电厂工业、全厂闭路电视控制系统检修导则

电厂工业、全厂闭路电视控制系统检修导则
电厂工业、全厂闭路电视控制系统检修导则

QB/DTCD 大唐长山热电厂企业标准

QB/DTCD—WHGK—001—2009 工业、全厂闭路电视控制系统检修导则

2009-08-25发布2009-10-01实施

大唐长山热电厂发布

工业、全厂闭路电视监视系统检修规程

1范围

1.1本规程规定了大唐长山热电厂电视监视系统设备检修、试验和运行维护的内容、方法、应达到的标准和应做好的技术管理工作。

1.2本规程适用于大唐长山热电厂660MW机组的工业电视监视系统设备的检修和日常运行维护工作。

1.3下列人员应通晓本规程

厂部:总工程师检修副总工程师

设备管理部:主任、维护专责工程师

维护分场:主任、专责工程师、全体检修人员。

2规范性引用文件

下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。

GB/T 2887-2000电子计算机场地通用规范

DL 5000-2000火力发电厂设计技术规程

DL/T 435-2004 火电厂煤粉锅炉燃烧室防爆规程

DL/T 655-1998 火力发电厂锅炉炉膛安全监控系统在线验收测试规程

DL/T 838-2003发电企业设备检修导则

DL/T 1056-2007发电厂热工仪表及控制系统技术监督导则

火力发电厂热工仪表及控制装置技术监督规定国电安运〔1998〕 483号

DL/T 701-1999火力发电厂热工自动化术语

3全厂工业、闭路电视监视系统概况

3.1设备概况及参数

工业电视泛指炉膛火焰、捞渣机等用于监视控制机组设备运行状况的设备。全厂闭路电视监视指用于监视机组主要设备生产环境及厂区活动工作状况。工业电视监视系统主要用于对炉膛火焰、捞渣机等设备进行监控,全厂电视监控系统用于对全厂机、炉、电和辅助车间等主要生产环境,以及重要设备相对集中的区域进行监视。帮助操作人员实时控制运行设备、掌握现场设备运行情况,保证机

组设备的安全稳定运行。

3.2系统配置

3.2.1 控制室配置

工业电视系统中火焰监视分布在锅炉炉墙左、右侧及等G层离子点火器各设置一监视点,配置42"等离子电视屏幕显示;捞渣机监视融括于全厂闭路电视监视中。本系统共分7个区域(子系统),一个主监控站、7辅助子监控站总共119个摄像头配置。即:主厂房区域(68个监视点)、除灰区域(4个监视点)、水系统区域(11个监视点)、水工专业子系统区域(11个监视点)、保安子系统区域(16个监视点)、脱硫系统区域(9个监视点)等7个区域。在机组的机炉单元控制室内,闭路电视系统的信号直接进入42"等离子电视屏幕上。

工业电视、闭路电视监视系统均采用数字系统的解决方案,即将模拟视频图像信号直接进入数字控制主机,由控制主机进行视频信号的采集、压缩处理,存储、本地显示、上网传输,以及对摄像机云台、镜头的控制等。它由1000M光纤以太网、网络交换机(选用德国原装进口赫斯曼MS30系列产品)、数字控制主机(含嵌入式系统、硬盘录像机、画面分割器、字符发生器等)、监视终端、定焦/变焦摄像头(包括云台、防护罩)及附件(中继器、放大器等)、控制键盘、各种视频电缆、各种通讯电缆及附件、控制电缆、电源电缆、预制电缆等组成。3.2.2 现场配置

A)工业电视

在锅炉标高米处面对炉墙左右侧各设置型号为GHJ-50的内窥式摄像装置,引入G层等每支离子点火器火检监测信号。

B)全厂闭路电视

在集中控制室内目前配置2台42”液晶显示器,其中1台以循环切换方式显示机组各控制区域监视点的图像,另1台以四画面分割的方式显示机组各控制区域监视点的图像。水处理系统、输煤系统、脱硫系统各配备1台21"LCD和操作切换设备。

1号机组和公用系统共设置119点监控点,监控点主要分布在主厂房、除灰系统、水系统、水工专业子系统、脱硫系统、保安子系统等7个系统中,除主厂房系统外,其余系统都设有分支控制站。具体配置如下表:

3.3系统功能

A)工业电视

火焰电视监视系统实现从炉膛上部整体监视全炉膛燃烧状态的工业电视系统,使运行人员从位于控制室的监视器上观察炉膛内火焰的真实图像。在锅炉点火、低负荷运行等锅炉容易发生故障的运行工况时,真实可靠地反映炉膛真实火焰状况。主要由彩色摄像机、耐高温潜望针孔镜头、六级滤光装置、电动推进器、炉壁连接体、数字视频服务器、等离子监视器、就地控制箱、冷却系统、特种信号电缆、控制电缆等组成,运行人员在控制室内通过监视器清晰地观察锅炉内部四角燃烧器的点火、正常燃烧及灭火等情况,整个系统对于摄像系统进行调整和控制进、退实现了全过程自动化与手动操作相结合的方法,并设有越温、欠压自动报警和退出功能。良好地保证了锅炉安全运行。

B)全厂电视监视系统

对发生过的事件进行历史追忆,提供直观的画面资料,方便事件的调查与分析。全厂闭路电视监视系统按全部监视点图像实时(25帧/S)录像,保留10天的图像信息(新盖旧模式)。所存贮的图像应能频繁回放,回放可单帧和连续,图像可长时间存贮,图像质量始终不变。

系统具有长时间工作的全自动化能力,可实时监测音频/视频图的变化,画面有变化即进行录,不变立刻停止,不会丢失任何音频/视频图信号,并根据设

定的触发事件发出报警信号。所录制的画面在回放时,如同正常VCD影像,无画面突然跳跃或间断的现象,无马赛克现象。并可有效消除光线的变化,减少系统误动作。使系统一经激活即可进入全天候工作状态,免除操作人员每天开关机的作业。

4检修项目与质量要求

4.1检修人员要求

4.1.1必须经过权威医疗机构体格检查,不合格者严禁参加检修工作。

4.1.2检修人员须经过培训,并经上岗考试合格方可参加工作。

4.1.3必须在工作负责人带领下进行检修工作。

4.1.4必修人员必须通过公司三级安全考试合格。

4.1.5设备检修必须严格按本规程要求进行,工作中不得违反本规程;如遇特殊情况必须违反,须报请总工程师批准。

4.2检修周期

2年一次

4.3检修项目

4.3.1电缆检查

4.3.1.1检查系统内的所有电缆有无损坏,如电缆被外物刮伤、切断,必要

时请更换电缆。

4.3.1.2检查各个电缆的接插件安装是否牢固,接触是否良好,如发生松动

及时修正,如有损坏断电后更换。

4.3.1.3屏蔽电缆屏蔽层接地的位置应符合设计规定;当信号源浮空时,应在摄像头

或硬盘刻录机侧接地;当信号源接地时,应靠近信号源处接地;当放大器浮空时,屏蔽层的一端与屏蔽罩相连,另一端当信号源接地时接信号源接地上,当信号源浮空时接在现场接地上。

