的氢氧化钛,将生成的TiO(OH)2沉淀物过滤、洗涤、干燥,然后,经高温煅烧即可得到所需要的TiO2粉体。 沉淀法制备纳米二氧化钛粉体的优点是工艺简单、可实现反应物在分子和原子水平上的均匀混合、易设定反应条件、可以控制所得产品的纯度和相组成、所得粉体性能稳定等等。改变纳米粉体制各过程中的某些环节对于缩短制各时间、提高样品的纯度和粒径的均匀性、实现样品颗粒的改性等方面具有重要的意义:张凌云等采用反萃沉淀法制各了纳米TiO2的前驱体:反萃沉淀法制各的纳米TiO2的最佳煅烧温度为350℃,此时样品已结晶完好,并且随着氨水浓度的降低,催化剂的晶粒粒径和颗粒粒度减小;同时乙醇助剂浓度越高有利于生成更小的催化剂颗粒。张美红等以尿素为均相沉淀剂和使用TIC14、SnC14作为原料,采用微波加热、均相沉淀法合成出了一系列sn掺杂纳米TiO2介孔材料:样品的颗粒为平均粒径20hm的球体:XRD分析表明反应前驱体为非晶态,400℃以上转变为锐钛矿结构。均匀沉淀法制各纳米TiO2的过程中沉淀剂离子是通过化学反应均匀缓慢生成的,沉淀的生成速度均匀,并且可以获得的粒度均匀、致密、性能优良的纳米粒子。沉淀法在制各粉体的实际操纵过程中也会遇到一些问题:直接沉淀法制备粉体的过程中容易引入杂质:共沉淀法控制各个工序的工艺参数的过程比较复杂;均匀沉淀法作为工业化前景最好的一种制备方法,但是必须通过液固分离才能得到沉淀物,需反复洗涤来除去杂离子,同时也存在工艺流程长、废液多、产物损失较大的现象[6],也需要考虑怎样减少反应时间来提高效率。 (二)水热法制备纳米粉体 水热法是制备纳米材料的常用方法,是用前驱体在高温、高压环境下,采用水作反应介质,使得通常难溶的物质溶解的并且得到晶态纳米颗粒。水热法制备纳米粉体的一般过程为:首先制各钛的氢氧化物凝胶,然后将凝胶转入高压釜内,升高到适宜的温度,以形成高温、高压的环境,使难溶或不容的物质溶解并且重结晶,恒温一段时间,卸压后,经洗涤、干燥即可得到纳米级的TiO2粉体。水热法可直接得到分散且结晶良好的粉体,不需作高温灼热处理,避免了微粒硬团聚的形成;水解条件下粉体的制备有水热结晶法、水热合成法、水热分解法,近年来发展了微波水热合成法。

钴系催化剂研究进展

钴系催化剂的研究和发展 ---含钼催化剂的研究和发展 摘要:含钼催化剂广泛用于多种化工生产过程,在含钼精细化学品的研究与开发中占有重要地位。简要介绍了我国近年来一些含钼催化剂的研究进展和有关文献。催化是现代十分重要的化工技术,据统计,发达国家近三分之一的国民经济总产值来自初花技术。含钼催化剂在催化领域占有重要地位,广泛用于石油加工和化工生产,如合成气制造,基本有机合成和精细化工产品等的生产。因此,长期以来国内外对含钼催化剂的创新和改进不断进行。这也引起我国钼业界的广泛关注,逐渐成为我国钼深加工领域的一个新的发展方向。 关键字:含钼催化剂、合成醇催化剂 (1)烷烃芳构化催化剂 四烷无氧脱氢芳构化,为甲烷活化和转化的一个新的研究热点。王林胜等在1993年首次报道一种以HZSM-5分子筛为载体的含钼催化剂使甲烷于无氧条件下高选择性地转化为苯。该催化剂是甲烷芳构化反应的典型催化剂。此后,对这种催化剂的研究活跃。舒玉瑛等用机械混合、机械混合后焙烧、机械混合后微波处理等方法制备这种催化剂,并考察了其对甲烷芳构化反应的催化性能。结果表明:机械混合法、固相反应

