随机模型

随机模型
随机模型

随机模型

在现实世界中, 不确定现象是普遍存在的. 例如, 漂浮在液面上的微小粒子不断地进行着杂乱无章运动, 粒子在任一时刻的位置是不确定的; 又如公共汽车站等车的人数在任一时刻也是不确定的, 因为随时都可能有乘客的到来和离去. 这类不确定现象, 表面看来无法把握, 其实, 在其不确定的背后, 往往隐藏着某种确定的概率规律, 因此, 以概率和数理统计为基础的随机模型就成为解决此类问题最有效的工具之一.

依随机规律是否随时间的变化而变化, 随机时模型可分为静态和动态两类, 前者只涉及到随机变量(向量)的概率分布及其数字特征, 后者则要处理随机过程和随机微分方程, 本讲章主要讨论前者.

§1 电梯问题

有r 个人在一楼进入电梯, 楼上有n 层, 设每个乘客在任何一层出电梯的概率相同, 试建立一个概率模型, 求直到电梯中的乘客下完时, 电梯需停次数的数学期望.

分析: 对于此问题, 容易想到该问题为离散随机变量求数学期望的问题, 既然求电梯需停次数的数学期望, 那么电梯需停次数便为要定义的随机变量, 用X 表示, 显然X 的取值范围为}},min{,,2,1{n r ", 然后需计算}{i X P =, 那么所

求的答案即为}{}

,min{1

i X p i n r i =?∑=, 用上述思路求解电梯问题理

论上完全正确, 然而我们却很难得到问题的一个简洁的表达式结果, 原因是古典概率}{i X P =的计算相当复杂, 而且要依据r , n 的不同情况具体来求. 下面我们看一些具体的例子,

例1: 取2=r , 3=n 时, 此时X 的取值范围为}2,1{

13211{1}33

C P X ?=== 23222{2}33

C P X ?=== 从而所求的解为

3

5322311=?+? 例2: 取3=r , 2=n 时, 此时X 的取值范围为}2,1{

12311{1}24

C P X ?=== 4

3222}2{33=?==X P 从而所求的解为

4

7432411=?+? 例3: 取3=r , 4=n 时, 此时X 的取值范围为}3,2,1{

14311{1}416

C P X ?=== 3433!6{3}416

C P X ?=== 313443413!9{2}416

C C P X ????=== 从而所求的解为

16

37166316921611=?+?+? 上述三例是在r , n 给出具体数据的情况下的计算, 可以看出, 随着r , n 数据的增大, 计算变的愈加复杂, 且没有明显的规律可言. 而当r , n 未给出具体数据时, 用上述思路求

解问题, 想要得到具体的表达式就更为困难.

下面我们换个角度考虑该问题, 我们将电梯在第i 层是否停下来这一事件作为随机变量i Y , 1=i Y 表示停下来, 0=i Y 表示电梯未停, 其中i 取值为},,2,1{n ", 这样问题便转化为求i Y 的期望之和, 由题意容易得知电梯在任何楼层上是否停留这一概率完全相同即

???

???????=r r i n n n n Y )1(0)1(11 从而i Y 的期望即为

r i n

n Y E )1(1)(??= 那么原问题的解即为

]1(1[)(1

r n

i i n n n Y E ???=∑= 显然要比刚才的方法来得简单, 而且得到了统一的表达式结果, 避免了用第一种方法在计算古典概率时对r , n 大小的具体讨论.

我们用前面的三个例子验证上面的结论:

例1中, 取2=r , 3=n 时, 得到的结果为3

5, 而 3

5])313(1[32=??? 例2中, 取3=r , 2=n 时, 得到的结果为4

7, 而 47])212(1[23=???

例3中, 取3=r , 4=n 时, 得到的结果为

1637, 而 16

37])414(1[43=??? 通过电梯问题求解的讨论, 可以看出在解决带随机性现象的问题中, 方法的选取是非常重要的, 只有采取合适的方法才会事半功倍.

§2钓鱼问题

为了估计湖中鱼的数量, 先从湖中钓出r 条鱼做上记号后又放回湖中, 然后再从湖中钓出S 条鱼, 结果发现S 条鱼中有x 条鱼标有记号. 问应该如何估计湖中鱼的数量N ?

分析与求解

该问题就是要从第二次钓出的标有记号的鱼所占的比例估计出湖中鱼的数量. 首先我们假设放回湖中的鱼在湖中的分布是均匀的. 则第二次钓出的标有记号的鱼数X 是一个随机变量, X 服从超几何分布

{}x s x r N r s N

C C P X x C ???== (*) 其中x 为整数, 且],min[)](,0max[s r x r N s ≤≤??. 用),(N x L 表示(*)式的右端, 则取使),(N x L 达到极大值的N 作为N 的估计量. 直接对N 求导考察极值比较困难, 我们用比

值法来研究),(N x L 的变化

(,)(,)(,1)()()

L x N N r N s A x N L x N N N r s x ??==????? 22()()N r s N rs N r s N Nx

?++=?++ (**) 从(**)式看出, 当且仅当x

rs N <时, )1,(),(?>N x L N x L , 而当且仅当x

rs N >时, )1,(),(?

rs +1, 取使得),(N x L 的值更大的一个即可.

上面的求解方法实际上是运用了概率统计中的极大似然原理, 即现在这个事件发生了, 那么客观情况使得它最有

可能发生.

下面我们换个角度考虑上述问题, 既然假设放回湖中的鱼在湖中的分布是均匀的, 我们可以认为湖中整个鱼群中含带有记号的鱼群比例与湖中任意一部分鱼群中含带有记号的鱼群比例完全相同, 即

s

x N r = 从而s

rx N =, 取整即与上述分析所得的结果完全相同. 从这一问题, 我们可以学到估计类似问题的一种实际操作方法.

§3 广告中的数学

在我们的现实生活中, 广告无所不在.广告给商家带来了丰厚的利润, 广告中蕴藏着诸多学问.以房产销售广告为例, 房产开发商为了扩大销售, 提高销售量, 通常会印制精美的广告分发给大家.虽然买房人的买房行为是随机的, 他可能买房, 也可能暂时不买, 可能买这家开发商的房子, 也可能买另一家开发商的房子, 但与各开发商的广告投入有一定的关联.一般地, 随着广告费用的增加, 潜在的购买量会增加, 但市场的购买力是有一定限度的.表3.1给出了某开发商以往9次广告投入及预测的潜在购买力.

表3.1 广告投入与潜在购买力统计( 单位: 百万元)

广告投入0.2 0.4 0.5 0.52 0.56 0.65 0.67 0.69 1

购买力10340 10580 10670 10690 10720 10780 10800 10810 10950

下面从数学角度, 通过合理的假设为开发商制定合理的广告策略, 并给出单位面积成本700元, 售价为4000元条件下的广告方案.

模型假设

(1) 假设单位面积成本为1p 元, 售价为2p 元, 忽略其他费用, 需求量r 是随机变量, 其概率密度为()p r .

(2) 假设广告投入为p 百万元, 潜在购买力是p 的函数记作()s p ,实际供应量为y .

