电子产品的热设计方法

电子产品的热设计方法
电子产品的热设计方法

电子产品的热设计方法(一)

2007-05-03 14:51:28 字号:大中小

为什么要进行热设计?

高温对电子产品的影响:绝缘性能退化;元器件损坏;材料的热老化;低熔点焊缝开裂、焊点脱落.

温度对元器件的影响:一般而言,温度升高电阻阻值降低;高温会降低电容器的使用寿命;高温会使变压器、扼流圈绝缘材料的性能下降, 一般变压器、扼流圈的允许温度要低于95C;温度过高还会造成焊点合金结构的变化—IMC增厚,焊点变脆,机械强度降低;结温的升高会使晶体管的电流放大倍数迅速增加,导致集电极电流增加,又使结温进一步升高,最终导致组件失效.

热设计的目的

控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过标准及规范所规定的最高温度.最高允许温度的计算应以元器件的应力分析为基础,并且与产品的可靠性要求以及分配给每一个元器件的失效率相一致.

在本次讲座中将学到那些内容

风路的布局方法、产品的热设计计算方法、风扇的基本定律及噪音的评估方法、海拔高度对热设计的影响及解决对策、热仿真技术、热设计的发展趋势.

授课内容

风路的设计方法 20分钟

产品的热设计计算方法 40分钟

风扇的基本定律及噪音的评估方法 20分钟

海拔高度对热设计的影响及解决对策 20分钟

热仿真技术、热设计的发展趋势 50分钟

概述

风路的设计方法 :通过典型应用案例,让学员掌握风路布局的原则及方法.

产品的热设计计算方法 :通过实例分析,了解散热器的校核计算方法、风量的计算方法、通风口的大小的计算方法.

风扇的基本定律及噪音的评估方法:了解风扇的基本定律及应用;了解噪音的评估方法.

海拔高度对热设计的影响及解决对策:了解海拔高度对风扇性能的影响、海拔高度对散热器及元器件的影响,了解在热设计如何考虑海拔高度对热设计准确度的影响.

热仿真技术:了解热仿真的目的、要求,常用热仿真软件介绍.

热设计的发展趋势:了解最新散热技术、了解新材料.

风路设计方法

自然冷却的风路设计

设计要点

机柜的后门(面板)不须开通风口.

底部或侧面不能漏风.

应保证模块后端与机柜后面门之间有足够的空间.

机柜上部的监控及配电不能阻塞风道,应保证上下具有大致相等的空间.

对散热器采用直齿的结构,模块放在机柜机架上后,应保证散热器垂直放置,

即齿槽应垂直于水平面.对散热器采用斜齿的结构,除每个模块机箱前面板应开通风口外,在机柜的前面板也应开通风口.

风路设计方法

自然冷却的风路设计

设计案例

风路设计方法

自然冷却的风路设计

典型的自然冷机柜风道结构形式

风路设计方法

强迫冷却的风路设计

设计要点

如果发热分布均匀, 元器件的间距应均匀,以使风均匀流过每一个发热源.

如果发热分布不均匀,在发热量大的区域元器件应稀疏排列,而发热量小的区域元器件布局应稍密些,或加导流条,以使风能有效的流到关键发热器件.

如果风扇同时冷却散热器及模块内部的其它发热器件,应在模块内部采用阻流方法,使大部分的风量流入散热器.

进风口的结构设计原则:一方面尽量使其对气流的阻力最小,另一方面要考虑防尘,需综合考虑二者的影响.

风道的设计原则

风道尽可能短,缩短管道长度可以降低风道阻力;

尽可能采用直的锥形风道,直管加工容易,局部阻力小;

风道的截面尺寸和出口形状,风道的截面尺寸最好和风扇的出口一致,以避免因变换截面而增加阻力损失,截面形状可为园形,也可以是正方形或长方形;

风路设计方法

强迫冷却的风路设计

典型结构

风路设计方法

强迫冷却的风路设计

电源系统典型的风道结构-吹风方式

风路设计方法

热设计的基础理论

自然对流换热

大空间的自然对流换热

Nu=C(Gr.Pr)n.

定性温度: tm=(tf+tw)/2

定型尺寸按及指数按下表选取

热设计的基础理论

自然对流换热

有限空间的自然对流换热

垂直封闭夹层的自然对流换热问题分为三种情况:

(1) 在夹层内冷热壁的两股流道边界层能够相互结合,形成环流;

(2) 夹层厚度δ与高度之比δ/h>0.3时,冷热的自然对流边界层不会相互干扰,也不会出现环流,可按大空间自然对流换热计算方法分别计算冷热的自然对流换热;

(3) 冷热壁温差及厚度均较小,以厚度为定型尺寸的Gr=(Bg△t

δ3)/υ3<2000时,通过夹层的热量可按纯导热过程计算.

热设计的基础理论

自然对流换热

有限空间的自然对流换热

水平夹层的自然对流换热问题分为三种情况:

(1) 热面朝上,冷热面之间无流动发生,按导热计算;

(2) 热面朝下,对气体Gr.Pr<1700,按导热计算;

(3) 有限空间的自然对流换热方程式:

Nu=C(Gr.Pr)m(δ/h)n

定型尺寸为厚度δ,定性温度为冷热壁面的平均温度Tm=(tw1+tw2 )

热设计的基础理论

流体受迫流动换热

管内受迫流动换热

管内受迫流动的特征表现为:流体流速、管子入口段及温度场等因素对换热的影响.

入口段:流体从进入管口开始需经历一段距离后管两侧的边界层才能够在管中心汇合,这时管断面流速分布及流动状态才达到定型.这段距离称为入口段.入口段管内流动换热系数是不稳定的,所以计算平均对流换热系数应对入口段进行修正.在紊流时,如果管长与管内径之比L/d>50则可忽略入口效应,实际上多属于此类情况.

管内受迫层流换热准则式:

Nu=0.15Re0.33 Pr0.43Gr0.1(Pr/Prw)0.25

管内受迫紊流换热准则式:

tw>tf Nu=0.023Re0.8 Pr0.4.

tw

热设计的基础理论

流体动力学基础

流量与断面平均流速

流量:单位时间内流过过流断面的流体数量.如数量以体积衡量称为体积流量Q;单位为m3/s(CFM);如数量用重量衡量称为重量流量G,单位为Kg/s.二者的关系为:

G=γQ

断面平均流速:由于流体的粘性,过流断面上各点的流速分布不均匀,根据流量相等原则所确定的均匀流速称为断面平均流速.单位m/s(CFM)

V=Q/A

湿周与水力半径

湿周:过流断面上流体与固体壁面相接触的周界长度.用x表示,单位m.

水力半径:总流过过流断面面积A与湿周x之比称为水力半径,应符号R表示,单位M.

恒定流连续性方程

对不可压缩流体:V1A1=V2A2.

对可压缩流体 : ρ1V1A1=ρ1V2A2

热设计的基础理论

流体动力学基础

恒定流能量方程

对理想流体:Z+p/γ+v2/2g=常数

实际流体:由于粘性作为会引起流动阻力,流体阻力与流体流动方向相反作负功,使流体的总能量不断衰减,每个断面的Z+p/y+v2/2g≠常数,假设流体从断面1到断面2的能量损失为hw,则元流的能量方程式为:

Z1+p1/γ+v12/2g=Z2+p2/γ+v22/2g+hw 热设计的基础理论

流体动力学基础

流体流动的阻力:由于流体的粘性和固体边界的影响,使流体在流动过程中受到阻力,这个阻力称为流动阻力,可分为沿程阻力和局部阻力两种.

沿程阻力:在边界沿程不变的区域,流体沿全部流程的摩檫阻力.

局部阻力:在边界急剧变化的区域,如断面突然扩大或突然缩小、弯头等局部位置,是流体的流体状态发生急剧变化而产生的流动阻力.

层流、紊流与雷诺数

层流:流体质点互不混杂,有规则的层流运动.

Re=Vde/ν<2300 层流

紊流:流体质点相互混杂,无规则的紊流运动.

显然层流状态下只存在粘性引起的摩檫阻力,而紊流状态下除摩檫阻力外还存在由于质点相互碰撞、混杂所造成的惯性阻力,因此紊流的阻力较层流阻力大的多.

Re=Vde/ν<2300 紊流

热设计的基础理论

流体动力学基础

管内层流沿程阻力计算(达西公式)

hf=λ(L/de)(ρV2/2)

λ-沿程阻力系数,λ=64/Re

管内紊流沿程阻力计算

hf=λ(L/de)(ρV2/2)

λ=f(Re,ε/d),即紊流时沿程阻力系数不仅与雷诺数有关,还与相对粗糟度ε有关. 尼古拉兹采用人工粗糟管进行试验得出了沿程阻力系数的经验公式:

紊流光滑区:4000

λ=0.3164/Re 0.25

热设计的基础理论

流体动力学基础

非园管道沿程阻力的计算

引入当量水力半径后所有园管的计算方法与公式均可适用非园管,只需把园管直径换成当量水力直径.

de=4A/x

局部阻力

hj=ξρV2/2

ξ-局部阻力系数

突然扩大: 按小面积流速计算的局部阻力系数:ζ1=(1-A1/A2)

按大面积流速计算的局部阻力系数:ζ2=(1-A2/A1)

突然缩小: 可从相关的资料中查阅经验值.

电子产品的热设计方法(二)

2007-05-03 14:53:24 字号:大中小

散热器的设计方法

散热器设计的步骤

通常散热器的设计分为三步

1:根据相关约束条件设计处轮廓图.

2:根据散热器的相关设计准则对散热器齿厚、齿的形状、齿间距、基板厚度进行优化.

3:进行校核计算.

