工作频率更高的PC44及PC50功率铁氧体材料和磁芯

工作频率更高的PC44及PC50功率铁氧体材料和磁芯
工作频率更高的PC44及PC50功率铁氧体材料和磁芯

随着电力电子技术的发展,进一步增加了对电子设备的多功能化和高密度化的需求,作为电子设备不可缺少的开关电源,迫切要求实现小型轻量化。而为了使开关电源小型化,首先要求开关电源变压器小型化。工作频率更高的PC44及PC50功率铁氧体材料和磁芯就是为适应这种需求而发展起来的。

铁氧体的性能并不是仅仅由其化学成分及晶体结构决定的,还需要研究和控制它们的密度、晶粒尺寸、气孔率以及它们在晶粒内部和晶粒之间的分布等。因此,制备高性能功率铁氧体材料,配方是基础、烧结是关键。配方和密度决定着材料的饱和磁通密度Bs(功率铁氧体磁芯通常工作于有直流偏置场的状态下,高Bs是为了保证磁芯具有高直流叠加特性的需要)和居里温度(fc),而掺入有效的添加物并与适当的烧结工艺相匹配,则对铁氧体的性能具有决定意义,影响着固相反应的程度及最后的相组成、密度和晶粒大小等,使软磁铁氧体的微观结构得到更有效的控制,从而确保材料的主要特性参数达到和谐的统一。

1 高性能功率铁氧体的主配方选择

为提高功率转换效率并避免饱和,要求用在高频开关电源变压器中的功率铁氧体材料具有高Bs、高起始磁导率(μi)和高振幅磁导率(μa),同时为了避免变压器在高频下发热击穿,材料的功率损耗(Rc)应尽量小,希望呈负的温度系数。可以说,衡量功率铁氧体材料优劣的3个重要磁性能参数是μi、曰Bs和Rc以及这些参数的频率、温度和时间稳定性,它们之间是一个矛盾的统一体,某些参数甚至严重对立,将它们有机统一的总体思路是控制磁晶各向异性常数K1~t曲线及铁氧体的微观结构,在配方、添加物和烧结工艺上使K1有一个好的温度特性,将K1的最小值调节到合适的位置,并使其趋向于零。

μi的大小对磁芯具有高电感因数(AL)的贡献最为直接,因此,保证铁氧体有较高的μi值是必须的。但另一方面,μi与材料截止频率fr之间相互制约,提高材料的使用频率与提高μi是相互对立的,在实际材料中只能相互兼顾。

就功率铁氧体的Bs鼠和居里温度tc来说,是由配方和密度决定的。对于功率铁氧体的主配方,国内外软磁科研工作者已做了较深入的系统研究,并把它制成如图1所示的相图(无添加物)的形式使之更直观地表现出来。日本TDK公司经过多年研究,进一步在Mn—zn铁氧体成分相图中划定了取值区域,其中心位置配方约为:FezO3:MnO:znO=53.5:36.5:10(摩尔分数),这与国内许多企业PC44的主配方FezO3:MnO:ZnO=53.3:36.5:1O.2(摩尔分数)基本一致。就PC44、PC50而言,由于其Bs都比较高,必须采用过Fe配方,因为Fe2O3,含量在(51~55)mO1%范围内,Bs随Fe2O3含量的增加而增大(反之,ZnO含量过多则会造成材料高温,或者Bs和tc的下降)。最佳的配方组合可通过正交工艺试验,结合加杂和烧结工艺形式优选确定。

2 高性能功率铁氧体的添加物选择

功率铁氧体的化学成分不是决定铁氧体性质的唯一因素,阳离子和晶点缺陷在晶位中的分布起着头等重要的作用。通过掺入添加物和工艺调整来改善铁氧体的微观结构,更有助于使材料的主要特性参数达到和谐的统一。根据基础磁学理论,功率铁氧体材料的截止频率fr与铁氧体的晶粒大小d右式(1)关系。

式中:Ms为材料的饱和磁化强度;

β为阻尼系数。

由式(1)可知,,与d(μ1一1)成反比例关系,所以,通过掺入添加物和烧结工艺的调整使晶粒细化,减小晶粒尺寸,可以提高材料的截止频率(也就提高了其工作频率)。但晶粒尺寸的无限减小,必定增大功率损耗。另一方面,μ1的高低(与烧结温度有较大关系)也关系到fr的大小。

对通常工作在几百kHz高频下的PC44、PC50材料而言,功率损耗主要由磁滞损耗Rh和涡流损耗Pe两部分组成。由于hocBm3(Bm为工作磁通密度),可见为降低Ph,材料的Bs要高,成分的均匀性要好(采用高纯原材料),同时必须改善晶粒大小的一致性并提高材料密度,尽量减小内应力。涡流损耗用式(2)表示。

Pe=(丌2/4)·r2·lf2·Bm2/p (2)

式中:r为平均晶粒尺寸;

p为电阻率。

可见,在高频下降低材料功率损耗主要有两条途径:提高电阻率;控制铁氧体的晶粒在最佳状态范围内(晶粒过小,Pe会变

小,但Ph会增大)。

控制晶粒大小和电阻率的最有效办法是合理地掺人添加物和改善烧结工艺。众所周知,掺入一些有益的添加物如Sn02、TiO2、Co2O3等,可进一步控制材料的K1值,使其在较宽的温度范围内变得很小;复合添加CaO和SiO2,可增大材料的电阻率、降低材料的功率损耗。实际上,对Mn—zn铁氧体性能提高有实用价值的添加物较多,它们的主要作用可分为3类:第一类添加物在晶界处偏析,影响晶界电阻率;第二类影响铁氧体烧结时的微观结构变化,通过烧结温度和氧含量的控制可改善微观结构,降低功率损耗、提高材料磁导率的温度和时间稳定性、扩展频率等;第三类则固溶于尖晶石结构之中,影响材料磁性能。Ca、Si等元素的添加物属第一类和第二类;Bi、Mo、V、P等元素属第二类;_Ti、Cr、C0、Al、Mg、Ni、Cu、Sn等元素的主要作用属第三类。

图2所示为MoO,、CuO等6种添加物对 Mn—zn铁氧体磁导率的影响,其中μ1和分别表示未掺添加物和掺入了少量添加物的铁氧体的磁导率;图3示出了掺入SiO2对Mn—Zn铁氧体磁导率的影响;图4所示为TiO2添加量对Mn—Zn铁氧体μi