4.3. 1.4同一信号回路或同一线路的屏蔽层只允许有一个单端接地点,并保证信号全线

路屏蔽层具有电气连续性。检修时应检查接线盒或中间端子柜的屏蔽电缆接线,当有分开或合并时,其两端的屏蔽通过端子连接应可靠。

4.3. 2保护罩检查

4.3. 2.1检查防护罩和防护箱外观,查看是否有损伤破裂之处,如是修复或更

换。

4.3. 2.2检查防护罩和防护箱处电缆密封圈的密封性能。若密封圈松动,请

检查罩/箱内是否有进水现象,若发生这种现象请及时处理,待干燥后再重新上好密封圈,若无进水现象请立即拧紧密封圈。

4.3. 3摄像机检查及调整

4.3. 3.1外观检查,摄像机外壳、插头、接线有无焦、裂现象,若有须查明原

因并更换。检查摄像机镜头是否进灰、碎裂现象,如若着灰,用镜头纸清除镜片表面的灰尘,不可用手或其它布类擦拭,然后用干净的塑料布包扎好;

如有碎裂,更换。

4.3. 3.2调整检查摄像机成像质量,打开摄像探头端盖,并开启监视器,视频

切换器和摄象机控制器电源;

b)松开摄象探头,根据需要缓慢转动摄象探头,调整探头在紧固环中的位

置,以确定探头的最佳监视方向;调整镜头前端的定位螺盘,观察图象

的变化情况,直到效果最佳;

c)关断摄象机控制器电源,锁定定位螺盘,将摄像机固定在固定的支架上,

装好端盖。

d)摄像探头安装牢固坚固,工作正常,风冷效果良好。

4.3.4监视器检查

4.3.4.1确认接线正确,开启电源开关,调节亮度、对比度和微调帧频调整旋钮,使

图象亮度适宜;

4.3.4.2若监视器中的图象过亮或产生饱和现象,通过调整摄象控制器中的“光圈”按

钮或者在镜头上加装适当滤色片以得到清晰、稳定的图象;通过系统调整获得最佳图像效果。

4.3.5解码器检查

4.3.

5.1解码器电源检查,检查电源工作指示灯状态,常亮为工作状态,不亮

检查电源开关是否置在0N状态,查看保险丝是否完好,检查变压器插头是否接好。

4.3.

5.2解码器控制回路检查,检查通讯连线是否正确;检查波特率设置是

否正确;检查地址码设置是否正确。

4.3.

5.2.1波特率或特殊协议设置

4.3.

5.2.2地址设置位

9位DIP拨码开关的4-9位为地址设置位,4为高位9为低位,最高设置到

4.3.

5.3检查控制解码器通讯路线远端跳接线,将485通讯接通到远端120负

载电阻位,以保证485通讯连续性。

4.3.6云台检查

4.3.6.1外观检查,检查有无裂损现象,裂损更换;检查可转动部位是否积

灰,积灰清除。

4.3.6.2调整图像摄取设备最最佳位置,固定云台摄像头,松开镜头横向调整

固定螺丝,左右转动摄像头,调整摄像在左右方向位置最佳后固定。松开镜头纵向调整螺丝,推动摄像头上下移动,调整摄像在上下方向位置最佳后固定。

电动摄像头,用遥控器或硬盘刻录机在调整页面上按上下、左右键调整到适

中位置。

4.3.7硬盘刻录机检查

4.3.7.1清除表面积灰,查看外观有无异常,如:焦、裂、变形及接头锈蚀

等,若有异常,查明原因并处理。

4.3.7.2检查各通道及485接线牢固,如有松动或断线重新接牢。

4.3.7.3查看刻录机状态指示灯,若存在异常,查明原因并处理。

4.3.8火焰监视电动控制回路检查

4.3.8.1控制回路绝缘检查。

4.3.8.2检查工业电视检查摄像探头在通道中进退自如;就地控制箱及远程

操作动作灵敏,反馈正确。

4.3.8.3检查图像清晰,视频接线牢固。

4.3.9光学系统镜片检查

此检查主对针对火焰监视系统而言。检修中,若摄像装置完好,成像清晰无异常,一般的情况下对镜片只做护镜的积灰清扫。若存在异常需对成像系统镜片进行检查,检查是否存在裂伤碎现象,存在更换。

4.3.10冷却装置系统检查

4.3.10.1冷却气源管路、接头检查,检查是否有漏气现象,若存在,坚固或

焊接处理。

4.3.10.2冷却气源压力表、压力开关及探头测温元件校验检查。(参见仪表相

关部分执行)

4.3.11交换机检查。

主要是交换机状态灯和接线检查,凡接线端口状态灯均亮,若不亮检查有无问题,有问题重新卡线。

5运行维护

5.1投运前检查与验收

5.1.1供电回路正常、可靠;所有管道,线路连接正确。

5.1.2冷却风回路正常接入并处于运行状态;

5.1.3在上述检查工作完成之后,打开监视器、视频切换器、摄象机控制器电源。

5.2日常与定期维护

5.2.1运行中摄象探头因故障不能正常工作时,必须由专业人员现场检查并排除故障后,

方可重新投入运行。

5.2.2运行中,若监视器中的图象过亮或产生饱和现象,若出现此故障,参照4.3.4中描

述执行。

发电厂热工设备介绍资料

第一部分发电厂热工设备介绍 热工设备(通常称热工仪表)遍布火力发电厂各个部位,用于测量各种介质的温度、压力、流量、物位、机械量等,它是保障机组安全启停、正常运行、防止误操作和处理故障等非常重要的技术装备,也是火力发电厂安全经济运行、文明生产、提高劳动生产率、减轻运行人员劳动强度必不可少的设施。 热工仪表包括检测仪表、显示仪表和控制仪表。下面我们对这些常用仪表原理、用途等进行简单介绍,便于新成员从事仪控专业工作有个大概的了解。 一、检测仪表 检测仪表是能够确定所感受的被测变量大小的仪表,根据被测变量的不同,分为温度、压力、流量、物位、机械量、成分分析仪表等。 1、温度测量仪表: 温度是表征物体冷热程度的物理量,常用仪表包括双金属温度计、热电偶、热电阻、 温度变送器。常用的产品见下图: 双金属温度计热电偶 铠装热电偶热电阻(Pt100)

端面热电阻(测量轴温)温度变送器 1)双金属温度计 原理:利用两种热膨胀不同的金属结合在一起制成的温度检测元件来测量温度的仪表。 常用规格型号:WSS-581,WSS-461;万向型抽芯式;φ100或150表盘;安装螺纹为可动外螺纹:M27×2 2)热电偶 原理:由一对不同材料的导电体组成,其一端(热端、测量端)相互连接并感受被测温度;另一端(冷端、参比端)则连接到测量装置中。根据热电效应,测量端和参比端的温度之差与热电偶产生的热电动势之间具有函数关系。参比端温度一定时热电偶的热电动势随着测量温度端温度升高而加大,其数值只与热电偶材料及两端温差有关。 根据结构不同,有普通型热电偶和铠装型热电偶。根据被被测介质温度高低不同,一般热电偶常选用K、E三种分度号。K分度用于高温,E分度用于中低温。 3)热电阻 原理:利用物质在温度变化时本身电阻也随着发生变化的特性来测量温度的,热电阻的受热部分(感温元件)是用细金属丝均匀地双绕在绝缘材料制成的骨架上。 热电阻一般采购铂热电阻(WZP),常用规格型号:Pt100,双支,三线制,铠装元件?4,配不锈钢保护管,M27×2外螺纹。 4)温度变送器 原理:将变送器电路模块直接安装在就地温度传感器的接线盒内,将敏感元件感受温度后所产生的微小电压,经电路放大、线性校正处理后,变成恒定的电流输出信号(4~20mA)。 由于该产品未广泛普及,所以设计院一般很少选用。