法和微波处理法制备。Mo/HZSM-5催化剂,比一般浸渍法能明显提高芳烃的选择性和减少积碳生成;在不同制法的Mo/HZSM-5催化剂上,Mo 物种落位不同,机械混合法、固相反应法和微波处理法能使Mo物种较多地落位于分子筛外表面,这对甲烷芳构化反应有利,并明显减少积碳的生成。 最近,田丙伦等报道了对Mo/MCM-22催化剂用于甲烷无氧芳构化的研究结果。MCM-22为晶粒呈片状、含两种孔道结构的高硅沸石分子筛。同Mo/HZSM-5催化剂相 比,Mo/MCM-22催化剂稳定性更好,苯产物的选择性较高 。用浸渍法制备的Mo担载量为6%的Mo/MCM-22催化剂性能最佳。此外,还研究了添加钴对Mo/MCM-22催化反应性能和催化剂积碳性质的影响。(2)烷烃选择氧化催化剂 甲基丙烯酸(MAA)是重要的有机化工原料,当前主要用烯烃为原料生产。然而,饱和烃较烯烃来源广泛,更经济易得,故近年来由异丁烷氧化制MAA已成研究与开发的新方向。采用一般热表面催化法由异丁烷选择氧化制取MAA主要存在的问题是MAA选择性低,浓度反应产物(COx)高达40%。激光促进表面反应法是很有应 用前景的光催化合成新技术。最近,陶跃武等分别采用在铋钼复合氧化物、钒钼复合氧化物表面上激光促进异丁烷选择氧化制MAA,取得选择性达到90%和无COx产生的良好结果。 (3)加氢处理催化剂

环保催化剂的应用研究进展

材料导论论文 论文题目:催化材料在环境保护中的 应用研究进展 院系: 化学与环境科学学院 专业班级: 化工1101 姓名: 王宏 学号: 1111034042 授课老师:艾桃桃 日期: 2013年6月12日

催化材料在环境保护中的应用研究进展 [内容摘要] 环境问题是人类不能回避的现实问题,以环境保护为目的的催化化学在解决环境保护问题中起着核心作用。在催化材料商光催化材料对环境报会起着至关作用。光催化氧化材料能有效地降解有机污染物,已成为研究的热点。综述了光催化材料的反应机理和种类, 阐述了影响光催化反应的条件和提高反应的效率等问题以及其在保领域的应用,并提出了其今后的发展方向。 关键词:催化材料光催化氧化二氧化钛环境保护应用 引言 环境问题是人类不能回避的现实问题,如何消除、减轻或根除由于人类的生产活动而产生的一系列有害污染物质,是人类面临的一个重要课题。以环境保护为目的的催化化学在解决此类问题中起着核心作用。20世纪90年代后期绿色化学的兴起,为人类解决化学工业对环境污染,实现可持续发展提供了有效的手段。因此,新型催化材料与催化过程的研究与开发是实现传统化学工艺无害化的主要途径。本文就环保催化材料及光催化材料在环境中应用研究进展和新型环保催化材料做简单的概述。 一、光催化材料在环境保护中的应用研究 光催化材料主要应用于环境保护, 这种新的污染治理技术具有操作简单、无二次污染、效率高、能耗低等优点,可产生较大的效益。近几年,随着研究的深入, 出现了光催化材料和其它领域的结合,如光催化剂在抗菌、新能源技术、自洁陶瓷、建材等方面的应用。 1、光催化反应体系的研究 目前的光催化研究主要应用于降解有机废水方面。根据催化剂的存在形式不同,反应体系分为悬浮相体系和固定相体系两大类。 1.1 悬浮相体系 悬浮相体系就是把光催化材料的颗粒直接加入待处理的溶液中, 通过搅拌使颗粒均匀地悬浮并充分与溶液混合。由于颗粒的比表面积大,光照充分, 与溶液中的被降解物接触充分, 降解效率高。但由于材料的颗粒细小,难以回收,对后期处理有一定困难,所以在实际中推广应用受限。 1.2 固定相体系 将催化材料制成薄膜或附载于其它材料表面进行光催化反应, 主要是针对悬浮相体系的分离和回收困难而设计的。一般光催化材料的载体有玻璃球、沙粒、陶瓷、硅藻土或反应