一t曲线的影响;图5(a)与图5(b)分别示出的是复合添加SiO2、CaO一对Mn—zn铁氧体在100 kHz时的电阻率和比损耗系数(tanδ6/μi)的影响。

日本东北金属公司科研人员在开发SB—lM(相当于PC50)材料时,发现通用的复合添加物SiO2CaO有一部分会在晶粒内溶解,从而增大磁滞损耗,在500 kHz~1MHz条件下,其降低功率损耗的效果并不好..为此,他们开展了卓有成效的研究工作,期望找出不使磁滞损耗增大的更有效提高电阻率的添加物。表l列出了他们的研究成果,在这8种添加物中,Al2O3、SnO2、TiO2都溶解于晶粒内,几乎看不到有提高电阻率的效果,其它添加物主要在晶界内游离。这些添加物中,HfO2对提高电阻率最为显著[2],其降低涡流损耗效果最佳。

在开发高性能功率铁氧体材料时,要充分利用前人的成果,不要花过多精力浪费在配方和添加物的摸索上。总的配方和掺杂原则是尽可能地使磁晶各向异性常数K1和磁致伸缩常数λs趋近于零。选择添加物要注意以下原则:

1)掺入添加物总量(wt%)应控制在O.2%以下;

2)CaO(或CaCO3)和SiO2通常是不可或缺的添加物;

3)V2O5、Nb205、_Ti02、Ta2O5、HfO2、CO2O3等高价离子组合添加,组分不宜过多,最好不超过4种,每种添加物的重量一般应控制在1000ppm,以下;

4)在上述各添加物中,除了Co3+子外,其它离子的K1值都是负值,如飞利浦公司开发的3F3材料(介于PC40和PC50之间的一种材料),基本技术要点就是同时添加了Ti4+和C03+以控制材料的温度特性,减少磁滞损耗,如图6所示。

3 高性能功率铁氧体的烧结工艺

烧结是制备高性能功率铁氧体材料的关键工序。在烧结过程中,升降温速度、最高烧结温度和炉内气氛是该工序中必须严格控制的3个关键因素,它们对铁氧体材料的微观结构、化学成分及电磁性能等参数都有很大影响。合适的烧结工艺应根据原材料配方及添加物情况、预烧温度、窑炉结构及长度、降温方式、功率铁氧体的性能取舍等综合确定,并通过材料的最终性能来进行工艺验证和判定。

升温速度对铁氧体产品的密度、晶粒大小及均匀性有直接关系,升温速度过快将使晶粒尺寸不均匀,内部存在较多的气孔;升温速度太慢,则烧成的铁氧体密度低,气孔明显增大。为了得到晶粒小而均匀(PC40材料,晶粒约为10~14μm,PC50材料,晶粒约为3~6μm)、气孔少、密度高、无开裂缺陷的铁氧体,600℃以下升温不宦过快,600~900℃可快一些,900~l100℃为晶粒初生阶段,宜平稳升温,同时采取致密化措施处理,1100℃以上可稍快一些,最高烧结温度不大于1 350℃(为限制晶粒尺寸),保温时间3~4h即可,然后在氮气(N2)保护下选择合适的氧分压降温。

在900~1100℃左右采取致密化措施是十分必要的,其目的是降低铁氧体中的气孔率。日本TDK公司特别在意900~1100℃之间的升温速率和周围气氛的控制,他认为这个阶段是保证铁氧体获得好的微观结构的关键,对PC44、PC50等高性能功率铁氧体的制备,该阶段的控制尤为重要。通常采取的致密化措施是从900 ℃平稳升温至l100℃,再保温1h,同时充入适量的N2以控制氧分压。这可使铁氧体的表观密度迅速达到真实密度的99%,而且大多数气孔是停留在晶界上。当然,在1000℃以下的升温段,保证窑炉内有足够的氧含量及废气排气管道的畅通也是非常重要的。

在降温阶段会引起铁氧体的氧化或还原,通过加入适量的N2保护气氛以控制窑炉内的氧分压,是为了防止铁氧体在冷却过程中Mn、Fe、CoCu等离子变价、产生脱溶物、引起晶格变化等。过度的氧化与还原,就有另相如a-Fez03、Fe0、Fe3O4、Mn203析出,从而导致磁性能的急剧恶化。图7是配方为Fe2O3:MnO:ZnO=51.9:26.8:18. 3(mol%)的功率铁氧体平衡气氛相图,从图7中可看出气氛对尖晶石相和Fe2O3相界内氧化状态的重要性。要特别注意,先沿等成分线冷却,接着在最低的温度下通过相界迅速冷却,这时生长动力学不敏感,使a-Fe203的脱溶最少,氧化和生成另相的程度最轻。图8列出了功

率铁氧体的典型烧结工艺曲线。

4 结语

1)制备PC44、PC50等高性能功率铁氧体材料,配方是基础、烧结是关键。

2)总的配方和掺杂原则是尽可能使磁晶各向异性常数K1和磁致伸缩常数λ s趋近于零。

3)掺入适量的添加物如Ca0、SiO2、V2OS、Ti02、Co203等,并与合适的烧结工艺相匹配,可改吾高性能功率铁氧体材料的微观结构,对提高材料综合性能的作用更为突出。

常用铁氧体磁芯规格

常用铁氧体磁芯规格、型号与技术参数来源:中国变压器供应网发布时间:2007-10-20 0:00:00 功率铁氧体磁芯 EI EE EE PQ EC EI60EE80EE35PQ50/50EC90 EI50EE72EE30PQ40/40EC70 EI40EE70EE25PQ35/35EC52 EI35EE60EE19PQ32/30ECI70 EI33EE55EE16PQ32/20EER49/54 EI30EE50EE13PQ26/25EER49/43 EI28EE49EE10PQ26/20EER49/38 EI25EE42—PQ20/20EER42/43 EI22EE42/20—PQ20/16EER42/45 EI19———EER40/45 EI16——UF102EER28L 常用功率铁氧体材料牌号技术参数 项目条件单位PC30PC402500B B253C8N27μi——250023002500230020002000

Bms H=1200A/m mT510510490510450510 Br H=800A/m mT11795100130——Hc—A/m1214.315.915.918.820 Tc —℃>230>215>230>220>200>220 P200mT23℃ 25KHz60℃ 100℃KW/m31306009560090048 —KW/m390—70————KW/m3100—75————100mT60℃ 100KHz100℃ KW/m3—450—450———KW/m3—410—410—— 公司——TDK TDK TOKIN TOKIN FERROC XLUBE SIEMENS EI型磁芯规格及参数 型号A B C D E F H Ae (c㎡) Le (cm) Ve (cm3) AL nH/N2 μe EI1616——512.2—20.198 3.460.6711001575

