江苏省苏州市2018届第一学期期末高三调研测试数学试卷及参考答案

苏州市2018届高三调研测试

一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上......... 1. 已知i

为虚数单位,复数3

i 2

z 的模为 . 2. 已知集合{1,2}a A =,{1,1,4}B =-,且A B ?,则正整数a = . 3. 在平面直角坐标系xOy 中,抛物线28y x =-的焦点坐标为 . 4. 苏州轨道交通1号线每5分钟一班,其中,列车在车站停留0.5

分钟,假设乘客到达站台的时刻是随机的,则该乘客到达站台

立即能乘上车的概率为 .

5. 已知42a =,log 2a x a =,则正实数x = .

6. 秦九韶是我国南宋时期的数学家,他在所著的《数书九章》中

提出的多项式求值的秦九韶算法,至今仍是比较先进的算法. 右边的流程图是秦九韶算法的一个实例.若输入n ,x 的值分别 为3,3,则输出v 的值为 .

7. 已知变量x ,y 满足03,0,30,x x y x y ??

+??-+?

≤≤≥≤则23z x y =-的最大值为 .

8. 已知等比数列{}n a 的前n 项和为n S ,且63198S S =-,4215

8

a a =--,则3a 的值为 .

9. 鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的

榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、 前后完全对称,六根等长的正四棱柱体分成三组,经90°榫卯 起来.若正四棱柱的高为5,底面正方形的边长为1,现将该鲁

班锁放进一个球形容器内,则该球形容器的表面积至少为 .(容器壁的厚度忽略不计,结果保留π)

10.如图,两座建筑物AB ,CD 的高度分别是9m 和15m ,从建筑物AB

的顶部A 看建筑物CD 的张角45CAD ∠=?,则这两座建筑物AB 和CD 的底部之间的距离BD = m .

11.在平面直角坐标系xOy 中,已知过点(2,1)A -的圆C 和直线 x + y = 1相切,且圆心在直线 y = -2x

上,则圆C 的标准方程为 .

12.已知正实数a ,b ,c 满足11

1a b

+=,

111a b c +=+,则c 的取值范围是 .

13.如图,△ABC 为等腰三角形,120BAC ∠=?,4AB AC ==,以A 为圆心,1为半径的圆分别

交AB ,AC 与点E ,F ,点P 是劣弧EF 上的一点,则PB PC ?的取值范围是 .

14.已知直线y =a 分别与直线22y x =-,曲线2e x y x =+交于点A ,B ,则线段AB 长度的最小值

为 . D

C

B

A

二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)

已知函数2()sin )2f x x x x =+-.

(1)求函数()f x 的最小值,并写出()f x 取得最小值时自变量x 的取值集合;

(2)若,22x ππ??

∈-????

,求函数()f x 的单调增区间.

16.(本小题满分14分)

如图,在正方体1111ABCD A B C D -中,已知E ,F ,G ,H 分别是A 1D 1,B 1C 1,D 1D ,C 1C 的中点.

(1)求证:EF ∥平面ABHG ; (2)求证:平面ABHG ⊥平面CFED .

A 1

B 1

C 1

D 1

A

B

C

D

E

F G H

如图,B ,C 分别是海岸线上的两个城市,两城市间由笔直的海滨公路相连,B ,C 之间的距离为100km ,海岛A 在城市B 的正东方50km 处.从海岛A 到城市C ,先乘船按北偏西θ角(π

2

αθ<≤,其中锐角α的正切值为12

)航行到海岸公路P 处登陆,再换乘汽车到城市C .已知船速为25km/h ,车速为75km/h .

(1)试建立由A 经P 到C 所用时间与θ的函数解析式; (2)试确定登陆点P 的位置,使所用时间最少,并说明理由.

18.(本小题满分16分)

在平面直角坐标系xOy 中,椭圆22

22:1(0)x y C a b a b

+=>>

P 到一

个焦点的距离的最小值为1). (1)求椭圆C 的标准方程;

(2)已知过点(0,1)M -的动直线l 与椭圆C 交于 A ,B 两点,试判断以AB 为直径的圆是否恒过定点,并说明理由.

A

已知各项是正数的数列{}n a 的前n 项和为n S .

(1)若212

3

n n n a S S -++=(n ∈N *,n ≥2),且12a =.

