小波变换在图像处理中的应用研究

小波变换在图像处理中的应用研究
小波变换在图像处理中的应用研究

第1章绪论

1.1课题的研究背景及意义

图像在生成和传输过程中常常因受到各种噪声的干扰和影响而使图像降质,这对后续图像的处理(如分割、压缩和图像理解等)将产生不利影响。噪声种类很多,如:电噪声、机械噪声、信道噪声和其他噪声。在图像处理中,图像去噪是一个永恒的主题,为了抑制噪声,改善图像质量,便于更高层次的处理,必须对图像进行去噪预处理。

近年来,小波理论得到了非常迅速的发展,而且由于其具备良好的时频特性,实际应用也非常广泛。其中图像的小波阈值去噪方法可以说是众多图像去噪方法的佼佼者。基本思想就是利用图像小波分解后,各个子带图像的不同特性选取不同的阈值,从而达到较好的去噪目的。而且,小波变换本身是一种线形变换,而国内外的研究大多集中在如何选取一个合适的全局阈值,通过处理低于该阈值的小波系数同时保持其余小波系数值不变的方法来降噪,因而大多数方法对于类似于高斯噪声的效果较好,但对于混有脉冲噪声的混合噪声的情形处理效果并不理想。线形运算往往还会造成边缘模糊,小波分析技术正因其独特的时频局部化特性在图像信号和噪声信号的区分以及有效去除噪声并保留有用信息等方面较之传统的去噪具有明显的优势,且在去噪的同时实现了图像一定程度的压缩和边缘特征的提取。所以小波去噪具有无可比拟的优越性。1.2国内外研究现状

图像处理是小波变换应用得最早,最成熟的工程领域之一,在小波理论创立初期,S.Mallat就提出了以多尺度分析为基础的局部极大模方法用于图像压缩。图像去噪是信号处理中的经典问题。传统的去噪方法多采用平均或线性方法,如:Wiener滤波,但去噪效果不令人满意。Donoho于1994年提出的平方最小原则下的最佳阈值求法开创了小波去噪的先河。由于小波变换通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析,是空间(时间)和频率的局部变换,能有效地从信号中提取信息,因而小波分析成为当前一种新兴的信号处理技术,为国际上众多学者所关注。它集数学、物理、电子工程、计算机科学等领域的成果于一身,广泛地应用于多学科。

1.2.1小波发展历程

小波变换用于图像去噪的理论基础始于S.Mallat把数学上的ipschitz系数与小波变换的模极大值联系起来。随后,Donoho提出了小波M值萎缩方法(VisuShrink),并从渐近意义上证明了其优越性。然而在实际应用中却往往效果不好,存在“过扼杀”系数的缺点。以后人们进一步研究小波相关去噪方法、比例萎缩方法等,并且在进一步提高算法的局部适应性、先验模型的准确性、边缘信息的保留性等方面取得了巨大的进步。具体回顾小波去噪方法可以大致分成以下三个阶段:

第一阶段。最初的去噪方法主要是利用小波变换去相关性。在小波分解后不同层次的细节子带,采用不同的阈值。代表方法有VisuShrnk(通用软阈值去噪)方法和SURES (基于SteinS的无偏风险估计,可得出接近最优软阈值的估计量)方法等。这期间硬阈值,软阈值和半软阈值等阈值函数也相继提出。

第二阶段。人们开始根据小波系数的统计性质建立各种先验模型,对小波系数的萎缩自适应变化,也就是每个小波系数所采用的阈值都各不相同。小波系数模型主要可分为基于尺度内相关性的层内模型、基于尺度间相关性的层间模型和混合模型。最常用小波系数先验模型是广义高斯分布模型。原图像小波系数的方差估计采用局部邻域估计,代表方法有数据驱动的自适应BayesShrink 方法,AWMShrink方法等。

