Cems环保数据折算公式

Cems环保数据折算公式
Cems环保数据折算公式

Cems环保数据折算公式

流速 Vs = Kv * Vp 其中

Vs 为折算流速

Kv为速度场系数 Vp 为测量流速粉尘

1 粉尘干基值 DustG = Dust / ( 1 – Xsw / 100 ) 其中 DustG 为粉尘干基值 Dust 为实测的粉尘浓度值 Xsw 为湿度

2 粉尘折算

DustZ = DustG * Coef 其中 DustZ 为折算的粉尘浓度值 DustG 为粉尘干基值

Coef 为折算系数,它的计算方式如下: Coef = 21 / ( 21 - O2 ) / Alphas 其中

O2 为实测的氧气体积百分比。

Alphas 为过量空气系数(燃煤锅炉小于等于45.5MW折算系数为1.8; 燃煤锅炉大于45.5MW折算系数为1.4; 燃气、燃油锅炉折算系数为1.2)

3粉尘排放率

DustP = DustG * Qs / 1000000 其中 DustP 为粉尘排放率 Dust 为粉尘干基值

Qs 为湿烟气流量,它的计算方式如下: Qs = 3600 * F * Vs 其中 Qs 为湿烟气流量 F 为测量断面面积 Vs 为折算流速 SO2

1 SO2干基值SO2G = SO

2 / ( 1 – Xsw / 100 ) SO2G 为SO2干基

值 SO2 为实测SO2浓度值 Xsw 为湿度

2 SO2折算 SO2Z = SO2G * Coef 其中 SO2Z 为 SO2折算率 SO2G 为SO2干基值 Coef 为折算系数,具体见粉尘折算

3 SO2排放率 SO2P = SO2G * Qsn / 1000000 其中 SO2P 为SO2排放

率 SO2G 为SO2干基值

Qsn 为干烟气流量,它的计算方式如

下: Qsn = Qs * 273 / ( 273 + Ts ) * ( Ba + Ps ) / 101325 * ( 1 – Xsw / 10

0 )

其中 Qs 为湿烟气流量 Ts 为实测温度 Ba 为大气压力 Ps 为烟

气压力 Xsw 为湿度 NO

1 NO干基值 NOG = NO / ( 1 – Xsw / 100 ) 其中 NOG 为NO干基

值 NO 为实测NO浓度值 Xsw 为湿度

2 NO折算 NOZ = NOG * Coef 其中 NOZ 为 NO折算率 NOG 为NO

干基值 Coef 为折算系数,具体见粉尘折算

3 NO排放率 NOP = NOG * Qsn / 1000000 其中 NOP 为NO排放率

气体摩尔体积

单位物质的量的理想气体所占的体积叫做气体摩尔体积。相同体积的气体其含有的粒子数也相同。

气体摩尔体积不是固定不变的,它决定于气体所处的温度和压强。如在25度101KPa时气体摩尔体积为24.5L/mol。

定义:在相同的温度和压强下,1mol任何气体所占的体积在数值

上近似相等。人们将一定的温度和压强下,单位物质的量的气体所占的体积叫做气体摩尔体积。

公式:n=m/M=N/NA=V/Vm

定义:一单位物质的量(1mol)的气体所占的体积,叫气体摩尔体积。

使用时应注意:

①必须是标准状况(0℃,101kPa)。在高中化学学习中取

22.4L/mol。

②"任何理想气体"既包括纯净物又包括气体混合物。

③22.4升是个近似数值。

④单位是L/mol,而不是L。

⑤决定气体摩尔体积大小的因素是气体分子间的平均距离及气体的物质的量;影响因素是温度,压强。

⑥在标准状况下,1mol H2O的体积也不是22.4L。因为,标准状况下的H2O是冰水混合物,不是气体。

⑦气体摩尔体积通常用Vm表示,计算公式n=V/Vm,Vm表示气体摩尔体积,V表示体积,n表示物质的量。

⑧标况下,1mol的任何气体的体积约是22.4L,达到气体摩尔体积的气体物质的量一定为1mol。

ppm是体积浓度. 摘要:气体检测浓度单位ppm与毫克/立方米的换算关系对环境大气(空气)中污染物浓度的表示方法有两种:质量浓度表示法:每立方米空气中所含污染物的质量数,即mg/m3 体积浓度表示法:一百万体积的空气中所含污染物的体积数,即ppm 大部分气体检测仪器测得的气体浓度都是体积浓度(ppm)。而按我国规定,特别是环保部门,则要求气体浓度以质量浓度的单位(如:mg/m3)表示,我们国家的标准规范也都是采用质量浓度单位(如:mg/m3)表示。这两种气体浓度单位mg/m3与ppm有何关系呢?其间如何换算?使用质量浓度单位(mg/m3)作为空气污染物浓度的表示方法,可以方便计算出污染物的真正量。但质量浓度与检测气体的温度、压力环境条件有关,其数值会随着温度、气压等环境条件的变化而不同;实际测量时需要同时测定气体的温度和大气压力。而在使用ppm作为描述污染物浓度时,由于采取的是体积比,不会出现这个问题。浓度单位ppm与mg/m3的换算:按下式计算:

mg/m3=M/22.4·ppm·[273/(273+T)]*(Ba/101325)上式中:M----为气体分子量ppm----测定的体积浓度值T----温度Ba----压力