散热器的设计方法

自然冷却散热器的设计方法

考虑到自然冷却时温度边界层较厚,如果齿间距太小,两个齿的热边界层易交叉,影响齿表面的对流,所以一般情况下,建议自然冷却的散热器齿间距大于12mm,如果散热器齿高低于10mm,可按齿间距≥1.2倍齿高来确定散热器的齿间距.

自然冷却散热器表面的换热能力较弱,在散热齿表面增加波纹不会对自然对流效果产生太大的影响,所以建议散热齿表面不加波纹齿.

自然对流的散热器表面一般采用发黑处理,以增大散热表面的辐射系数,强化辐射换热.

由于自然对流达到热平衡的时间较长,所以自然对流散热器的基板及齿厚应足够,以抗击瞬时热负荷的冲击,建议大于5mm以上.

散热器的设计方法

强迫冷却散热器的设计方法

在散热器表面加波纹齿,波纹齿的深度一般应小于0.5mm.

增加散热器的齿片数.目前国际上先进的挤压设备及工艺已能够达到23的高宽比,国内目前高宽比最大只能达到8.对能够提供足够的集中风冷的场合,建议采用低温真空钎焊成型的冷板,其齿间距最小可到2mm.

采用针状齿的设计方式,增加流体的扰动,提高散热齿间的对流换热系数.

当风速大于1m/s(200CFM)时,可完全忽略浮升力对表面换热的影响.

散热器的设计方法

在一定冷却条件下,所需散热器的体积热阻大小的选取方法

在一定的冷却体积及流向长度下,确定散热器齿片最佳间距的大小的方法不同形状、不同的成型方法的散热器的传热效率比较

散热器的相似准则数及其应用方法

相似准则数的定义

散热器的相似准则数及其应用方法

相似准则数的应用

散热器的基板的优化方法

不同风速下散热器齿间距选择方法

不同风速下散热器齿间距选择方法

优化散热器齿间距的经验公式及评估风速变化对热阻的影响的经验公式

辐射换热的考虑原则

如果物体表面的温度低于50℃,可忽略颜色对辐射换热的影响.因为此时辐

射波长相当长,处于不可见的红外区.而在红外区,一个良好的发射体也是一个良好的吸收体,发射率和吸收率与物体表面的颜色无关.

对于强迫风冷,由于散热表面的平均温度较低,一般可忽略辐射换热的贡献.

如果物体表面的温度低于50℃,

可不考虑辐射换热的影响.

辐射换热面积计算时,如表面积不规则,应采用投影面积.即沿表面各部分绷紧绳子求得的就是这一投影面积,如图所示.辐射传热要求辐射表面必须彼此可见.

热设计的计算方法

冷却方式的选择方法

确定冷却方法的原则

在所有的冷却方法中应优先考虑自然冷却,只有在自然冷却无法满足散热要求时,才考虑其它冷却.

冷却方式的选择方法1:根据温升在40℃条件下各种冷却方式的热流密度或体积功率密度值的范围来确定冷却方式,具有一定的局限性.

热设计的计算方法

冷却方式的选择方法

冷却方式的选择方法2:根据热流密度与温升要求,按图2所示关系曲线选择,此方法适应于温升要求不同的各类设备的冷却

热设计的计算方法

冷却方式的选择方法

冷却方式的选择方法案例

某电子设备的功耗为300W,机壳的几何尺寸为248×381×432mm,在正常大

气压下,若设备的允许温升为40℃,试问采用那种冷却方法比较合理?

计算热流密

度:q=300/2(2.48×2.2.48+2.48×4.32+2.2.81×4.32)=0.04W/cm2 当△t=40℃,q=0.04W/cm2时,其交点正好落在自然冷却范围内,所有采用自

然冷却方法就可以满足要求.

若设备的温升有严格限制,假设只允许10℃,由图2可以看出,需强迫风冷才能满足要求.

机箱的热设计计算

密封机箱

WT=1.86(Ss+4St/3+2Sb/2)Δt 1.25+4ζεTm3ΔT

对通风机箱

WT=1.86(Ss+4St/3+2Sb/2)Δt 1.25+4ζεTm3ΔT+1000uAΔT 对强迫通风机箱

WT=1.86(Ss+4St/3+2Sb/2)Δt 1.25+4ζεTm3ΔT+ 1000QfΔT 自然冷却时进风口面积的计算

在机柜的前面板上开各种形式的通风孔或百叶窗,以增加空气对流,进风口

的面积大小按下式计算:

Sin=Q/(7.4×10-5 H×Δt 1.5)

s-通风口面积的大小,cm2

Q-机柜内总的散热量,W

H-机柜的高度,cm,约模块高度的1.5-1.8倍,

Δt=t2-t1-内部空气t2与外部空气温度 t1 之差, ℃ 出风口面积为进风口面积的1.5-2倍

强迫风冷出风口面积的计算

模块

有风扇端的通风面积:

Sfan=0.785(φin2-φhub2)

无风扇端的通风面积S=(1.1-1.5) Sfan

系统

在后面板(后门)上与模块层对应的位置开通风口,通风口的面积大小应为: S=(1.5-2.0)(N×S模块)

N---每层模块的总数

S模块---每一个模块的进风面积

热设计的计算方法

通风面积计算的案例

[案例] 铁道信号电源机柜模块及系统均为自然冷却,每层模块的散热量为360W,模块的高度为7U,进出口温差按20℃计算,机柜实际宽度为680mm,试计算每层进出风口的面积?

H按2倍模块的高度计算,即H=2×7U=14U

进风口的面积按下式计算:

Sin=Q/(7.4×10-5×H×△t1.5)

=360/(7.4×10-5×14 ×4.44×201.5)=875 cm2

进风口高度h

机柜的宽度按B=680mm计,则进风口的高度为:

H=Sin/B=875/68=128.7mm

b 出风口面积Sout

Sout=(1.5-2.0)Sin=2×875=1750 cm2

热设计的计算方法

实际冷却风量的计算方法

q`=Q/(0.335△T)

q`---实际所需的风量,M3/h

Q----散热量,W

△T-- 空气的温升,℃,一般为10-15℃.

确定风扇的型号经验公式:

按照1.5-2倍的裕量选择风扇的最大风量:

q=(1.5-2)q` 按最大风量选择风扇型号.

热设计的计算方法

实际冷却风量的计算方法

案例:10K UPS主功率管部分的实际总损耗为800W,空气温升按15℃考虑,请选择合适的风扇.

实际所须风量为:

q`=Q/(0.335△t)=800/(0.335×15)=159.2m3/h

按照2倍的裕量选择风扇的最大风量:

q=2q`=2×159.2=318.4m3/h

下表风扇为可选型号

热设计的计算方法

型材散热器的计算

散热器的热阻

散热器的热阻是从大的方面包括三个部分.

RSA=R对+R导+ R辐

R对=1/(hc F1)

F1--对流换热面积(m), hc –对流换热系数(w/m2.k)

R辐--辐射换热热阻 ,对强迫风冷可忽略不计

对自然冷却 R辐=1/(4бεTm3)

R导=R 基板+R肋导

=δ/(λF2)+((1/η)-1)R对流

λ--导热系数,w/m.h.℃

δ-- 散热器基板厚度(m)

η-- 肋效率系数

F2--基板的导热面积(m)

F2=0.785*(d+δ)2

d- 发热器件的当量直径(m)

热设计的计算方法

型材散热器的计算

对流换热系数的计算

自然对流

垂直表面

hcs=1.414(△t/L)0.25 ,w/m.k

式中: △t--散热表面与环境温度的平均温升,℃

L--散热表面的特征尺寸,取散热表面的高,m 水平表面,热表面朝上

hct=1.322(△t/L)0.25 ,w/m.k

式中: △t--散热表面与环境温度的平均温升,℃

L--散热表面的特征尺寸,取L=2(长×宽)/(长+宽),m 水平表面,热表面朝下

hcb=0.661(△t/L)0.25 ,w/m.k

式中: △t--散热表面与环境温度的平均温升,℃

L--散热表面的特征尺寸,取L=2(长×宽)/(长+宽),m

电子产品的热设计方法(三)

2007-05-03 14:54:08 字号:大中小

热设计的计算方法

型材散热器的计算

对流换热系数的计算

强迫对流

层流 Ref<105

hc=(1.1-1.4) λ空气 0.66Ref 0.5/L

湍流 Ref>105

hc=(1.1-1.4) λ空气 0.032Ref 0.8/L

肋片效率

对直齿肋:

η=th(mb)/(mb))

m=(2 hc/λδ0)

δ0:肋片根部厚度(m)

b. 肋高(m)

热设计的计算方法

型材散热器的计算

散热器的流阻计算

散热器的流阻包括沿程阻力损失及局部阻力损失

△P=hf+hj

=λf?L/de?ρV22/2+ζρV22/2

λ f --沿程阻力系数

L--流向长度(m)

de--当量水利直径(m),de=4A流通/湿周长

V--断面流速(m/s)

沿程阻力系数计算λ f

层流区:Re=Vd/υ≤2300λf=64/Re

紊统光滑区 4000

υ--运动粘度系数(m2/s),从文献中查找

热设计的计算方法

型材散热器的计算

散热器的流阻计算

局面阻力系数ζ

突然扩大

按小面积流速计算的局部阻力系数:ζ1=(1-A1A2)

按大面积流速计算的局部阻力系数: ζ2=(1-A2/A1)

突然缩小可从相关的资料中查阅经验值.

热设计的计算方法

型材散热器的计算

【案例】散热器DXC-616(天津铝合金厂编号),截面图略,散热器的截面积为77.78cm2,周长为2.302m,单位长度的重量为21KG/m.风扇采用PAPST 4656Z ,风扇功率19W,最大风量为160m3/h,压头为70Pa.