第三阶段。这一阶段人们主要关注如何利用小波系数层间和层内的相关性。二元或多元的小波萎缩函数被提出。在去噪的同时如何尽可能地保留边缘、纹理等细节、如何使去噪后的图像更光滑、如何将小波变换去噪与其他方法结合等都处于不断地探索和研究中。代表方法有BivaShfink方法、小波的马尔可夫方法和复数小波去噪方法等。

1.2.2图像去噪方法分类

目前应用小波进行图像去噪的方法很多。总的来说,小波去噪方法大体上可以分为:基于信号奇异性的模极大值重构去噪、基于信号尺度间相关性的空域相关去噪和基于小波变换去相关特性的小波域阈值去噪法三类。

模极大值重构去噪法。信号的模极大值重构是指利用信号在各个尺度上小波系数的模极大值来重构信号。由于信号小波系数的模极大值包含了信号的峰变性与奇异性,因而,若可以从这些极大值重构信号,那么就可以通过处理小波系数的模极大值而实现对信号奇异性的修改,可以通过改变模极大值来修改

奇异性强度,也可以通过抑制某些极大值点而去除相应的奇异性。这就是模极大值重构滤波的基本思想。小波变换模极大值去噪算法,最初由Mallat提出,即根据信号和噪声在小波变换各尺度上的不同传播特性,剔除由噪声产生的模极大值点,保留信号所对应的模极大值点,然后利用所余模极大值点重构小波系数,进而恢复信号。

空域相关去噪算法。这类方法是对含噪信号作小波变换之后,计算相邻尺度间小波系数的相关性。信号经小波变换之后,其小波系数在各个尺度上有较强的相关性,也就是在信号的边缘附近,其相关性更加明显,而噪声对应的小波系数在尺度间却没有这种明显的相关性。这样,就可以利用小波系数在不同尺度上对应点处的相关性的大小区别小波系数的类型,从而进行取舍,这样处理后的小波系数基本上对应着信号的边缘,从粗尺度到细尺度逐步搜索信号的主要边缘,最终从噪声背景中得到真实信号,达到了去噪的目的。

小波域阈值去噪方法。目前,小波阈值去噪方法是研究最广泛的方法。这种非线性滤波方法之所以特别有效,就是由于小波变换具有一种“集中”的能力。它可以便一个信号的能量在小波变换域集中在少数系数上,因此这些系数的幅值必然大于在小波变换域内能量分散于大量小波系数上的信号或噪声的幅值。这就意味着对小波系数进行阈值处理可以在小波变换域中去除低幅值的噪声和不期望的信号。然后运用小波逆变换,得到去噪后的重建图像。

另外,还有学者把投影法也作为当前小波去噪方法中的一类,在此也作简单介绍。投影法的原理是将含噪信号以一种迭代的方式投影到逐步缩小的空间。由于最后的空间能更好地体现原信号的特点,所以投影法也能够有效地区分噪声和信号。

1.3课题的研究内容

本文以图像去噪为研究对象,对比了传统去噪方法与小波去噪方法,比较深入地研究了基于小波系数模型的图像去噪。

全文安排具体如下:

第一章为绪论,首先简单介绍了课题研究的背景及意义,小波的发展历程和特性。然后,介绍全文的结构安排和本文所取得的研究成果。

第二章对小波变换进行了详尽而深刻的阐述。从传统的傅里叶变换引出小波变换,进而循序渐进地介绍了连续小波变换,离散小波变换,小波包分析,多分辨率分析,最终引出小波分析中的Mallat算法。

第三章首先概述了图像去噪基本概念,然后引入和介绍了几种传统的图像去噪原理和算法,包括邻域平均和中值滤波,对每一种方法均进行了仿真和效果测评,接着重点研究了小波阈值法去噪,针对三种不同的阈值函数,高频系数置零、硬阈值法和软阈值法进行了仿真和测评,并将其结果与传统去噪方法进行比较,得出结论。