① 求数列{}n a 的通项公式;

② 若12n n S λ+?≤对任意*n ∈N 恒成立,求实数λ的取值范围;

(2)数列{}n a 是公比为q (q >0, q ≠1)的等比数列,且{a n }的前n 项积.为10n T .若存在正整数k ,对任意n ∈N *,使得(1)k n kn

T T +为定值,求首项1a 的值.

已知函数32,0,

()e ,0.

x x x x f x ax x ?-+

(1)当2a =时,求函数()f x 的单调区间;

(2)若方程()()e 3x f x f x -+=-在区间(0,+∞)上有实数解,求实数a 的取值范围; (3)若存在实数,[0,2]m n ∈,且||1m n -≥,使得()()f m f n =,求证:1e e 1

a

-≤≤.

苏州市2018届高三调研测试数学试卷参考答案

一、填空题(共70分) 1

2.2

3.(2,0)-

4.

110

5.12

6.48 7.9- 8.

94 9.30π

10.18 11.22(1)(2)2x y -++= 12.4

(1,]3

13.[11,9]--

14.

3ln 2

2

+ 二、解答题(共90分)

15. 解(1

)2()sin )2f x x x x =+-

223cos cos sin 2x x x x x =++-

3(1cos2)1cos2222

x x

x +-=+ ·

··················································· 2分

cos 222x x =-+2cos(2)23

x π

=++. ··········································· 4分

当223

x k π+=π+π,即()3x k k π

=π+∈Z 时,()f x 取得最小值0.

此时,()f x 取得最小值时自变量x 的取值集合为,3x x k k π??

=π+∈????

Z .

····································································································· 7分

(注:结果不写集合形式扣1分)

(2)因为()2cos(2)23

f x x π

=++,

令2222()3

k x k k π

π+π+π+π∈Z ≤≤, ··············································· 8分

解得()36k x k k π5π+π+π∈Z ≤≤, ·

···················································· 10分 又[,]22

x ππ∈-,令1k =-,,26x ππ??∈--????,令0k =,,32x ππ??

∈????,

所以函数在[,]22

ππ-的单调增区间是,26ππ??--????和,32ππ??

????. ························ 14分

(注:如果写成两区间的并集,扣1分,其中写对一个区间给2分) 16. 证明:(1)因为E ,F 是A 1D 1,B 1C 1的中点,所以11EF A B ∥, 在正方体1111ABCD A B C D -中,A 1B 1∥AB , (注:缺少A 1B 1∥AB 扣1分)

所以EF AB ∥. ········································ 3分 又EF ?平面ABHG ,AB ?平面ABHG , (注:缺少AB ?平面ABHG 不扣分)

所以EF ∥平面ABHG . ······························· 6分 (2)在正方体ABCD ?A 1B 1C 1D 1中,CD ⊥平面BB 1C 1C ,

又BH ?平面11BB C C ,所以BH CD ⊥.① ············································ 8分 设BH

CF P =,△BCH ≌△1CC F ,所以1HBC FCC ∠=∠,

因为∠HBC +∠PHC =90?,所以1FCC ∠+∠PHC =90?.

所以90HPC ∠=?,即BH CF ⊥.② ···················································· 11分 由①②,又DC

CF C =,DC ,CF ?平面CFED ,

所以BH ⊥平面CFED .

A 1

B 1

C 1

D 1 A B C D

E F

G H P

又BH ?平面ABHG ,

所以平面ABHG ⊥平面CFED . ··························································· 14分 (注:缺少BH ?平面ABHG ,此三分段不给分)

17. 解(1)由题意,轮船航行的方位角为θ,所以90BAP θ∠=?-,50AB =,

则5050cos(90)sin AP θθ

==?-,50sin(90)50cos 50tan(90)cos(90)sin BP θθ

θθθ?-=?-==

?-. 50cos 100100sin PC BP θ

θ

=-=-

. ························································· 4分 (注:AP ,BP 写对一个给2分)

由A 到P 所用的时间为12

25sin AP t θ

==

, 由P 到C 所用的时间为250cos 10042cos sin 7533sin t θ

θθθ

-

=

=-, ·························· 6分 所以由A 经P 到C 所用时间与θ的函数关系为

12242cos 62cos 4

()sin 33sin 3sin 3

t f t θθθθθθ-==

+=++-. ·

································ 8分 函数()f θ的定义域为(,]2

απ,其中锐角α的正切值为1

2.