一电厂热工控制DCS系统设计

| 67 PLC and DCS 一电厂热工控制DCS系统设计 刘景芝,孙 伟 (中国矿业大学信息与电气工程学院,江苏 徐州 221008) 摘 要:以西山孝义金岩公司自备电厂为背景,主要结合循环流化床锅炉机组的运行特点和控制特性,对其热工系统运用集散控制方式进行控制,并采用浙大中控的WebFiled JX-300X系统对单元机组的热工控制系统做了初步的整体设计。 关键词:热工控制系统;集散控制系统(DCS);循环流化床锅炉 中图分类号:TP393.03 文献标识码:B 文章编号:1003-7241(2007)12-0067-03 A DCS system for thermal control of a power station LIU Jing-zhi, SUN Wei (The School of Information and Electrical Engineering ,China University of Mining and Technology , Xuzhou 221008 China) Abstract: This paper introduces a distributed control system for the power station of the Xishan Jinyan company. According to the operation and control requirements of the circulating fluidized bed boiler, the distributed control for the thermal system of a power unit is designed with the SUPCON WebFiled JX-300X. Keywords: thermal control system; distributed control system(DCS); circulating fluidized bed boiler 1 引言 火力发电是现代电力生产中的一种主要形式,火力发电厂 运行系统多而且复杂,各系统之间要协调运行又要对负荷变化 具有很强的适应能力,因此有效的控制火力发电厂运行极其重 要。目前火电机组都普遍采用DCS[3],因为DCS系统给电厂在 安全生产与经济效益方面带来巨大作用,使以往任何控制系统 无法与其相提并论。随着各项技术的发展和用户对生产过程控 制要求的提高,一种全数字化的控制系统——现场总线控制系 统(FCS)问世了,并得到了快速发展。虽然现场总线控技术 代表了未来自动化发展的方向并将逐步走向实用化,但由于火 电厂的具体环境和控制特点,经过论证与分析,近期内热控系统 只能以DCS为主[1][2]。 西山孝义金岩公司自备电厂包括2台75t/h循环流化床锅 炉、2台15MW抽汽式汽轮发电机组。本文主要针对循环流化床 锅炉,将其改造为单元机组运行。根据循环流化床锅炉和火电机 组的运行特点,分析其热控系统的功能要求,采用集散控制系统 (DCS)实现热工自动化,并以浙大中控的WebFiled JX-300X为 例,进行具体系统的初步设计。 收稿日期:2007-07-03 JX-300X集散控制系统全面应用最新的信号处理技术、高 速网络通信技术、可靠的软件平台和软件设计技术和现场总线技 术,采用高性能的微处理器和成熟的先进控制算法,兼具高速可靠 的数据输入输出、运算、过程控制功能和PLC联锁逻辑控制功 能,能适应更广泛更复杂的应用要求,是一套全数字化的、结构灵 活、功能完善的新型开放式集散控制系统。 JX-300X体系结构如下图: 2 系统介绍及方案描述 2.1 系统总体方案描述 根据单元机组运行特点及要求,其控制系统一般配有以下系统: (1) 数据采集系统(DAS); 图1 JX-300X体系结构图

火电厂控制策略

先进的火电厂控制策略 1:PID控制 详细内 当今的自动控制技术都是基于反馈的概念。反馈理论的要素包括三个部分:测量、比较和执行。测量关心的变量,与期望值相比较,用这个误差纠正调节控制系统的响应。 这个理论和应用自动控制的关键是,做出正确的测量和比较后,如何才能更好地纠正系统。 PID(比例-积分-微分)控制器作为最早实用化的控制器已有50多年历史,现在仍然是应用最广泛的工业控制器。PID控制器简单易懂,使用中不需精确的系统模型等先决条件,因而成为应用最为广泛的控制器。 PID控制器由比例单元(p)、积分单元(i)和微分单元(d)组成。其输入e (t)与输出u (t)的关系为 u(t)=kp(e((t)+1/ti∫e(t)dt+td*de(t)/dt) 式中积分的上下限分别是0和t 因此它的传递函数为:g(s)=u(s)/e(s)=kp(1+1/(ti*s)+td*s) 其中kp为比例系数; ti为积分时间常数; td为微分时间常数 它由于用途广泛、使用灵活,已有系列化产品,使用中只需设定三个参数(kp,ti和td)即可。在很多情况下,并不一定需要全部三个单元,可以取其中的一到两个单元,但比例控制单元是必不可少的。

首先,PID应用范围广。虽然很多工业过程是非线性或时变的,但通过对其简化可以变成基本线性和动态特性不随时间变化的系统,这样PID就可控制了。 其次,PID参数较易整定。也就是,PID参数kp,ti和td可以根据过程的动态特性及时整定。如果过程的动态特性变化,例如可能由负载的变化引起系统动态特性变化,PID参数就可以重新整定 PID 控制的基本原理PID 控制器以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID 控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID 控制技术。PID控制,实际中也有PI 和PD 控制。PID 控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。火电厂控制系统中PID 控制的应用在火电厂的工业控制系统中,由于受控对象和环境的复杂性、变化性及不确定性,往往难以建立精确的数学模型,这给有效控制带来很大的困难。一个闭环控制系统在构成之后,控制器参数整定的优劣将是决定该闭环控制系统运行品质的主要因素。计算机技术的引入将控制系统带入了智能时代。自动化技术已促使生产过程控制向智能化发展。现代工业企业已广泛采用了分散控制系统(DCS)。DCS 具有很强的过程控制和管理功能,不仅可以实现前馈、超驰、比值、串级、解耦等各种初级先进控制算法,也可采用基于模型的先进控制算法。目前典型的有:TDC 3000 中的HPC(滚动预测控制)软件、MAX-1000 中的自适应算法功能、TERMPERMME 中的状态估计及预测算法、Infi-90 上的LTS(回路整定系统)等。然而,不管采用何种先进控制技术,PID 控制在DCS系统中仍占据主导地位。工业过程的先进控制技术往往以DCS 或控制仪表的常规PID 控制为基础。 2预测控制 利用系统辨识技术建立锅炉的预测模型,对模型预测控制算法在多变量系统中的应用进行了讨论,用于控制循环流化床的蒸汽压力、蒸汽温度和炉床温度.在MATLAB/SIMULINK 环境下对模型预测控制系统进行了仿真.研究结果表明,利用系统辨识技术建立的系统模型结构简单,可以在有限时域内实现系统输

QHN-1-0000.08.026-2015 中国华能集团公司火力发电厂燃煤机组环境保护监督标准

Q/HN 中国华能集团公司企业标准 Q/HN-1- 0000.08.026—2015 火力发电厂燃煤机组环境保护监督标准 Supervision standard of environmental protectionfor coal-fired thermal power plant 2015- 05-01发布 2015- 05 -01实施 中国华能集团公司发布