最后是对全文的总结与展望,概括了全文的研究内容,同时也指出了论文尚还存在的不足之处,提出了一些可以继续努力的方向,为后续工作提供参考。

第2章小波基本理论

2.1从傅里叶变换到小波变换

小波分析属于时频分析的一种,传统的信号分析是建立在傅立叶变换的基础上的,由于傅立叶分析使用的是一种全局的变换,要么完全在时域,要么完全在频域,因此无法表述信号的时频局域性质,而这种性质恰恰是非平稳信号最根本和最关键的性质。为了分析和处理非平稳信号,人们对傅立叶分析进行了推广乃至根本性的革命,提出并发展了一系列新的信号分析理论:短时傅立叶变换、Gabor变换、时频分析、小波变换、分数阶傅立叶变换、线调频小波变换、循环统计量理论和调幅、调频信号分析等。其中,短时傅立叶变换和小波变换也是应传统的傅立叶变换不能够满足信号处理的要求而产生的。短时傅立叶变换分析的基本思想是:假定非平稳信号在分析窗函数()t g的一个短时间间隔内是平稳(伪平稳)的,并移动分析窗函数,使()()t g t f在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。但从本质上讲,短时傅立叶变换是一种单一分辨率的信号分析方法,因为它使用一个固定的短时窗函数。因而短时傅立叶变换在信号分析上还是存在着不可逾越的缺陷。小波变换是一种信号的时间.尺度分析方法,它具有多分辨率分析的特点,而且在时频两域都具有表征信号局部特征的能力,是一种窗口大小固定不变但其形状可改变,时间窗和频率窗都可以改变的时频局部化分析方法。即在低频部分具有较高的频率分辨率,在高频部分具有较高的时间分辨率和较低的频率分辨率,很适合于探测正常信号中夹带的瞬态反常现象并展示其成分,所以被誉为分析信号的显微镜,利用连续小波变换进行动态系统故障检测与诊断具有良好的效果。

2.1.1傅里叶变换

在信号处理中比较重要的方法之一是傅立叶变换,它架起了时间域和频率域之间的桥梁。

对很多信号来说,傅立叶分析非常有用。因为它能给出信号里包含的各种频率成分。但是,傅立叶变换有着严重的缺点:变换之后使信号失去了时间信息,它不能告诉人们在某段时间里发生了什么变化。而很多信号都包含有人们感兴趣的非稳态(或者瞬变)特性,如漂移、趋势项、突然变化以及信号的开始或结束。这些特性是信号的最重要部分。因此傅立叶变换不适于分析处理这类信

基于小波变换的图像融合

基于小波变换的图像融合 摘要:图像融合是通过某种算法,将两幅或多幅不同的图像进行合并以形成一一幅新的图像的过程,其的主要目的是通过对多幅图像间的冗余数据的处理来提高图像的可靠性,通过对多幅图像间的互补信息的处理来提高图像的清晰度。本文的研究重点是基于小波变换实现图像的初步融合,完成将两幅不同的图像进行合并以形成一幅新的图像。关键词:图像融合,小波变换,融合算法,图像信息 Abstract The image fusi on is a procedure that comb ine more tha n two images in order to get a new image, and it ' s main purpose of image fusi on of multiple images is enhance the reliability of image through deal with the ultra data of the in itial image, and improve the defi niti on of the image through deal with the compleme ntary in formatio n of the images. The key point of this article is realized the image fusi on based on the wavelet tran sform and comb ines two images to get a new image. Key Words : image fusion, wavelet transform, fusion algorithm, image in formatio n 一、引言 图像融合是通过某种算法,将两幅或多幅不同的图像进行合并以形成一幅新的图像的过程。在众多的图像融合技术,基于小波变换的图像融合方法已成为现今的个热点,图像融合技术是数据融合技术的一种特定情形,它是以图像的形式来表达具 体的信息,它对人的视觉产生作用。图像融合具体来说是根据某一算法,将所获得的针对同一目标场景的多幅配准后的图像进行综合处理,从而得到一幅新的、满足某种条件的、对目标或场景的描述更为准确、更为全面、更为可靠的图像。融合后的图像应该比原始图像更加清晰可靠和易于分辨。图像融合充分利用了多个原始图像所包含的冗余信息和互补信息,能够起到扩大传感范围、提高系统可靠性和图像信息利用率的作用。 二、小波变换图像融合 传统的信号理论,是建立在Fourier分析基础上的,而Fourier变换作为一种全局性的变化,其有一定的局限性。在实际应用中人们开始对Fourier变换进行各种 改进,小波分析由此产生了。小波分析是一种新兴的数学分支,它是泛函数、Fourier 分析、调和分析、数值分析的最完美的结晶;在应用领域,特别是在信号处理、图像处理、语音处理以及众多非线性科学领域,它被认为是继Fourier分析之后的又 一有效的时频分析方法。小波变换与Fourier变换相比,是一个时间和频域的局域 变换因而能有效地从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis ),解决了Fourier变换不能解决的许多困难问题。 近些年来,小波变换倍受科技界的重视,它不仅在数学上已形成了一个新的分支,