(2)由(1),62c o s 4()3sin 3

f θθθ-=+,(,]2θαπ

∈,

2(13cos )()9si 6n f θθθ

-'=,令()0f θ'=,解得1

cos 3θ=

, ······························· 10分 设θ0∈(0,)

π,使01

cos θ=

················

·······················································

···········

··················· 12分

所以,当0θθ=时函数f (θ)取得最小值,此时BP =

0050cos sin θθ≈17.68 km ,

答:在BC 上选择距离B 为17.68 km 处为登陆点,所用时间最少.·

···········

14分

(注:结果保留根号,不扣分)

18. 解(1)由题意

c a =,故a =, ··················································· 1分 又椭圆上动点P 到一个焦点的距离的最小值为1),所以3a c -=, ······

······························································································· 2分 解得3c =,a =2229b a c =-=, ········································· 4分

所以椭圆C 的标准方程为22

1189

x y +=. ·

·················································· 6分 (2)当直线l 的斜率为0时,令1y =-,则4x =±,

此时以AB 为直径的圆的方程为2(1)16x y ++=. ···································· 7分

联立222

(1)16,9,x y x y ?++=??+=??

解得0,3x y ==,即两圆过点(0,3)T . 猜想以AB 为直径的圆恒过定点(0,3)T . ··············································· 9分 对一般情况证明如下:

设过点(0,1)M -的直线l 的方程为1y kx =-与椭圆C 交于1122(,),(,)A x y B x y ,

则22

1,218,

y kx x y =-??+=?整理得22(12)4160k x kx +--=, 所以1212

22

416

,1212k x x x x k k +==-++. ················································· 12分 (注:如果不猜想,直接写出上面的联立方程、韦达定理,正确的给3分) 因为1122121212(,3)(,3)3()9TA TB x y x y x x y y y y ?=-?-=+-++

121212(1)(1)3(11)9x x kx kx kx kx =+----+-+21212(1)4()16k x x k x x =+-++

222222

16(1)1616(12)16160121212k k k k k k

-+-+=-+=+=+++, 所以TA TB ⊥.

所以存在以AB 为直径的圆恒过定点T ,且定点T 的坐标为(0,3). ·············· 16分

19. 解(1)①当2n ≥时,由2

12

,3

n n n a S S -++= ①

则2112

,3

n n n a S S ++++= ②

②-①得22

111()3

n n n n a a a a ++-=-,即13n n a a +-=,2n ≥

···························· 2分 当2n =时,由①知2212123

a a a a +++=,即2

2

23100a a --=, 解得25a =或22a =-(舍),

所以213a a -=,即数列{}n a 为等差数列,且首项13a =,

所以数列{}n a 的通项公式为31n a n =-. ················································· 5分 (注:不验证213a a -=扣1分)

②由①知,31n a n =-,所以2(312)322n n n n n S -++==

, 由题意可得212322n n n S n n

λ+++=≥对一切*n ∈N 恒成立,

记2232

n n n n

c ++=,则211

3(1)(1)2n n n n c -+-+-=,2n ≥, 所以212

3114

2n n n n n c c -+-+--=,2n ≥, ················································ 8分

当4n >时,1n n c c -<,当4n =时,41316c =

,且31516c =,27

8

c =,112c =,

所以当3n =时,2232n n n n c ++=取得最大值15

16

所以实数λ的取值范围为15

[,)16

+∞. ······················································· 11分

(2)由题意,设11n n a a q -=(0,1q q >≠),1210n T n a a a ???=,两边取常用对数,

12lg lg lg n n T a a a ++

+=.