模型建立

开发商制定策略的好坏主要由利润来确定, 好的策略应该获得好的利润(平均意义下), 为此, 必须计算平均销售量()E x .

0()()()y y E x rp r dr yp r dr +∞=+∫∫

上面右边第二项表示当需求量大于等于供应量时, 取需

求量等于供应量.

因此, 利润函数为

21()()R y p E x p y p =??

利用0()1p r dr +∞

=∫得到

2120()()()()y

R y p p y p p y r p r dr =????∫ ( 3.1)

上式中, 第一项表示已售房毛利润, 第二项为广告成本, 第三项为未售出房的损失.

模型求解

为了获得最大利润, 只需对(3.1)式求导并令其为零, 设()R y 获得最大值时y 的最优值为*y , 则

2120()()()0y dR y p p p p r dr dy

=??=∫

因此, *y 满足关系式

*2102

()y p p p r dr p ?=

∫ ( 3.2) 通过(3.2)式知道, 在广告投入一定的情况下, 可以求出最优的供应量, 但依赖于需求量的概率分布.为使问题更加明确, 增加如下假设:

(3) 假设需求量r 服从[0,()]U s p 分布, 即

10()()

()0r s p s p p r ?≤≤?=???其他 (3.3) 将(3.3)代人(3.2)得到

212

*()p p y s p p ?= ( 3.4) 即最优的供应量等于毛利率与由广告费确定的潜在购买力

的乘积.将( 3.4)式代入( 3.1)式, 得到最大利润为

2

212

()(*)()2p p R y s p p p ?=? ( 3.5) 对(3.5)式关于p 求导, 得驻点*p 满足的方程为

22

212'(*)()p s p p p =? ( 3.6) 因此, 只要知道了潜在购买力函数, 就可以给出最优的广告投入.

下面根据开发商获得的相关数据, 来确定潜在购买力函数. 通过对表3.1数据分析, 得知其符合log istic 型曲线增长率, 经拟合得到

52()10/(9)p s p e ?=+ ( 3.7)

52221210()

p l p p ?=×? 将(3.7)式代入(3.6)式, 当1180l ?>时, 求得

*11ln(19ln 22

p l l =???+ (3.8) 将120.0007,0.004p p ==代入(3.8)式得到*0.49p =(百万元).

§4 报童的策略

背景简介

报童问题即单周期库存问题(Single-Period Problem), 是供应链管理中最重要的模型之一, 其历史可以追溯到1888年著名经济学家Edgeworth 应用它解决银行的现金流(cash-flow)问题, 1955年, Whitin 首次建立了受价格影响的报童问题模型. 目前, 报童问题在生产、服务、管理和金融等领域成功地取得了广泛的应用. 现在报童问题衍生出许多扩展问题.

与众多扩展模型相比, 经典报童问题模型是最简单最基本的问题, 它可以描述为: 报童每天早晨以单位批发价b 从报社买进报纸, 然后以单位零售价a 出售, 晚上将没有卖掉的报纸当作废品以价格c (c b a >>)处理掉. 同时假设:

(1) 报童拥有购买足够多报纸的资金;

(2) 报纸过剩只能以低于零售价的价格v 处理;

(3) 报纸供应不足, 会遭受缺货惩罚;

(4) 不计其他费用(如交通费、摊位费等).

报童应该如何确定订购量而获得最高的利润呢? 显然, 报童应该根据市场需求量来确定订购量, 而市场需求量是随机的. 假设报童通过经验已经掌握了市场需求量的随机规律, 我们就可以建立随机优化模型来求解报童问题了.

报童每天清晨从报社购进报纸零售, 晚上将没有买掉的报纸退回. 每份报纸的购进价为元b, 零售价为a元, 退回价

a?元, 退回一份报纸赔为c元,. 报童售出一份报纸赚b

c

b?元. 报童每天如果购进的报纸太少, 不够卖时会少赚钱, 如果购进的报纸太多, 卖不完时会赔钱. 试为报童筹划每天应如何确定购进的报纸数使得收益最大?

模型一

问题分析

报童应该根据需求量确定购进量, 而需求量是随机的,

所以这是一个风险决策问题. 假定报童已经通过自己每天的卖报经验或其它渠道掌握了需求量的分布规律, 需求量r 为一连续型随机变量, 密度函数为)(r f ,假设每天的购进量为n , 由于需求量r 是随机的, 可以小于n 、等于n 或大于n , 这就导致报童每天的收入也是随机的, 所以作为优化模型的目标函数, 不能是报童每天的收入函数, 而应该是他长期卖报的日平均收入. 从概率论大数定律的观点看这相当于报童每天收入的期望值, 以下简称它为平均利润.

模型建立

显然, 若n r >, 则以a 价售出r 份报纸, 以c 价售出n r ?份报纸, 若n r ≤, 则全部n 以a 价售出, 故平均利润为 0()[()()()]()n F n a b r b c n r f r dr =????∫()()n a b nf r dr +∞

+?∫ 0()()()()n

a b n a c n r f r dr =????∫

0()()()()n dF n a b a c f r dr dn

=???∫ 由一元函数极值存在的必要条件可知()0dF n dn

=, 得 0()n a b f r dr a c

?=?∫ 而22()()()0d F n a c f n dn

=??<. 从而知满足上式的n 可以使平均利润达到最大. 易知上式等价于

()()n n

f r dr a b b c

f r dr +∞?=?∫

∫ 上式左边是报童订购n 份报纸时, 不能将它卖完的概率

与能将它卖完的概率之比, 右边则表示卖出一份报纸的盈利

与退回一份报纸亏损之比, 该式表明最优购进量是使这两个

数学建模常用模型方法总结精品

【关键字】设计、方法、条件、动力、增长、计划、问题、系统、网络、理想、要素、工程、项目、重点、检验、分析、规划、管理、优化、中心 数学建模常用模型方法总结 无约束优化 线性规划连续优化 非线性规划 整数规划离散优化 组合优化 数学规划模型多目标规划 目标规划 动态规划从其他角度分类 网络规划 多层规划等… 运筹学模型 (优化模型) 图论模型存 储论模型排 队论模型博 弈论模型 可靠性理论模型等… 运筹学应用重点:①市场销售②生产计划③库存管理④运输问题⑤财政和会计⑥人事管理⑦设备维修、更新和可靠度、项目选择和评价⑧工程的最佳化设计⑨计算器和讯息系统⑩城市管理 优化模型四要素:①目标函数②决策变量③约束条件 ④求解方法(MATLAB--通用软件LINGO--专业软件) 聚类分析、 主成分分析 因子分析 多元分析模型判别分析 典型相关性分析 对应分析 多维标度法 概率论与数理统计模型 假设检验模型 相关分析 回归分析 方差分析 贝叶斯统计模型 时间序列分析模型 决策树 逻辑回归