目次 前言.............................................................................. II 1 范围 (1) 2 规范性引用文件 (1) 3 总则 (5) 4 监督技术标准 (5) 4.1 除尘系统监督 (5) 4.2 脱硫系统监督 (10) 4.3 脱硝系统监督 (15) 4.4 废水处理系统监督 (21) 4.5 烟气排放连续监测系统监督 (25) 4.6 烟囱防腐的监督 (28) 4.7 各类污染物排放监督 (29) 4.8 燃煤中硫份、灰份的监督 (33) 5 监督管理要求 (33) 5.1 环保监督管理的依据 (33) 5.2 日常管理内容和要求 (35) 5.3 各阶段监督重点工作 (39) 6 监督评价与考核 (40) 6.1 评价内容 (41) 6.2 评价标准 (41) 6.3 评价组织与考核 (41) 附录A(规范性附录)环保设备台账编写格式 (42) 附录B(规范性附录)环保技术监督不符合项通知单 (48) 附录C(规范性附录)环保技术监督季报编写格式 (49) 附录D(规范性附录)环保技术监督信息速报 (53) 附录E(规范性附录)环保技术监督预警项目 (54) 附录F(规范性附录)环保技术监督预警通知单 (55) 附录G(规范性附录)环保技术监督预警验收单 (56) 附录H(规范性附录)环保技术监督动态检查问题整改计划书 (57) 附录I(规范性附录)环保技术监督工作评价表 (58)

电厂管理信息系统

电厂管理信息系统(MIS) 电厂管理信息系统(MIS)包括:基建MIS和生产MIS。在建设期建立的基建MIS 是整个MIS的一部分。 1)基建期MIS 基建期MIS对基建期整个过程进行信息管理。主要包括:进度计划管理、质量管理、费用管理、合同管理、设备管理、材料管理、办公自动化管理、财务管理、档案管理、企业网站/综合查询等。基建MIS数据将在电厂建成后自动转入生产期MIS系统。 2)生产期MIS 建立电厂管理信息系统是给电厂的管理人员提供大量实时和非实时的、准确的、完整的、可靠的信息和进行加工、运算分析后的信息,以提高电厂管理的效率和决策的正确性,使发电厂的经营和管理者们将以往粗糙的管理经营方式精细化,以企业特征为根本,降低发电成本、减少维护费用、合理经营策略,以实现利润的最大化,确保企业在将来的竞争中立于不败之地。电厂管理信息系统MIS主要功能包括:经营管理、生产管理、行政管理、系统维护等四大部分。 厂级监控信息系统(SIS) 为了提高电厂的整体管理水平和运行效率,增强电厂的市场竞争力,拟建立厂级监控信息系统。该系统在传统的DCS、辅助车间控制系统与MIS之间形成了一个重要的管理控制一体化层面,完成对全厂的实时过程的优化管理和控制。 SIS的主要功能是采集DCS、TCS、全厂辅助车间等控制系统的数据来实现电厂运行优化、负荷调度分配优化、经济性能分析、设备故障诊断及设备寿命管理等功能,对全厂的实时过程进行优化管理,为电厂运行管理人员提供运行指导和决策依据,确保电厂在保证安全生产的基础上通过最优化控制策略使整个电厂的设备潜能得到充分发挥,使整个生产保持在最佳、最稳定、最经济的运行状态,用最少的成本带来最多的效益。 厂级监视信息系统(SIS)的功能包括:生产过程信息采集、处理和监视;厂级经济性能计算、分析和操作指导等功能。SIS为厂级管理信息系统(MIS)提供所需的生产过程信息。 厂级监控信息系统(SIS) 3.1设计依据 SIS应符合下列标准或与之相当的其它国际标准:

DCS在电厂热工控制系统中的应用研究

DCS在电厂热工控制系统中的应用研究 摘要:目前在电厂机组中DCS系统得以广泛的应用,而且随着技术的发展也不 断的完善,其前景越来越好,而且300MW机组上已全面采用了DCS系统,通过DCS系统的应用,有效的确保了电厂的安全生产,同时也使电厂的经济效益得以 更好的实现,DCS系统以其超过于其他控制系统的优势展现出无限的生机。 关键词:DCS;电厂;热工控制系统;维护与管理 1 DCS系统分析 DCS系统的实质是一种集散性的控制系统,与传统系统结构相比,DCS系统 是一种较为新型的控制系统,它以计算机控制系统为基础,能不断的改善系统内 部的软件工作环境,也能有序控制锅炉、发电机组、系统和用电装置,并对相关 数据发送控制指令,实现了对汽机、锅炉、电气系统的协调控制。 从结构上来看,DCS系统主要由操作员站、工程师站、现场控制站、系统网 络四个部分构成,如图1所示,且相互之间的功能、性质等存在一定的差异。 图1 DCS系统结构图 在上述4个部分的操作过程中,主要以基于微型计算机的局域网为纽带,在 该局域网中,各种有关电厂生产的资料可以顺利的传递、交流,并且不会受到外 界的干扰;在信息传递过程中,相关人员可按照要求对数据内容进行交流与控制。因此可以认为,DCS是一个安全性高、时效性好的控制系统,不仅能实时控制电 厂生产的操作过程,也能监控控制过程,寻找其中存在的风险项目,为提高电厂 整体系统操作水平奠定基础。 而从当前DCS系统的运行来看,该系统虽然具有先进性,但依然存在扩展性 差的问题,并且在系统结构上的兼容性还有待加强。同时有些学者认为,由于数 据通信速率与控制的实时性之间存在密切关系。数据通信网络在数据传输率与数 据准确性间存在矛盾,在高速通信下解决数据准确性是目前大型及超大型电厂DCS系统亟需解决的问题。从上述研究内容可以发现,虽然DCS系统具有先进行,但依然存在诸多问题,需要相关单位的重视。 2电厂热工控制DCS系统设计 在进行电厂热工控制DCS系统设计时,其中网络设计是极为关键的部分,直 接关系到DCS系统的安全性、实效性、扩充性和可靠性,且在进行DCS系统设计时,其功能性也是十分关键的部分,需要进行全面的考虑。 2.1数据采集系统 DCS系统中的数据采集也可以称为计算机监控系统,主要是将机组运行过程 中的相关参数信息在线检测并处理后,并以画面的形式传送给操作人员,而且还 具有自动报警、打印制表等功能,同时对于准确性操作具有极为重要的作用。 2.2模拟量控制系统 对于电厂热工控制DCS系统而言,其模拟量控制系统的作用在于将汽轮发电 机组锅炉、汽机作为整体,予以控制,具体可分成机侧、炉侧模拟量两个控制系统。对于炉侧MCS系统而言,其中主要包括机炉协调控制和汽温调节系统,同时包括送风和引风调节系统、储水箱水位控制系统以及蒸汽温控系统等;对于机侧MCS系统而言,除锅炉给水全程控制、除氧器水位调节作为串级凋节,其他调节 皆为单回路调节系统。 2.3顺序控制系统