磁芯参数参看

z变压器基础知识 1、变压器组成: 原边(初级primary side ) 绕组 副边绕组(次级secondary side ) 原边电感(励磁电感)‐‐magnetizing inductance 漏感‐‐‐leakage inductance 副边开路或者短路测量原边 电感分别得励磁电感和漏感 匝数比:K=Np/Ns=V1/V2 2、变压器的构成以及作用: 1)电气隔离 2)储能 3)变压 4)变流 ●高频变压器设计程序: 1.磁芯材料 2.磁芯结构 3.磁芯参数 4.线圈参数 5.组装结构 6.温升校核 1.磁芯材料 软磁铁氧体由于自身的特点在开关电源中应用很广泛。 其优点是电阻率高、交流涡流损耗小,价格便宜,易加 工成各种形状的磁芯。缺点是工作磁通密度低,磁导率 不高,磁致伸缩大,对温度变化比较敏感。选择哪一类 软磁铁氧体材料更能全面满足高频变压器的设计要求, 进行认真考虑,才可以使设计出来的变压器达到比较理 想的性能价格比。 2.磁芯结构 选择磁芯结构时考虑的因数有:降低漏磁和漏感, 增加线圈散热面积,有利于屏蔽,线圈绕线容易,装配 接线方便等。 漏磁和漏感与磁芯结构有直接关系。如果磁芯不需 要气隙,则尽可能采用封闭的环形和方框型结构磁芯。 3.磁芯参数: 磁芯参数设计中,要特别注意工作磁通密度不只是受磁化曲线限制,还要受损耗的限制,同时还与功率传送的工作方式有关。 磁通单方向变化时:ΔB=Bs‐Br,既受饱和磁通密度限制,又更主要是受损耗限制,(损耗引起温升,温升又会影响磁通密度)。工作磁通密度Bm=0.6~0.7ΔB 开气隙可以降低Br,以增大磁通密度变化值ΔB,开气隙后,励磁电流有所增加,但是可以减小磁芯体积。对于磁通双向工作而言: 最大的工作磁通密度Bm,ΔB=2Bm。在双方向变化工作模式时,还要注意由于各种原因造成励磁的正负变化的伏秒面积不相等,而出现直流偏磁问题。可以在磁芯中加一个小气隙,或者在电路设计时加隔直流电容。 4.线圈参数: 线圈参数包括:匝数,导线截面(直径),导线形式,绕组排列和绝缘安排。 导线截面(直径)决定于绕组的电流密度。通常取J为2.5~4A/mm2。导线直径的选择还要考虑趋肤效应。如必要,还要经过变压器温升校核后进行必要的调整。 4.线圈参数: 一般用的绕组排列方式:原绕组靠近磁芯,副绕组反馈绕组逐渐向外排列。下面推荐两种绕组排列形式: 1)如果原绕组电压高(例如220V),副绕组电压低,可以采用副绕组靠近磁芯,接着绕反馈绕组,原绕组在最外层的绕组排列形式,这样有利于原绕组对磁芯的绝缘安排; 2)如果要增加原副绕组之间的耦合,可以采用一半原绕组靠近磁芯,接着绕反馈绕组和副绕组,最外层再绕一半原绕组的排列形式,这样有利于减小漏感。 5.组装结构:

最新常用铁氧体磁芯资料

常用铁氧体磁芯资料

PM型磁芯PM CORES 型号尺寸Dimensions(mm) Type A B C D E F PM50 49.15±0.85 39.65±0.65 19.70±0.30 5.50±0.10 26.80±0.40 38.80±0.20 PM62 61.00±1.00 48.0min 25.00±0.70 5.30±0.30 33.80±0.60 48.80±0.50 PM74 74.00 0 57.0min 29.00±1.00 5.40±0.30 41.00±0.80 59.00±0.60 -3.0 PM87 87.00 +2.0 66.5min 31.70±1.50 8.50±0.40 48.40±0.80 70.00±0.80 -3.0 PM114 114.00 0 88.0min 42.00±1.50 5.40±0.40 63.80±0.80 92.50±0.50 -5.0 型号磁芯参数Core parameter 重量LP2 LP3 Type C1 (mm- 1) Ae (mm2) le (mm) Ve (mm3) weight (g/pr.) AL(nH/N2 ±25%) Pc(W) (max) AL(nH/N2 ±25%) Pc(W) (max) PM50 0.227 370 84.0 31000 140 7700 3.1 PM62 0.190 570 109 62000 385 9700 6.2 PM74 0.162 790 128 101000 470 10000 3.5* PM87 0.161 910 146 133000 817 13000 4.0* 13000 2.7* PM114 0.116 1720 200 344000 1886 18000 10.3* 16000 6.9* 注:AL:1kHz,0.5mA,100Ts Pc:25kHz,200mT,100℃ 100kHz,200mT,100℃ EE型磁芯 EE CORES

磁芯参数表

常用磁芯参数表 【EER磁芯】 ■ 用途:高频开关电源变压器、匹配变压器、扼流变压器等。 【EE磁芯】 ■ 用途:电源转换用变压器及扼流圈、通讯及其他电子设备变压器、滤波器、电感器及扼流圈、脉冲变压器等。

【ETD磁芯】 ■ 用途:电源转换用变压器及扼流圈、通讯及其他电子设备变压器、滤波器。 【EI 磁芯】 ■ 用途:高频开关电源变压器、功率变压器、整流变压器、电压互感器等。 【ET 磁芯】 ■ 用途:滤波变压器 【EFD 磁芯】 ■ 用途:高频开关电源变压器器、整流变压器、开关变压器等。

【UF 磁芯】 ■ 用途:整流变压器、脉冲变压器、扼流变压器、电源变压器等。 【PQ 磁芯】 ■ 用途高频开关电源变压器、整流变压器等。 【RM 磁芯】 ■ 用途:高频开关电源变压器、整流变压器、屏蔽变压器、脉冲变压器、脉冲功率变压器、扼流变压器、滤波变压器。 【EP 磁芯】 ■ 用途:功率变压器、宽频变压器、屏蔽变压器、脉冲变压器等。