传染病模型马尔萨斯人口预测模型微分方程模型人口预 测控制模型 经济增长模型Logistic 人口预测模型 战争模型等等。。 灰色预测模型 回归分析预测模型 预测分析模型差分方程模型 马尔可夫预测模型 时间序列模型 插值拟合模型 神经网络模型 系统动力学模型(SD) 模糊综合评判法模型 数据包络分析 综合评价与决策方法灰色关联度 主成分分析 秩和比综合评价法 理想解读法等 旅行商(TSP)问题模型 背包问题模型车辆路 径问题模型 物流中心选址问题模型 经典NP问题模型路径规划问题模型 着色图问题模型多目 标优化问题模型 车间生产调度问题模型 最优树问题模型二次分 配问题模型 模拟退火算法(SA) 遗传算法(GA) 智能算法 蚁群算法(ACA) (启发式) 常用算法模型神经网络算法 蒙特卡罗算法元 胞自动机算法穷 举搜索算法小波 分析算法 确定性数学模型 三类数学模型随机性数学模型 模糊性数学模型

关于社会网络的指数随机图模型的介绍

介绍了指数随机图(P *)社交网络模型 (加里·罗宾斯,皮普派特森,尤瓦尔·卡利什,院长Lusher) 心理学系,行为科学,墨尔本大学商学院。 3010,澳大利亚 摘要: 本文提供的介绍总结,制定和应用指数随机的图模型的社交网络。网络的 各个节点之间的可能的关系被认为是随机的变量和假设,这些随机的领带变量 之间的依赖关系确定,一般形式的指数随机图模型的网络。不同的相关性假设 的例子及其相关的模型,给出了包括伯努利,对子无关,马尔可夫随机图模型。在社会选择机型演员的加入属性也被审查。更新,更复杂依赖的假设进行了简 要介绍。估计程序进行了讨论,其中包括新的方法蒙特卡罗最大似然估计。我 们预示着在其它组织了讨论论文在这款特别版:弗兰克和施特劳斯的马氏随机 图模型[弗兰克,澳,施特劳斯,D.,1986年马氏图。杂志美国统计协会81,832-842]不适合于许多观察到的网络,而Snijders等人的新的模型参数。[Snijders,TAB,派特森,P.,罗宾斯,GL,Handock,M.新规范指数随机图模型。社会学方法论,在记者]提供实质性的改善。 关键词:指数随机图模型;统计模型的社交网络; P *模型 在最近几年,出现了在指数随机图模型对于越来越大的兴趣社交网络,通常称为P *类车型(弗兰克和施特劳斯,1986;派特森和沃瑟曼,1999;罗宾斯等人,1999;沃瑟曼和帕蒂森,1996年)。这些概率模型对一组给定的演员网络 允许泛化超越了早期的P1模型类(荷兰和Leinhardt,1981年)的限制二元独立性假设。因此,它们允许模型从社会行为的结构基础的一个更为现实的构建。这些模型车的研究多层次,multitheoretical假说的有效性一直在强调(例如,承包商等,2006)。 已经有一些自Anderson等重大理论和技术的发展。(1999)介绍了他们对 P *型号知名底漆。我们总结了本文上述的进步。特别是,我们认为重要的是在概念上从依赖假设的衍生地,这些模型,模型的基本依据,然后作出了明确, 并与有关(不可观察)社会进程底层网络的形成假说更容易联系。正是通过新 的模式,可以开发一个有原则的方式,包括结合了演员的属性模型这样的做法。在模型规范和估计最近的发展需要注意的是,因为这样做就设置结构和部分新 技术的步骤依赖的假设,不仅扩大了级车型,但具有重要意义的概念。特别是,我们现在有一个更好的了解马尔可夫随机图,和有前途的新规格的性能已经提 出来克服他们的一些不足之处。 本文介绍了模型,并总结当前方法的发展与扩展概念的阐述(更多技术总 结最近被沃瑟曼和罗宾斯,2005年定;知更鸟和派特森,2005; Snijders等人,出版。)我们首先简要介绍理分析社交网络的统计模型(第1节)。然后,我 们提供指数随机图模型的基本逻辑进行了概述,并概述我们框架模型构建(第 2节)。在第3节中,我们讨论的重要概念一个依赖假设的建模方法的心脏。 在第4节中,我们提出了一系列不同的相关性假设和模型。对于模型估计(第 5章),我们简单总结伪似然估计(PLE)的方法,并检讨最近的事态发展蒙特 卡罗马尔可夫链最大似然估计方法。在第6节中,我们提出拟合模型,网络数

模型制作方法

动画精度模型制作与探究 Animation precision model manufacture and inquisition 前言 写作目的:三维动画的制作,首要是制作模型,模型的制作会直接影响到整个动画的最终效果。可以看出精度模型与动画的现状是随着电脑技术的不断发展而不断提高。动画模型走精度化只是时间问题,故精度模型需要研究和探索。 现实意义:动画需要精度模型,它会让动画画面更唯美和华丽。游戏需要精度模型,它会让角色更富个性和激情。广告需要精度模型,它会让物体更真实和吸引。场景需要精度模型,它会让空间更加开阔和雄伟。 研究问题的认识:做好精度模型并不是草草的用基础的初等模型进行加工和细化,对肌肉骨骼,纹理肌理,头发毛发,道具机械等的制作更是需要研究。在制作中对于层、蒙版和空间等概念的理解和深化,及模型拓扑知识与解剖学的链接。模型做的精,做的细,做的和理,还要做的艺术化。所以精度模型的制作与研究是很必要的。 论文的中心论点:对三维动画中精度模型的制作流程,操作方法,实践技巧,概念认知等方向进行论述。 本论 序言:本设计主要应用软件为Zbrsuh4.0。其中人物设计和故事背景都是以全面的讲述日本卡通人设的矩阵组合概念。从模型的基础模型包括整体无分隔方体建模法,Z球浮球及传统Z球建模法(对称模型制作。非对称模型制作),分肢体组合建模法(奇美拉,合成兽),shadow box 建模和机械建模探索。道具模型制作,纹理贴图制作,多次用到ZBURSH的插件,层概念,及笔刷运用技巧。目录: 1 角色构想与场景创作 一初步设计:角色特色,形态,衣装,个性矩阵取样及构想角色的背景 二角色愿望与欲望。材料采集。部件及相关资料收集 三整体构图和各种种类基本创作 2 基本模型拓扑探究和大体模型建制 3 精度模型大致建模方法 一整体无分隔方体建模法 二Z球浮球及传统Z球建模法(对称模型制作。非对称模型制作) 三分肢体组合建模法(奇美拉,合成兽) 四shadow box 建模探索和机械建模 4 制作过程体会与经验:精度细节表现和笔刷研究 5 解剖学,雕塑在数码建模的应用和体现(质量感。重量感。风感。飘逸感)

无向图模型(马尔科夫随机场)