异戊二烯催化剂研究进展剖析

异戊二烯催化剂研究进展 (一)异戊二烯及其应用简介 异戊二烯(2-methylbutadiene)别名异戊间二烯、2-甲基-1,3-丁二烯,分子式为 C5H8,分子量为68.12,CAS号:78-79-5。异戊二烯在常温下是一种无色易挥发、刺激性油状液体,不溶于水,易溶于乙醇、乙醚、丙酮。与空气形成爆炸性混合物,爆炸极限>1.6%。异戊二烯典型的共轭双键结构,使其化学性质活泼,主要用于生产异戊橡胶,也是苯乙烯- 异戊二烯-苯乙烯共聚物(SIS)和丁基橡胶的第二单体。此外,异戊二烯还广泛应用于农药、 医药、香料、喷雾剂及粘结剂等方面。随着乙烯工业的快速发展和对合成橡胶、合成树脂的 需求增大,异戊二烯作为一种重要的化工原料,其生产技术及利用受到世界各国的普遍重视 [1-3]。 聚异戊二烯大多采用铁系、钛系、稀土、矾系、镍系、铬系、钼系等配位聚合催化体系制备。聚异戊二烯具有1,4-链节、1,2-链节和3,4-链节结构。其中钛系和钒系催化体系可制备以反式-1,4-链节为主的聚异戊二烯[4],稀土系可制备以顺式-1,4-链节为主的聚异戊二烯[5-6],铁系催化体系可制备以3,4-链节为主的聚异戊二烯[7]。而钼系催化体系引发异戊二烯聚合时产物以3,4结构和1,2结构的为主[8] (二)主要催化剂类型 1.铁系催化剂 1964 年,Noguchi等[9]最先报道了铁元素 Ziegler-Natta型催化剂的双烯烃聚合研 究,但是催化活性较低。其主要原因在于铁化合物易于被烷基铝还原成无聚合活性低价化合 物。加入给电子体能够稳定铁活性中心,使其不被过度还原,从而提高催化体系的活性。因 而,给电子体化合物的研究一直以来是该类催化体系的研究重点。其中,含氮杂环类化合物 以及腈类化合物具有高的聚合活性,并且能够制得高分子量、高立构规整性的聚合物。 铁催化体系中的含氮杂环类化合物由单独作为第三组分添加到催化体系中,逐渐发展并改 进为以配体的方式与铁元素形成配合物。1988年,孙箐等[10]采用 Fe(acac)3/Al(i- Bu) 3(三异丁基铝)/含氮配体(1,10-邻菲罗啉2,2'-联吡啶等)催化体系在苯中合成了3,4 -结构含量为 70% 、结晶性的聚异戊二烯,但聚合物凝胶含量高,且含氮配体影响聚合物 的分子量。1994年,Halasa[11对该催化体系进行了改进,通过在聚合体系中加入少量水 与烷基铝反应,形成桥联的有机铝氧烷,提高了催化活性,并使凝胶状况得以改善,但聚合 温度对聚合物的3,4-结构含量影响较大。2000年初,Bazzini[12]和 Ricci[13]以MAO(甲 基铝氧烷)为助催化剂,分别开展了( Bipy)2FeEt2和( Bipy)2FeCl2催化异戊二烯聚合的研 究,得到以3,4-结构为主的聚异戊二烯,但聚合温度严重影响聚合活性和聚合物的微观

光催化剂的发展前景与突破

一、解决人类生存的重大问题 光催化学科是催化化学、光电化学、半导体物理、材料科学和环境科学等多学科交叉的新兴研究领域。光催化剂的研究应用一旦获得突破,将可以使环境和能源这两个二十一世纪人类面临的重大生存问题得以解决。 利用太阳能光催化分解水制氢H2O → H2 + ? O2 彻底解决能源问题 利用环境光催化 C6H6 + 7 ? O2 → 6 CO2 + 3H2O 彻底解决污染问题光催化以其室温深度反应和可直接利用太阳光作为光源来驱动反应等独特性能而成为一种理想的环境污染治理技术和洁净能源生产技术。 二、光催化研究领域急需解决的重大科技问题 目前以二氧化钛为基础的半导体光催化存在一些关键科学技术难题,使其广泛的工业应用受到极大制约,而这些问题的解决有赖于深入系统的基础研究。 最突出的问题在于: (1)量子效率低(~4%) 难以处理量大且浓度高的废气和废水,难以实现光催化分解水制氢的产业化。 (2)太阳能利用率低 由于TiO2半导体的能带结构(Eg=决定了其只能吸收利用紫外光或太阳光中的紫外线部分(太阳光中紫外辐射仅占~5 %)。