【H 磁芯】 ■ 用途:宽带变压器、脉冲变压器、脉冲功率变压器、隔离变压器、滤波变压器、扼流变压器、匹配变压器等。 软磁铁氧体磁芯形状与尺寸标准(一) 软磁铁氧体磁芯形状 软磁铁氧体是软磁铁氧体材料和软磁铁氧体磁芯的总称。软磁铁氧体磁芯是用软磁铁氧体材料制成的元件或零件,或是由软磁铁氧体材料根据不同形式组成的磁路。磁芯的形状基本上由成型(形)模具决定,而成型(形)模具又根据磁芯的形状进行设计与制造。 磁芯按磁力线的路径大致可分两大类;磁芯按具体形状分,有各种各样: 磁芯按磁力线路径分类 磁芯按使用时磁化过程所产生磁力线的路径可分为开路磁芯和闭路磁芯两类。 第一类为开路磁芯。这类磁芯的磁路是开启的(open magnetic circuits),通过磁芯的磁通同时要通过周围空间(气隙)才能形成闭合磁路。开路磁芯的气隙占磁路总长度的相当部分,磁阻很大,磁路中的部分磁通在达到气隙以前就已离开磁芯形成漏磁通。因而,开路磁芯在磁路各个截面上的磁通不相等,这是开路磁芯的特点。由于开路磁芯存在大的气隙,磁路受到退磁场作用,使磁芯的有效磁导率μe比材料的磁导率μi有所降低,降低的程度决定于磁芯的几何形状及尺寸。 开路磁芯有棒形、螺纹形、管形、片形、轴向引线磁芯等等。IEC 1332《软磁铁氧体材料分类》标准中称开路磁芯为OP类磁芯。 第二类磁芯为闭路磁芯。这类磁芯的磁路是闭合的(closed magnetic circuits),或基本上是闭合的。IEC 1332称闭路磁芯为CL类磁芯。磁路完全闭合的磁芯最典型的是环形磁芯。此外,还有双孔磁芯、多孔磁芯等等。

常用铁氧体磁芯规格

常用铁氧体磁芯规格、型号与技术参数 功率铁氧体磁芯 EI EE EE PQ EC EI60 EE80 EE35 PQ50/50 EC90 EI50 EE72 EE30 PQ40/40 EC70 EI40 EE70 EE25 PQ35/35 EC52 EI35 EE60 EE19 PQ32/30 ECI70 EI33 EE55 EE16 PQ32/20 EER49/54 EI30 EE50 EE13 PQ26/25 EER49/43 EI28 EE49 EE10 PQ26/20 EER49/38 EI25 EE42 — PQ20/20 EER42/43 EI22 EE42/20 — PQ20/16 EER42/45 EI19 — — — EER40/45 EI16 — — UF102 EER28L 常用功率铁氧体材料牌号技术参数 项目 条件 单位 PC30 PC40 2500B B25 3C8 N27 μi — — 2500 2300 2500 2300 2000 2000 Bms H=1200A/m mT 510 510 490 510 450 510 Br H=800A/m mT 117 95 100 130 — — Hc — A/m 12 14.3 15.9 15.9 18.8 20 Tc — ℃ >230 >215 >230 >220 >200 >220 P 200mT23℃ 25KHz60℃ 100℃ KW/m3 130 600 95 600 900 48 KW/m3 90 — 70 — — — KW/m3 100 — 75 — — — 100mT60℃ 100KHz100℃KW/m3 — 450 — 450 — — KW/m3 — 410 — 410 — — 公司 — — TDK TDK TOKIN TOKIN FERROCXLUB E SIEMENS

拓扑磁芯功率速查表

几种常用铁氧磁心在正激变换器托扑的最大输出功率速查表 各频率下的最大输出功率 磁心型号Ae,cm2 Ab,cm2 AeAb,cm420kHz 24kHz 48kHz 72kHz 96kHz 150kHz 200kHz 250kHz 300kHz 体积Cm3 EE Cores,Ferroxcube-Philips 814E250 0.202 0.171 0.035 1.1 1.3 2.7 4.0 5.3 8.3 11.1 13.8 16.6 0.57 813E187 0.225 0.329 0.074 2.4 2.8 5.7 8.5 11.4 17.8 23.7 29.6 35.5 0.89 813E343 0.412 0.359 0.148 4.7 5.7 11.4 17.0 22.7 35.5 47.3 59.2 71.0 1.64 812E250 0.395 0.581 0.229 7.3 8.8 17.6 26.4 35.3 55.1 73.4 91.8 110.2 1.93 782E272 0.577 0.968 0.559 17.9 21.4 42.9 64.3 85.8 134.0 178.7 223.4 268.1 3.79 E375 0.810 1.149 0.931 29.8 35.7 71.5 107.2 143.0 223.4 297.8 372.3 446.7 5.64 E21 1.490 1.213 1.807 57.8 69.4 138.8 208.2 227.6 433.8 578.4 722.9 867.5 11.5 783E608 1.810 1.781 3.224 103.2 123.8 247.6 371.4 495.1 773.7 1031.6 1289.4 1547.3 17.80 783E776 2.330 1.810 4.217 135.0 161.9 323.9 458.8 647.8 1012.2 1349.5 1686.9 2024.3 22.9 E625 2.340 1.370 3.206 102.6 123.1 246.2 369.3 492.4 769.4 1025.9 1282.3 1538.8 20.80 E55 3.530 2.800 9.884 316.3 379.5 759.1 1138.6 1518.2 2372.2 3162.9 3953.6 4744.3 43.50 E75 3.380 2.160 7.301 233.6 280.4 560.7 841.1 1121.4 1752.2 2336.3 2920.3 3504.4 36.00 EC Cores, ,Ferroxcube-Philips Ec35 0.843 0.968 0.816 26.1 31.3 62.9 94.0 125.3 195.8 261.1 326.4 391.7 6.53 Ec41 1.210 1.350 1.643 52.3 62.7 125.5 188.2 250.9 392.0 522.7 653.4 784.1 10.80 Ec52 1.800 2.130 3.834 122.7 147.2 294.5 441.7 588.9 920.2 1226.9 1533.6 1840.3 18.80 Ec70 2.790 4.770 13.208 425.9 511.0 1022.1 1533.1 2044.2 3194.0 4258.7 5323.3 6388.0 40.10 ETD Cores,Ferroxcube-philips ETD29 0.760 0.903 0.686 22.0 26.4 52.7 79.1 105.4 164.7 219.6 274.5 329.4 5.50 ETD34 0.971 1.220 1.185 37.9 45.5 91.0 136.5 182.0 284.3 379.1 473.8 568.6 7.64 ETD39 1.250 1.740 2.175 69.6 83.5 167.0 250.6 334.1 522.0 696..0 870.0 1044.0 11.50 ETD44 1.740 2.130 3.706 118.6 142.3 284.6 427.0 569.3 889.5 1186.0 1482.5 1779.0 18.00 ETD49 2.110 2.710 5.718 183.0 219.6 439.2 658.7 878.3 1372.3 1829.8 2287.2 2744.7 24.20 Pot Cores,Ferroxcube-philips 704 0.070 0.022 0.002 0.0 0.1 0.1 0.2 0.2 0.4 0.5 0.6 0.7 0.07 905 0.101 0.034 0.003 0.1 0.1 0.3 0.4 0.5 0.8 1.1 1.4 1.6 0.13