数字图像处理课程设计-小波变换

摘要 小波变换的理论是近年来兴起的新的数学分支,素有“数学显微镜”的美称。它是继1822年傅立叶提出傅立叶变换之后又一里程碑式的领域,解决了很多傅立叶变换不能解决的困难问题。小波变换可以使得信号的低频长时特性和高频短时特性同时得到处理,具有良好的局部化性质,能有效地克服傅氏变换在处理非平稳复杂信号时存在的局限性,具有极强的自适应性,因此在图像处理中具有极好应用价值。本设计主要分析了基于小波变换的图像分解和图像压缩技术,并运用Matlab软件对图像进行分解,然后提取其中与原图像近似的低频信息,达到对图像进行压缩的目的。分别作第一层分解和第二层分解,并比较图像压缩的效果。 关键词:小波变换;Matlab;图像分解;图像压缩

目录 摘要 ..................................................................................................... I 第1章绪论 (1) 1.1设计背景 (1) 1.2设计要求 (1) 1.3设计思路简介 (1) 第2章小波变换处理图像设计过程 (2) 2.1小波变换的分解和重构算法 (2) 2.2小波变换在图像压缩中的应用 (4) 第3章软件设计与仿真 (6) 3.1MATLAB程序 (6) 3.2结果及分析 (7) 第4章总结与展望 (9) 参考文献 (10)

第1章绪论 1.1设计背景 小波分析是当前应用数学和工程学科中一个迅速发展的新领域,经过近10年的探索研究,重要的数学形式化体系已经建立,理论基础更加扎实。与Fourier变换相比,小波变换是空间(时间)和频率的局部变换,因而能有效地从信号中提取信息。通过伸缩和平移等运算功能可对函数或信号进行多尺度的细化分析,解决了Fourier变换不能解决的许多困难问题。小波变换联系了应用数学、物理学、计算机科学、信号与信息处理、图像处理、地震勘探等多个学科。小波分析是一个新的数学分支,它是泛函分析、Fourier分析、样调分析、数值分析的完美结晶;小波分析是时间—尺度分析和多分辨分析的一种新技术,它在信号分析、语音合成、图像识别、计算机视觉、数据压缩、地震勘探、大气与海洋波分析等方面的研究都取得了有科学意义和应用价值的成果。 1.2设计要求 利用小波变换的基本原理在MATLAB环境下编写程序对静态图像进行分解并压缩,并观察分析其处理效果。 1.3设计思路简介 一个图像作小波分解后,可得到一系列不同分辨率的子图像,不同分辨率的子图像对应的频率是不相同的。高分辨率(即高频)子图像上大部分点都接近于0,越是高频这种现象越明显。对一个图像来说,表现一个图像最主要的部分是低频部分,所以利用小波分解就可以达到去掉图像的高频部分而只保留低频部分的目的。 MATLAB是矩阵实验室(Matrix Laboratory)的简称,它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其它编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 本设计利用MATLAB工具箱中的Wavele Toolbox——小波工具箱对图像进行小波变换。

基于小波变换的图像处理.