(3)多相光催化反应机理尚不十分明确 以半导体能带理论为基础的光催化理论难以解释许多实验现象,使得改进和开发新型高效光催化剂的研究工作盲目性大。 (4)光催化应用中的技术难题 如在液相反应体系中光催化剂的负载技术和分离回收技术,在气相反应体系中光催化剂的成膜技术及光催化剂活性稳定性问题。 上述关键问题也是目前国内外光催化领域的研究焦点,围绕这些问题开展进一步的研究不仅可望在光催化基础理论方面获得较大的突破,而且有利于促进光催化技术真正能在上述众多领域得到大规模广泛工业应用。 三、光催化领域的最新研究进展 近年来,光催化的基础与应用研究发展非常迅速,特别是在可见光诱导的新型光催化剂的研究、提高光催化过程效率的研究和光催化功能材料的研究等方面都取得了重要进展。 1、可见光诱导的光催化剂研究方面取得重大突破 采用固相合成、过渡金属离子和非金属离子掺杂、金属-有机络合物、表面敏化、半导体复合等多种方法,制备出了一系列新型非二氧化钛系或二氧化钛基可见光光催化材料,这些材料在可见光的照射下,能将H2O分解为H2和O2,或能有效降解空气、水中的有机和无机污染物。 2、为解决多相光催化过程效率偏低的问题,近年从提高催化剂自身的量子效率和改进反应过来程条件两个方面开展了大量的研究工作,取得了重要进展。 采用离子掺杂、半导体复合、纳米晶粒制备、超强酸化等方法,提高光生载流子的分离效率和抑制电子-空穴的重新复合,在一定程度上改善了光催化剂的量子效率。 3、光催化材料超亲水性的发现,开辟了光催化研究和应用的新领域 利用光催化膜的超亲水性和强氧化性等特性,研制开发出一系列光催化功能材料,如光催化自清洁抗雾玻璃、光催化自清洁抗菌陶瓷和光催化环保涂料等。这些功能材料已开始在建筑材料领域应用。与之相应的光催化膜功能材料的基

聚酯催化剂的研究进展

聚酯催化剂的研究进展 摘要综述了聚酯催化剂的研究进展。包括锑系催化剂,锗系催化剂,钛系催化剂以及其他类型的催化剂的催化效果及其应用情况。 关键词:聚酯催化剂缩聚反应 用于聚酯生产缩聚反应的催化剂种类繁多,主要有锑系、锗系、钛系、锡系等。由于锑系催化剂在缩聚过程中能大大促进缩聚反应,而对热降解反应的促进程度较小,因此目前聚酯工业普遍采用锑系催化剂,主要品种有三氧化二锑、醋酸锑以及近年来开始受到广泛关注的乙二醇锑。此外,用于酯交换反应的锰、锌、钙、钴、铅等金属的醋酸盐对缩聚反应也有一定的催化作用。 催化剂是聚酯生产中的重要环节,对于新型聚酯催化剂的研究从未停止过。对于缩聚反应有催化作用的化合物种类繁多几乎囊括了除卤族元素和惰性元素的所有元素。但是目前主要研究的是Sb,Ge,Ti等系列的化合物。 项目Sb系催化剂Ge系催化剂Ti系催化剂 催化剂浓度/μg.g-1 150-350 20-120 10-100 所产PET性能 价格低廉过高较贵 色相浅灰色白色淡黄雾度性能中等很好很好 乙醛生成很好很好差 结晶速度中等很好很好 热稳定性很好中等差 氧稳定性中等差差 Sb系催化剂活性适中,价格低廉,在聚酯工业中使用最为普遍;Ge系催化剂价格昂贵,目前应用比较少;Ti系催化剂活性最高,一般用于PBT,PTT,PCT的生产。近些年来,围绕进一步提高催化活性,减少催化剂对环境的污染等方面,许多聚酯生产厂家及催化剂生产厂家做了大量的研究工作,涌现了一大批极具潜力的新型催化剂。 1锑系催化剂 比较吉玛,钟纺,杜邦等典型聚酯工艺,发现90%以上的聚酯工业都使用锑系催化剂,我国迄今引进的聚酯装置也主要采用锑系催化剂,主要品种为Sb2O3和Sb(AC)3。吉玛装置一般采用Sb(AC)3,钟纺,杜邦装置一般采用Sb2O3。此外,乙二醇锑作为传统Sb系催化剂的升级换代产品,也开始得到生产企业的关注。 醋酸锑 与Sb2O3相比Sb(AC)3具有以下优点:(1)Sb(AC)3在乙二醇中的溶解性好,能够更加迅速的催化反应;(2)Sb2O3作催化剂时使用量较大,可能引起金属梯还原使产品色相发灰;(3)Sb(AC)3中无不溶性杂质避免了管道阻塞的发生。 我国对Sb(AC)3的研制较晚。1979年大连有机化工厂开始研制,1984年试生产,采