铁氧体磁芯功率与频率的关系表

表10-15正激变换器拓扑最大可能输出功率 输出功率(W) 磁芯A e(cm2) A w(cm2) A e A w(cm4) 20kHz 24kHz 48kHz 72kHz 96kHz 150kHz 200kHz 250kHz 300kHz 体积(cm3) E型磁芯 Philips 814E250 0.202 0.171 0.035 1.1 1.3 2.7 4.0 5.3 8.3 11.1 13.8 16.6 0.57 813E187 0.225 0.329 0.074 2.4 2.8 5.7 8.5 11.4 17.8 23.7 29.6 35.5 0.89 813E343 0.412 0.359 0.148 4.7 5.7 11.4 17.0 22.7 35.5 47.3 59.2 71.0 1.64 812E250 0.395 0.581 0.229 7.3 8.8 17.6 26.4 35.3 55.1 73.4 91.8 110.2 1.93 782E272 0.577 0.968 0.559 17.9 21.4 42.9 64.3 85.8 134.0 178.7 223.4 268.1 3.79 E375 0.810 1.149 0.931 29.8 35.7 71.5 107.2 143.0 223.4 297.8 372.3 446.7 5.64 E21 1.490 1.213 1.807 57.8 69.4 138.8 208.2 277.6 433.8 578.4 722.9 867.5 11.50 783E608 1.810 1.781 3.224 103.2 123.8 247.6 371.4 495.1 733.7 1031.6 1289.4 1547.3 17.80 783E776 2.330 1.810 4.217 135.0 161.9 323.9 485.8 647.8 1012.2 1349.5 1686.9 2024.3 22.90 E625 2.340 1.370 3.206 102.6 123.1 246.2 369.3 492.4 769.4 1025.9 1282.3 1538.8 20.80 E55 3.530 2.800 9.884 316.3 379.5 759.1 1138.6 1518.2 2372.2 3162.9 3953.6 4744.3 43.50 E75 3.380 2.160 7.301 233.6 280.4 560.7 841.1 1121.4 1752.2 2336.3 2920.3 3504.4 36.00 EC型磁芯 Philips EC35 0.843 0.968 0.816 26.1 31.3 62.7 94.0 125.3 195.8 261.1 326.4 391.7 6.53 EC41 1.210 1.350 1.634 52.3 62.7 125.5 188.2 250.9 392.0 522.7 653.4 784.1 10.80 EC52 1.800 2.130 3.834 122.7 147.2 294.5 441.7 588.9 920.2 1226.9 1533.6 1840.3 18.80 EC70 2.790 4.770 13.308 425.9 511.0 1022.1 1533.1 2044.2 3194.0 4258.7 5323.3 6388.0 41.10 ETD型磁芯 Philips ETD29 0.760 0.903 0.686 22.0 26.4 52.7 79.1 105.4 164.7 219.6 274.5 329.4 5.50 ETD34 0.971 1.220 1.185 37.9 45.5 91.0 136.5 182.0 284.3 379.1 473.8 568.6 7.64 ETD39 1.250 1.740 2.175 69.6 83.5 167.0 250.6 334.1 522.0 696.0 870.0 1044.0 11.50 ETD44 1.740 2.130 3.706 118.6 142.3 284.6 427.0 569.3 889.0 1186.0 1482.5 1779.0 18.00 ETD49 2.110 2.710 5.718 183.0 219.6 439.2 658.7 878.3 1372.3 1829.8 2287.2 2744.7 24.20 152

铁氧体磁芯常识

铁氧体磁芯常识 铁氧体磁芯上绕上线圈可制成电感器或变压器,它们广泛用于仪器仪表,通信设备和家用电器中。铁氧体磁芯的材料牌号较多,几何形状也繁多,有柱形、工字形、帽形、单孔、双孔、四孔、U 形、罐形、E 形、EI 形,EC 形、RM 形,PQ 形、EP 形,见附图所示。每一种形状的磁芯自成一系列,供用户选用。

在铁氧体磁芯上绕上线圈制成的电感器与同体积的空心线圈相比电感量大,而且Q 值(品质因素)也高。如Gu -22×13 罐形磁芯,用它制成4mH 的电感器时,只要绕43 匝线圈就行了,如不用罐形磁芯,改为空心线圈,需绕600匝才能得到4mH 的电感器。由此可见,使用了磁芯后,可大大缩小电感器或变压器的体积。 软磁铁氧体材料可分为两大类:镍锌材料和锰锌材料。一般镍锌材料的初始导磁率μ i 约10 至1500 ,使用频率约从5 百千赫至几百兆赫。一般锰锌材料的初始导磁率μi 约从400 ~10000 ,使用频率从几千赫至500 千赫。 国内生产铁氧体磁芯的厂家很多,产品的命名方法各不相同,例如北京798 厂生产的铁氧体材料命名为NX0 -1 0 ,MX0 -2000 等。NX0—10 材料中“ N ”表示镍,“ X ”表示锌,“ 0 ”表示氧化物,“ 10 ”是初始导磁率μi 值,一般称这种材料为镍锌10 ;MX0—2000 材料中“ M ”表示锰,“ X ”表示锌,“ 0 ”表示氧化物,“ 2000 ”是初始导磁率μi 值。按国标规定,软磁铁氧体材料的命名方法是R××,其中R 表示“软”字汉语拼音的第一个字母,××表示初始导磁率及材料特性。 铁氧体生产厂一般都提供磁芯的电感系数A L 的数值。在常用的线圈中,A L 与电感量及匝数有下列关系: (1 ) L 是加上磁芯后的电感量,单位为毫微享(nH ),N 表示匝数(圈数)。A 的单位是nH /匝2 ?由(1 )式可知,如果已知磁芯的A L 值和需要的L 值,则可计算出匝数。例如,有一个罐形磁芯Gu -22×13 ,它的 A L =2200 ,用φ0.21 漆包线打算在此磁罐上绕制一个4mH 的电感器,则绕制匝数 N= = ≈42.6 圈 由于生产厂提供的 A L 值为最小值,所以绕成的电感器的L 值比4mH 大,再调整圈数,使L 值满足要求。如果有了磁芯,但不知 A L 值,可以先试绕一定圈数N 1 ,测出加磁芯线圈的电感值L 1 ,计算出 A L 值,即 A L =L 1 /,然后再利用公式(1 )计算匝数。 上述介绍的匝数计算方法只适用于一般线圈,不适用于开关电源中线圈。(吴其)