水文地质参数计算公式

8.1 一般规定 8.1.1 水文地质参数的计算,必须在分析勘察区水文地质条件的基础上,合理地选用公式(选用的公式应注明出处)。 8.1.2 本章所列潜水孔的计算公式,当采用观测孔资料时,其使用范围应限制在抽水孔水位下降漏斗坡度小于1/4处。 8.2 渗透系数 8.2.1 单孔稳定流抽水试验,当利用抽水孔的水位下降资料计算渗透系数时,可采用下列公式: 1 当Q~s(或Δh2)关系曲线呈直线时, 1)承压水完整孔: (8.2.1-1) 2)承压水非完整孔: 当M>150r,l/M>0.1时: (8.2.1-2) 或当过滤器位于含水层的顶部或底部时: (8.2.1-3)

3)潜水完整孔: (8.2.1-4) 4)潜水非完整孔: 当>150r,l>0.1时: (8.2.1-5) 或当过滤器位于含水层的顶部或底部时: (8.2.1-6)式中K——渗透系数(m/d); Q——出水量(m3/d); s——水位下降值(m); M——承压水含水层的厚度(m); H——自然情况下潜水含水层的厚度(m); h——潜水含水层在自然情况下和抽水试验时的厚度的平均值(m); h——潜水含水层在抽水试验时的厚度(m); l——过滤器的长度(m); r——抽水孔过滤器的半径(m);

R——影响半径(m)。 2 当Q~s(或Δh2)关系曲线呈曲线时,可采用插值法得出Q~s 代数多项式,即: s=a1Q+a2Q2+……a n Qn (8.2.1-7) 式中a1、a2……a n——待定系数。 注:a1宜按均差表求得后,可相应地将公式(8.2.1-1)、(8.2.1-2)、(8.2.1-3)中的 Q/s和公式(8.2.1-4)、(8.2.1-5)、(8.2.1-6)中的以1/a1代换,分别进行计算。 3 当s/Q (或Δh2/Q)~Q关系曲线呈直线时,可采用作图截距法求出a1后,按本条第二款代换,并计算。 8.2.2 单孔稳定流抽水试验,当利用观测孔中的水位下降资料计算渗透系数时,若观测孔中的值s(或Δh2)在s(或Δh2)~lgr关系曲线上能连成直线,可采用下列公式: 1 承压水完整孔: (8.2.2-1) 2 潜水完整孔: (8.2.2-2) 式中s1、s2——在s~lgr关系曲线的直线段上任意两点的纵坐标值(m); ——在Δh2~lgr关系曲线的直线段上任意两点的纵坐标值(m2); r1、r2———在s(或Δh2)~lgr关系曲线上纵坐标为s1、s2(或)的两点至抽水孔的距离(m)。

线路参数计算(公式)

参数计算(第一版) 1.线路参数计算内容 1.1已知量: 线路型号(导线材料、截面积mm 2 )、长度(km)、排列方式、线间距离(m)、外径(mm)、分裂数、分裂距(m)、电压等级(kV)、基准电压U B (kV, 母线电压作为基准电压)、基准容量S B (100MVA)。 1.2待计算量: 电阻R(Ω/km)、线电抗X(Ω/km)、零序电阻R0(Ω/km)、零序电抗X0(Ω/km)、对地电纳B(S/km)、对地零序电纳B0(S/km)。 1.3计算公式: 1.3.1线路电阻 R=ρ/S (Ω/km) R*=R 2B B U S 式中 ρ——导线材料的电阻率(Ω·mm 2 /km); S ——线路导线的额定面积(mm 2)。 1.3.2线路的电抗 X=0.1445lg eq m r D +n 0157 .0(Ω/km) X*=X 2B B U S 式中 m D ——几何均距,m D =ac bc ab D D D (mm 或cm,其单位应与eq r 的单位相同); eq r ——等值半径, eq r =n n m rD 1 (mm,其中r 为导线半径); n ——每个导线的分裂数。 1.3.3零序电阻 R0=R+3R g (Ω/km)

R0*=R0 2B B U S 式中 R g ——大地电阻, R g =π2×10-4×f =9.869×10-4 ×f (Ω/km)。在f =50Hz 时, R g =0.05Ω/km 。 1.3.4零序电抗 X0=0.4335lg s g D D (Ω/km) X0*=X0 2B B U S 式中 g D ——等值深度, g D = γ f 660,其中γ为土壤的电导率,S/m 。当土壤电导率不 明确时,在一般计算中可取g D =1000m 。 s D ——几何平均半径, s D =32 m D r '其中r '为导线的等值半径。若r 为单根导 线的实际半径,则对非铁磁材料的圆形实心线,r '=0.779r ;对铜或铝的绞线,r '与绞线股数有关,一般r '=0.724~0.771r ;纲芯铝线取 r '=0.95r ;若为分裂导线,r '应为导线的相应等值半径。m D 为几何均 距。 1.3.5对地电钠 B= 610lg 58 .7-?eq m r D (S/km) B*=B B B S U 2 式中 m D ——几何均距,m D =ac bc ab D D D (mm 或cm,其单位应与eq r 的单位相同); eq r ——等值半径, eq r =n n m rD 1 -(其中r 为导线半径);