19 无向图模型(马尔科夫随机场) 19.1 介绍 在第十章,我们讨论了图形化模型(DGMs),通常称为贝叶斯网。然而,对于某些域,需要选择一个方向的边即(DGM), 例如,考虑建模一个图像。我们可能会假设相邻像素的强度值是相关的。我们可以创建一个DAG模型的2D拓扑如图19.1所示。这就是所谓的因果MRF或马尔可夫网。然而,它的条件独立性通常不好。 另一种方法是使用anundirected图形化模型(UGM),也称为马尔可夫随机场(MRF)或马尔可夫网络。这些不需要我们指定边缘方向,在处理一些问题,如图像分析和空间统计数据时显得更自然。例如,一个无向二维点阵显示(如图19.1(b));现在每个节点的马尔科夫Blanket只是最近邻节点,正如我们在19.2节所示的那样。 粗略地讲,在建立在DGMs上的UGMs的主要优点是:(1)它们是对称的,因此对 某些领域更“自然”,如空间或关系数据;(2)Discriminativel UGMs(又名条件随机域,或CRFs),它定义了条件概率密度p(y|x),要比Discriminativel UGMs更好,我们在19.6.1节中解释原因。相比于DGMs,UGMs的主要缺点是:(1)参数是可很难解释及模块化程度较差,我们在19.3节解释原因;(2)参数估计计算代价更高,原因我们在19.5节解释。 19.2 UGMs的条件独立性 19.2.1 UGMs通过简单的图分离定义CI关系如下:对于节点集的A,B,C,我们说X A ⊥G X B | X C,如果从在图G中把A从B中分离出来。这意味着,当我们删除所有C 中的节,如果在A上没有任何连接的路径到B,那么CI 属性holds。这就是所谓的UGMs的全局马尔可夫性质。例如,在图19.2(b),有{ 1,2 }⊥{ 6、7 } | { 3、4、5 }。

系统建模方法1何谓系统模型系统模型有哪些主要特征2.doc

第四章系统建模方法 1、何谓系统模型?系统模型有哪些主要特征? 2、何谓系统分析?系统分析包括有哪些要素?画简图说明这些要素间的关系。 3、为什么在系统分析中,广泛使用系统模型而不是真实系统进行分析? 4、对系统模型有哪些基本要求?系统建模主要有哪些方法,请分别说明这些建模方法的适用对象和建模思路。 5、什么是投入产出分析?它在经济管理中有什么用处? 6、试举例说明某种产品对另一种产品的直接消耗和间接消耗关系。 7、在编制投入产出表时,如何确定部门的划分? 8、设某地区的经济分为工业、农业和其他生产部门,其投入产出表如下表1所示。(1)试求直接消耗系数表; (2)试求完全消耗系数表; (3)如果计划期农业的最终产品为350亿元,工业为2300亿元,其他部门为450 亿元,请计算出各部门在计划期的总产品分别为多少亿元? 表1 某地区的投入产出表(亿元) 9、设某地区的投入产出表如下表2所示。 (1)试求直接消耗系数表; (2)试求完全消耗系数表; (3)如果计划期(翌年)各部门的最终产品量和构成如表3所示,请计算各部门计划期的总产品分别为多少亿元?各部门应提供多少中间产品? (4)如果在计划期间,制造业产品出口量增加20亿元,问各部门的产量要相应增加多少? (5)如果在计划期间,农业由于自然灾害减少4亿元的最终产品,问各部门的总

产品将如何调整? 表2 某地区的投入产出表(亿元) 表3 计划期各部门的最终产品量和构成(亿元) 10、某钢筋车间制作一批直径相同的钢筋,需要长度为3米的90根,长度为4米的60根。已知所用的下料钢筋长度为10米,问怎样下料最省?请建立解决此问题的数学模型。 11、某卫星测控站每天至少需要下列数量的干部值班: 每班值班的干部在班次开始时上班,连续工作8小时。测控站首长需要确定每个班次应派多少干部值班,才能既满足需要又使每天上班的干部人数最少,请帮助建立解决此问题的数学模型。 11、举例说明系统结构、系统单元以及单元之间的关系,试用集合A、A上关系R、关系矩阵M、关系图G以及系统结构或层次结构进行描述。 12、用数学归纳法证明,对任何正整数n下列恒等式成立

深度剖析人物角色模型设计方法

深度剖析人物角色模型设计方法 前言 人物角色模型,在20实际90年代,是可用性研究提出来的概念和方法,特别是在外企中尤其适用的较多。 好的人物角色模型,可以让每个人感到满意,他为团队、为公司提供一个有效、易于理解的方式,来描述用户需求,让受众在讨论中有共同语言。有了人物角色,就可以避免团队站在自己的立场去描诉需求,让我们从多维度来描述需求,在评估需求方案时,更有说服力。 今天主要分为四个部分来讲: 1、人物角色模型的创建 2、人物角色模型包含内容 3、定性、定量人物角色模型 4、人物角色模型与敏捷开发 一个交互设计师,在拿到需求时,应该通过以下6步开启设计: 本次我们着重讲解的是“调研归纳”。人物角色,就是属于这个部分。

在调研归纳中,我们有很多方法,比如用户观察、用户访谈、问卷调研、焦点小组等等,这些方法通过碎片化阅读都可以了解很多。人物角色能够被创建出来,被团队、客户所接受,并且投入到使用中,很重要的前提,就是整个团队都要非常认可以用户为中心的设计。 人物角色模型被创建出来后,能否真正发挥其价值,也是要看团队能否形成这样一个UED的流程,是否愿意把其运用到设计的方方面面。 以用户为中心的设计 以用户为中心的产品设计,强调的是通过场景去分析用户的行为,进而产生目标导向性设计。在对用户群进行分析的时候,都会将用户群按照一定的角色进行细分,有的时候是为了在不同的产品阶段考虑不同角色用户的需求,而更多时候,则是为了找准主流用户的需求。 我们设计当中的每一个流程,都是以围绕用户为中心而进行。 使用人物角色目的

1、带来专注 人物角色的第一信条是“不可能建立一个适合所有人的网站”。成功的商业模式通常只针对特定的群体。一个团队再怎么强势,资源终究是有限的,要保证好钢用在刀刃上~ 之前我所在的团队,进行设计一款旅游产品时,我们的产品经理认为产品应该为公司的战略方向,以中老年群体为目标用户来推这个产品。然而通过用户调研后,发现目前线上产品的用户,分为另外四类,中老年群体比较少。最后,我们UE D部门内部,创建了四个人物角色模型,通过这个人物角色模型和产品沟通,和产品达成一致想法,以目前真实的用户群体来确认需求。 2、引起共鸣 感同身受,是产品设计的秘诀之一 3、促成意见统一 帮助团队内部确立适当地期望值和目标,一起去创造一个精确的共享版本。人物角色帮助大家心往一处想,力往一处使,用理解代替无意义的PK~ 4、创造效率 让每个人都优先考虑有关目标用户和功能的问题。确保从开始就是正确的,因为没有什么比无需求的产品更浪费资源和打击士气了。 5、带来更好的决策 与传统的市场细分不同,人物角色关注的是用户的目标、行为和观点。 人物角色模型创建 1、了解用户:这也是做互联网任何一个产品需要做到的第一步;