几种常用磁性器件中磁芯的选用及设计

几种常用磁性器件中磁芯的选用及设计 开关电源中使用的磁性器件较多,其中常用的软磁器件有:作为开关电源核心器件的主变压器(高频功率变压器)、共模扼流圈、高频磁放大器、滤波阻流圈、尖峰信号抑制器等。不同的器件对材料的性能要求各不相同,如表所示为各种不同器件对磁性材料的性能要求。 (一)、高频功率变压器 变压器铁芯的大小取决于输出功率和温升等。变压器的设计公式如下: P=KfNBSI×10-6T=hcPc+h W P W 其中,P为电功率;K为与波形有关的系数;f为频率;N为匝数;S为铁芯面积;B为工作磁感;I为电流;T为温升;P c为铁损;P W为铜损;h c和h W为由实验确定的系数。 由以上公式可以看出:高的工作磁感B可以得到大的输出功率或减少体积重量。但B值的增加受到材料的Bs值的限制。而频率f可以提高几个数量级,从而有可能使体积重量显著减小。而低的铁芯损耗可以降低温升,温升反过来又影响使用频率和工作磁感的选取。一般来说,开关电源对材料的主要要求是:尽量低的高频损耗、足够高的饱和磁感、高的磁导率、足够高的居里温度和好的温度稳定性,有些用途要求较高的矩形比,对应力等不敏感、稳定性好,价格低。单端式变压器因为铁芯工作在磁滞回线的第一象限,对材料磁性的要求有别于前述主变压器。它实际上是一只单端脉冲变压器,因而要求具有大的B=Bm-Br,即磁感

Bm和剩磁Br之差要大;同时要求高的脉冲磁导率。特别是对于单端反激式开关主变压器,或称储能变压器,要考虑储能要求。 线圈储能的多少取决于两个因素:一个是材料的工作磁感Bm值或电感量L,另一个是工作磁场Hm或工作电流I,储能W=1/2LI2。这就要求材料有足够高的Bs值和合适的磁导率,常为宽恒导磁材料。对于工作在±Bm之间的变压器来说,要求其磁滞回线的面积,特别是在高频下的回线面积要小,同时为降低空载损耗、减小励磁电流,应有高磁导率,最合适的为封闭式环形铁芯,其磁滞回线见图所示,这种铁芯用于双端或全桥式工作状态的器件中。 通常,金属晶态材料要降低高频下的铁损是不容易的,而对于非晶合金来说,它们由于不存在磁晶各向异性、金属夹杂物和晶界等,此外它不存在长程有序的原子排列,其电阻率比一般的晶态合金高2-3倍,加之快冷方法一次形成厚度15-30微米的非晶薄带,特别适用于高频功率输出变压器。已广泛应用于逆变弧焊电源、单端脉冲变压器、高频加热电源、不停电电源、功率变压器、通讯电源、开关电源变压器和高能加速器等铁芯,在频率20-50kHz、功率50kW以下,是变压器最佳磁芯材料。 近年来发展起来的新型逆变弧焊电源单端脉冲变压器,具有高频大功率的特点,因此要

变压器设计及磁芯相关资料

磁性器件中磁芯的选用及设计 开关电源中使用的磁性器件较多,其中常用的软磁器件有:作为开关电源核心器件的主变压器(高频功率变压器)、共模扼流圈、高频磁放大器、滤波阻流圈、尖峰信号抑制器等。不同的器件对材料的性能要求各不相同,如表所示为各种不同器件对磁性材料的性能要求。 (一)、高频功率变压器 变压器铁芯的大小取决于输出功率和温升等。变压器的设计公式如下: P=K*f*N*B*S*I×10-6T=hc*Pc+hW*PW 其中,P为电功率;K为与波形有关的系数;f为频率;N为匝数;S为铁芯面积;B为工作磁感;I为电流;T为温升;Pc为铁损;PW为铜损;hc和hW为由实验确定的系数。 由以上公式可以看出:高的工作磁感B可以得到大的输出功率或减少体积重量。但B值的增加受到材料的Bs值的限制。而频率f可以提高几个数量级,从而有可能使体积重量显著减小。而低的铁芯损耗可以降低温升,温升反过来又影响使用频率和工作磁感的选取。一般来说,开关电源对材料的主要要求是:尽量低的高频损耗、足够高的饱和磁感、高的磁导率、足够高的居里温度和好的温度稳定性,有些用途要求较高的矩形比,对应力等不敏感、稳定性好,价格低。单端式变压器因为铁芯工作在磁滞回线的第一象限,对材料磁性的要求有别于前述主变压器。它实际上是一只单端脉冲变压器,因而要求具有大的B=Bm-Br,即磁感Bm和剩磁Br之差要大;同时要求高的脉冲磁导率。特别是对于单端反激式开关主变压器,或称储能变压器,要考虑储能要求。 线圈储能的多少取决于两个因素:一个是材料的工作磁感Bm值或电感量L,另一个是工作磁场Hm或工作电流I,储能W=1/2LI2。这就要求材料有足够高的Bs值和合适的磁导率,常为宽恒导磁材料。对于工作在±Bm 之间的变压器来说,要求其磁滞回线的面积,特别是在高频下的回线面积要小,同时为降低空载损耗、减小励磁电流,应有高磁导率,最合适的为封闭式环形铁芯,其磁滞回线见图所示,这种铁芯用于双端或全桥式工作状态的器件中。 通常,金属晶态材料要降低高频下的铁损是不容易的,而对于非晶合金来说,它们由于不存在磁晶各向异性、金属夹杂物和晶界等,此外它不存在长程有序的原子排列,其电阻率比一般的晶态合金高2-3倍,加之快冷方法一次形成厚度15-30微米的非晶薄带,特别适用于高频功率输出变压器。已广泛应用于逆变弧焊电源、单端脉冲变压器、高频加热电源、不停电电源、功率变压器、通讯电源、开关电源变压器和高能加速器等铁芯,在频率20-50kHz、功率50kW以下,是变压器最佳磁芯材料。