污染源自动检测设备比对监测技术规定

污染源自动监测设备比对监测技术规定 (试行) 中国环境监测总站 2010年8月

目录 1 适用范围 (1) 2 引用标准 (1) 3 术语和定义 (2) 3.1 水污染源自动监测设备 (2) 3.2 固定污染源自动监测设备 (2) 3.3 参比方法 (2) 3.4 比对监测 (2) 4 比对监测条件 (2) 5 水污染源自动监测设备比对监测 (2) 5.1比对监测内容 (2) 5.2 比对监测频次 (2) 5.3 比对监测方法 (3) 5.4 比对监测结果评价 (5) 5.5 质量保证 (6) 5.6 比对监测报告格式及内容 (7) 6 固定污染源烟气自动监测设备比对监测 (8) 6.1 比对监测内容 (8) 6.2 比对监测频次 (8) 6.3 比对监测方法 (8) 6.4 比对测试 (9) 6.5 核查参数 (9) 6.6 比对监测结果评价 (11) 6.7 质量保证 (14) 6.8 比对监测报告内容及格式 (15) 附录1(资料性附录) (17) 附录2(资料性附录) (21) 附录3(资料性附录) (23)

污染源自动监测设备比对监测是指采用参比(标准)方法,与自动监测法在企业正常生产工况下实施同步采样分析,验证自动监测设备监测结果准确性的监测行为。 比对监测是判断自动监测数据准确性和有效性的重要依据。为进一步规范污染源自动监测设备比对监测,统一比对监测技术要求,依据《主要污染物总量减排监测办法》(国发[2007]36号)、《污染源自动监控管理办法》(环保总局令第28号)、《国家重点监控企业自动监测数据有效性审核办法》(环发[2009]88号)等有关规定制定本技术规定。 1适用范围 本技术规定规定了废水自动监测设备、固定污染源烟气连自动监测设备(CEMS)比对监测的内容、频次、方法、结果评价以及质量保证和质量控制等,适用于环境监测部门对废水污染源、烟气污染源自动监测设备的日常比对监测。污染源自动监测设备的验收监测仍按有关规定和技术规范执行。 2 引用标准 GB/T16157-1996《固定污染源排气中颗粒物测定与气态污染物采样方法》 HJT353-2007 《水污染源在线监测系统安装技术规范试行》 HJ/T354-2007 《水污染源在线监测系统验收技术规范(试行)》 HJ/T355-2007 《水污染源在线监测系统运行与考核技术规范(试行)》 HJ/T356-2007 《水污染源在线监测系统数据有效性判别技术规范(试行)》HJ/T 91-2002 《地表水和污水监测技术规范》 HJ 494-2009 《水质-采样技术指导》 HJ/T75-2007 《固定污染源烟气排放连续监测技术规范(试行)》 HJ/T76-2007 《固定污染源烟气排放连续监测系统技术要求及检测方法(试行)》HJ/T 397-2007 《固定源废气监测技术规范》 HJ/T 373-2007 《固定污染源监测质量保证和质量控制技术规范(试行)》

CEMS比对监测相关问题探讨

CE MS 比对监测相关问题探讨 裴冰,万方 (上海市环境监测中心,上海 200030) 摘 要:简述了CE M S 比对监测的定义及法规背景,指出比对监测在CE MS 运营管理中起的重要作用,提出比对监测对采样工况、位置及时间的要求,以及烟气及烟尘测试中需注意事项。 关键词:固定污染源;烟气;在线监测系统;比对监测 中图分类号:X851 文献标识码:B 文章编号:10062009(2010)02-0008-03 D iscussi on s on Rel a ti ve Issues of Com para ti ve M on itor i n g for C E M S PE IB ing,WAN Fang (Shangha i Environm enta l M onitoring Center ,Shanghai 200030,China ) Abstract:The definiti on and regulati on backgr ound of co mparative monit oring for CE MS were described .It was i m portant for the comparative monit oring t o run and manage CE MS .Relative issues of comparative monit o 2ring were discussed such as require ments of working conditi on,sa mp ling l ocati on and sa mp ling ti m e as well as the need t o pay attenti on t o flue gas and dust test . Key words:Stati onary s ource;Flue gas;CE MS;Comparative monit oring 收稿日期:2009-12-31;修订日期:2010-02-01 作者简介:裴冰(1982—),男,河南南阳人,助理工程师,硕士,从事污染源监测工作。 上海市已有200余套固定污染源烟气在线监测系统(CE MS,Continues Em issi on Monit oring Sys 2te m )安装完毕并通过验收,进入日常运营管理阶 段。上海市环境监测中心近年来承担了大量CE MS 比对监测工作。比对为CE MS 运行正常与 否提供判断依据。1 CE MS 比对监测定义 文献[1]的比对监测定义为:用参比方法对日常运行的烟气CE MS 技术性能指标进行不定期的抽检。其中参比方法指国家或行业发布的标准方法。按照不同的用途,比对监测可分为验收比对监测和监督比对监测两类。其中,验收比对监测前提条件为:①具有国家环保部环境监测仪器质量监督检验中心出具的适用性检测合格报告;②必须按照文献[1]的有关要求进行72h 的调试检测。监督比对监测的前提条件为烟气CE MS 已通过环保部门验收,并已纳入环保部门在线监控系统,属于常规管理范畴。 2 CE MS 法规背景 《污染源自动监控管理办法》规定“环境监测机构负责对自动监控设备进行定期比对监测,提出自动监控数据有效性的意见”。《国家监控企业污染源自动监测数据有效性审核办法》(简称《办 法》)和《国家重点监控企业污染源自动监测设备监督考核规程》规定“国控企业污染源自动监测数据有效性审核是指环保部门对国控企业污染源自动监测设备定期进行监督考核,确定其自动监测设备正常运行”。按文献[1]和文献[2]的规定,在固定污染源烟气排放CE MS 的适用性检测、技术验收、比对监测中,国家专门机构负责适用性检测,有资质的第三方技术机构进行技术验收。对日常运行的CE MS,文献[1]规定当地环境保护技术主管部门,每年不定期地对其技术性能指标至少进行1次比对监测。《办法》中补充规定对国控企业污染源自动监测设备日常运行每季度考核1次,若比对 — 8—第22卷 第2期环境监测管理与技术2010年4月