令1lg lg lg lg n n b a n q a q ==+-,

则数列{}n b 是以1lg a 为首项,lg q 为公差的等差数列, ····························· 13分

(1)k n kn

T T +为定值,令

(1)k n kn

T T μ+=,则

11(1)[(1)1]

(1)lg lg 2(1)

lg lg 2

k n k n k n a q

kn kn kn a q

μ++-++

=-+, 即2

2

2

1{[(1)]lg }[(1)](lg )lg 0a k k q n k k q q

μμ+-++-=对*n ∈N 恒成立,

因为0,1q q >≠,问题等价于22

2

1(1)0,

(1)0.

k k k k a q μμ?+-=??+-==??或

1

k k

+=(1)0k k μ+-=,解得01μμ==或. 因为*k ∈N ,所以0,1μμ>≠,

所以21a q =,又0,n a >

故1a =. ························································ 16分

20. 解(1)当2a =-时,32

,0,

()e +2,0,

x x x x f x x x ?-+

当0x <时,32()f x x x =-+,则2()32(32)f x x x x x '=-+=--,

令()0f x '=,解得0x =或2

3

x =

(舍),所以0x <时,()0f x '<, 所以函数()f x 在区间(,0)-∞上为减函数. ··············································· 2分 当0x ≥时,()e 2x f x x =-,()e 2x f x '=-,

令()0f x '=,解得ln2x =,当0ln2x <<时,()0f x '<,当ln2x >时,()0f x '>, 所以函数()f x 在区间(0,ln 2)上为减函数,在区间(ln 2,)+∞上为增函数, 且(0)10f =>. ················································································· 4分 综上,函数()f x 的单调减区间为(,0)-∞和(0,ln 2),单调增区间为(ln 2,)+∞.

····································································································· 5分 (注:将单调减区间为(,0)-∞和(0,ln 2)写出(,ln 2)-∞的扣1分) (2)设0x >,则0x -<,所以32()()e x f x f x x x ax -+=++-, 由题意,32e e 3x x x x ax ++-=-在区间(0,)+∞上有解, 等价于23

a x x x

=++在区间(0,)+∞上有解. ············································· 6分 记23

()(0)g x x x x x

=++

>,

则322222

323(1)(233)

()21x x x x x g x x x x x +--++'=+-==

, ························ 7分 令()0g x '=,因为0x >,所以22330x x ++>,故解得1x =, 当(0,1)x ∈时,()0g x '<,当(1,)x ∈+∞时,()0g x '>,

所以函数()g x 在区间(0,1)上单调递减,在区间(1,)+∞上单调递增,

故函数()g x 在1x =处取得最小值(1)5g =. ············································· 9分 要使方程()a g x =在区间(0,)+∞上有解,当且仅当min ()(1)5a g x g ==≥, 综上,满足题意的实数a 的取值范围为[5,)+∞. ······································· 10分 (3)由题意,()e x f x a '=-,

当0a ≤时,()0f x '>,此时函数()f x 在[0,)+∞上单调递增,

由()()f m f n =,可得m n =,与条件||1m n -≥矛盾,所以0a >. ·············· 11分 令()0f x '=,解得ln x a =,

当(0,ln )x a ∈时,()0f x '<,当(ln ,)x a ∈+∞时,()0f x '>, 所以函数()f x 在(0,ln )a 上单调递减,在(ln ,)a +∞上单调递增.

若存在,[0,2]m n ∈,()()f m f n =,则ln a 介于m ,n 之间, ······················ 12分 不妨设0ln 2m a n <<≤≤,

因为()f x 在(,ln )m a 上单调递减,在(ln ,)a n 上单调递增,且()()f m f n =, 所以当m x n ≤≤时,()()()f x f m f n =≤,

由02m n <≤≤,||1m n -≥,可得1[,]m n ∈,故(1)()()f f m f n =≤, 又()f x 在(,ln )m a 上单调递减,且0ln m a <≤,所以()(0)f m f ≤.

所以(1)(0)f f ≤,同理(1)(2)f f ≤. ··················································· 14分

即2

e 1,

e e 2,

a a a -??--?≤≤解得2e 1e e a --≤≤, 所以1e e 1

a

-≤≤.·

············································································· 16分

2018届高三调研测试数学附加题参考答案

21B 选修4-2 矩阵与变换

解 矩阵M 的特征多项式为212

()2321

f λλλλλ--=

=----, ··················· 2分

令()0f λ=,解得123,1λλ==-,解得

属于λ1的一个特征向量为111??

=????

α,属于λ2的一个特征向量为211??=??-??α. ······· 5分

令12m n =+βαα,即111711m n ??????=+??????-??????,所以1,

7,m n m n +=??-=?

解得4,3m n ==-.

····································································································· 7分 所以44441212(43)4()3()=-=-M M M M βαααα

44441122113214()3()433(1)11327λλ??????