磁芯选择指南

磁芯选择指南 来源:网络更新时间:2009-12-14点击数: 1

高频变压器设计时选择磁芯的两种方法 来源:网络 更新时间:2008-11-5 8:06:32 点击数: 42 在高频变压器设计时,首先遇到的问题,便是选择能够满闵杓埔蠛褪褂靡蟮拇判尽?lt;BR> 通常可以采取下面介绍的两种方法:面积乘积法和几何尺寸参数法。这两种方法的区别在于:面积乘积法是把导线的电流密度作为设计参数,几何尺寸参数法则是把绕组线圈的损耗,即铜损作为设计参数。 1 面积乘积法 这里讲的面积乘积。是指磁芯的可绕线的窗口面积和磁芯的截面积,这两个面积的乘积。 表示形式为WaAe ,有些讲义和书本上简写为Ap ,单位为 。 根据法拉第定律,我们有: 窗口面积利用情况有: KWα=NAw 变压器有初级、次级两个绕组。因此有: KWα=2NAw 或

0.5KWα=NAw 我们知道: Aw= 而电流有效值 I=Ip 得到以下关系式:0.5KWα= 即: 于是就有如下式:

由于:EδIp=Pi 又有:Pi= 最后得到如下公式: 这个公式适用于单端变压器,如正激式和反激式。 δ<0.5,Bm-T,K-0.3~0.4,η-0.8~0.9,J-A/。推挽式的公式则为: 半桥式的公式则为: 这里的δ>0.5,例如0.8~0.9。 单端变压器如正激式和反激式:Bm=△B=Bs-Br。 双端变压器如推挽式、半桥式和桥式:Bm=2Bpk。 全桥式公式与推挽式相同,但δ>0.5,例如0.8~0.9。

在J=400A/,K=0.4,η=0.8,δ=0.4(单端变压器),δ=0.8(双端变压器)。公式简化如下: (单端变压器) (推挽式) (半桥式和桥式) 2 几何尺寸参数法 这个方法是把绕组线圈的损耗,即铜损作为设计参数。因此,公式正是由计算绕组线圈的铜损的公式演变而来的。 。变压器有两个绕组 这里为初级绕组电阻, 为次级绕组电阻。 由于

常用铁氧体磁芯说明

磁芯说明 E、I形磁芯 特点:具有高的导磁率,高饱和的磁通密度和很小的损耗。由于铁损和温度成负相关,因而可以防止温度的逐步上升,特别在100℃附近,功率损失最小。 用途:电源转换用变压器及扼流圈,通讯设备用变压器。 E形磁芯比罐形磁芯便宜,并有易缠绕和易组装的优点。然而,E形磁芯没有自屏蔽的功能。我们提供迭片尺寸的E形磁芯,可与市场上原本设计用于标准迭片尺寸的绕带冲压件的线圈管搭配。同时提供公制和DIN尺寸。E形磁芯可压制成各种厚度,提供不同截面的选择。E形磁芯的典型应用包括差模、功率和电信电感器,以及宽带变压器、电源、变换式和逆变式变压器。 E FD磁芯 特点: 卧式安装,可降低高度,备有多路输出,适用于密集型贴装。 用途: 适用于小功率开关电源。 符合行业标准的经济型平面设计(E FD)磁芯可为变压器或电 感器节省大量空间。其横截面特别针对超薄变压器而优化。E FD磁芯非常适合超薄变压器和电感器使用。 E TD磁芯 E TD磁芯是变压器或电感器的经济型选择。其圆形中柱可减小绕组电阻。而且,专门针对提高电源变压器效率而优化尺寸。 E TD磁芯的典型应用包括差模电感器和电源变压器。 E E R磁芯

E E R磁芯是变压器和电感器的经济型选择。在缩短缠绕路径长度上,其圆形中柱比方形中柱更具有优势。美磁E ER磁芯的典型应用包括差模电感器和电源变压器。 E C磁芯 特点:磁芯中心部份的断面呈圆形,绕线十分方便。绕线面积增加,可设计出大功率的开关变压器。 用途: 1、各类开关电源Dc-Dc、Ac-Dc、Ac-Ac 2、适宜各种电源形式:如:单端反激式、正激式推挽、半桥、全桥。 3、适用于家电、通讯、照明、办公自动化、卫星电视接收系统、军品等领域 设计功率参考表 U、I、UR磁芯 U形磁芯适用于窄小空间或罕见因素下的高功率操作。U形磁芯的长支柱有利于漏电感设计,以及与高压绝缘。U/I组合磁芯可节省组装费用。U形磁芯非常适用于电源变压器。 平面E、I形磁芯 平面E形磁芯不但有所有IEC标准尺寸,还有其他尺寸。适合特定用途,不需重新加工就可调整支柱长度和窗口高度(B和D尺寸)。因此,设计人员可以精确根据平面电感器可容纳高度,调整最终的磁芯规格,而不浪费空间。I形磁芯的标准尺寸,也提供设计上的灵活性。E-I面组合磁芯可用于需要表面粘结的大容量组装,还可用于制造有间隙的电感器磁芯(由于是平面构架,所以必须慎重考虑边缘损耗)。平面磁芯的典型应用包括差模电感器和DC-DC、AC-DC变频器。

罐型磁芯

罐型磁芯 骨架和绕组几乎全部被磁芯包裹起来,致使它对EMI的屏蔽效果非常好;罐型磁芯尺寸均符合IEC标准,在制造的时候互换性非常好;可提供简单型骨架(无插针的)和P CB板安装骨架(有插针);由于罐型形状的设计,致使与其它类型同等尺寸的磁芯相比费用更高;由于它的形状不利于散热,因此不适于应用于大功率变压器电感器。 RM型磁芯 与罐型相比,切掉了罐型的两个对称的侧面,这重设计更有利于散热和大尺寸的引线引出;与罐形相比,节约了大约40%的安装的空间;骨架有无针型的和插针型的;可以采用一对夹子进行安装;RM型磁芯可以作成扁平形状(适合现在的平面变压器或者是直接把磁芯装配到已经设计好绕组的印制板电路上);虽然屏蔽效果不如罐型的好,但是仍然不错。 E型磁芯 与罐型磁芯相比,E型磁芯的费用要低的多,再加上绕制和组装都比较简单,这种磁芯形状现在应用最广,但是它的缺点是不能提供自我屏蔽;E型磁芯可以进行不同方向的安装,也可以几付叠加应用更大的功率;这种磁芯可以作成扁平形状(是现在平面变压器很流行的磁芯形状);也可以提供无针和插针型骨架;由于其散热非常好、可以叠加使用,一般大功率电感器和变压器都使用这种形状的磁芯。 EC、ETD和EER型磁芯 这些类型的磁心结构介于E型和罐型之间。和E型磁芯一样,他们能提供足够的空间供大截面的引线引出(适合现在开关电源低压大电流的趋势);这些形状的磁心散热也非常好;有于中心柱为圆柱形,与相同截面的长方体相比,单匝的绕组的长度缩短了11%,这样致使铜损也降低了11%,同时使的磁心能提供一个更高的输出功率;同时中心柱为圆柱形,与长方体中心柱相比,也避免了由于长方体棱角在绕制时破坏绕组线材绝缘的隐患。 PQ型磁心