线路参数计算(公式)培训资料

线路参数计算(公式)

参数计算(第一版) 1.线路参数计算内容 1.1已知量: 线路型号(导线材料、截面积mm 2)、长度(km)、排列方式、线间距离(m)、外径(mm)、分裂数、分裂距(m)、电压等级(kV)、基准电压U B (kV, 母线电压作为基准电压)、基准容量S B (100MVA)。 1.2待计算量: 电阻R(Ω/km)、线电抗X(Ω/km)、零序电阻R0(Ω/km)、零序电抗X0(Ω/km)、对地电纳B(S/km)、对地零序电纳B0(S/km)。 1.3计算公式: 1.3.1线路电阻 R=ρ/S (Ω/km) R*=R 2B B U S 式中 ρ——导线材料的电阻率(Ω·mm 2/km); S ——线路导线的额定面积(mm 2)。 1.3.2线路的电抗 X=0.1445lg eq m r D +n 0157.0(Ω/km) X*=X 2B B U S 式中

m D ——几何均距,m D =ac bc ab D D D (mm 或cm,其单位应与eq r 的单位 相同); eq r ——等值半径, eq r =n n m rD 1-(mm,其中r 为导线半径); n ——每个导线的分裂数。 1.3.3零序电阻 R0=R+3R g (Ω/km) R0*=R0 2B B U S 式中 R g ——大地电阻, R g =π2×10-4×f =9.869×10-4×f (Ω/km)。在f =50Hz 时,R g =0.05Ω/km 。 1.3.4零序电抗 X0=0.4335lg s g D D (Ω/km) X0*=X0 2B B U S 式中 g D ——等值深度, g D =γf 660 ,其中γ为土壤的电导率,S/m 。当土壤电 导率不明确时,在一般计算中可取g D =1000m 。 s D ——几何平均半径, s D =32m D r '其中r '为导线的等值半径。若r 为单根导线的实际半径,则对非铁磁材料的圆形实心线,r '=0.779r ;对铜或铝的绞线,r '与绞线股数有关,一般

(完整版)岩土参数计算

n 1 1i m i n ??==∑ 根据《岩土工程勘察规范》(GB50021-2001),表征岩土工程性质的主要参数的特征值: ⑴ 岩土参数的算术平均值: 根据公式:∑=Φ=Φn i i n m 1 1 (3-1) ⑵ 岩土参数的标准差: 根据公式:???????????? ??--= ∑∑=n i i i f n n 122111φφσ (3-2) ⑶ 岩土参数的变异系数: 根据公式:m f φσδ= (3-3) 上几式中: Φm -算术平均值,σf -标准差,δ-变异系数 Φi ——岩土的物理力学指标数据;n-参加统计的数据个数。 ① 先用公式(3-1)和《物理力学指标统计表》求含水比αw 、液塑比Ir 的平均值a w 、I r ; ② 根据a w ,I r 查《建筑地基基础设计规范》(GB50007-2002)(用线性插值法) 得f 0; ③ 根据公式(3-2)和(3-3)分别求w a , Ir 的标准差f σ和变异系数δ; ④ 求综合变异系数δ和回归修正系数f ψ,查表得第二指标的折算系数ξ,根据公式:21ξδδδ+=得δ,根据公式:δψ???? ??+-=2918.7884.21n n f 得f ψ。 ④ 根据公式: f ak f f ψ?=0求承载力ak f 。

预估单桩竖向承载力如下: ⑴ 静压预制桩:据勘察成果,按预制桩规格为450mm ×450mm 的方桩,桩端进入圆砾⑥层2m 。取ZK10号钻孔估算静压预制桩单桩竖向极限承载力Q u =4651.3kN (《高层建筑岩土工程勘察规程》(JGJ72—2004)中式 D.0.1 p ps i sis u A q l q u Q ?+?=∑s β) 。 单桩竖向承载力特征值R a = Q u /K=2326kN (K=2) 最终单桩竖向承载力应通过现场静载荷试验确定。 ⑵ 钻(冲)孔灌注桩:据勘察成果,桩径按2000mm ,桩端进入泥岩⑦层1.5m 。取ZK10号钻孔估算单桩竖向极限承载力Q u =195722kN (《高层建筑岩土工程勘察 规程》(JGJ72—2004)中8.3.12条∑∑==++=n i n i p pr ri sir r i sis s A q h q u l q u Q 11u )。 单桩竖向承载力特征值R a = Q u /K=9786kN (K=2) 根据压缩试验结果,计算各级压力下的ei ,计算压缩系数和压缩模量。 根据剪切试验结果,绘制τ-σ曲线,直接求得内摩擦角φ、粘聚力C 直剪试验:用直接剪切仪来测定土的抗剪强度的试验,直剪仪一般分为:应力式和应变式,一般我们国家应用较多的都是应变式的。根据加荷的速率的快慢将直剪试验划分为:1、快剪,本方法适用于渗透系数小于10的-6次方的细粒土,试验时在施加垂直力以后,拔去固定销钉,立即以0.8mm/min 的剪切速度进行剪切,使试样3~5分钟剪破,试样每产生0.2~0.4mm 剪切位移时,记录测力计和位移读数,直到出现峰值或者剪切位移达到4mm 记录破坏值,试样得的抗剪强度为快剪强度。2、固结快剪,本方法适用于渗透系数小于10的-6次方的细粒土,试验时在施加垂直力后,每小时读一次变形,直至固结稳定,然后拔去销钉,进行与快剪同样的剪切过程,所得抗剪强度为固结快剪强度。慢剪:试验时加垂直力后,待固结稳定后,再拔去销钉,以小于0.2mm/min 的速度使试样充分在排水条件下剪切,得到的是慢剪强度。对于三种试验所得结果:粘聚力快剪>固快>慢剪,内摩擦角快剪<固快<慢剪 三轴试验:直接量测的是试样在不同恒定围压下的抗压强度,然后根据摩尔库伦原理推求土的抗剪强度。三轴根据固结和排水条件分为:不固结不排水(uu )固结不排水(Cu )固结排水(CD ),在进行三种不同方法试验时,都要先使试样在一定的围压下固结稳定,若是UU 就是在不排水条件下围压增加一个增量,然后在不允许水进出的条件下逐渐施加轴向力q 直至试样破坏;若是CU 在允许排水条件下围压增加一个增量固结稳定,然后再不允许水进出的条件下逐渐施加轴向力直至试样破坏;若是CD 在允许排水条件下围压增加一个增量固结稳定,然后在排水条件下逐渐施加轴向力直至试样破坏。所以固结不固结是相对于围压增量来说的,排水不排水是相对于轴向力来说的。 根据压缩试验结果,计算各级压力下的ei ,计算压缩系数和压缩模量 压缩系数:a= (e1-e2)/(p2-p1) 压缩模量:ES1-2=(1+e1/a