数学建模常用模型方法总结

数学建模常用模型方法总结 无约束优化 线性规划连续优化 非线性规划 整数规划离散优化 组合优化 数学规划模型多目标规划 目标规划 动态规划从其他角度分类 网络规划 多层规划等… 运筹学模型 (优化模型) 图论模型存 储论模型排 队论模型博 弈论模型 可靠性理论模型等… 运筹学应用重点:①市场销售②生产计划③库存管理④运输问题⑤财政和会计⑥人事管理⑦设备维修、更新和可靠度、项目选择和评价⑧工程的最佳化设计⑨计算器和讯息系统⑩城市管理 优化模型四要素:①目标函数②决策变量③约束条件 ④求解方法(MATLAB--通用软件LINGO--专业软件) 聚类分析、 主成分分析 因子分析 多元分析模型判别分析 典型相关性分 析 对应分析 多维标度法 概率论与数理统计模型 假设检验模型 相关分析 回归分析 方差分析 贝叶斯统计模型 时间序列分析模型 决策树 逻辑回归

传染病模型马尔萨斯人口预测模型微分方程模型人口预 测控制模型 经济增长模型Logistic 人口预测模型 战争模型等等。。 灰色预测模型 回归分析预测模型 预测分析模型差分方程模型 马尔可夫预测 模型 时间序列模型 插值拟合模型 神经网络模型 系统动力学模型(SD) 模糊综合评判法模型 数据包络分析 综合评价与决策方法灰色关联度 主成分分析 秩和比综合评价法 理想解读法等 旅行商(TSP)问题模型 背包问题模型车辆路 径问题模型 物流中心选址问题模型 经典NP问题模型路径规划问题模型 着色图问题模型多目 标优化问题模型 车间生产调度问题模型 最优树问题模型二次分 配问题模型 模拟退火算法(SA) 遗传算法(GA) 智能算法 蚁群算法(ACA) (启发式) 常用算法模型神经网络算法 蒙特卡罗算法元 胞自动机算法穷 举搜索算法小波 分析算法 确定性数学模型 三类数学模型随机性数学模型

企业数据模型设计方法论探讨

企业数据模型设计方法论探讨

企业级数据模型设计方法论探讨 1引言 数据模型设计是一个老生常谈的话题,在以往的数据仓库BI项目中,数据模型的方法论、概念通常大多围绕如何设计和建设数据仓库,而应用系统(OLTP 系统)模型设计却缺乏方法论的指导,加之各应用系统通常都是由不同厂商在不同时期自行设计开发,彼此之间缺乏沟通,导致数据分散重复、口径不一致和数据兼容性差。由于数据仓库在企业整体信息化规划中属于下游系统,只能被动接收由各应用系统产生的数据,数据入仓之后,由于口径不一致、兼容性差,给数据整合带来极大困难。企业在投入大量的人力、物力和资金推进信息化建设,仍然出现大量的“信息孤岛”现象。 本文认为,企业信息化建设的成功很大程度上取决于系统模型的合理性和不同系统间概念的一致性,而企业级数据模型是企业信息化的核心问题,通过企业级数据模型定义整个企业信息化体系的数据标准,逐步统一企业内部数据标准,指导各应用系统数据模型统一设计,可以从根本上保证系统之间数据的兼容性和一致性,消除由于各应用系统自行设计开发而导致的数据分散重复、口径不一致和信息孤岛现象,推动企业内各类应用系统的整合和数据的共享,全面提升经营决策、运营管理、业务拓展和客户服务等方面的支撑能力。 本文将首先阐述企业级数据模型的定义和结构,分析其业务价值。通过描述企业级数据模型与应用系统模型间关系,划分两者之间的概念边界和区别,从而更好的理解企业级数据模型的真正内涵。其次,阐述了企业级数据模型设计的基本方法和关键要点,使读者能够掌握企业级数据模型设计的整体思路,以便对后续工作提供借鉴和指导作用。最后,总结了多个项目的经验教训,分享企业级数据模型建模过程中的心得体会,希望对大家能有所帮助。 2企业级数据模型定义 2.1模型基本定义 企业级数据模型不能等同于数据仓库模型,企业级数据模型是站在整个企

财务模型设计技术及方法概述

财务模型设计技术及方法概述

会计模型,如预算和现金流量,能根据用户的要求进行建立,这就导致了: ●有更详细的信息用于决策制定; ●使在较低层次的决策制定成为可能; ●对特定环节的检验或其他替代方法之 间具有灵活性。 1995年,微软在Apple Macintosh引入了Excel并在20世纪80年代后期将它扩展到个人电脑上。Windows3.0版本引入包含了Excel的Office95,随着它的快速增长,Excel成为了工作表操作软件中的领头羊,被大多数个人电脑用户所使用。在成功开发Office97和Office2000后,微软在这一领域的占有率又被大大增强。 1.3、工作表的功能 Excel包含于微软工具包之中说明它现在是一种公认的标准,就如同人们把Word作为文字处理的标准格式一样。伴随着以下功能的加入,它的工作表的功能不断的加强: ●专业的函数; ●大量使得工作表自动化的宏程序的使 用,或者说用编码进行公式编辑功能的使

用; ●工作簿技术的使用,省去了单个工作表 之间的联系的建立; ●对Visual Basic的使用提供了一种与微 软其他应用程序之间通用的语言; ●同其他应用软件之间的数据交换功能; ●添加例如关于目标区和最优化问题的 规划求解模型; ●三部分分析包,如财务CAD ,@RISK or Crystal Ball。 今天对这种复杂分析软件包使用的结果是使得那些非专业程序员也能设计并建立起一套专业的解决商业问题的应用程序。 Excel也是这样一种分析软件包。大部分人在他们需要解决一个商业问题的时候都会使用它。作者曾经有一个这样的经历,需要对一个项目的租赁可盈利性进行研究,并要编写一个模型来考察不同的基金组合决策。在耗费了大量的时间和精力后,这个模型终于成功运行并给出了一个答案。但是,这个答案很不清楚而且也不方便其他人去理解。这里并没有模型设计的方法论,而模型真的就那样“蹦出来了”。

随机模型方法及应用1范文

随机模型、方法及其应用(一) 一元线性回归 第一节大数定律与数理统计的若干知识 §1﹒1 大数定律及中心极限定理 大数定律(low of large numbers)及中心极限定理(central limit theorem)不仅为概率论(theary of probability)提供统计方面的理论保证,而且也为数理统计(mathematical statistics)的理论和方法奠定了坚实的理论基础。 1﹒1﹒1 ЧебЫШв不等式 (2.1) 1﹒1﹒2 Bernoulli大数定律 (2.2)1﹒1﹒3 ЧебЫШв大数定律

(2.3) (2.4) 1﹒1﹒4 Хинчин大数定律 (2.5) (2.6)1﹒1﹒5 Lèvy-Lindeberg中心极限定理 (2.7) (2.8)1﹒1﹒6 De Moivre-Laplace中心极限定理 (2.9) 12

(2.10) §1﹒2 基本统计量和常用统计分布 在数理统计中,统计量(statistic)及其分布被广泛用于参数估计(parameters estimation)和假设检验等统计推断(statistical inference)的过程中, 1﹒2﹒1 统计量的定义及常用统计量 定义2.1 sample), 定义2.2 常用的统计量有 1、样本均值(sample mean): (2.11)MATLAB: mean(x) 2、样本方差(sample variance): (2.12) 13