输出功率和磁芯尺寸的关系

输出功率和磁芯尺寸的关系 要使变压器输出更大的功率,我们希望在电压一定的情况下,圈数要尽可能 的少、导线尽可能的粗。这样才有利于提供较大的电流,输出更大的功率。前者 需要较大的磁芯截面积,后者要求较大的磁芯窗口面积。因此要获得较大的输出功率磁芯尺寸必须够大才行。 变压器初级绕组的圈数可用下式来算: N = k *10^5 * U /(f *Ae* Bmax ) k 为最大导通时间与周期之比,通常取k=0.4; U 是初级绕组输入电压(V),(近似等于直流输入电压); f 是变压器的工作频率(KHZ); Ae 是磁芯的截面积(cm2); Bmax 是允许的磁通密度最大变化幅度(G)。 因此,在一定电压下,增大截面积Ae、提高工作频率f和选择更大的峰值磁通密度Bmax,都有利于减少圈数,提高输出功率。但是,磁芯的损耗(铁损) 是按Bmax的2.7次幂和f的1.7次幂呈指数增长的,Bmax还受磁芯饱和的限制。因此,提高工作频率f和选择更大的峰值磁通密度Bmax都是有限度的。大多数适合做开关电源的铁氧体磁芯频率通常限制在10-50KHZ以内,Bmax限制在2000G(高斯)以内,一般取Bmax=1600G较为合适。因此,功率主要靠磁芯截面积Ae、其次靠工作频率f控制。 但必须明确的是,这种控制关系是间接的而不是直接的,Ae加大和f提高只是表示对同样的电压,允许绕的圈数更少,只有实际把圈数减少了才能提高功率。如果在同样材料的一个大磁芯和一个小磁芯上,用一样的导线绕同样的圈数,对同样的输入电压输出功率是基本相同的。同样,如果一个做好的变压器,仅仅靠改变工作频率,也是不会使输出功率提高的。 因为变压器已经做好,所以我建议提高输入电压来提高功率;如果从变压器入手的话,可以尝试把导线适当加粗,同时把频率提高一些,以允许圈数能有所减少,这样就可加大输出功率。 导线加粗受到磁芯窗口面积Ac限制。用截面积为Ad的导线绕N圈,占用的窗口面积为: Awc = N *Ad = k * 10^5 * U *Ad / (f *Ae* Bmax ) 设,初级绕组窗口占用系数为Sn =Awc / Ac,Ad用电流I(有效值)和允许的电流密度J表示为 Ad=I/J/100,(Ad-平方厘米,I-A有效值,J-A/平方毫米) 则上式可写成:Ac* Sn = k * U *I*10^3 / ( f *Ae* Bmax * J) 或,U*I = Sn * Bmax * J * f *Ae* Ac * 10^-3 / k 因为输入功率等于输入电压U与电流平均值k*Ip的乘积,而电流有效值I与峰值Ip的关系为 Ip= 1.58*I,所以输入功率Pi = 1.58*k*U*I = 1.58*Sn * Bmax * J * f *Ae* Ac * 10^-3 再乘上效率Ef就得到最大输出功率的表达式 Po = 1.58 * Ef * Sn * Bmax * J * f *Ae* Ac * 10^-3 可见,功率除了和上面那些有利于圈数减少的因素成正比之外,还与允许导 线加粗的Ac、Sn以及电流密度J成正比。工程上一般取Ef = 0.8,Sn=0.4,

磁芯的种类及应用

磁芯的种类及应用: 1.磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2.软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br?Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗 Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3.软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 一、软磁材料的发展及种类 1. 软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。到20世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。直至现在硅钢片在电力工业用软磁材料中仍居首位。到20年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。从40年代到60年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软

高导磁芯、功率磁芯的区别

高导磁芯、功率磁芯的区别 功率磁芯和高导磁芯表象区别在于电感,高导就是磁导率高的意思,一般磁导率都有5K---10K,而功率磁芯的磁导率都在2K---3K之间. 实质上:功率磁芯注重的是功率传输过程中的功率损耗或发热现象,越好的功率磁芯如P4、的功率损耗就越严格,否则就越差,高导材料注重的是电感值,尤其是电感在高频下的稳定性.第二,功率材料和高导材料还有一个很重要的区别:居里温度,一般P4的居里温度为240度,而高导的居里温度为130度左右. 通常情况下,材料磁导率越低,适用的频率范围越宽;材料磁导率越高,适用的频率范围越窄。 磁导率是磁阻的倒数,磁阻大了,磁导率就小了。 磁阻的倒数称作磁导。在SI制中,它的单位是亨利(H)。磁阻(magnetic reluctance)是指含有永磁体的磁路中的一个参量。源于磁路中存在漏磁。利用永磁体来产生一工作磁场时,需要有永磁体、高导磁软磁体和适当大小的空隙三部分,总称为磁路。永磁体提供磁通,经过软磁体连接后在空隙处产生磁场。磁路中的总磁通量是守恒的,但在空隙处的磁通密度相对降低,因有部分磁通在非空隙处流失,称之为漏磁,导致磁路中的磁阻。 磁导率μ等于磁介质中磁感应强度B的微分与磁场强度H的微分之比,即μ=dB / dH 通常使用的是磁介质的相对磁导率μr,其定义为磁导率μ与真空磁导率μ0之比,即μr=μ/μ0 相对磁导率μr与磁化率χ的关系是:μr=1+χ

磁导率μ,相对磁导率μr和磁化率χ都是描述磁介质磁性的物理量。 对于顺磁质μr>1;对于抗磁质μr<1,但两者的μr都与1相差无几。在大多数情况下,导体的相对磁导率等于1.在铁磁质中,B与H 的关系是非线性的磁滞回线,μr不是常量,与H有关,其数值远大于1。 例如,如果空气(非磁性材料)的相对磁导率是1,则铁氧体的相对磁导率为10,000,即当比较时,以通过磁性材料的磁通密度是10,000倍。铸铁为200~400;硅钢片为7000~10000;镍锌铁氧体为10~1000。

相关文档
最新文档