风道阻力曲线的计算

入口面积:Fin=0.785×D2 =0.785×0.1192=0.01116m2

流通面积:Ff=Fin-Fc=0.01116-0.007778=3.338×10-3m2

水力直径: de=4Ff/x=4×3.338×10-3/2.302=5.8×10-3m 由于风速较低,一般最大不会超过6m/s,雷诺数<2300,沿程阻力系数按下式计算:λ=64/Re=64 ν/Vde

沿程阻力按下式计算:

hf=λ(L/de)(ρV2/2)=(64 ν/Vde)(L/de)(ρV2/2)

=(64×16.96×10-6×0.24/(V×0.00582))(ρV2/2)

=(8.07/V)(ρV2/2)

局部阻力按下式计算:

hj=ξρV2/2

对于突然缩小,A2/A1=0.003338/0.01116=0.3,查表得ξ=0.38

总阻力损失 H=hf+ hj=(0.38+8.07/V )(ρV2/2)

热设计的计算方法

型材散热器的计算

【案例】续

确定风扇的工作点

10KVA UPS 的选择风扇为PAPST 4656Z,我们把风道曲线与风扇的曲线进行叠加,其交点即为风扇的工作点,给工作点对应的风速为5m/s,压力为35Pa.

散热器的校核计算

雷诺数Ref=V×L/ν=5×0.24/16.96×10-6=5.6604×104

努谢尔特数: Nuf=0.66Ref0.5=0.66(5.6604×104)0.5=157

对流换热系数:hc=1.4λNuf/L=21.7w/m.k

m=(2 hc/λδ)0.5=9.82

ml=9.82×0.03=0.295,查得:η=0.96

该散热器的最大散热量为(散热器台面温升按最大40℃考虑):

Q=hcF△t η=460.4W

计算结果表面,散热器及风扇选型是合理的.

热设计的计算方法

冷板的计算方法

传热计算

确定空气流过冷板后的温升:t=Q/qmCp

确定定性温度 tf=(2ts+t1+t2)/4, 冷板台面温度 ts为假定值

设定冷板的宽度为b,则通道的横截面积为Ac ,Ac=b×Ac0

确定定性温度下的物性参数(μ、Cp、ρ、Pr).

流体的质量流速和雷诺数 G=qm/Af Re=deG/μ

根据雷诺数确定流体的状态(层流或紊流), Re<1800, 层流, Re>105, 湍流

根据流体的状态(层流或紊流)计算考尔本数J

Re<1800,层流 J=6/Re 0.98 Re>105,湍流 J=0.023/Re 0.2也可以根据齿形及雷诺数从GJB/Z 27-92 图12-18查得

热设计的计算方法

冷板的计算方法

传热计算

计算冷板的换热系数: h= JGCpPr2/3

计算肋片的效率 m=(2h/λδ)0.5,ηf=th(ml)/ml(也可以根据ml值查相

应的图表得到肋片效率)

计算冷板的总效率:忽略盖板及底版的效率,总效率为:A=At+Ar+Ab, η0=1-Ar(1-ηf)/A

计算传热单元数 NTU=hη0A/qmCp

计算冷板散热器的台面温度

ts=(eNTUt2-t1)/(eNTU-1)

热设计的计算方法

冷板的计算方法

流体流动阻力计算

计算流通面积与冷板横截面积之比

ζ=Af/Ac

查空气进入冷板时入口的损失系数Kc=f(Re,ζ): 根据雷诺数Re及ζ从GJB/Z 27-92 图12-16及图12-16查得

查摩擦系数f=f(Re,ζ): 根据雷诺数Re从GJB/Z 27-92 图12-18查得计算流动阻力

△P=G2[(Kc+1-ζ2)+2(ρ2/ρ1-1)+f

ρ1A/(Afρm)-(1-ζ2-Ke)ρ1/ρ2]/(2ρ1)

热设计的计算方法

冷板的计算方法

判断准则

确定是否满足ts<[ts],如果不满足,需增大换热面积或增大空气流量.

确定是否满足△P<[△P],如果不满足,需减小冷板的阻力(如选择阻力较小的齿形、增大齿解决等)或重新选择压头较大的风扇

热设计的计算方法

冷板的计算方法

案例:10KVA UPS 冷板散热器,器件的损耗为870.5W,要求冷板散热器台面温升小于30℃(在40℃的环境温度下).

冷板散热器的截面图略

梯形小通道面积:Ai=(3.8+2.6)×9.5/2=30.4mm2

每排有29个梯形小通道,共22排,n=29×22=638个

基板厚度为:9mm

总的流通面积Af =30.4×29×22=0.0193952 m2

冷板的横截面积Ac=120×120×2=0.0288 m2

水力半径:de=4Afi/х=4×30.4/(2×9.5+3.8+2.6)=4.787mm

热设计的计算方法

冷板的计算方法

【案例】续

确定风扇的工作点

Re=de G/μ=deqm/μAf

在40℃空气的物性参数为: μ=19.1×10-6kg/m.s, ρ1=1.12kg/m3 Re=(4.787×10-3×1.12×0.30483 qm1/(60×19.1×10-6×0.0193952) =6.831 qm1(qm1的单位为:CFM)

ζ=Af/Ac=0.0193952/0.0288=0.673

热设计的计算方法

冷板的计算方法

【案例】续

先忽略空气密度的变化,不同流量的流阻计算如下表所示:

我们把两个NMB4715的风扇流量相加,静压不变,得出两个风扇并联后的静压曲线,再把上表的数据绘制成风道曲线并与风扇静压曲线进行画在同一张图上,其交点即为风扇的工作点,即为(170CFM,0.13in.H2O),工作点对应的风速为

4.14m/s.

热设计的计算方法

冷板的计算方法

【案例】续

空气流过冷板后的温升

空气口温度为40 ℃,ρ1=1.12kg/m3,Cp=1005.7J/kg. ℃

μ=19.1×10-6kg/m.s, Pr=0.699

质量流量qm=0.080231×1.12=0.08986kg/s

△t= Q/qmCp=870.5/0.08986×1005.7=9.63 ℃

定性温度: tf=(2ts+t1+t2)= (2×80+40+49.63)/4=62.4℃

按定性温度查物性得: ρ1=

1.06kg/m3,Cp=1005.7J/kg.℃

μ=20.1×10-6kg/m.s,Pr=0.696

换热系

质量流速 G=qm/Af

=4.14×1.12=4.64kg/m2.s

雷诺

数 Re=deG/μ=4.787×10-3×4.64/(20.1×10-6)=1105.1

层流J=6/Re 0.98=6/1105.10.98=6.25×10-3

h= JGCpPr-2/3=6.25×10-3×4.64×1005.7×0.696-2/3 =37.14W/m2.℃ 肋片效率 m=(2h/λδ)0.5=(2×37.14/(180 ×0.001))0.5=20.3

ml=20.3×0.11=2.23

ηf=th(ml)/ml=th(2.23)/2.23=0.433

传热单元数:NTU=hη0A/qmCp=37.14×0.433×3.241 =0.5772

冷板的表面温度: Ts=(eNTUt2-t1)/(eNTU-1)=61.9 ℃<70℃

冷板设计方案满足散热要求.

风扇的基本定律及噪音的评估方法

风扇定律

风扇的基本定律及噪音的评估方法

风扇的噪音问题

风扇产生的噪音与风扇的工作点或风量有直接关系,对于轴流风扇在大风量,低风压的区域噪音最小,对于离心风机在高风压,低风量的区域噪音最小,这和风

扇的最佳工作区是吻合的.注意不要让风扇工作在高噪音区.

风扇进风口受阻挡所产生的噪音比其出风口受阻挡产生的噪音大好几倍,所以一般应保证风扇进风口离阻挡物至少30mm的距离,以免产生额外的噪音.

对于风扇冷却的机柜,在标准机房内噪音不得超过55dB,在普通民房内不得超过65dB.风扇的基本定律及噪音的评估方法

风扇的噪音问题

对于不得不采用大风量,高风压风扇从而产生较大噪音的情况,可以在机柜的进风口、出风口、前后门内侧、风扇框面板、侧板等处在不影响进风的条件下贴吸音材料,吸音效果较好的材料主要是多孔介质,如玻璃棉,厚度越厚越好.

有时由于没有合适的风机而选择了转速较高的风机,在保证设计风量的条件下,可以通过调整风机的电压或其它方式降低风扇的转速,从而降低风扇的噪音.相应的噪音降低变化按下式计算:

N2 = N1 + 50 log10 (RPM2/RPM1)

风扇的基本定律及噪音的评估方法

风扇的噪音问题

【案例】:一电源模块采用一个轴流风扇进行冷却,为了有效抑止噪音,要求风扇只有在监控点的温度高于85℃才全速运转,其余情况风扇必须半速运转.已知风扇全速运转时转速为2000RMP,噪音为40db,求在半速运转时风扇的噪音为多少?如果已知全速运转时风扇的工作点为(50CFM,0.3IN.H2O),试求风扇在半速运转时的工作点.