齿轮地基本全参数和计算公式

87一基本参数 表示;齿顶圆:轮齿齿顶所对应的圆称为齿顶圆,其直径用d 齿根圆:齿轮的齿槽底部所对应的圆称为齿根圆,直径用df表示。 齿厚:任意直径dk的圆周上,轮齿两侧齿廓间的弧长称为该圆上的齿厚,用sk表示;齿槽宽:任意直径dk的圆周上,齿槽两侧齿廓间的弧长称为该圆上的齿槽宽,用ek表示;齿距:相邻两齿同侧齿廓间的弧长称为该圆上的齿距,用表示。设z为齿数,则根据齿距定义可,故。 齿轮不同直径的圆周上,比值不同,而且其中还包含无理数;p k也是不等的。又由渐开线特性可知,在不同直径的圆周上,齿廓各点的压力角 分度圆:为了便于设计、制造及互换,我们把齿轮某一圆周上的比值规定为标准值(整数或较完整的有理数),并使该圆上的压力角也为标准值,这个圆称为分度圆,其直径以d 表示。 表示,我国国家标准规定的标准压力角为20°压力角:分度圆上的压力角简称为压力角,以 模数:分度圆上的齿距p对p的比值称为模数,用m表示,单位为mm,即。模数是齿轮的主要参数之一,齿轮的主要几何尺寸都与模数成正比,m越大,则p越大,轮齿就越大,轮齿的抗弯能力就越强,所以模数m又是轮齿抗弯能力的标志。 顶隙:顶隙c=c*m是指一对齿轮啮合时,一个齿轮的齿顶圆到另一个齿轮的齿根圆的径向距离。顶隙有利于润滑油的流动。 表示;齿顶高:轮齿上介于齿顶圆和分度之间的部分称为齿顶,其径向高度称为齿顶高,用h 齿根高:轮齿上介于齿根圆和分度之间的部分称为齿根,其径向高度称为齿根高,用hf 表示 标准齿轮: 标准齿轮:分度圆上齿厚与齿槽宽相等,且齿顶高和齿根高为标准值的齿轮为标准齿轮。因此,对于标准齿轮有

模数和齿数是齿轮最主要的参数。 在齿数不变的情况下,模数越大则轮齿越大,抗折断的能力越强,当然齿轮轮坯也越大,空间尺寸越大; 模数不变的情况下,齿数越大则渐开线越平缓,齿顶圆齿厚、齿根圆齿厚相应地越厚; 齿轮计算公式 节圆柱上的螺旋角:L d /tan 00?=πβ 基圆柱上的螺旋角:n g αββcos sin sin 0?= 齿厚中心车角:Z θ/ 90?= 销子直径:m 728.1dp ?= 中心距离增加系数:)1cos /(cos )2/)((y b 021-?+=ααZ Z

线路参数计算公式

线路参数计算公式 The Standardization Office was revised on the afternoon of December 13, 2020

参数计算(第一版) 1.线路参数计算内容 已知量: 线路型号(导线材料、截面积mm 2)、长度(km)、排列方式、线间距离(m)、外径(mm)、分裂数、分裂距(m)、电压等级(kV)、基准电压U B (kV, 母线电压作为基准电压)、基准容量S B (100MVA)。 待计算量: 电阻R(Ω/km)、线电抗X(Ω/km)、零序电阻R0(Ω/km)、零序电抗X0(Ω/km)、对地电纳B(S/km)、对地零序电纳B0(S/km)。 计算公式: 1.3.1线路电阻 R=ρ/S (Ω/km) R*=R 2B B U S 式中 ρ——导线材料的电阻率(Ω·mm 2/km); S ——线路导线的额定面积(mm 2)。 1.3.2线路的电抗 X= eq m r D +n 0157 .0(Ω/km) X*=X 2B B U S 式中