国内甲醇合成催化剂的最新研究进展与展望

国内甲醇合成催化剂的最新研究进展与展望 【摘要】介绍了研究甲醇催化剂的意义,合成甲醇的方法、分类及其优缺点,详细阐述了近年来国内对CO合成甲醇、CO2合成甲醇催化剂最新研究情况,并对甲醇合成催化剂的前景和发展做出展望。对于CO合成甲醇催化剂,应以提高催化剂的稳定性和抗毒性为目标,而对于CO2合成甲醇催化剂应以提高其甲醇选择性作为研究目标。 【关键词】CO;CO2;甲醇催化剂;铜系催化剂 甲醇是重要的基础化工原料,主要应用于甲醛、醋酸、乙烯、丙烯等有机中间体的生产。近年来,由于甲醇制烯烃(MTO)、甲醇制丙烯(MTP)等大型装置在国内商业化运行,我国的甲醇需求量不断提高。 随着甲醇工业的发展,对甲醇催化剂的研究和开发也提出了更高的要求,大规模的甲醇生产要求催化剂在高温下具有高稳定性和高选择性,而目前甲醇催化剂普通存在稳定性较差,副产物乙醇和二甲醚等选择性较高等缺点。本文从合成甲醇的方法出发,介绍了甲醇催化剂的种类及其合成方法,并对今后甲醇催化剂的发展做出展望。 1.合成甲醇的方法 合成甲醇的反应一般有以下两种: CO+2H2→CH3OH (1-1) CO2+3H2→CH3OH+H2O (1-2) 1.1 CO合成甲醇催化剂 CO和H2合成甲醇是一个典型的催化反应,没有催化剂的存在,反应几乎不能进行。目前CO合成甲醇催化剂主要由铜系催化剂、铬系催化剂、钯系催化剂等。 1.1.1铜系催化剂 目前,CO合成甲醇的工业催化剂主要为铜系催化剂。国外比较有名的研究和生产甲醇合成催化剂公司主要有英国ICI公司、德国BASF公司、德国SudChemie公司和丹麦Topsoe公司等;国内具有代表的是南化集团研究院和西南化工研究设计院。 铜系催化剂转化率高,选择性好;但耐高温性能差,对硫敏感,易中毒。当前,对铜系催化剂的主要研究方向是通过添加第三、第四组分或者采用新的制备

分子筛催化剂的研究进展

课程报告 课程名称工业催化 专业化学工程与技术学号201610151529 姓名黄玲

沸石分子筛催化剂的研究与进展 摘要:本文主要介绍了沸石分子筛催化剂的结构、工业应用及发展前景,并对新型沸石分子筛催化剂的研究作了简要介绍. 关键词:沸石分子筛;催化剂;工业应用