解:根据风扇定律

N2 = N1 + 50 log10 (RPM2/RPM1)

=40+50 log10 (1000/2000) =24.9db

P2 =P1 (RPM2/RPM1)2

=0.3(1000/2000)2=0.075 IN.H2O

CFM2 = CFM1 (RPM2/RPM1)

=50(1000/2000)=25CFM

海拔高度对热设计的影响及解决对策

海拔高度对自然冷却条件的热设计要求

对于自然对流,其传热机理是由于冷却空气吸热后其密度减小,迫使重力场中的空气上升而形成冷热空气的对流而产生热量传递.由于随着海拔高度的增加,空气的密度逐渐减小,空气上升的能力也就减少,自然对流换热的能力减弱.自然对流换热能力的变化最终体现在对流换热系数的变化上,根据美国斯坦伯格的经验公式,如果忽略空气温度的变化,可按下式计算海拔高度对自然对流的影响强弱.

hc(高空)=hc(海平面)(ρ高空/ρ海平面)0.5

=hc(海平面) (p高空/p海平面)0.5

hc(高空),hc(海平面)-分别为高空及海平面的自然对流换热系数,W/m.k ρ高空,ρ海平面-分别为高空及海平面的空气密度,Kg/m3

p高空,p海平面-分别为高空及海平面的空气压力,帕斯卡

海拔高度对热设计的影响及解决对策

海拔高度对强迫冷却条件的热设计要求

海拔高度对强迫风冷影响的机理是由于随着海拔高度的增加,空气密度减小,

质量流速减小,空气分子间碰撞的概率降低,对流换热能力减弱.同样,强迫对流换热随海拔高度的变化最终体现在对流换热系数的变化上,美国军用标准规定,低于5000米以下的高空,如果忽略空气温度的变化,可按下式计算海拔高度对强迫风冷换热影响的强弱.

层流:hc(高空)=hc(海平面)(ρ高空/ρ海平面)0.5

湍流: hc(高空)=hc(海平面)(ρ高空/ ρ海平面)0.8

hc(高空),hc(海平面)-分别为高空及海平面的强迫风冷对流换热系数,W/m.k

p高空,p海平面-分别为高空及海平面的空气压力,帕斯卡

电子产品散热设计概述(doc 45页)

电子产品散热设计概述(doc 45页) 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

YEALINK 行业 dell

电子产品的散热设计 一、为什么要进行散热设计 在调试或维修电路的时候,我们常提到一个词“**烧了”,这个**有时是电阻、有时是保险丝、有时是芯片,可能很少有人会追究这个词的用法,为什么不是用“坏”而是用“烧”?其原因就是在机电产品中,热失效是最常见的一种失效模式,电流过载,局部空间内短时间内通过较大的电流,会转化成热,热**不易散掉,导致局部温度快速升高,过高的温度会烧毁导电铜皮、导线和器件本身。所以电失效的很大一部分是热失效。 高温对电子产品的影响:绝缘性能退化;元器件损坏;材料的热老化;低熔点焊缝开裂、焊点脱落。 温度对元器件的影响:一般而言,温度升高电阻阻值降低;高温会降低电容器的使用寿命;高温会使变压器、扼流圈绝缘材料的性能下降,一般变压器、扼流圈的允许温度要低于95C;温度过高还会造成焊点合金结构的变化—IMC增厚,焊点变脆,机械强度降低;结温的升高会使晶体管的电流放大倍数迅速增加,导致集电极电流增加,又使结温进一步升高,最终导致元件失效。 那么问一个问题,如果假设电流过载严重,但该部位散热极好,能把温升控制在很低的范围内,是不是器件就不会失效了呢?答案为“是”。 由此可见,如果想把产品的可靠性做高,一方面使设备和零部件的耐高温特性提高,能承受较大的热应力(因为环境温度或过载等引起均可);另一方面是加强散热,使环境温度和过载引起的热量全部散掉,产品可靠性一样可以提高。 二、散热设计的目的 控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过标准及规范所规定的最高温度。最高允许温度的计算应以元器件的应力分析为基础,并且与产品的可靠性要求以及分配给每一个元器件的失效率相一致。 三、散热设计的方法 1、冷却方式的选择 我们机电设备常见的是散热方式是散热片和风扇两种散热方式,有时散热的程度不够,有时又过度散热了,那么何时应该散热,哪种方式散热最合适呢?这可以依据热流密度来评估,热流密度=热量 / 热通道面积。 按照《GJB/Z27-92 电子设备可靠性热设计手册》的规定(如下图1),根据可接受的温升的要求和计算出的热流密度,得出可接受的散热方法。如温升40℃(纵轴),热流密度0.04W/cm2(横轴),按下图找到交叉点,落在自然冷却区内,得出自然对流和辐射即可满足设计要求。

完整的电子产品设计流程

产品特点 工程化的高速PCB 信号完整性与电磁兼容性仿真工具,操作简便,易于掌握 支持所有PCB 环境下的设计文件 支持PCB 前仿真/后仿真分析 支持PCB 叠层结构、物理参数的提取与设定 支持各种传输线的阻抗规划与计算 支持反射、串扰、损耗、过孔效应及电磁兼容性分析 通过匹配向导为高速网络提供串行、并行及差分匹配等方案 支持多板分析,可对板间传输的信号进行反射、串扰及损耗分析 提供DDR/DDRII/USB/SATA/ PCIX 等多种 Design Kit HyperLynx :工程化的高速PCB 信号完整性与电磁兼容性分析环境 概述 电子工程师们越来越深刻地体会到:即 使电路板(PCB )上的信号在低至几十兆的 频率范围内工作,也会受到开关速度在纳秒 (ns )级的高速芯片的影响而产生大量的信 号完整性(SI )与电磁兼容性(EMC )问题。 一个优秀的电路设计,往往因为PCB 布局布 线时某些高速信号处理不当而造成严重的过 冲/下冲、延时、串扰及辐射等问题,最终导 致产品设计的失败。 Mentor Graphics 公司的HyperLynx 软件是业界应用最为普遍的高速PCB 仿真工 具。它包含前仿真环境(LineSim ),后仿真环境(BoardSim )及多板分析功能,可以帮助设计者对电路板上频率低至几十兆赫兹,高达千兆赫兹(GHz )以上的网络进行信号完整性与电磁兼容性仿真分析,消除设计隐 患,提高设计一版成功率。 操作简洁、功能齐全的信号完整性与电磁兼 容性分析环境 对于大多数工程师而言,信号完整性与 电磁兼容性分析仅仅是产品设计流程中的一 个环节,在此环节采用的工具必须与整个流 程中的其他工具相兼容,且要保证工程师能 快速掌握工具,并将其应用于实际的设计工 作。否则,性能再好的软件也很难在工程实 践中得到广泛应用。

航空器电子产品热设计

航空器电子产品热设计 现代机(弹)载电子设备由于受条件限制,都要求重量轻、体积小。另外,为了提高电子产品的工作性能,其功率往往很大,也就是说电子元器件的发热量非常大,一般电子元器件的正常工作温度要求低于100°C。根据美国空军的统计,在机(弹)载电子设备失效的原因中,有超过50%是由于温度引起的,因此电子产品的热设计是电子产品可靠性设计的最主要内容。 机(弹)载电子产品的冷却可采用循环水冷(二次冷却)和风冷,而风冷又有自然风冷和强迫风冷。 图7-1、7-2采用ANSYS CFX对某机载电子产品进行水冷分析,图示为散热冷板上的温度分布和冷却水的流线图。 传统的机(弹)载电子产品的热设计以经验设计为主,根据机(弹)载电子产品热设计手册,利用半经验、半解析的估算公式确定冷却方式、流量(压差)及流道,然后制造相应的1:1模型进行测试验证。这种热设计的成功率主要取决于设计者的经验,由于试验验证成本高、周期长,设计者只能选取少数几种自己认为最可行的设计方案进行试验,从而可能疏漏了更好的设计方案。另外,如果测试验证后发现了设计中的问题,回过来重新更改设计,再测试验证,这样的设计周期就更长,这与激烈的市场竞争不相适应。

计算流体动力学(CFD)的飞速发展和计算机性能的提高为机(弹)载电子产品热设计的数值仿真提供了保障。ANSYS CFX流体分析功能就是利用基于有限元的有限体积法求解三维湍流Navier-Stokes方程。ANSYS CFX是热、流耦合计算软件,在流体单元中求解质量、动量、能量方程,而同时在固体单元中耦合求解能量方程,由此可得出流场中的速度、压力、温度分布,固体中的温度分布,同时可得出流、固表面的对流换热系数(图7-4)和热流密度。 图7-5采用ANSYS CFX对某机载电子设备机箱进行强迫风冷分析,图示结果为机箱内外表面的对流换热系数分布。 机(弹)载电子产品的冷却效率取决于流、固表面对流换热系数的大小,因此热设计仿真分析的最主要任务是准确求解对流换热系数。对流换热系数的大小与近壁面的流体温度分布梯度成正比,而近壁面的流体温度分布梯度与近壁面的流体速度分布有关,因此,要得到准确的对流换热系数,必须精确求解流体速度分布,尤其是近壁面附面层内的速度分布。八十年代末九十年代初,由于受计算机速度的限制,直接求解三维复杂流场的湍流Navier-Stokes方程从而得到准确的流体速度分布几乎是不可能,因此发展了一些半经验、半解析的电子系统冷却分析软件,这些分析中的流体剖面速度分布是根据经验给定的解析式,对于简单流场,这样的解析表达式能较好地符合,而对于真实复杂流场,误差较大。ANSYS CFX通过直接求解三维湍流Navier-Stokes方程来得到准确的流体速度分布,从而能准确给出对流换热系数