电厂锅炉检修技术措施

一、工程概况及特点 1、工程概况 神华亿利能源有限责任公司电厂(4×200MW)煤矸石电厂工程位于内蒙古鄂尔多斯市达拉特旗树林召镇。厂址建于亿利化学工业有限公司工业园区内。总装机容量4×200MW,一次全部建成。本工程采用循环流化床锅炉、直接空冷凝汽式汽轮机、发电机采用空冷式。 神华亿利能源有限责任公司电厂4×200MW工程采用EPC总承包形式,由山东电力工程咨询院总承包; #1-#4机组主厂房土建及安装由内蒙古电建二公司承建;化学系统、循环水泵房由东北电建二公司承建;空冷系统由中国十五冶承建。 锅炉制造厂:上海锅炉有限公司 型号:SG-690/13.7-M451 型式:超高压再热参数、单汽包自然循环、岛式布置、全钢架支吊结合的循环流化床锅炉。锅炉采用高温绝热旋风分离器进行气固分离,运转层标高为10m。 锅炉采用岛式紧身封闭布置、全钢结构、炉顶设置轻型钢屋盖。锅炉采用支吊结合的固定方式,锅炉运转层标高为10m。锅炉采用单锅筒自然循环、集中下降管、平衡通风、绝热式旋风气固分离器、循环流化床燃烧方式、滚筒冷渣器,后烟井内布置对流受热面,过热器采用两级喷水调节蒸汽温度,再热器采用以烟气挡板调节蒸汽温度为主、事故喷水装置调温为辅。 锅炉采用平衡通风,炉膛的压力零点设置在旋风分离器进口烟道内。循环流化床内物料的循环是由送风机(包括一、二次风机)和引风机启动和维持的。从一次风机出来的燃烧空气先后经由暖风器、一次风空气预热器加热后一路进入炉膛底部一次风室,通过布风板上的风帽使床料流化,并形成向上通过炉膛的固体循环; 6台给煤机布置在炉前,连接炉前大煤斗和落煤管,根据锅炉负荷要求的燃料量将破碎后的燃煤输送到落煤管进口。锅炉共设置四台水冷滚筒式冷渣器,分布于炉膛下部,布置在零米层,采用以水冷为主、风冷为辅的双冷却形式。 2、编制依据 1.神华亿利能源有限责任公司电厂#4机组A级检修锅炉标段招标文件 2.《发电企业设备检修导则》 DL/T838-2003 3.《火力发电厂焊接技术规程》DL/T 869-2004 4.《火力发电厂异种钢焊接技术规程》DL/T 752-2001 5.《焊接工艺评定规程》DL/T 868-2004 6.《电力建设施工及验收技术规范》(2004年版) 7.《钢熔化焊对接接头射线照相和质量分级》 UDA 621.791.65.05GB 3323—87

基于DCS的电厂汽轮机DEH

基于DCS的电厂汽轮机DEH 摘要:现代汽轮机控制系统的控制策略是在传统的基本控制策略的基础上,考虑了电网控制,热网控制和机炉协调控制的需要而发展起来的。数字电液控制系统DEH(Digital Electro-Hydraulic Control Sy stem)是现代汽轮机控制系统的典型形式。本文的要点在于基于传统汽轮机电调功能之上提出的DCS控制系统设计方案,以实现纯电调全部控制功能。 关键字:DEH 系统;DCS 控制系统;DDV 伺服阀;汽轮机 1 集散控制系统概述 1.1集散控制系统特点及组成 随着现代化工业的飞速发展,工业生产过程的控制规模不断扩大,复杂程度不断增加,工艺过程不断强化,因而对过程控制和生产管理系统提出了越来越高的要求。集散控制系统就是在这种背景下产生的,它是以计算机为基础而构成的控制、管理、决策系统,满足了现代生产过程的控制和管理的要求。它是继直接作用式气动仪表、气动单元组合仪表、电动单元组合仪表和组件组装式仪表之后的新一代控制系统。 集散控制系统(Distributed control system)是以微处理器为基础的对生产过程进行集中监视、操作、管理和分散控制的集中分散控制系统,简称DCS系统。该系统将若干台微机分散应用于过程控制,全部信息通过通信网络由上位管理计算机监控,实现最优化控制,整个装置继承了常规仪表分散控制和计算机集中控制的优点,克服了常规仪表功能单一,人-机联系差以及单台微型计算机控制系统危险性高度集中的缺点,既实现了在管理、操作和显示三方面集中,又实现了在功能、负荷和危险性三方面的分散。 集散控制系统中所有设备分别处于四个不同的层次,自下而上分别为:现场级、控制级、监控级和管理级。 现场级设备一般位于被控生产过程的附近。典型的的现场级设备是各类传感器、变送器和执行器,它们将生产过程中各种物理量转换为电信号。 控制级主要由过程控制站和数据采集站组成。过程控制站接收由现场设备来的信号,按一定的控制策略计算出所需的控制量,并送回到现场的执行器中去。数据采集站与过程控制站类似,也接收由现场设备来的信号,但是它不直接完成控制功能,而是将经转换处理后的信号送到监控级设备中去。 监控级的主要设备有运行员操作站、工程师工作站和计算站。运行员操作站是运行员与DCS相互交换信息的人机接口设备。运行人员通过运行员操作站来监视和控制整个生产过程。工程师工作站是为了控制工程师对DCS进行配置、组态、调试、维护所设置的工作站。计算站的主要任务是实现对生产过程的监督控制。 管理级包含的内容比较广泛,一般来说,它可能是一个发电厂的厂级管理计算机,也可能是若干个机组的管理计算机。它所面向的使用者是厂长、经理、总工程师、值长等行政管

火电厂自动控制系统教程文件

火电厂自动控制系统 火电厂控制系统总体分为两部分:第一部分是主控部分,第二部分是副控部分。下面就这两部分具体内容做个介绍。 一、火电厂主控系统 火电厂主控系统是保证火电厂安全、稳定生产的关键,随着控制技术、网络技术、计算机技术和Web技术的飞跃发展,火电厂主控系统的控制水平和工程方案也在不断进步,火电厂的管理信息系统和主控系统的一体化无缝连接必将成为未来火电厂管控系统的发展趋势,传统火电厂的DCS系统也必将向这一趋势靠拢。火电厂主控系统以控制方式分类可分为:DAS、MCS、SCS、BMS及DEH等系统。 下面分别加以阐述: 1.数据采集系统-DAS: 火电厂的主控系统中的DAS(数据采集系统)主要是连续采集和处理机组工艺模拟量信号和设备状态的开关量信号,并实时监视,保证机组安全可靠地运行。 ■数据采集:对现场的模拟量、开关量的实时数据采集、扫描、处理。 ■信息显示:包括工艺系统的模拟图和设备状态显示、实时数据显示、棒图显示、历史趋势显示、报警显示等。 ■事件记录和报表制作/ 打印:包括SOE 顺序事件记录、工艺数据信息记录、设备运行记录、报警记录与查询等。 ■历史数据存储和检索 ■设备故障诊断 2.模拟量调节系统-MCS系统: ■机、炉协调控制系统(CCS) ● 送风控制,引风控制 ● 主汽温度控制 ● 给水控制 ● 主蒸汽母管压力控制 ● 除氧器水位控制,除氧器压力控制 ● 磨煤机入口负压自动调节,磨煤机出口温度自动调节 ■高加水位控制,低加水位控制 ■轴封压力控制 ■凝汽器水位控制 ■消防水泵出口母管压力控制 ■快减压力调节,快减温度调节 ■汽包水位自动调节