3、样本标准差(sample standard deviation): (2.13)4、修正的样本方差(repaired sample variance): (2.14)MATLAB: var(x) 5、修正的样本标准差(repaired sample standard deviation): (2.15)1.2.2常用统计分布 :设随机变量(random variable (2.16) (2.17) MATLAB: chi2cdf(x,n) 并且有 14

系统建模方法

系统建模方法 2.1 系统抽象与数学描述 2.1.1 实际系统的抽象 本质上讲,系统数学模型是从系统概念出发的关于现实世界的一小部分或几个方面的抽象的“映像” 。 为此,系统数学模型的建立需要建立如下抽象:输入、输出、状态变量及其间的函数关系。这种抽象过程称为模型构造。抽象中,必须联系真实系统与建模目标,其中描述变量起着很重要的作用,它可观测,或不可观测。 从外部对系统施加影响或干扰的可观测变量称为输入变量。系统对输入变量的响应结果称为输出变量。 输入、输出变量对的集合,表征着真实系统的“输入-输出”性状(关系)。 综上述,真实系统可视为产生一定性状数据的信息源,而模型则是产生与真实系统相同性状数据的一些规则、指令的集合,抽象在其中则起着媒介作用。系统数学建模就是将真实系统抽象成相应的数学表达式(一些规则、指令的集合)。

灰箱 白箱3( t)、p(t)---输入输出变量对 真实系统建模的抽象过程

2.1.2系统模型的一般描述及描述级(水平) 2.1.2.1系统模型的一般描述: 一个系统的数学模型可以用如下七元组集合来描述: S 二T,X,\Q,Y, ; 其中: T:时间基,描述系统变化的时间坐标,T为整数则称为离散时间系统,为实数则称为连续时间系统; X:输入集,代表外部环境对系统的作用。 11 :输入段集,描述某个时间间隔内的输入模式,是X,T的一个 子集。 Q :内部状态集,描述系统内部状态量,是系统内部结构建模的核心。「?:状态转移函数,定义系统内部状态是如何变化的,是一个映射。 Y :输出集,系统通过它作用于环境。 :输出函数,是一个映射,给出了一个输出段集。 2.1.2.2系统模型描述级(水平): 按照系统论的观点,实际系统可在某种级(水平)上被分解,因此系统的数学模型可以有不同的描述级(水平): ⑴性状描述级 性状描述级或称为行为描述级(行为水平)。在此级上描述系统是将系统堪称黑箱,并施加输入信号,同时测得输出响应,结果是得出一个输入-输出对:(3, P)及其关系R s={(3, P):Q, 3, p}。

D打印模型设计方法

FDM 3D打印模型设计要求 1.结构设计 3D打印模型的结构设计直接关系到模型能不能打印、模型结构强度和后期安装等一系列核心问题,故必须重视。3D打印模型的结构和一般模型有很大区别,一般来说主要体现在分块、结构加强和连接设计上。 1.1模型分块 由于打印机的打印尺寸限制,大型模型一般必须要分块处理。在哪里分块、分成什么形状是根据结构强度要求、安装顺序和在打印机上的放置位置决定的。其中首先考虑安装顺序,即分块形成的零件在安装时必须要可以安装,建议在图上画出来各个零件的安装顺序,这在复杂模型中非常有用;其次考虑结构强度要求,即分块处一般要避开受力和形变较大处;最后考虑在打印机上的放置位置,好的块设计可以显著地节省材料和加工时间,以及加强打印时的稳定性(该处在4详细描述)。 如图为挂车牵引车分块示意图,该挂车车头分为19个零件。 1.2壁厚 由于FDM 3D打印机采用层叠加的加工方式,故相对于注塑件其结构强度要低,再加上打印机精度限制,不能参考一般注塑件的壁厚。经验:一般外壳注塑件壁厚为0.8mm 至2mm,要达到同样强度,3D打印壳体模型的壁厚至少在2.5mm,一般建议3mm。 此外,在连接处等部位,为保证强度,必须加强壁厚,使之达到5mm以上。 1.3结构加强件 结构加强在塑料件设计中是很常见的,一般体现在圆角过渡以消除应力、在形变处设计加强筋、倒角设计上。这其中,加强筋和倒角是最常见的。结构加强件属于额外的设计,故一定要考虑配合干涉问题。 加强筋的设计一般运用在受力较大或形变较大的部位,例如通孔的四周、垂直壁面、完整的平面等处。加强筋的设计在塑料件注塑/冲压件设计中有国家标准,但3D打印没有必要遵守,可以参考也可以自己控制。保证尺寸不要过小,以起到应有的效果。 倒角一般用于不适合安防加强筋的垂直壁面。相对于加强筋,倒角起到的加强作用不高,一般用于控制形变而不是增加强度。倒角直角边长一般在5mm到10mm左右。 圆角过渡使用情况比较复杂,使用不多,一般用在孔柱配合固定等有大应力的情况。 圆角过渡相对于倒角,优点是可以避免应力集中,缺点是圆角半径过小会失效。

条件随机场模型和训练方法

条件随机场模型和训练方法 条件随机场模型是由[7]首先提出的,这个模型在自然语言处理和生物信息学中得到了广泛的应用,这一章我们简要介绍了条件随机场模型极其训练方法。更详尽的介绍参见[2],[3],[4]。 2.1训练的定义 考虑这样一个问题:给定一个模型,这个模型有很多参数,如何找出模型的最佳参数?训练是解决这个问题的一个方法。给定一组训练数据和一组模型,按照某个衡量标准,选出最符合训练数据的模型,这个过程叫做训练。只有选取的训练数据符合现实情况时,选择的模型才能符合现实,因此训练数据的选取是一个重要的问题。衡量模型的标准有许多个,下面介绍两个衡量标准。 2.1.1极大似然估计 (x;)P ω是随机变量X 的概率密度分布函数,ω是其中的参数。 12{x ,x ,...,x }n 是一组随机变量12,,...,X n X X 的观测值,12,,...,X n X X 是一组独立同分布的随机变量,分布与X 相同。 极大似然估计: 12'arg max (x ,x ,...,x ;)arg max (x ;)n i i P P ωωωωω==∏ 极大似然估计是一个非常自然的想法,就是选择使训练数据发生概率最大的参数,但极大似然估计的一个缺点是对训练数据的假设太强,不容易满足。下面介绍的条件似然估计可以克服这个缺点。 2.1.2条件似然估计 假设每一个训练数据由两部分组成,形如(x,y);其中x 是已知的观测值,y 的概率分布由x 和ω唯一确定。为了判断y 的取值,我们只需要刻画条件概率分布(y |x;)ωP 。我们不用联合概率分布(y,x;)ωP 的原因是x 的取值是已知的,我们不需要刻画x 的概率分布,何况我们很难准确的刻画x 的概率分布。 假设给定一组训练集:1122{(x ,y ),(x ,y ),...,(x ,y )}n n 。 条件似然估计: 1212'arg max (y ,y ,...,y |x ,x ,...,x ;)arg max (y |x ;)n n i i i P P ωωωωω==∏ 这里所做的假设是y i 的概率分布仅由x i 和ω决定,即: 111(y |x ,...,x ,y ,...,y ;)(y |x ;)i n i i i P P ωω-=