电子产品热设计、热分析及热测试

电子产品热设计、热分析及热测试培训 各有关单位: 随着微电子技术及组装技术的发展,现代电子设备正日益成为由高密度组装、微组装所形成的高度集成系统。电子设备日益提高的热流密度,使设计人员在产品的结构设计阶段必将面临热控制带来的严酷挑战。热设计处理不当是导致现代电子产品失效的重要原因,电子元器件的寿命与其工作温度具有直接的关系,也正是器件与PCB中热循环与温度梯度产生热应力与热变形最终导致疲劳失效。而传统的经验设计加样机热测试的方法已经不适应现代电子设备的快速研制、优化设计的新需要。因此,学习和了解目前最新的电子设备热设计及热分析方法,对于提高电子设备的热可靠性具有重要的实用价值。所以,我协会决定分期组织召开“电子产品热设计、热分析及热测试讲座”。现具体事宜通知如下 【主办单位】中国电子标准协会培训中心 【协办单位】深圳市威硕企业管理咨询有限公司 一、课程提纲:课程大纲以根据学员要求,上课时会有所调整,具体以报到时的讲义为准。 一、热设计定义、热设计内容、传热方法 1 热设计定义 2 热设计内容 3 传热方法简介 二、各种元器件典型的冷却方法 1 哪些元器件需要热设计

2 冷却方法的选择 3.常用的冷却方法及冷却极限各种元器件典型的冷却方法 4. 冷却方法代号 5 各种冷却方法的比较 三、自然冷却散热器设计方法 1 自然冷却散热器设计条件 2 热路图 3 散热器设计计算 4 多个功率器件共用一个散热器的设计计算 5 正确选用散热器 6 自然冷却散热器结温的计算 7 散热器种类及特点 8 设计与选用散热器禁忌 四、强迫风冷设计方法 1 强迫风冷设计基本原则 2 介绍几种冷却方法 3. 强迫风冷用风机 4. 风机的选择与安装原则 5 冷却剂流通路径的设计 6 气流倒流问题及风道的考虑 7 强迫风冷设计举例(6个示例) 五、液体冷却设计方法

电子产品设计

电子产品设计 实训报告 目录 一、实训目的 (3) 二、实训要求 (3) 三、实训环境 (3) 四、实训内容 (3) 1.电子元件的识别-------------------------------------- 3 ⑴数码管 (3) ⑵74LS48 (4) ⑶74LS160 (5) ⑷74LS00 (7)

2.手工焊接-------------------------------------------- 8 ⑴焊接的定义 (8) (2)锡焊材料 (8) (3)手工焊接操作要领 (9) (4)焊接方法9 (5)时分电路仿真图9 ( 6)产品实物图10 3安全常识-------------------------------------------- 10 ( 1 )操作安全10 4protel DXP 软件学习11 5 收获和体会------------------------- 12 一、实训目的 通过电子产品设计与制作 (实训),系统地进行电子工程实践和技能训练,培养理论与实践相结合的能力,提高独立思考、分析和解决电子电路实际问题的能 力。同时,巩固、扩展电子元器件及电子产品安装专业知识;掌握产品维修和维护的基本方法,实现知识向能力的转化,提高实践动手能力。 实训要求 1、学会看图、识图,了解简单电子产品的实现过程。 2、能够自己安装、焊接和调试简单的电子电路产品并学会使用测量仪器测量电 路。 3、学会分析电路,排除电路故障的方法。学会记录和处理实验数据、说明实验 结果,撰写实验报告。 4、能够使用计算机进行印刷电路板的设计。

5、培养严谨的科学态度,耐心细致的工作作风和主动研究的探索精神。 三、实训环境 江西工业工程职业技术学院实验楼302 实验室(焊接室)实验楼401实验室(仿真室) 四、实训内容 ( 1)数码管 七段数码管一般由8 个发光二极管组成,其中由7个细长的发光二极管组成数字显示,另外一个圆形的发光二极管显示小数点。当发光二极管导通时,相应的一个点或一个笔画发光。控制相应的二极管导通,就能显示出各种字符,尽管显示的字符形状有些失真,能显示的数符数量也有限,但其控制简单,使用也方便。发光二极管的阳极连在一起的称为共阳极数码管,阴极连在一起的称为共阴极数码管,如图所示。 数码显示管实物图 七段发光显示器结构(共阴共阳) (2)74LS48 74ls48 芯片是一种常见的七段数码管译码驱动器,常用在各种数字电路和单片机系统的显示系统中,下面我就给大家介绍一下这个元件的衣些参数和应用技术等资料。 74ls48 引脚实物图 74ls48 逻辑功能表 (3)74LS160 同步十进制计数器74LS160作用:实现计时的功能,为脉冲分配器做好准备。 74LS160 结构和功能160 为十进制计数器,直接清零。简要说明:160 为可预置的十进制计数器,共有54/74160 和54/74LS160 两种线路结构型式, 其主要电器特性的典型值。

电子产品设计

电子产品设计 实训报告 院(系):江西工院电子计算机系 专业:电气自动化班级:电气131班 学生姓名:刘群学号: 实训时间: 2014-5-24~2014-6-15 指导老师:舒为清张琴 提交时间: 2014-6-16 目录 一、实训目的 (3) 二、实训要求 (3) 三、实训环境 (3) 四、实训内容 (3) 1.电子元件的识别-----------------------------------------------------------3 (1)数码管 (3) (2)74LS48 (4) (3)74LS160 (5) (4)74LS00 (7) 2.手工焊接---------------------------------------------------------------------8 (1)焊接的定义 (8)

(2)锡焊材料 (8) (3)手工焊接操作要领 (9) (4)焊接方法 (9) (5)时分电路仿真图 (9) (6)产品实物图 (10) 3安全常识----------------------------------------------------------------------10 (1)操作安全 (10) 4 protel DXP软件学习 (11) 5收获和体会-------------------------------------------------------------------12 一、实训目的 通过电子产品设计与制作(实训),系统地进行电子工程实践和技能训练,培养理论与实践相结合的能力,提高独立思考、分析和解决电子电路实际问题的能力。同时,巩固、扩展电子元器件及电子产品安装专业 知识;掌握产品维修和维护的基本方法,实现知识向能力的转化,提 高实践动手能力。 二、实训要求 1、学会看图、识图,了解简单电子产品的实现过程。 2、能够自己安装、焊接和调试简单的电子电路产品并学会使用测 量仪器测量电路。 3、学会分析电路,排除电路故障的方法。学会记录和处理实验数据、 说明实验结果,撰写实验报告。 4、能够使用计算机进行印刷电路板的设计。

电子产品热设计规范

电子产品热设计规范 1概述 1.1热设计的目的 采用适当可靠的方法控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过稳定运行要求的最高温度,以保证产品正常运行的安全性,长期运行的可靠性。 1.2热设计的基本问题 1.2.1耗散的热量决定了温升,因此也决定了任一给定结构的温度; 1.2.2热量以导热、对流及辐射传递出去,每种形式传递的热量与其热阻成反比; 1.2.3热量、热阻和温度是热设计中的重要参数; 1.2.4所有的冷却系统应是最简单又最经济的,并适合于特定的 电气和机械、环境条件,同时满足可靠性要求; 1.2.5热设计应与电气设计、结构设计、可靠性设计同时进行,当出现矛盾时,应进行权衡分析,折衷解决; 1.2.6热设计中允许有较大的误差; 1.2.7热设计应考虑的因素:包括 结构与尺寸 功耗 产品的经济性

与所要求的元器件的失效率相应的温度极限 电路布局 工作环境 1.3遵循的原则 1.3.1热设计应与电气设计、结构设计同时进行,使热设计、结构设计、电气设计相互兼顾; 1.3.2热设计应遵循相应的国际、国内标准、行业标准; 1.3.3热设计应满足产品的可靠性要求,以保证设备内的元器件均能在设定的热环境中长期正常工作。 1.3.4每个元器件的参数选择及安装位置及方式必须符合散热要求; 1.3.5在规定的使用期限内,冷却系统(如风扇等)的故障率应比元件的故障率低; 1.3.6在进行热设计时,应考虑相应的设计余量,以避免使用过程中因工况发生变化而引起的热耗散及流动阻力的增加。 1.3.7热设计不能盲目加大散热余量,尽量使用白然对流或低转速风扇等可靠性局的冷却方式。使用风扇冷却时,要保证噪首指标符合标准要求。 1.3.8热设计应考虑产品的经济性指标,在保证散热的前提下使其结构简单、可靠且体积最小、成本最低。 1.3.9冷却系统要便于监控与维护 2热设计基础 2.1术语 2.1.1 温升

电子产品热设计

目录 摘要: (2) 第1章电子产品热设计概述: (2) 第1.1节电子产品热设计理论基础 (2) 1.1.1 热传导: (2) 1.1.2 热对流 (2) 1.1.3 热辐射 (2) 第1.2节热设计的基本要求 (3) 第1.3节热设计中术语的定义 (3) 第1.4节电子设备的热环境 (3) 第1.5节热设计的详细步骤 (4) 第2章电子产品热设计分析 (5) 第2.1节主要电子元器件热设计 (5) 2.1.1 电阻器 (5) 2.1.2 变压器 (5) 第2.2节模块的热设计 (5) 电子产品热设计实例一:IBM “芯片帽”芯片散热系统 (6) 第2.3节整机散热设计 (7) 第2.4节机壳的热设计 (8) 第2.5节冷却方式设计: (9) 2.5.1 自然冷却设计 (9) 2.5.2 强迫风冷设计 (9) 电子产品热设计实例二:大型计算机散热设计: (10) 第3章散热器的热设计 (10) 第3.1节散热器的选择与使用 (10) 第3.2节散热器选用原则 (11) 第3.3节散热器结构设计基本准则 (11) 电子产品热设计实例三:高亮度LED封装散热设计 (11) 第4章电子产品热设计存在的问题与分析: (15) 总结 (15) 参考文献 (15)