第一章概述 1.1分子筛 分子筛是一种包含有精确和单一的微小孔洞的材料,可用于吸附气体或液体.最初的分子筛是天然沸石,即Si和A1组成的品体化合物.足够小的分子可以通过孔道被吸附,而更大的分子则不能.同时,分子筛也是一种多功能的催化剂,对反应原料和产物有筛分作用,已广泛用于石油化工和精细化上生产中. 1.2沸石分子筛的结构 沸石分子筛是一族结晶性硅铝酸盐的总称[1].沸石最基本的结构是由(SiO )四面 4 )四面体.相邻的四面体由氧桥连结成环,环有大有小,按成环的氧原子体和(AlO 4 数划分,有四元氧环,五元氧环,六元氧环,八元氧环,十元氧环和十二元氧环;环是分子筛的通道孔口,对通过的分子筛起筛分作用.氧环通过氧桥相互连结,形成具有三维空间的多面体.多面体有中空的笼,笼是分子筛结构的重要特征.空洞中 )四面体的负电荷,利用加热或含有结晶水和阳离子,这些阳离子用来中和(AlO 4 减压的办法,可以比较容易地脱除一部分或全部结晶水.不同结构的笼再通过氧桥互相连接形成各种不同结构的分子筛. 1.3沸石分子筛的催化机理 沸石分子筛在各种不同的酸性催化反应中,能够提供很高的活性和不寻常的选择性,且绝大多数反应是由分子筛的酸性引起的,酸度及其酸强度分布是分子筛的重要参数.研究表明,分子筛中B酸来源于骨架四面体铝,而L酸主要来源于非骨架六面体铝, 所以分子筛Al的含量及其分布与分子筛的表面酸性物质密切相关,故可采用分子筛的脱铝和补铝等二次水热处理,得到理想的硅铝比的分子筛.此外,分子筛的酸性还受取代金属离子影响,由于多价金属离子的水解作用,导致催化剂表面酸中心重新分布. 此外,在 1960 年首次提出了择形催化的概念,即催化反应的选择性取决于分子与孔径的相应大小,尤其对于中孔沸石.

汽车尾气净化催化剂的研究进展

汽车尾气净化催化剂的研究进展I(转) 2008-04-11 18:11 摘要:汽车尾气已成为环境污染的主要来源之一。汽车尾气催化净化作为处理汽车尾气的主要手段越来越受到人们的关注。本文简述了汽车尾气净化催化剂的发展过程。同时,从催化净化机理、载体和催化效率几个方面进行了探讨。希望对汽车尾气净化催化领域的发展有一个初步介绍。 关键词:汽车尾气;净化催化剂;净化机理;载体 现代社会中,汽车作为主要的交通工具,发挥着越来越大的作用。随着我国国民经济的发展,汽车数量增加很快。同时,汽车排气中的CO、HC和NOX已经成为大气的主要污染因素,威胁着人类的生命健康。因此,在过去的几十年中,世界各国对于汽车尾气排放标准的制定日益严格[1]。此外,治理汽车尾气的手段也有多种:改进汽车发动机系统;改善燃油质量;使用电能、太阳能为能源的汽车;使用尾气净化催化剂等。其中采用尾气净化催化技术是目前减少汽车排放污染的主要措施。但由于我国大多数汽车属于在用车,汽油质量低下,且催化剂易中毒,使得我国在尾气净化方面还有一定差距。 1 尾气净化催化剂的发展 尾气净化催化剂按反应功能分为氧化型和还原型催化剂;按活性组分分为贵金属催化剂、低贵金属加稀土等非贵金属氧化物催化剂和稀土等非金属氧化物催化剂三类。氧化型催化剂主要催化CO与HC的氧化反应, 即CO+O2→CO2 (1) HC+O2→CO2+H2O (2) 还原型催化剂主要催化NOX的还原反应: NO+CO→N2+CO2 (3) NO+H2→N2+H2O (4) NO+HC→N2+H2O+CO2 (5) 因两种反应要求的化学环境不同,故早期的催化剂将两者分立。后来由于发动机的改进,实现了可使两种功能兼容的化学环境,同时随着排放限制法规的不断严格,车用尾气净化催化剂也取得了令人鼓舞的进展,成为当代最热门的催化剂。到目前为止,已出现四代六种催化剂。70年代中期到末期的汽车排放法规只要求控制CO与HC的排放,发动机尚使用化油器开环系统,所以这个时期的催化剂均属于氧化型催化剂。这一时期使用过两种催化剂,一种是非贵金属催化剂(BMC),如以ABO3型钙钛矿结构的复合氧化物催化剂[2],它的缺点是热稳定性差,600℃以下低温活性差,且易中毒。另一种是以铂(Pt)、钯(Pd)为活性组分的贵金属催化剂(PMC)[3],通常以二者形成的合金态使用,铂∶钯≈7∶3,总载量0.12%左右,它的缺点是容易铅中毒。由于贵金属催化剂的活性要比非贵金属催化剂高100倍以上,自80年代以后,随着排放法规的不断完善,BMC已基本被PMC所替代。随后NOx的排放量

相关文档
最新文档