概率图模型介绍与计算

概率图模型介绍与计算 01 简单介绍 概率图模型是图论和概率论结合的产物,它的开创者是鼎鼎大名的Judea Pearl,我十分喜欢概率图模型这个工具,它是一个很有力的多变量而且变量关系可视化的建模工具,主要包括两个大方向:无向图模型和有向图模型。无向图模型又称马氏网络,它的应用很多,有典型的基于马尔科夫随机场的图像处理,图像分割,立体匹配等,也有和机器学习结合求取模型参数的结构化学习方法。严格的说他们都是在求后验概率:p(y|x),即给定数据判定每种标签y的概率,最后选取最大的后验概率最大的标签作为预测结果。这个过程也称概率推理(probabilistic inference)。而有向图的应用也很广,有向图又称贝叶斯网络(bayes networks),说到贝叶斯就足以可以预见这个模型的应用范围咯,比如医疗诊断,绝大多数的机器学习等。但是它也有一些争议的地方,说到这就回到贝叶斯派和频率派几百年的争议这个大话题上去了,因为贝叶斯派假设了一些先验概率,而频率派认为这个先验有点主观,频率派认为模型的参数是客观存在的,假设先验分布就有点武断,用贝叶斯模型预测的结果就有点“水分”,不适用于比较严格的领域,比如精密制造,法律行业等。好吧,如果不遵循贝叶斯观点,前面讲的所有机器学习模型都可以dismiss咯,我们就通过大量数据统计先验来弥补这点“缺陷”吧。无向图和有向图的例子如(图一)所示: 图一(a)无向图(隐马尔科夫)(b)有向图 概率图模型吸取了图论和概率二者的长处,图论在许多计算领域中扮演着重要角色,比如组合优化,统计物理,经济等。图的每个节点都可看成一个变量,每个变量有N个状态(取值范围),节点之间的边表示变量之间的关系,它除了

过程系统模型的求解方法

1.4 过程系统模型的求解方法 过程系统的模型建立后,给定系统的一组决策变量(或设计变量),通过求解过程系统的模型,就能得出全部物流的状态变量的值。根据描述过程系统的模型不同,求解方法可以归纳为三类: ①序贯模块法(Sequential Modular Method) ; ②联立方程法(Equation Based Method) ; ③联立模块法(Simulancous Modular Method)。 (1)序贯模块法 序贯模块法是开发最早、应用最广的过程系统模拟方法。目前绝大多数的过程系统模拟软件都属于这一类。这种方法的基本思想是:首先建立描述过程单元的数学模块(子程序),然后根据描述过程系统流程的结构模型,确定模块的计算顺序,序贯地对各单元模块进行计算,从而完成过程系统的模拟计算。 序贯模块法的优点是与实际过程的直观联系强;模拟系统软件的建立、维护和扩充都很方便,易于通用化;计算出错时易于诊断出错位置。其主要缺点是计算效率较低,尤其是解决设计和优化问题时计算效率更低,如图2-9所示。虽然如此,序贯模块法仍不失为一种优秀的方法。 (2)联立方程法 联立方程法又称为面向方程法,其基本思想是:将描述整个过程系统的数学方程式联立求解,从而得出模拟计算结果。联立方程法可以根据问题的要求灵活地确定设计变量(决策变量)。此外,联立方程法就好像把图2-9中的循环圈1~4合并成为一个循环圈(如图2-10所示)。这种合并意味着其中所有的方程同时计算和同步收敛。因此,联立方程法解算过程系统模型快速有效,对设计、优化问题灵活方便,效率较高。联立方程法一直被认为是求解过程系统的理想方法,但在实践上存在一些问题。主要在于:形成通用软件比较困难;不能利用现有大量丰富的单元模块;缺乏实际流程的直观联系;计算失败之后难于诊断错误所在;对初值的要求比较苛刻;计算技术难度较大等。但是由于其具有显著优势,这种方法一直备受人们的青睐。 图2-9 序贯模块法的迭代循环圈

系统建模方法

系统建模方法 2.1系统抽象与数学描述 2.1.1 实际系统的抽象 本质上讲,系统数学模型是从系统概念出发的关于现实世界的一小部分或几个方面的抽象的“映像”。 为此,系统数学模型的建立需要建立如下抽象:输入、输出、状态变量及其间的函数关系。这种抽象过程称为模型构造。抽象中,必须联系真实系统与建模目标,其中描述变量起着很重要的作用,它可观测,或不可观测。 从外部对系统施加影响或干扰的可观测变量称为输入变量。 系统对输入变量的响应结果称为输出变量。 输入、输出变量对的集合,表征着真实系统的“输入-输出”性状(关系)。 综上述,真实系统可视为产生一定性状数据的信息源,而模型则是产生与真实系统相同性状数据的一些规则、指令的集合,抽象在其中则起着媒介作用。系统数学建模就是将真实系统抽象成相应的数学表达式(一些规则、指令的集合)。

(可观测) 输出变量 (可观测) 输入变量 黑箱 灰箱 白箱 ωt ) ω(t )、ρ(t )---输入输出变量对 真实系统建模的抽象过程

2.1.2 系统模型的一般描述及描述级(水平) 2.1.2.1 系统模型的一般描述: 一个系统的数学模型可以用如下七元组集合来描述: 2.1.2.2 系统模型描述级(水平): 按照系统论的观点,实际系统可在某种级(水平)上被分解,因此系统的数学模型可以有不同的描述级(水平): ⑴ 性状描述级 性状描述级或称为行为描述级(行为水平)。在此级上描述系统是将系统堪称黑箱,并施加输入信号,同时测得输出响应,结果是得出一个输入-输出对:(ω,ρ) 及其关系R s ={(ω,ρ):Ω,ω,ρ}。 ()λδ,,,,,,Y Q X T S Ω= 其中: :T 时间基,描述系统变化的时间坐标,T 为整数则称为离散时间系 统,为实数则称为连续时间系统; :X 输入集,代表外部环境对系统的作用。 :Ω输入段集,描述某个时间间隔内的输入模式,是()T X ,的一个 子集。 :Q 内部状态集,描述系统内部状态量,是系统内部结构建模的核心。 :δ状态转移函数,定义系统内部状态是如何变化的,是一个映射。 :Y 输出集,系统通过它作用于环境。 :λ输出函数,是一个映射,给出了一个输出段集。

系统建模方法

系统建模方法 系统抽象与数学描述 实际系统的抽象 本质上讲,系统数学模型是从系统概念出发的关于现实世界的一小部分或几个方面的抽象的“映像”。 为此,系统数学模型的建立需要建立如下抽象:输入、输出、状态变量及其间的函数关系。这种抽象过程称为模型构造。抽象中,必须联系真实系统与建模目标,其中描述变量起着很重要的作用,它可观测,或不可观测。 从外部对系统施加影响或干扰的可观测变量称为输入变量。 系统对输入变量的响应结果称为输出变量。 输入、输出变量对的集合,表征着真实系统的“输入-输出”性状(关系)。 综上述,真实系统可视为产生一定性状数据的信息源,而模型则是产生与真实系统相同性状数据的一些规则、指令的集合,抽象在其中则起着媒介作用。系统数学建模就是将真实系统抽象成相应的数学表达式(一些规则、指令的集合)。