电子产品热设计 摘要: 电子产品工作时,其输出功率只占产品输入功率的一部分,其损失的功率都以热能形式散发出去,尤其是功耗较大的元器件,如:变压器、大功耗电阻等,实际上它们是一个热源,使产品的温度升高。因此,热设计是保证电子产品能安全可靠工作的重要条件之一,是制约产品小型化的关键问题。另外,电子产品的温度与环境温度有关,环境温度越高,电子产品的温度也越高。由于电子产品中的元器件都有一定的温度范围,如果超过其温度极限,就将引起产品工作状态的改变,缩短其使用寿命,甚至损坏,使电子产品无法稳定可靠地工作。 第1章电子产品热设计概述: 电子产品的热设计就是根据热力学的基本原理,采取各种散热手段,使产品的工作温度不超过其极限温度,保证电子产品在预定的环境条件下稳定可靠地工作。 第1.1节电子产品热设计理论基础 热力学第二定律指出:热量总是自发的、不可逆转的,从高温处传向低温处,即:只要有温差存在,热量就会自发地从高温物体传向低温物体,形成热交换。热交换有三种模式:传导、对流、辐射。它们可以单独出现,也可能两种或三种形式同时出现。 1.1.1 热传导: 气体导热是由气体分子不规则运动时相互碰撞的结果。金属导体中的导热主要靠自由电子的运动来完成。非导电固体中的导热通过晶格结构的振动实现的。液体中的导热机理主要靠弹性波的作用。 1.1.2 热对流 对流是指流体各部分之间发生相对位移时所引起的热量传递过程。对流仅发生在流体中,且必然伴随着有导热现象。流体流过某物体表面时所发生的热交换过程,称为对流换热。 由流体冷热各部分的密度不同所引起的对流称自然对流。若流体的运动由外力(泵、风机等)引起的,则称为强迫对流。 1.1.3 热辐射 物体以电磁波方式传递能量的过程称为热辐射。辐射能在真空中传递能量,且有能量方

电子产品散热设计

YEALINK 产品热设计 VCS项目散热预研 欧国彦 2012-12-4 电子产品的散热设计 一、为什么要进行散热设计 在调试或维修电路的时候,我们常提到一个词“**烧了”,这个**有时是电阻、有时是保险丝、有时是芯片,可能很少有人会追究这个词的用法,为什么不是用“坏”而是用“烧”其原因就是在机电产品中,热失效是最常见的一种失效模式,电流过载,局部空间内短时间内通过较大的电流,会转化成热,热**不易散掉,导致局部温度快速升高,过高的温度会烧毁导电铜皮、导线和器件本身。所以电失效的很大一部分是热失效。 高温对电子产品的影响:绝缘性能退化;元器件损坏;材料的热老化;低熔点焊缝开裂、焊点脱落。 温度对元器件的影响:一般而言,温度升高电阻阻值降低;高温会降低电容器的使用寿命;高温会使变压器、扼流圈绝缘材料的性能下降,一般变压器、扼流圈的允许温度要低于95C;温度过高还会造成焊点合金结构的变化—IMC增厚,焊点变脆,机械强度降低;结温的升高会使晶体管的电流放大倍数迅速增加,导致集电极电流增加,又使结温进一步升高,最终导致元件失效。 那么问一个问题,如果假设电流过载严重,但该部位散热极好,能把温升控制在很低的范围内,是不是器件就不会失效了呢答案为“是”。 由此可见,如果想把产品的可靠性做高,一方面使设备和零部件的耐高温特性提高,能承受较大的热应力(因为环境温度或过载等引起均可);另一方面是加强散热,使环境温度和过载引起的热量全部散掉,产品可靠性一样可以提高。 二、散热设计的目的 控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过标准及规范所规定的最高温度。最高允许温度的计算应以元器件的应力分析为基础,并且与产品的可 热设计、冷却方式、散热器、热管技术

电子产品设计方案论证报告

XXXXXX产品 设计方案论证报告拟制: 审核: 批准: XXXXXXXXXXXXXXXXXXXXX有限公司 年月日

(型号名称 3号黑体) 设计方案论证报告 1 线路设计(5号黑体) 1.1 引言(5号黑体) 瞬时中频频率(IIFM)测量组件是频率探测系统的关键部件之一,该组件完成对前端混频后的中频信号的频率的测量,直接决定了频率探测系统理论上的测频速度,精度和测量噪声指标。 1.2 项目来源及开发的意义(5号黑体) (含用途和使用范围。示例如下。格式要求,5号宋体,1.25倍行距) ××××××××××××××××××××××××××××××××××××××××××××××××。 1.3 国内外同类产品大发展动向及技术水平(5号黑体) (示例如下。格式要求,5号宋体,1.25倍行距) 考察瞬时中频测频(IIFM)组件技术在最近二十年间发展动向,传统的模拟电路鉴频器和各种比较、积分式测频电路由于受线性度较差,响应较慢,受温度漂移、噪声干扰等外部影响较难消除等固有问题的困扰,已经被逐渐淘汰,同时,随着高速数字技术的发展,多种基于现代数字系统的频率测量方法速度已经大大提高,远超过了模拟方式提供的响应速度,而且线性度高,温漂、噪声干扰小,已成为当今IIFM技术的主流。 国外IIFM的报道具体指标多数比较模糊,代表性的有美国《Journal of Electronic

Defense》 2002年报道的使用IIFM技术的IFM接收机,中频DC~30MHz,分辨率1KHz,测频时间约100nS。《Microwave Division》杂志2007年的报道,中频工作频段2~18GHz,测频时间最大400nS。国内相关研究近年较多,如2002年航天科工25所的报道,中频24~25MHz,测频时间1us,精度0.1Hz。2006年《电子测量技术》的报道,中频50~950MHz,测频时间最小400nS,误差约0.3MHz。 1.4 项目合同的技术指标要求(5号黑体) 1.工作频率70MHz±4MHz ,10.2M±1MHz 2.测频精度 2KHz,1KHz 3.测频速度 200nS 4.工作温度范围-40o C~85o C 1.5 样品解剖情况(5号黑体) (使用于仿制产品,正向设计产品略。示例如下。格式要求,5号宋体,1.25倍行距)a)样品电路原理图、基本工作原理及关键元器件的主要参数指标; b)样品主要技术指标(规范值,实测数据); c)芯片照片、面积、版图极限尺寸(最小线宽、最小间距)及封装特点; d)样品电路工艺设计、线路设计、版图设计特点及其分析。 1.6 产品电路设计和版图设计方案(5号黑体) a)功能框图和详细单元电路图及工作原理;

电子产品设计流程

电子产品的设计流程 一、需求调研与需求分析: 1、产品构思,市场的调度落到实处,我们应该对我们所设计的产品进行一下调查,看看产品所使用的背景、所处的条件和使用者对产品的要求等等。 2、技术方案(技术、要求、能力可行性),我们要对我们所调查的事项进行一下分析,看看产品的市场需求量是不是很大、值不值得我们生产,产品的销售途径怎么样以及我们对产品的技术可行性,并且评估市场的规模、市场的潜力、和可能的市场接受度,并开始塑造产品概念。 3、成本构成(材料、价格),这个阶段主要分析减少成本的因素,要尽可能的降低成本获得最大的效益,如在采购方面。 二、方案阶段: 经过我们对产品的需求调研与分析,我们可以了解到是不是可以对它生产。若可以,我们就需要对它进行设计方案了。我们制订产品的方案设计,我们就要对该方案进行理论分析和计算,通过优化设计和必要的试验提出完整的电路原理图,关键元器件的参数计算,初步的结构设计等。 1、系统级设计,这个阶段主要是看产品性能指标的要求以及选择芯片型号。 2、电路模块,我们在原理设计的过程中,工程师在进行实际的布局布线前对系统的时间特性、信号完整性、电源完整性、散热情况等问题做一个最优化的分析,当然这些工作大多需要由专业的PCB设计工程师来完成,原理设计工程师通常没有办法考虑到这样细致和全面。 3、项目预期、测试方案、单元划分、成本估算、风险评估、进度计划、人员分配,需要明确产品的功能规格以及产品价值的描述等方面内容,决定产品的开发可行性,对产品的估计进行严格的调研,并完成

后续阶段的计划制定。在这个阶段,参与项目的人员也要确定,每个人员都要有严格的分工,各尽其职,认真完成各自的任务,并能很好的配合团队其他人员协调工作。 4、初样制作是检验设计方案正确与否的依据,我们根据上述预研阶段中在电路搭试的基础上,制作PCB手板及样品,进行各种参数的测试,并做出完整的记录。若制作的样品取得较为满意的测试结果,则写出初样制作总结报告,此外还应制作完成一份文档,以便我们后期可以使用它;若初样评审未通过,则重新进行预研,重新制作样板,直到初样评审通过为止,这个阶段的工作一定要仔细。 三、设计环节: 1、选择材料,这时候我们已经确定了各个部分的功能和作用,在选择芯片和器件的时候要尽量正确可行,我们在软件设计的时候程序要规范化,代码能短则短,一定要有注释且要规范到函数级。 2、产品的可靠性和稳定性,因为在产品卖出去之后我们无法预测他的工作环境和使用环境,这一系列的问题都需要我们注意,并且需要我们在产品出售之前要考虑,否则,产品会出现严重的问题导致不可估量的损失。 3、我们还应该了解电子产品的认证指标,如IEC61000-4-4,5。 4、我们还要考虑怎样设计电路板可以使它稳定、可靠。 四、测试: 设计人员在测试验证阶段,一方面要验证产品的功能、性能的指标是否满足产品的设计要求;另外一方面,还要验证在PCB设计前的仿真分析阶段和PCB设计后的仿真分析阶段所做的所有的仿真工作、分析工作是否是准确、可靠,为下一个产品开发奠定很好的理论和实际相结合的基础。这个阶段的工作重点是测试和验收,即模拟各种方法测试产品的稳定性,这一阶段的活动主要包括企业内部的产品测试以及用户测试,甚至包括产品的小批量测试生产以及市场的试销等,当然,这一阶段的标志是成功的通过产品测试,完成市场推广计划,以及建立可行的