m D ——几何均距,m D =ac bc ab D D D (mm 或cm,其单位应与eq r 的单位 相同); eq r ——等值半径, eq r =n n m rD 1 -(mm,其中r 为导线半径); n ——每个导线的分裂数。 1.3.3零序电阻 R0=R+3R g (Ω/km) R0*=R0 2B B U S 式中 R g ——大地电阻, R g =π2×10-4×f =×10-4×f (Ω/km)。在f =50Hz 时, R g =Ω/km 。 1.3.4零序电抗 X0= s g D D (Ω/km) X0*=X0 2B B U S 式中 g D ——等值深度, g D = γ f 660,其中γ为土壤的电导率,S/m 。当土壤电 导率不明确时,在一般计算中可取g D =1000m 。 s D ——几何平均半径, s D =32 m D r '其中r '为导线的等值半径。若r 为单根导线的实际半径,则对非铁磁材料的圆形实心线, r '=r ;对铜或铝的绞线,r '与绞线股数有关,一般r '=~r ;纲

齿轮各参数计算公式知识讲解

齿轮各参数计算公式

13-1什么是分度圆?标准齿轮的分度圆在什么位置上? 13-2 一渐开线,其基圆半径r b = 40 mm ,试求此渐开线压力角 =20。处的半径r 和曲率半径p 的大小。 13-3有一个标准渐开线直齿圆柱齿轮,测量其齿顶圆直径 da = 106.40 mm ,齿数z=25,问是哪 一种齿制的齿轮,基本参数是多少? 13-4两个标准直齿圆柱齿轮,已测得齿数 z i = 22、z 2 = 98,小齿轮齿顶圆直径d ai = 240 mm ,大 齿轮全齿高h = 22.5 mm ,试判断这两个齿轮能否正确啮合传动 ? 名称 代号 计算公式 模数 m m=p/n =d/z=da/(z+2) (d 为分度圆直径 齿距 P p= n m=t d/z 齿数 z z=d/m=n d/p 分度圆直径 d d=mz=da-2m 齿顶圆直径 da da=m(z+2)=d+2m=p(z+2)/ n 齿根圆直径 df df=d-2.5m=m(z-2.5)=da-2h=da-4.5m 齿顶咼 ha ha=m=p/n 齿根高 hf hf=1.25m 齿高 h h=2.25m 齿厚 s s=p/2= n m/2 中心距 a a=(z1+z2)m/2=(d1+d2)/2 跨测齿数 k k=z/9+0.5 公法线长度 w w=m[2.9521(k-0.5)+0.014z] 模数齿轮计算公式 ,z 为齿数)

13-5有一对正常齿制渐开线标准直齿圆柱齿轮,它们的齿数为z i = 19、Z2 = 81,模数m= 5 mm,压力角 =20°若将其安装成a' = 250 mm的齿轮传动,问能否实现无侧隙啮合?为什么?此时的顶隙(径向间隙)C是多少? 13-6已知C6150车床主轴箱内一对外啮合标准直齿圆柱齿轮,其齿数Z1 = 21、Z2 = 66,模数m =3.5 mm,压力角 =20°正常齿。试确定这对齿轮的传动比、分度圆直径、齿顶圆直径、全齿高、中心距、分度圆齿厚和分度圆齿槽宽。 13-7已知一标准渐开线直齿圆柱齿轮,其齿顶圆直径d ai= 77.5 mm,齿数z1 = 29。现要求设计 一个大齿轮与其相啮合,传动的安装中心距a= 145 mm,试计算这对齿轮的主要参数及大齿轮的主 要尺寸。 13-8某标准直齿圆柱齿轮,已知齿距p= 12.566 mm,齿数z= 25,正常齿制。求该齿轮的分度圆直径、齿顶圆直径、齿根圆直径、基圆直径、齿高以及齿厚。 13-9当用滚刀或齿条插刀加工标准齿轮时,其不产生根切的最少齿数怎样确定?当被加工标准齿轮的压力角 =20°齿顶高因数h a* = 0.8时,不产生根切的最少齿数为多少? 13-10变位齿轮的模数、压力角、分度圆直径、齿数、基圆直径与标准齿轮是否一样? 13-11设计用于螺旋输送机的减速器中的一对直齿圆柱齿轮。已知传递的功率P= 10 kW,小齿轮由电动机驱动,其转速n l = 960 r/min, n2 = 240 r/min。单向传动,载荷比较平稳。 13-12单级直齿圆柱齿轮减速器中,两齿轮的齿数Z1 = 35、z2= 97,模数m= 3 mm,压力 = 20°齿宽b= 110 mm、b2= 105 mm,转速m= 720 r/min,单向传动,载荷中等冲击。减速器由电