3.炉膛安全保护监控系统-BMS系统: BMS(炉膛安全保护监控系统)保证锅炉燃烧系统中各设备按规定的操作顺序和条件安全起停、切投,并能在危急情况下迅速切断进入锅炉炉膛的全部燃料,保证锅炉安全。包括BCS(燃烧器控制系统)和FSSS(炉膛安全系统)。 ■锅炉点火前和MFT 后的炉膛吹扫 ■油系统和油层的启停控制 ■制粉系统和煤层的启停控制 ■炉膛火焰监测 ■辅机(一次风机、密封风机、冷却风机、循环泵等)启、停和联锁保护 ■主燃料跳闸(MFT) ■油燃料跳闸(OFT) ■机组快速甩负荷(FCB) ■辅机故障减负荷(RB) ■机组运行监视和自动报警 4.顺序控制系统—SCS: ■制粉系统顺控 ■锅炉二次风门顺控 ■锅炉定排顺控 ■射水泵顺控 ■给水程控 ■励磁开关 ■整流装置开关 ■发电机灭磁开关 ■发电机感应调压器 ■备用励磁机手动调节励磁 ■发电机组断路器同期回路 ■其他设备起停顺控 5.电液调节系统—DEH: 该系统完成对汽机的转速调节、功率调节和机炉协调控制。包括:转速和功率控制;阀门试验和阀门管理;运行参数监视;超速保护;手动控制等功能。 ■转速和负荷的自动控制 ■汽轮机自启动(ATC) ■主汽压力控制(TPC) ■自动减负荷(RB) ■超速保护(OPC) ■阀门测试

火力发电厂行业技术标准及规定清单

火力发电厂行业技术标准、规定清单 A、安装调试试运通用规程标准 1《电力建设工程施工技术管理导则》国家电网公司工[2003]153 号 2《火力发电厂基本建设工程启动及竣工验收规程》原电力部[1996] 3《火电工程启动调试工作规定》原电力部[1996] 4《模拟量控制系统负荷变动试验导则》电力部[1996] 5《火电机组热工自动投入率统计方法》电力部[1996] 6《汽轮机甩负荷试验导则》电力部[1996] 7《火电机组启动蒸汽吹管导则》(电综[1998]179 号) 8《火力发电厂锅炉化学清洗导则》DL/T794-2001 9《电力基本建设热力设备化学监督导则》SDJJS03-88 10《火电工程调整试运质量检验及评定标准》(建质[1996]111 号) 11《火电施工质量检验及评定标准》(电综[1998]全套) 12《火电机组启动验收性能试验导则》电综[1998]179 号 13《电力建设基本工程整套满负荷试运质量监督检查典型大纲》 14《火电机组达标投产考核标准》(中建企协[2006]6 号) 15《化学监督制度》SD246-88 16《火力发电厂水汽化学监督导则》DL/T 561-95 17《电气装置安装工程·电力设备交接试验标准GB50150》 18《电力生产安全工作规定》 19《电力建设安全工作规程(火力发电厂部分)》DL5009—96 20《电力安全工作规程(发电厂和变电所电气部分)》DL408—91 21《火力发电厂安全、文明生产达标考核实施细则》 22《火电优质工程评选办法》国电公司[2000] 23《火电工程启动调试大纲编制纲要》DZB07-1998 24《火电工程启动试运实施细则》DZB04-1998 25《火电工程竣工验收实施细则》DZB05-1998 26《火电工程调试措施编制纲要》DZB06-1998

基于DCS系统下实现发电厂电气监控的毕业设计论文

《计算机控制技术》 课程论文. 用DCS来实现发电厂电气监控的设计 班级:电气09-2 学号: 姓名: 时间:2012/12/30

《计算机控制技术》课程设计任务书 题目:用DCS来实现发电厂电气监控的设计 设计要求: 1、简述DCS原理 2、简述发电厂电气监控原理 3、对DCS的系统结构进行初步设计 4、对发电厂电气监控系统进行初步设计 5、选择电气监控系统接入DCS的方式 6、对用DCS实现发电厂电气监控进行初步的总体方案设计 时间安排: 2012/12/24 确定设计题目 2012/12/25 进行相关资料收集 2012/12/26 对收集的资料进行整理 2012/12/27 开始着手设计 2012/12/28 完善设计 2012/12/29 完成设计论文 2012/12/30 对论文进行差错,上交论文

用DCS来实现发电厂电气监控的设计 广东石油化工学院电气09级2班张鹏 摘要:DCS系统在火电厂发电机组控制中的应用已近二十来年,而且正在越来越多地得到应用。本文对DCS和发电厂的电气监控系统进行了初步的介绍,然后对其分别初步进行系统结构的设计。最后通过采用硬接线+现场总线的方式将电气监控系统接入DCS,初步设计了总体的用DCS实现发电厂电气监控的结构方案。 关键词:DCS 发电厂电气监控 一、DCS的简介 集散控制系统(DCS,Distributed Control System)是相对于计算机集中控制系统而言的计算机控制系统,它是在对计算机局域网的研究基础上发展起来的,是过程控制专家们借用计算机局域网研究成果,把局域网变成一个实时性,可靠性要求很高的网络型控制系统,运用于过程控制领域。它集计算机、通信、图形显示和控制四大技术于一体的自动化综合系统,他基于控制功能分散、操作管理集中、信息共享的原则,具有运算能力强、实时、可靠和精度高、操作简单、检修维护方便、人机界面友善等的特点,可以方便地用于工业装置的生产控制和经营管理,在电力、化工、冶金等流程自动化领域的应用已经十分普及。近20多年来,由于微电子技术和计算机技术的飞速发展以及工业自动化要求的逐步提高,DCS经历了几个阶段的发展过程,结构日臻完善,技术更加成熟,已经成为生产自动化不可缺少的自控装置。DCS硬件方面广泛采用技术指标更先进的高档工业PC,有的甚至采用了RISC工作站;软件方面引入了通用的商业化软件包,系统互连方面采用国际标准的通用网络,逐步向信息集成的方向发展DCS系统在热工专业多年来已积累了丰富的经验,现行的“2000年燃煤示范电厂”自动化设计和目标也要求大型火力发电厂电气控制系统全面进入DCS,因此在火力发电厂中电气监控系统采用DCS已成为今后发展的方向。 二、发电厂电气系统监控系统(ECS)介绍 应用计算机、测量保护与控制、现场总线技术及通信技术,实现发电厂电气系统的运行、保护、控制、故障信息管理及故障诊断、电气性能优化等功能的综合自动化叫电气系统监控系统(ECS)。 电气系统监控的组成:从大的方面来划分,电气设备监控系统可以分为两大监控单元组:即发电机—变压器监控单元组和厂用电源监控单元组,而检测范围除包括此两大单元组外,还应包括单元机组直流系统、UPS和保安电源系统等。 两大监控单元组的功能 1、发电机—变压器监控单元组:发电机—变压器监控单元组应能实现程序控制和软手操控制,使发动机由零起升速、升压直到并网带初始负荷。根据实际运行水平和设备可靠性,机组顺控并网应该设置间断点,分步进行,即:第一步由DEH零起升速至额定;第二步,启动并网,主要完成并网前的准备工作,如投退相关保护压板,投入灭磁开关等;第三步,升压过程,DCS将投入AVR,通过AVR自动励磁调节器完成发电机零起升压至额定电压;第四步,完成并网,主要检查定转子的接地情况,投入ASS自动准同步装置(发电机与电网的同步是由同步装置自动实现的),在同步过程中通过DCS控制AVR、DEH,当同步条件满足时,向发电机断路器发合闸指令,在同步合闸成功、发电机电负荷达到一定值之后,DCS将高压厂用电系统快速从起/备变切换到高压工作厂变上。机组顺控解列操作大致与此相反:即机组正常停运时,DCS 控制降低机组负荷,当机组负荷降到某一定值时,DCS将高压厂用电系统快速切换到起/备变系统供电;当机组负荷继续降到零,跳开主开关,联跳汽轮机(主汽门关闭),发电机灭磁。 2、厂用电源监控单元组:厂用电源监控单元组主要包括高压厂用电源系统、低压厂用电源系统及保