基于小波变换的数字图像处理 摘要:本文先介绍了小波分析的基本理论,为图像处理模型的构建奠定了基础,在此基础上提出了小波分析在图像压缩,图像去噪,图像融合,图像增强等图像处理方面的应用,最后在MATLAB环境下进行仿真,验证了小波变化在图像处理方面的优势。 关键词:小波分析;图像压缩;图像去噪;图像融合;图像增强 引言 数字图像处理是利用计算机对科学研究和生产中出现的数字化可视化图像 信息进行处理,作为信息技术的一个重要领域受到了高度广泛的重视。数字化图像处理的今天,人们为图像建立数学模型并对图像特征给出各种描述,设计算子,优化处理等。迄今为止,研究数字图像处理应用中数学问题的理论越来越多,包括概率统计、调和分析、线性系统和偏微分方程等。 小波分析,作为一种新的数学分析工具,是泛函分析、傅立叶分析、样条分析、调和分析以及数值分析理论的完美结合,所以小波分析具有良好性质和实际应用背景,被广泛应用于计算机视觉、图像处理以及目标检测等领域,并在理论和方法上取得了重大进展,小波分析在图像处理及其相关领域所发挥的作用也越来越大。在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。但短时傅立叶分析只能在一个分辨率上进行,所以对很多应用来说不够精确,存在很大的缺陷。而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整。 本文介绍了小波变换的基本理论,并介绍了一些常用的小波函数,然后研究了小波分析在图像处理中的应用,包括图像压缩,图像去噪,图像融合,图像增强等,本文重点在图像去噪,最后用Matlab进行了仿真[1]。

外文翻译小波变换在图像处理中的仿真及应用

论文翻译 通信102 吴志昊 译文: 小波变换在图像处理中的仿真及应用 一、课题意义 在传统的傅立叶分析中, 信号完全是在频域展开的, 不包含任何时频的信息, 这对于某些应用来说是很恰当的, 因为信号的频率的信息对其是非常重要的。但其丢弃的时域信息可能对某些应用同样非常重要, 所以人们对傅立叶分析进行了推广, 提出了很多能表征时域和频域信息的信号分析方法, 如短时傅立叶变换, Gabor 变换, 时频分析, 小波变换等。而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷, 具有多分辨率分析的特点, 使其在图像处理中得到了广泛应用。 传统的信号理论,是建立在Fourier分析基础上的,而Fourier变换作为一种全局性的变化,其有一定的局限性。在实际应用中人们开始对Fourier变换进行各种改进,小波分析由此产生了。小波分析是一种新兴的数学分支,它是泛函数、Fourier分析、调和分析、数值分析的最完美的结晶;在应用领域,特别是在信号处理、图像处理、语音处理以及众多非线性科学领域,它被认为是继Fourier分析之后的又一有效的时频分析方法。小波变换与Fourier变换相比,是一个时间和频域的局域变换因而能有效地从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis),解决了Fourier变换不能解决的许多困难问题。 小波变换是一种快速发展和比较流行的信号分析方法, 其在图像处理中有非常重要的应用, 包括图像压缩, 图像去噪, 图像融合, 图像分解, 图像增强等。小波分析是傅立叶分析思想方法的发展与延拓。除了连续小波(CWT)、离散小波(DWT), 还有小波包(Wavelet Packet)和多维小波。 小波分析在图像处理中有非常重要的应用, 包括图像压缩, 图像去噪, 图像融合, 图像分解, 图像增强等。小波变换是一种新的变换分析方法,它继承和发展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随频率变化等缺点,能够提供一个随频率改变的时间一频率窗口,是进行信号时频分析和处理的理想工具。它的主要特点是通过变换能够充分突出问题某些方面的特征,因此,小波变换在许多领域都得到了成功的应用,特别是小波变换的离散数字算法已被广泛用于许多问题的变换研究中。从此,小波变换越来越引进人们的重视,其应用领域来越来越广泛。 二、课题综述 (一)小波分析的应用与发展 小波分析的应用是与小波分析的理论研究紧密地结合在一起的。现在,它已经在科技信息产业领域取得了令人瞩目的成就。电子信息技术是六大高新技术中重要的一个领域,它的重要方面是图象和信号处理。现今,信号处理已经成为当代科学技术工作的重要部分,信号处理的目的就是:准确的分析、诊断、编码压缩和量化、快速传递或存储、精确地重构(或恢复)。从数学地角度来看,信号与图象处理可以统一看作是信号处理(图象可以看作是二维信号),在小波分析的许