RT工艺参数计算方法

RT 工艺关键参数计算方法 一 透照方式的选择原则 1优先选单壁透照。 2如照环焊缝应先选中心透照,其次偏心透照,再其次环焊缝单壁外透,再其次双 壁单影。 3如果是小径管的(直径小于100的)应选椭圆透照(T ≤8,g ≤D/4)或垂直透照(不 满足椭圆透照条件的)。 二透照焦距的选择 1 一般都用焦距700mm 2如是中心透照焦距为容器半径,如是偏心透照焦距为相应的机头到母材的距离。 3双壁单影时,将源点尽可能接近源外壁,以获得最大一次透照长度。即焦距为150+ 管直径长度。 三 透照次数和一次透照长度 透照次数应查标准D.1~D.6的透照次数表,但要先求出T/D0,和D0/F,带入表中。 一次透照长度=周长/透照次数 四 曝光时间 X 射线机 焦距为700mm 时曝光量A,AB 级为15mA.min ,B 级为20mA.min.,一般射线机电 流为5 mA ,所以曝光时间=15/5=3分钟(A,AB 级时)或=20/5=4分钟(B 级时)。 如果焦距不为700mm 时用公式22 21 2211F F t I t I =计算出曝光时间T2, 其中I 1T 1=15,F 1=700,I 2=5,把入,F 2带入公式得出新曝光时间T 2. 射线源的曝光时间为≥10倍送源往返时间。 五管电压的选择 先看曝光曲线图,如果曝光曲线图的焦距为700mm ,直接按曝光量和透照厚度查曝光曲线图得出管电压数值。 如果曝光曲线图的焦距为600 mm ,需按公式22 21 2211F F t I t I =求出新曝光量,把新 曝光量和透照厚度查曝光曲线图得出管电压数值。其中I 1T 1=15min 为老曝光量,I 2T 2为新曝光量。

有关计算公式及参数

EASE图说明和相关计算公式、参数及计算结果 一、相关参数确定 针对会堂扩声系统声学特性,采用世界上最先进声学计算机辅助设计软件 EASE(Electro Acoustic Simulator for Engineers)3.0版本进行设计及计算。其设计计算结果以声场分布彩色展示图的方式给出。通过EASE软件所计算的主要内容包括: 125~8000 赫兹 1/3 倍频程混响时间频率特性曲线; 125~8000赫兹 1/3 倍频程混响声声场声压级; 1000赫兹的快速传递指数( RASTI )。 通过计算可以直观地看到扩声系统声学特性指标的预期结果,对本工程具有良好的指导性。首先通过使用EASE软件,在计算机上按照会堂的建筑尺寸在计算机上建立仿真模型,以及确定相关参数。 1、混响时间参数:混响时间参数的确定依例是由业主方在项目设计时由设计单位提供,如业主未做建声方面的设计,确定混响时间则参照国家相关的标准,在EASE软件做模拟运算时手动锁定此值( RT LOCK),宝安行政中心会堂即是这种类型。在确定混响时间时锁定了125HZ~8000HZ 1/3 倍频程的 7 个频点,见下图。

2、输入EASE软件音箱电功率的确定:在整个音响系统正常运行,需要留一定的余量声压。一般选择 6db,那么从每只音箱的峰值功率向下推来得到 1/2 的 RMS 功率作为代入EASE的值(每下降 3db,减少一倍的功率)。 3、音箱基本参数的确定和直达声压计算:根据对会堂建筑尺寸计算,用于布置安装扬声器的声桥位置距后区观众席距离约24 米,声音的物理传输衰减约27.6db。按照语言和音乐兼用一级标准,要求观众席平均声压级≥98db,考虑系统的动态余量的峰值因素和有观众时的背景噪声级,系统余量应至少大于6db,主扬声器的最大输出声压应至少大于等于131db。 二、EASE图说明及计算结果 EASE进行设计及计算。其计算结果以声场分布彩色展示图的方式给出。首先在计算机上按照会堂的建筑尺寸在计算机上建立仿真模型。 三维模型图一

[整理]三相变压器的参数测定(实验报告里计算需要的各种公式).

三相变压器的参数测定 原理简述 变压器是用来变换交流电压和电流而传输交流电能的一种静止电器。变压器的工作原理是建立 在电磁感应原理基础之上的。变压器铁芯内产生的总磁通分为两个部分,其中主磁通是以闭 合铁心为路径,它同时匝链原、副绕组,分别感应电势,磁通是变压器传递能量的主要因素。还有另一部分磁通通过非磁性物质而形成闭合回路,变压器负载运行时,原、副方都存 在这部分磁通,分别用和表示。而变压器空载运行时仅原方有,这部分磁通属于 非工作磁通,其量值约占总磁通的,故把这部分磁通称为漏磁通。漏磁通和分别 单独匝链变压器的原绕组和副绕组,并在其中感应电势和。实际变压器中既有磁路问题又有电路问题,这样将会给变压器的分析、计算带来困难。为此,对变压器的电压、电流和电势的关系进行等值变换(即折算),可将同时具有电路和磁路的问题等值简化为单一的电路问题, 以便于计算。图4–1为双绕组变压器的“型”等值电路。变压器的参数即为图中的 等。对于三相变压器分析时化为单相,也使用图4–1的等值电路。因此,等值电路中所有参数包括各电压、电流、电势的值均为单相数值。变压器归算的基本方程式为: 式中

式(4–1)为原来的电压平衡方程式;式(4–2)为折算到原边的副边电压平衡式;式(4–3)为电流平衡方程式。 分析变压器性能的方法通常使用等效电路、方程式和相量图。一般若作定性分析,用相量图较方便;若作定量计算,则用等值电路较方便,故通常就是利用等效电路来求取变压器在不同负载时的效率、功率因数等指标的。 要得到变压器的等效电路,一般是通过变压器的空载实验和负载损耗实验(也叫短路实验),再经计算而得出其参数的。 由变压器空载实验,可以测出变压器的空载电流和铁心损耗,以及变压器的变比,再通过计算得到变压器励磁阻抗。空载时变压器的损耗主要由两部分组成,一部分是因为磁通交变而在铁心 中产生的铁耗,另一部分是空载电流在原绕组中产生的铜耗。由于空载电流数值很 小,此时铜耗便可以略去,而决定铁耗大小的电压可达到正常值,故近似认为空载损耗就是变压器的铁耗。空载实验为考虑安全起见,一般都在低压侧进行,若要得到折算到高压侧的值,还需乘以变比平方。 由变压器负载损耗实验可以测出变压器阻抗电压、短路电流和变压器铜损耗。再通过一些简单计算可求出变压器一次和二次侧绕组的电阻和漏电抗。负载损耗实验时的损耗也由两 部分组成,一部分是短路电流在一次和二次侧绕组中产生的铜耗,另一部 分是磁通交变而产生的铁耗。由于短路实验所加电压很低,因此这时铁心中磁通密度很低,故铁心损耗可以略去,而决定铜耗大小的电流可达正常值,所以近似认为负载损耗就是变压器铜耗。 三相变压器铭牌上的额定电压、和额定电流、分别指线电压和线电流的数值, 所以三相双绕组变压器的额定容量为。 实验四三相变压器的参数测定实验 一、实验目的 1.熟练掌握测取变压器参数的实验和计算方法。 2.巩固用瓦特表测量三相功率的方法。 二、实验内容