智能控制在电厂热工自动化中的应用分析 时辉

智能控制在电厂热工自动化中的应用分析时辉 发表时间:2018-12-17T12:04:40.717Z 来源:《防护工程》2018年第23期作者:时辉 [导读] 随着电力行业的迅速发展,电厂智能控制与自动化水平也得到很大提升 济宁市技师学院山东济宁 272000 摘要:随着电力行业的迅速发展,电厂智能控制与自动化水平也得到很大提升。要想保障电力行业高效、生态、智能化的生产,以往的方法已经无法满足电厂热工自动化的发展步伐。因此,电厂应当了解智能控制的发展状况,并将先进的智能控制技术应用于电厂的生产中,以此促进电厂热工自动化更好的发展。 关键词:智能控制;电厂热工;自动化;应用 引言:随着科学技术的飞速发展,自动化、智能化控制技术的发展也极为迅速,并被广泛应用到各行业的发展中,对推动社会经济水平的提升有着巨大的作用。电厂作为经济市场发展的重要组成部分,更为人们日常生活提供稳定的电力能源,将先进的智能控制技术应用到电厂热工自动化系统中,对提升电厂热工自动化系统的控制水平有着巨大的作用。同时,在受到智能控制技术的影响下,电厂热工自动化系统的运行水平也飞速的提升,对提升电厂生产运营的经济性、效益性有着巨大的作用。 一、智能控制在电厂热工自动化中的作用 随着现代化工业的飞速发展,工业生产的规模逐渐扩大,生产设备的负担也越来越重,设备运行越来越频繁、越来越复杂,同时对系统控制方面也提高了标准。在生产过程中应用自动化,需要智能控制的有效支持,才能在真正意义上实现生产自动化。智能控制的发展越来越迅速,已经逐渐被更多的人认可与关注,运用智能控制,使固定数学模式与智能模式之间的转化得以实现。智能控制方法随着智能算法的不断应用而逐渐发展,像模糊控制、神经网络控制、群体智能控制等,这些智能控制系统的发展推动了控制系统的应用,使得高度不确定与复杂的控制系统能够有效、稳定地运行。智能控制能够有效地应用在电厂热工自动化中,使得电厂安全发展方面得到了有力的保障。与此同时,在电厂热工自动化中应用智能控制,能够有效地改进其自动化技术,促进电厂热工自动化技术迈向新的发展方向,同时使企业自身的自动化控制不断得到优化,促进电力行业智能化发展有序进行。 二、智能控制技术的应用方向 (一)自动保护 自动保护是在自动检测基础上延伸而来,自动保护能够实现还原与调整的数据。当生产条件无法恢复时,其可以通过自动检测来发现设备运行中存在的问题,并将这些数据传输到系统中心,并智能的实行暂停,防止由于设备存在问题而导致生产错误的现象发生,使电厂权益得到良好维护。 (二)自动检测 自动检测是采用自动化仪表对各种数据进行测量,之后自动检测热工参数,其中包括运行成分、温度、流量等,对机组的正确运行进行保障,实现系统自动运行的效果。同时,其本身也能够通过检测结果来调整参数,这对收益计算以及报警提供良好的条件。 (三)自动控制 由于电厂热工十分复杂,如果只是依靠传统的人工控制方法,将无法取得良好的运行效率,不仅增加了劳动强度,而且控制效果并不乐观,而智能控制在电厂热工自动化中的应用,能够发挥自动控制的作用,不仅能够使工厂流程更加规范,而且其能够有效规避外部不利因素带来的影响,使其自动调节设备,对保障设备的稳定运行奠定良好基础,有效促进电厂热工自动化的稳定发展。 三、智能控制在电厂热工自动化中的应用分析 (一)在锅炉燃烧中的应用 锅炉是电厂生产经营的关键设备,锅炉的燃烧效率也将直接影响到电厂的实际生产运用效率,因此,在电厂生产中必须重视锅炉的燃烧。在智能控制技术飞速发展下,将其应用到电厂锅炉燃烧中,实现对燃烧的智能化控制,对提升锅炉的燃烧效率有着极大的作用。以往锅炉燃烧过程的控制中存在控制精度偏低的现象,尤其是对锅炉燃烧温度的把控和煤耗的控制缺乏合理性,使得锅炉燃烧缺乏稳定性,而且锅炉燃烧的能源也不能得到充分的燃烧,产生一些燃料浪费的现象,影响到锅炉的燃烧的效率。而在智能控制技术的应用下,不仅可以实现锅炉燃烧的自动化更使其趋于控制智能化,充分解决锅炉燃烧不稳定性的现象,对整个燃烧系统的运行精确度有着良好的控制,能够使锅炉中的燃料充分燃烧,从而有效避免燃烧材料浪费的现象。另外,智能控制技术的应用能够有效提高电厂热工自动化系统的精度,我们都知道电厂锅炉在燃烧的过程中可能受到多方面因素的影响,使得锅炉在燃烧中出现不同程度的问题,而智能控制技术则能够有效检测到这些影响因素,并实施智能化控制,有效规避内部以及外部因素对锅炉燃烧的影响,而且在实际运行中能够及时发现锅炉燃烧的潜在风险因素,并将其信息传输至主控系统,并由工作人员制定出合理的解决措施,从而保证锅炉燃烧的安全性、稳定性、效率性[1]。 (二)在制粉系统中的应用 在智能控制技术应用之前,电厂的热工自动化系统运行面临诸多问题,尤其是中储式制粉系统的运行面临诸多瓶颈,使得制粉系统的运行效率低,影响到电厂热工效率,不利于电厂的可持续稳定发展。而在智能控制技术飞速发展下,将其应用到中储式制粉系统中,通过以复杂的数学模型作为基础,并实现对信号的接收和发送控制,更好地实现对电厂热工的智能控制。当然要提高智能控制的精确性,应有效减少模糊语言元素对现行规则数据产生的影响,切实提升电厂生产运行的经济效益,推动电厂的快速发展。当然,在智能控制技术不断发展下,针对电厂制粉系统的智能化控制也应进行不断的改进和创新,为电厂的可持续发展做好技术保障工作。 (三)在温度控制中的应用 通常在电厂锅炉运行的过程中,需要对锅炉的燃烧温度进行有效的控制,避免锅炉过热而对锅炉自身造成损害,同时也避免了锅炉温度过低而影响到燃料燃烧的充分性。在对以往电厂锅炉温度控制的调查研究中发现,由于控制技术不够先进影响到锅炉燃烧温度的控制效率。锅炉温度是衡量电厂热工自动化质量的重要指标之一,在智能控制技术的应用下,可以有效控制锅炉温度的变化,尤其是锅炉过热的现象,可以及时检测出其超标温度,并采取有效的降温措施,保证锅炉温度在正常范围内。另外,温度过低也会给予相应的提示,检查是