电子产品散热设计方法

产品的热设计方法 介绍 为什么要进行热设计? 高温对电子产品的影响:绝缘性能退化;元器件损坏;材料的热老化;低熔点焊缝开裂、焊点脱落。 温度对元器件的影响:一般而言,温度升高电阻阻值降低;高温会降低电容器的使用寿命;高温会使变压器、扼流圈绝缘材料的性能下降,一般变压器、扼流圈的允许温度要低于95C;温度过高还会造成焊点合金结构的变化—IMC增厚,焊点变脆,机械强度降低;结温的升高会使晶体管的电流放大倍数迅速增加,导致集电极电流增加,又使结温进一步升高,最终导致元件失效。 介绍 热设计的目的 控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过标准及规范所规定的最高温度。最高允许温度的计算应以元器件的应力分析为基础,并且与产品的可靠性要求以及分配给每一个元器件的失效率相一致。 在本次讲座中将学到那些内容 风路的布局方法、产品的热设计计算方法、风扇的基本定律及噪音的评估方法、海拔高度对热设计的影响及解决对策、热仿真技术、热设计的发展趋势。 授课内容 风路的设计方法20分钟 产品的热设计计算方法40分钟 风扇的基本定律及噪音的评估方法20分钟 海拔高度对热设计的影响及解决对策20分钟 热仿真技术、热设计的发展趋势50分钟 概述 风路的设计方法:通过典型应用案例,让学员掌握风路布局的原则及方法。 产品的热设计计算方法:通过实例分析,了解散热器的校核计算方法、风量的计算方法、通风口的大小的计算方法。 风扇的基本定律及噪音的评估方法:了解风扇的基本定律及应用;了解噪音的评估方法。 海拔高度对热设计的影响及解决对策:了解海拔高度对风扇性能的影响、海拔高度对散热器及元器件的影响,了解在热设计如何考虑海拔高度对热设计准确度的影响。 热仿真技术:了解热仿真的目的、要求,常用热仿真软件介绍。 热设计的发展趋势:了解最新散热技术、了解新材料。 风路设计方法 自然冷却的风路设计 设计要点 ?机柜的后门(面板)不须开通风口。 ?底部或侧面不能漏风。 ?应保证模块后端与机柜后面门之间有足够的空间。 ?机柜上部的监控及配电不能阻塞风道,应保证上下具有大致相等的空间。 ?对散热器采用直齿的结构,模块放在机柜机架上后,应保证散热器垂直放置,即齿槽应垂直于水平面。对散热器采用斜齿的结构,除每个模块机箱前面板应开通风口外,在机柜的前面板也应开通风口。 风路设计方法 自然冷却的风路设计 设计案例 风路设计方法 自然冷却的风路设计 典型的自然冷机柜风道结构形式 风路设计方法 强迫冷却的风路设计 设计要点 ?如果发热分布均匀,元器件的间距应均匀,以使风均匀流过每一个发热源. ?如果发热分布不均匀,在发热量大的区域元器件应稀疏排列,而发热量小的区域元器件布局应稍密些,或加导流条,以使风能有效的流到关键发热器件。 ?如果风扇同时冷却散热器及模块内部的其它发热器件,应在模块内部采用阻流方法,使大部分的风量流

电子产品常用防水设计和防水处理方法

电子产品常用防水设计和防水处理方法 随着苹果三星等行业巨头把手机防水搬上舞台,电子产品防水又一次回到公众视野,虽然我们不能也不需要长期带着某种电子设备在水下工作和生活,但有时生活中的意外会电子产品瞬间殒命,比如现在跑步运动的人辣么多,运动耳机就成了慢跑伴侣,但汗水或者雨水时常会侵扰耳机,久而久之耳机pcba就会被腐蚀,同样的问题也存在于其它电子产品中,所以高品质的产品防水防潮防酸碱腐蚀应该成为一种标配。但让产品防水实际上是个较复杂的工艺,需要内外结合的设计,苹果就为了iphone7系列和iwatch上花了很多心思,终于实现ip68,青山新材料小编认为如何让产品防水工艺更简单,需要我们去思考改进并大胆尝试。 电子产品常见的防水设计方案 一、结构防水 结构防水是电子产品防水最为传统的模式,也应该是大多数工程师们最先想到的办法,主题思想是疏水,导流,外部封装与内部电气部分的有效隔离,产品的模具设计以及各种封堵是要点,当然越是复杂模具的成本也不便宜。比如前几年部分防水手机在设计耳机孔,充电口时候采用防水盖等设计方法,就是从外部着手去堵水,从而达到防水的目的。 手机防水设计 即便是从结构上做很多的改变依然无法更好的阻止水气的浸入,因为电子产品特别是手机、耳机类的产品是使用非常频繁的产品,使用者对外观的人为非人为破坏都是随时存在的,外观在使用过程中自身也存在着变形的风险,外观结合处的缝隙也会随之变形,成为潜在的担忧。 二、灌封防水 灌封方式防水目前常见的是采用环氧树脂灌封胶,是用于电子产品模组的灌封,可以将整个pcb板包裹其中,从而起到防水、防潮、防盐雾、防霉菌、抗震、抗外力冲击等,环氧树脂是饱和性树脂,以其为基材生产的环氧树脂灌封胶具有本体强度高、粘接力强、耐候性好、收缩率低、绝缘强度高、无毒环保等特性,灌封后能在-45-120℃间稳定的机械和电气性能。能对电路板全方位保护,极大提高电路板的使用寿命。但同时也存在一些比较致命的问题,比如pcb板的散热将会非常受影响,最麻烦的是产品几乎没有返修的可能,或者说返修成本过高。 电子产品树脂灌封胶防水 三、表面涂层防水 (1)三防漆类 三防漆也叫线路板保护油、披覆油、防水胶、绝缘漆、防潮漆,三防漆类产品普遍比较厚,基本上涂层厚度会达到50微米,散热不好,粘稠度高,一公斤产出比较低,干燥慢,甚至要一两小时才能干,三防漆是在电子产品pcb板上涂覆固化一层胶膜,用于电路板防潮、防腐蚀、防盐雾,但这层膜只能防护潮气和少量的水份,如果电子产品完全浸入水中工作它就会失效;由于三防漆自身工艺原因,因此不抗摔、不抗振动,受外力冲击容易剥落,对pcb板的防护作用非常有限,用肉眼直接观察很难看出来是否涂覆均匀。目前很多三防漆依然使用挥发性溶剂,对人体与环境有很大伤害,这对于一些产品要出口欧美的制造企业来说环保不能达标。 灌封胶对电路板的防护作用超过三防漆。如果只要起到一个最基本的防护作用,是可以选用三防漆防护。

电子产品结构设计规范--范文

电子产品结构件设计规范—范文 一,目的本规范的目的是指导结构件工程师快速和准确的完成产品的结构件设计工作,能更好的与流程保持同步,提高产品设计的标准化。 二,范围 本规范适用于塑胶电子产品的结构件设计工作。本规范可作为结构件工程师的工作指导书和新进工程师的培训资料。 三,权责 结构件工程师应严格按照本规范进行结构件设计工作,同时按照此规范进行文件的输出和召开结构件评审会议。 四,定义工业设计:在塑胶电子产品行业,工业设计指产品的造型设计,包括产品的外形设计,产品的颜色搭配。 结构件设计:产品的各组成部分的结构尺寸设计,装配关系的确定,模具加工工艺的确定,产品制造工艺的确定,产品检测工艺的确定。 模具设计:产品中塑胶部分和五金部分在开制模具过程中需遵照的尺寸范围和性能的规 五,内容 1,产品结构件设计在开发工作中的作用 产品开发的工作一般分为;产品的工业设计,产品的结构件设计,产品的电路设计,产品工艺设计,产品的包装设计。具体见附表1-产品的开发流程表。产品开发工作的细化要 求各个部门之间要有良好的协作关系。在产品开发初期,项目经理对产品可行性作大量的工作,如产品的市场前情的调查,样品的试制,性能的测试和成本的核算等。产品的设计工作主要是将成功的试验室产品转化成可量产化产品的过程,即实现产品设计和检测的电子化, 产品制造的流水线化的过程。 在产品开发中,无论何种电子产品,无论结构件部分占主导,还是电路部分占主导,结构件设计应该

是主要部分,结构设计的好坏直接决定产品是否能够成功实现预期的目标,产品开发的工作是否按期完成,电路设计的空间是否得到充分保障,空间位置是否得到优化,生产工艺是否合理,生产效率是否得到保证,这些将决定产品开发的成功与否。 2.结构件设计流程2.1.产品开发的工作应该以产品质量为目标进行的产品设计过程。在国际上,产品 开 发已经被列入质量考核的一项内容。如IS09000,APQP六西格马等。在各个行业中,为了统 一产品的质量标准,行业标准同样规范了产品的开发标准。因此,公司会根据以上标准制定适合本公司的开发标准规范。产品开发工程师应熟悉本公司标准规范,并以此规范为指导进行设计工作。 2.2.产品开发工作同样涉及到开发部与其他部门的协作。项目经理应该清楚产品开发过程中,各协作部门的信息的沟通,保证产品开发工作的顺利完成,应该以会议的形式将协作的部分列入开发的流程中。 2.3.在产品开发过程中,项目经理按照开发流程,应及时将每一阶段的工作完成并形 成文件,从DR1?DR4的过程中,应及时进行检讨的工作,保证产品开发的每个阶段工作完成的同时,检讨工作和文件也应及时完成。 3.结构件设计的技术性 3.1.结构件工程师应具有相关专业的技术知识,如机械结构的组成,相关专业数语的掌握,产品组成部分的材质和成型工艺;掌握相关设计软件的使用方法,如熟练使用PR0E 等三维软件,和AUTOCAD等二维软件。 3.2.结构件工程师应积极了解同行业产品的结构设计水平,收集优质产品的技术性资料。并结合本公司的技术水平进行技术的革新,完善本公司的开发的技术工作。 3.3.公司应建立完善的技术培训机制,提高设计人员的技术水平,培养内部优秀的技术人员。建立高水平的技术平台,组建优秀的技术开发团队。 4.结构件设计工程师成长的连续性 4.1.技术人员的稳定性是保证公司产品质量的重要部分,因此,技术人员成长必须要有连续性,即工程师始终具有向上的精神,技术无止境,而是缺少动力,保证技术人员的工