=-=?-?-=??????-??????

αα. ············· 10分

解 由曲线C 的极坐标方程是2

2cos =

sin θ

ρθ

,得ρ2sin 2θ=2ρcos θ. 所以曲线C 的直角坐标方程是y 2=2x . ··················································· 2分

由直线l 的参数方程1,

3x t y t =+??=-? (t 为参数),得40x y --=,

所以直线l 的普通方程为40x y --=. ················································· 4分 将直线l 的参数方程代入曲线C 的普通方程y 2=2x ,得2870t t -+=,

设A ,B 两点对应的参数分别为t 1,t 2,

所以12|AB t t -=== ············· 7分 因为原点到直线40x y --=

的距离d ==,

所以△AOB

的面积是11

1222

S AB d =

??=??=. ·

···················· 10分 21D 选修4-5 不等式选讲

解 因为a ,b ,c ∈R ,2221a b c ++=,

由柯西不等式得2222()()(111)3a b c a b c -+++++=≤, ·························· 4分

因为2|1||1|()x x a b c -++-+≥对一切实数a ,b ,c 恒成立, 所以|1||1|3x x -++≥. 当1x <-时,23x -≥,即3

2

x -

≤; 当11x -≤≤时,23≥不成立; 当1x >时,23x ≥,即32

x ≥;

综上,实数x 的取值范围为3

3(,][,)22

-∞-+∞. ··················

22. 解(1)因为平面ABCD ⊥平面ABEP ,平面ABCD ∩平面ABEP =AB ,BP ⊥AB ,

所以BP ⊥平面ABCD ,又AB ⊥BC ,所以直线BA ,BP ,BC 两两垂直,

以B 为原点,分别以BA ,BP ,BC 为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,则P (0,2,0),B (0,0,0),D (2,0,1),E (2,1,0),C (0,0,1),

因为BC ⊥平面ABPE ,所以(0,0,1)BC =为平面ABPE 的一个法向量, 2分

(2,2,1),(2,0,0)PD CD =-=,设平面PCD 的一个法向量为(,,)x y z =n , 则0,0,

CD PD ??=???=??n n 即20,220,x x y z =??-+=?令1y =,则2z =,故(0,1,2)=n ,

4分

设平面PCD 与平面ABPE 所成的二面角为θ,则cos ||||1BC BC θ?===??n n ,

显然π02θ<<

,所以平面PCD 与平面ABPE ·

···· 6分 (2)设线段PD 上存在一点N ,使得直线BN 与平面PCD 所成角α的正弦值等于25

. 设(2,2,)(01)PN PD λλλλλ==-≤≤,(2,22,)BN BP PN λλλ=+=-. ·

·· 7分 由(1)知,平面PCD 的一个法向量为(0,1,2)=n , 所以2cos ,5

BN BN BN ?<>=

=

=

?n n |||n |

, 即29810λλ--=,解得1λ=或1

λ=-(舍去). ·

································· 9分

当点N 与点D 重合时,直线BN 与平面PCD 所成角的正弦值为2

5

. ··········· 10分 23. 解(1)因为()[(1)1]2[2(1)]f n f n f n ++=-+,整理得4()

(1)()2

f n f n f n -+=+,

由(1)2f =,代入得421(2)222f -==+,1472(3)15

22

f -

==+,所以719(3)(2)5210f f -=-=. 2分 (2)由(1)2f =,1(2)2f =,可得41

,55

a b =-=. ·

································ 3分 以下用数学归纳法证明

存在实数,41,5

5a b =-=

,使1

()1431()525

n f n =+---成立.

① 当1n =时,显然成立. ·

································································ 4分 ② 当n k =时,假设存在41

,55a b =-=,使得1()1431()525

k f k =+---成立,

····································································································· 5分

那么,当1n k =+时,141431()()4()525(1)1()212431()()525

k k f k f k f k ??

-+??

---??-??+=

=+++--- 11238()11525111232631431()()()525525525

k k k k +-+

==+=+-------,

即当1n k =+时,存在41

,55a b =-=,使得11(1)1431()525k f k ++=+---成立.9分

由①,②可知,存在实数,41

,55a b =-=,使1()13()2

n f n a b =+--对任意正整

数n 恒成立. ·

·················································································· 10分

相关文档
最新文档