火力发电厂协调控制系统的分析

大型火电厂锅炉-汽轮机组协调控制系统的分析 上海发电设备成套设计研究所杨景祺 目前我国火电站领域的技术具有快速的发展,单元机组的容量已从300MW 发展到600MW,外高桥电厂单元机组容量已达到900MW。DCS系统在火电站的成功应用,大大提高了电站控制领域的自动化投入水平。本文主要对大型火电机组的两种主要炉型—汽包炉和直流炉机组的协调控制系统的设计机理进行概要性的说明。 1.协调控制系统的功能和主要含义 协调控制系统是我国在80年代引进的火电站控制理念,主要设计思想是将锅炉和汽机作为一个整体,完成对机组负荷、锅炉主汽压力的控制,达到锅炉风、水、煤的协调动作。对于协调控制系统而言包含三层含义:机组与电网需求的协调、锅炉汽轮机协调以及锅炉风、水、煤子系统的协调。 1.1.机组与电网需求的协调 机组与电网需求的协调主要是机组最快的响应电网负荷的要求,包括了电网AGC控制和电网一次调频控制两个方面。目前华东电网已实现了电网调度对电厂机组的负荷调度和一次调频控制。 1.2.锅炉汽轮机的协调 锅炉汽轮机的协调被认为是机组的协调,主要是协调控制锅炉与汽轮机,提高机组对电网负荷调度的响应性和机组运行的稳定性。从协调控制系统而言,对汽包锅炉和直流锅炉都具有相同的控制概念,但由于两种炉型在汽水循环上有很大的差别,导致控制系统具有很大的差别。 1.3.锅炉协调 锅炉协调主要考虑锅炉风、水、煤之间的协调。 2.汽包锅炉机组的协调控制系统 汽轮机、锅炉协调控制系统概念的引出,主要在于汽轮机和锅炉对于机组的负荷与压力具有完全不同的控制特性,汽轮机以控制调门开度实现对压力、负荷的调节,具有很快的调节特性,而锅炉利用燃料的燃烧产生的热量使给水流量变为蒸汽,其控制燃料的过程取决于磨煤机、给煤机、风机

电厂辅助车间控制方式比较与选择

电厂辅助车间控制方式比较与选择-机械制造论文 电厂辅助车间控制方式比较与选择 孙晓红 (中国能源建设集团广东省电力设计研究院有限公司,广东广州510663)摘要:针对当前电厂建设特点,对辅助车间控制系统及其辅助系统控制网(BOP)选择DCS还是PLC技术进行比较,并提出建议。 关键词:辅助车间;控制方式;DCS;PLC;方案比较 1DCS及PLC介绍 近年来,随着分散控制系统DCS的价格走低,越来越多的电厂开始采用分散控制系统来实现辅助车间的控制。DCS为分散控制系统(DISTRIBUTEDCONTROLSYSTEM)的英文简称。它以屏幕显示、计算机技术、控制技术和网络通信技术为基础,突出数据共享、控制功能分散、危险分散、管理和显示集中的设计理念。DCS控制器内部固化有多任务按优先级抢占方式调度的实时操作系统。在每一调度周期,只有当前申请运行的最高优先级任务可以获得CPU控制权,并投入运行。更高优先级任务可以打断较低优先级任务的运行,抢占CPU控制权。 PLC是模仿原继电器控制原理发展起来的,一个PLC控制器可以控制若干个顺序控制任务同时运行。PLC每完成一次全部顺序任务程序步,称为一个扫描周期,其扫描周期在1ms到几十毫秒之间。 2辅助车间控制系统采用PLC或DCS方案比较 2.1DCS的多任务运行环境更适合电厂应用 DCS和PLC的任务调度方式不同,DCS的多任务运行环境更适合电厂应用。

PLC控制器对突发事件的实时响应能力不如DCS高,其采用固化的、按预先设定的步序和循环调度的方式来保证系统运行的高可靠性。当CPU负荷较大时,PLC往往不能及时响应通信请求。且随着PLC的工作负荷增加,其实时性迅速下降。 DCS的特点是系统实时响应能力强,但因其实时操作系统内部任务调度和共享资源管理复杂,系统理论可靠性相对PLC略低。但多年来投运的机组证明DCS 实时操作系统及应用软件已经成熟,系统可靠性不亚于PLC,而其固有的强大多任务实时响应能力相比PLC更加适合于工业控制应用。 随着竞价上网、大客户直供电的推行,为确保供电质量和提高经济性,对辅助车间控制系统的实时性要求迅速提高,要求各相关控制系统的数据交换能及时、完整,对控制设备操作灵敏、反应迅速、处理正确、纪录准确,常规PLC控制器已难以保证控制系统的实时响应能力。 2.2系统冗余能力比较 冗余配置技术在DCS中得到充分体现,其部件的冗余配置价廉便捷,配置时通常包含操作员站、服务器、控制器、网络、电源、模件等主要部分。由于传统使用习惯和技术原因,PLC控制器较少采用冗余配置。 系统冗余是提高控制设备可靠性,使其实现无人值守、长期自动运行的重要手段。采用DCS技术,能真正实现系统冗余,从而降低系统运行成本。 2.3DCS结构更适合电厂辅机操作控制 DCS结构更加适合地域分散的电厂辅机操作控制,过程控制站往往被设计成可以远程/就地安装使用,可以抵御更加恶劣的运行环境,如过程控制站控制器和I/O模件被密封封装,没有外露的电子元器件。

发电厂DCS控制系统解决方案

循环流化床锅炉是被国际公认的高效、低污染的清洁燃烧技术,是国家重点鼓励和发展的环保节能项目。该锅炉具有燃烧效率高,负荷调节范围大,无需加装脱硫、脱硝装置即可实现90%脱硫率,满足环保要求,以经济的方式解决大气污染问题,而且煤种适应性广,排出的灰渣活性好,容易实现综合利用。 目前国内300MW等级循环流化床锅炉消化引进阿尔斯通技术,和常规煤粉锅炉相比主要在燃烧系统方面存在差异其具有如下特点: ?通常锅炉四角分别布置4个返料器和4个外置流化床,外置床中布置了中温过热器,低 温过热器和高温再热器等锅炉受热面。 ?锅炉左右两侧配有风道燃烧器,每侧风道燃烧器含有两支油枪,床上左右两侧各配有 4支床上油枪。 ?风烟系统中一次风作为主要流化风,二次风分上中下分级送风助燃,多路流化风对返 料器、外置床等受热室起到流化作用。 ?风烟系统中灰循环的合理建立是锅炉稳定燃烧的重要前提,也是控制床温、再热汽温 的基础。 ?由于循环流化床锅炉的复杂性,锅炉炉膛安全监测系统和常规煤粉炉有较大差别,包 含锅炉跳闸BT、送风跳闸AT和主燃料跳闸MFT三个主要跳闸信号。 ?由于循环流化床锅炉的大滞后特性,自动控制难点在协调控制,床温控制、床压控制、 过热汽温控制和再热汽温控制。 ?对于循环配套直接空冷系统,直接空冷的控制关键在于风机转速主指令控制,即如何 设定好背压是一个关键,既能够考虑到汽轮机效率,又能考虑到风机电耗率,达到一个最佳经济性指标,同时兼顾到低温防冻保护。 图1?1 循环流化床机组示意图 1.2配置方案 蒙西DCS项目由DAS、FSSS、SCS、MCS、DEH、ECS、ACC等部分组成,总点数约20000点,采用TPS系统,总配置单元机组配置控制器18×2对,公用系统配置控制器2对,ACC

相关文档
最新文档