浅谈热设计

浅谈电子产品热设计 (一)、热设计中的常用词汇 电子产品中经常会用到“热阻”(K/W)这个词。在图1的示例中,连接A和B 的管道越细,水就越难流出,A和B之间的水位差也就越大。相反,加粗管道后,AB之间的水位差将会消失。这种阻碍水流动的作用就相当于热阻。举例来说,当热流量为1W、温度上升1K时,热阻就是1K/W。在热设计中,热阻扮演着非常重要的角色。因为只要知道热阻,就能构思出散热措施,例如“如果要制造热阻为5K/W的散热片,尺寸大约会达到50mm×50mm×30mm”、“热阻为0.1K/W、因此必须要有风扇”等等。 发热量和散热量也是热设计的常用词汇,但二者都属于“热流量”(W),表示1秒的时间中产生或转移的热量。 “热容量”(J/K)也是一个重要参数。热容量相当于图1中水箱A的底面积。如果底面积大,即使加入大量的水,水位也不容易上升。相反,如果底面积小,即使只加入少量的水,水位也会猛涨。热也是如此,如果是热容量大的大铁块,就算发热量大,温度也很难升高。相反,如果是热容量小的小塑料容器,哪怕发热量不大,温度也会迅速升高。 也就是说,热容量代表的是水位上涨1m需要注入多少L水,即使温度升高1K需要多少J热量。假设热容量为1J/K,热流量为1W。此时,1 秒钟将有1J的热能流入;而每吸收1J的热量,温度会升高1K。因此,如果忽略热量的流失,1秒的时间中温度会升高1K。由此可知,只要知道了热容量,就能推算出温度的升降。 热容量等于“比热×重量”,计算非常简单(注1)。比热是单位质量物质的热容量,单位为J/kg·K(或J /kg·℃)。质量则是体积×密度。比热和密度都是物理性质,可以在手册中查到,而且,体积是由尺寸决定的,因此,只要知道材料和尺寸,就能计算出热容量。至于印刷电路板等复合材料,在计算出各种材料的热容量之后,相加即为总的热容量。 (注1)热阻的计算方式因热传导、热对流、热辐射等热移动的方式而异,非常复杂。 “热流密度”(W/m2)在图1中指的通过管道时热流量的密度,也叫热通量。通常来说,通过的热量是发热量,发热量除以表面积即为热流密度。因为发热量代表发热能力,表面积代表散热能力,所以,热流密度就相当于发热能力与散热能力之比。因为物体内的热量只能通过该物体与空气接触的面、也就是表面释放,所以,在热量通过的部分中,表面积是最重要的条件。 热流密度与温度的上升量成正比,热流密度越大,温度上升越多。反言之,通过管理热流密度,可以使温度控制在一定水平以下。例如,在印刷电路板上安装部件时,热流密度等于部件的总发热量除以印刷电路板的总表面积。如果采用自然空冷,一般来说,热流密度达到400W/m2以上就容易发生故障,因此要控制在300W/m2左右。如上所述,通过

自然散热电子产品的外壳热设计

自然散热电子产品的外壳热设计 摘要:以有线电视网络传输数据监控模块为例,通过对其外壳的散热理论分析和仿真计算,研究和探讨了自然散热产品的外壳设计方法。 关键词:自然散热;外壳设计;压铸;铝合金;锌合金 随着三网融合的推进,在广电传媒领域,数字化的新媒体带来了一场深刻的革命[1]。有线电视网络双向化数字化改造是广电业占领新的信息产业版图的重要实施举措。有线带宽的提高、高清视频、IP数据业务、语音业务、数据点播等的开展,对有线电视传输设备提出了更高的要求,热问题在产品的研发过程中越来越突出,特别是传输干路和支路上的野外型和室外型设备的设计研发。这类设备以自然散热为主要散热途径,使用环境复杂多变,所在的网络平台历史较长,各地运营商对设备的要求和标准也参差不齐,产品结构方面可变的设计条件也有限,所有这些限制因素都增加了结构设计的难度,提出了更高的要求。本文以有线电视网络传输数据监控模块(简称DOCSIS 模块)的设计为例,探讨了以自然散热为主的设备的外壳热设计要素和方法。 1.挑战和机遇 DOCSIS模块是配合DOCSIS网络而产生的新模块,是代替现有HMS应答器的产品。该模块普遍应用于CATV传输网络的光站和放大器设备中,这些设备基本都是野外型或是室外型。由于HMS模块已经应用在诸多的光站和放大器平台中,因此,DOCSIS模块的外形尺寸和连接器位置都不能改变。但由于DOCSIS模块功能的极大提升、新的集成芯片的使用,模块的功耗有成倍的增长。在有限的空间范围内,模块热设计遇到了极大的挑战。 近十年,传统的锌、镁、铝合金的加工技术有较快的发展,导热材料的热导率有很大的提升,有限元热设计分析工具更是被广泛应用,这给外壳热设计提供了强有力的技术支持。 2.热设计理论分析 为了达到理想的散热效率,将主要发热芯片与产品外壳通过导热材料相连,从而有效降低从芯片结到外部空气的传热热阻。将产品的导热简化成下图,在此仅讨论稳态场产品的散热: 其中t_j为芯片的结温,t_c为芯片的表面温度,γ是导热材料的厚度,t_TIM 是导热材料的温度,δ是外壳设计厚度,t_h是外壳的温度,t_a是模块工作的外部环境温度,h是机壳表面自然对流换热系数。 稳态场指产品达到热平衡时,各部件的温度几乎不变的热场分布。稳态场性能反应了电子产品正常工作情况下的热学性能。

电子产品设计精华版

电子产品设计课件 1 工艺:工艺是生产者利用生产设备和生产工具,对各种原材料、半成品进行加工或处理,使之成为符合技术要求的产品的艺术(程序、方法、技术)。 2 电子工艺:电子整机(包括配件)产品的制造工艺。 主要涉及两个方面:一方面是制造工艺的技术手段和操作技能,另一方面是产品在生产过程中的质量控制和工艺管理。 3 4M+M电子整机产品制造中的要素:1.Material(材料)2.Machine(设备)3.Method(方法) 4.Manpower(人力) 5.Management(管理) 4 THT :Through Hole Technology通孔插装技术 SMT :Surface Mounted Technology 表面贴装技术(目前电子组装行业里最流行的一种技术和工艺) BGA:Ball Grid Array 球栅阵列(门阵列式球形封装)(I/O端子以圆形或柱状焊点按阵列形式分布在封装下面) CSP :Chip Scale Package 芯片级封装(是BGA之后的又一种新的技术) MCM:Multi-chip Module 多芯片组件(将多块半导体裸芯片组装在一块布线基板上的一种封装技术) 第1讲电子产品生产流程及技术文件 1.1 电子产品的生产工艺流程 1.1.1 装配工艺的一般流程:电子产品的装配过程是先将零件、元器件组装成部件,再将部件组装成整机。 1.1.2 流水线的工作方式 1.手工装配方式 (1)个体手工装配:是由操作者独自完成作品的组装工作。 每个操作者要从头装到结束,速度慢,效率低,而且容易出错,一般只在产品的样机试制阶段或小批量试生产时应用。 (2)流水线手工装配:对于设计稳定,大批量生产的产品,宜采用流水线装配。 流水线手工装配工序:手工插件→浸锡焊接→剪脚→二次浸锡焊接→人工补焊。 2.自动装配方式 自动装配一般使用自动插件机、波峰焊接机等设备,可极大的提高生产效率,节省劳力,产品合格率也大大提高。1.2 技术文件 是产品研究、设计、试制与生产实践经验积累所形成的一种技术资料。它主要包括设计文件、工艺文件两大类。 1.2.1 技术文件的特点 1.标准化:标准化是电子产品技术文件的基本要求,电子产品技术文件要求全面、严格执行国家标准或企业标准。2.管理严格:技术文件一旦通过审核签署,生产部门必须完全按相关的技术文件进行工作,操作者不能随便更改,技术文件的完备性、权威性和一致性得以体现。 1.2.2 设计文件:是产品从设计、试制、鉴定到生产的各个阶段的实践过程中形成的图样及技术资料。 1.设计文件的作用:(1)用来组织和指导企业内部的产品生产。(2)产品的制造、维修和检测需要查阅设计文件中的图纸和数据。(3)产品使用人员和维修人员根据设计文件提供的技术说明和使用说明,便于对产品进行安装、使用和维修。 2.设计文件的种类:(1)文字性设计文件:①产品标准或技术条件②技术说明③使用说明 (2)表格性设计文件:①明细表:构成产品(或某部分)的所有零部件、元器件和材料的汇总表。②软件清单:记

相关文档
最新文档