参数的计算公式

1、最大输入功率 η max max out in P P = 2、输入整流桥 电流方值根 ? cos .min max ac in prms U P I = 3、直流输入电压最大值 max max 2ac pk dc U U = 4、直流输入电压最小值(峰值) min min 2ac pk dc U U = 5、直流输入电压最小值 ripple pk dc dc U U U -=min min 6、输入电容放电时间 ??? ???? ?? ? ? ??? + =90arcsin 1.5min min pk dc dc d U U T 7、输入电容放电能量 d in in T P W .max = 8、输入电容容量 2 min 2min 2dc pk dc in in U U W C -= 9、直流输入电压最小值 in in pk dc dc C W U U 22 min min - 10、一次侧峰值电感电流 max min max .2D U P I dc in lpk = 11、一次侧电感电流均方值 3 . max ;D I I lpk rms = 12、一次电感

f I U D L lpk dc p ..min max (13)一次绕组匝数 L P A L Np = (14)二次绕组匝数 R FDIODE OUT P S U U U N N )(+?= (15)偏置绕组匝数 R FDIODE AUX P AUX U U U N N ) (+?= (16)核算一次电感 L P P A N L ?=2 (17)核算一次侧峰值电感电流 f L D U I P MAX DCMIN LPK ??= (18)核算最大磁通密度 e p LPK P A N I L B ??= max (19)核算气隙长度

环评中常用到计算公式

环评中常用到的计算公式 1、起尘量计算方法 (一)建设工地起尘量计算: ()?? ? ?????????-???? ?????=43653653081.0T w V s P E 式中:E —单辆车引起的工地起尘量散发因子,kg/km ; P —可扬起尘粒(直径<30um)比例数;石子路面为0.62,泥土路面为0.32; s —表面粉矿成分百分比,12%; V —车辆驶过工地的平均车速,km/h ; w —一年中降水量大于0.254mm 的天数; T —每辆车的平均轮胎数,一般取6。 (二)道路起尘量计算: ?? ? ???????=4139.0823.0000501.0T U V E 式中:E —单辆车引起的道路起尘量散发因子,kg/km ; V —车辆驶过的平均车速,km/h ; U —起尘风速,一般取5m/s ; T —每辆车的平均轮胎数,一般取6。 (三)一年中单位长度道路的起尘量计算: ()()l Q Q E A l P d D C Q A c A ?=??-??-??=-61024 式中:Q A —一年中单位长度道路的起尘量,t ; C —每小时平均车流量,辆/h ; D —计算的总天数,365天; d —一年中降水量大于0.254mm 的天数; P —道路级别系数,如内环线以内可取0.4,内外环线之间取0.8; Ac —消尘系数,如内环线以内可取0.4,内外环线之间取0.2; l —道路长度,km; Q —道路年起尘量,t 。 (四)煤堆起尘量计算:

?? ? ?????????????????????????=15255905.105.0f d D V E 式中:E —单辆车引起的煤堆起尘量散发因子,kg/km ; V —车辆驶过煤堆的平均车速,km/h ; d —每年干燥天数,d ; f —风速超过19.2km/h 的百分数。 (五) 煤堆起尘量计算: Q m =11.7U 2.45·S 0.345·e -0.5ω·e -0.55(W-0.07) 式中:Qm —煤堆起尘量,mg/s ; U-临界风速,m/s ,取大于5.5m/s ; S-煤堆表面积,m 2; ω-空气相对湿度,取60%; W-煤物料湿度,原煤6%。 (六)煤炭装卸起尘 煤炭在装卸过程中更易形成起尘,其起尘量与装卸高度H 、煤流柱半径R 、煤炭含水量W 、煤流柱中煤流密度D 、风速V 等有关,其中煤流柱密度是由装卸速度V 和装卸高度H 决定的。露天堆煤场装卸过程中形成扬尘的主要为自卸车、铲车装卸,装卸煤落差1.5m 左右。 煤炭装卸起尘量采用下式计算: α????=-i i w i ij f G H V Q 28.023.16.103.0λ ∑∑ ===n i ij m i Q Q 1 1 式中:Q ij —不同设备风速条件下的起尘量,kg/a ; Q —煤场年起尘量,kg/a ; H —煤炭装卸平均高度,m ; G i —某一设备年装卸煤量,t ; m —装卸设备种类; Q i —不同风速条件下的起尘量,kg/a ; G —煤场贮煤量,t ; V i —50米上空的风速,m/s ; W —煤炭含水量,%; f i —不同风速的频率;

相关文档
最新文档