(可观测) 输出变量 (可观测) 输入变量 黑箱 灰箱 白箱 ω(t ) ω(t )、ρ(t )---输入输出变量对 真实系统建模的抽象过程

系统模型的一般描述及描述级(水平) 系统模型的一般描述: 一个系统的数学模型可以用如下七元组集合来描述: 系统模型描述级(水平): 按照系统论的观点,实际系统可在某种级(水平)上被分解,因此系统的数学模型可以有不同的描述级(水平): ⑴ 性状描述级 性状描述级或称为行为描述级(行为水平)。在此级上描述系统是将系统堪称黑箱,并施加输入信号,同时测得输出响应,结果是得 ()λδ,,,,,,Y Q X T S Ω= 其中: :T 时间基,描述系统变化的时间坐标,T 为整数则称为离散时间系 统,为实数则称为连续时间系统; :X 输入集,代表外部环境对系统的作用。 :Ω输入段集,描述某个时间间隔内的输入模式,是()T X ,的一个 子集。 :Q 内部状态集,描述系统内部状态量,是系统内部结构建模的核心。 :δ状态转移函数,定义系统内部状态是如何变化的,是一个映射。 :Y 输出集,系统通过它作用于环境。 :λ输出函数,是一个映射,给出了一个输出段集。

第2章控制系统描述方式及建模方法

第2章 控制系统描述方式及建模方法 (1)数学模型 一个实际的系统针对所控的变量经一定的合理的假设就变成了物理模型,再根据物理定律和机械定律等进行推导就得到了数学模型。 数学模型只能对某些特定的输入响应,故它不能包含实际系统对输入响应的全部真实的信息,且数学模型是实际系统的简化,所以在建模时就有很大学问。 太复杂和精细的模型可能包含难于估计的参数,也不便于分析。过于简单的模型不能描述系统的重要性能。这就需要我们在建模时掌握好复杂和简单的度,作合理的折中。 (2)仿真数学模型 建立数学模型意味着在计算机上建立起对象的可以计算的模型。 一般来说,系统的数学模型都必须改写成适合于计算机处理的形式才能使用,这种模型被称为仿真数学模型。 (3)仿真模型分类 数学模型分为静态模型和动态模型,前者主要用于系统的静态误差分析。动态模型又分为连续模型(用微分方程表述)和离散模型(用差分方程表述)。 系统的数学模型还可按目的分为三大类,即 1)用来帮助对象设计和操作的模型; 2)用来帮助控制系统设计和操作的模型; 3)用来系统仿真的模型。 本书主要研究后两种情况。 2.1 控制系统描述方式 控制系统主要有如下6种系统描述方式: (1)微分方程(组) (状态空间) 这种方法比较直观,特别是借助于计算机,可以迅速而准确地求得结果。但是,如果系统结构形式改变,便需要重新列写并求解微分方程,因此不便于对系统进行分析和设计。 典型的状态方程如式(2-1-1)所示。 Du CX Y Bu AX X +=+=& (2-1-1) (2)传递函数 运用拉氏变换求解系统的线性常微分方程,可以得到系统在复数域的数学模型,称其为传递函数。传递函数不仅可以表征系统的动态特性,而且可借以研究系统的结构或参数变化对系统性能的影响。 在经典控制理论中广泛应用的频率法和根轨迹法,就是在传递函数基础上建立起来的。因此,传递函数是经典控制理论中最基本也是最重要的概念。

财务模型设计技术及方法概述

第1章概论 本书旨在为您提供一系列帮助您开发、利用和维护Excel模型的工具。财务模型的建立通常被看作只是对会计数字的添加或者是进行这种添加的方法。但是,本书将会给您展示精良的建立财务模型的实践操作;提供一些不同的技术要领并会给您精选出一些模型的模板。本书并不是一本Excel使用的工具书,因为关于这一方面已经有很多深入的手册了,更确切地说,本书是对一些技术的概述以便为您节省时间,帮助您在财务管理方面变得更为有效率。 1.1、什么是财务建模 财务建模涵盖了一个很宽泛的领域:从简单的制表到费用的加总再使之转变为项目所需的复杂的风险模型。此外,模型的设计还需要考虑很多其它的方面。具体地说,关于财务建模我们必须考虑: ●针对具体商业问题的解答建立特殊的操作程序。如现金流量表及其易变性; ●对数据进行分析处理; ●将未来因素纳入模型考虑,对未来的情况进行考察; ●将数据快速准确地转化为管理信息; ●在一个“安全”的环境中测试假设,如项目方案; ●通过一种结构化的途径来支持管理决策; ●更准确地认识问题中的相关变量和规则; ●更多地了解变量的变化过程及其变化方式; ●找出关键变量并考察其敏感性。 1.2、电子表格的历史 电子表格被应用于个人电脑是从20世纪70年代晚期VisiCalc(专为苹果机使用的一种操作软件)的使用开始的。由于这种工作表的高效率和准确性,使之在大范围内迅速取代了一些早期的方法(如高速计算机),同时,Lotus1-2-3的使用与IBM个人电脑的使用也同步增加。从此财务管理者也能用他们自己的数据来进行分析而不用求助于其它数据系统或是系统管理员了。会计模型,如预算和现金流量,能根据用户的要求进行建立,这就导致了:

混合OLS、固定模型与随机模型的区别(优.选)

方差分析(写成英文我就认识了。。analysis of variance (ANOVA) )主要有三种模型:即固定效应模型(fixed effects model),随机效应模型(random effects model),混合效应模型(mixed effects model)。 所谓的固定、随机、混合,主要是针对分组变量而言的。 固定效应模型,表示你打算比较的就是你现在选中的这几组。例如,我想比较3种药物的疗效,我的目的就是为了比较这三种药的差别,不想往外推广。这三种药不是从很多种药中抽样出来的,不想推广到其他的药物,结论仅限于这三种药。“固定”的含义正在于此,这三种药是固定的,不是随机选择的。 随机效应模型,表示你打算比较的不仅是你的设计中的这几组,而是想通过对这几组的比较,推广到他们所能代表的总体中去。例如,你想知道是否名牌大学的就业率高于普通大学,你选择了北大、清华、北京工商大学、北京科技大学4所学校进行比较,你的目的不是为了比较这4所学校之间的就业率差异,而是为了说明他们所代表的名牌和普通大学之间的差异。你的结论不会仅限于这4所大学,而是要推广到名牌和普通这样的一个更广泛的范围。“随机”的含义就在于此,这4所学校是从名牌和普通大学中随机挑选出来的。混合效应模型就比较好理解了,就是既有固定的因素,也有随机的因素。 一般来说,只有固定效应模型,才有必要进行两两比较,随机效应模型没有必要进行两两比较,因为研究的目的不是为了比较随机选中的这些组别。 固定效应和随机效应的选择是大家做面板数据常常要遇到的问题,一个常见的方法是做huasman检验,即先估计一个随机效应,然后做检验,如果拒绝零假设,则可以使用固定效应,反之如果接受零假设,则使用随机效应。但

相关文档
最新文档