数字图像处理课后题答案

1. 图像处理的主要方法分几大类 答:图字图像处理方法分为大两类:空间域处理(空域法)和变换域处理(频域法)。 空域法:直接对获取的数字图像进行处理。 频域法:对先对获取的数字图像进行正交变换,得到变换系数阵列,然后再进行处理,最后再逆变换到空 间域,得到图像的处理结果 2. 图像处理的主要内容是什么 答:图形数字化(图像获取):把连续图像用一组数字表示,便于用计算机分析处理。图像变换:对图像进 行正交变换,以便进行处理。图像增强:对图像的某些特征进行强调或锐化而不增加图像的相关数据。图 像复原:去除图像中的噪声干扰和模糊,恢复图像的客观面目。图像编码:在满足一定的图形质量要求下 对图像进行编码,可以压缩表示图像的数据。图像分析:对图像中感兴趣的目标进行检测和测量,从而获 得所需的客观信息。图像识别:找到图像的特征,以便进一步处理。图像理解:在图像分析的基础上得出 对图像内容含义的理解及解释,从而指导和规划行为。 3. 名词解释:灰度、像素、图像分辨率、图像深度、图像数据量。 答:像素:在卫星图像上,由卫星传感器记录下的最小的分立要素(有空间分量和谱分量两种)。通常,表 示图像的二维数组是连续的,将连续参数 x,y ,和 f 取离散值后,图像被分割成很多小的网格,每个网格 即为像素 图像分辨率:指对原始图像的采样分辨率,即图像水平或垂直方向单位长度上所包含的采样点 数。单位是“像素点/单位长度” 图像深度是指存储每个像素所用的位数,也用于量度图像的色彩分辨率.图像深度确定彩色图像的每个像素 可能有的颜色数,或者确定灰度图像的每个像素可能有的灰度级数.它决定了彩色图像中可出现的最多颜色 数,或灰度图像中的最大灰度等级(图像深度:位图图像中,各像素点的亮度或色彩信息用二进制数位来表 示,这一数据位的位数即为像素深度,也叫图像深度。图像深度越深,能够表现的颜色数量越多,图像的 色彩也越丰富。) 图像数据量:图像数据量是一幅图像的总像素点数目与每个像素点所需字节数的乘积。 4. , 5. 什么是采样与量化 答:扫描:按照一定的先后顺序对图像进行遍历的过程。采样:将空间上连续的图像变成离散点的操作。 采样过程即可看作将图像平面划分成网格的过程。量化:将采样得到的灰度值转换为离散的整数值。灰度 级:一幅图像中不同灰度值的个数。一般取0~255,即256个灰度级 5.说明图像函数 的各个参数的具体含义。 答:其中,x 、y 、z 是空间坐标,λ是波长,t 是时间,I 是像素点的强度。它表示活动的、彩色的、三维 的视频图像。对于静止图像,则与时间t 无关;对于单色图像,则波长λ为常数;对于平面图像,则与坐 标z 无关。 1.请解释马赫带效应,马赫带效应和同时对比度反映了什么共同的问题 答:马赫带效应:基于视觉系统有趋向于过高或过低估计不同亮度区域边界值的现象。同时对比度现象: 此现象表明人眼对某个区域感觉到的亮度不仅仅依赖它的强度,而与环境亮度有关 共同点: 它们都反映了人类视觉感知的主观亮度并不是物体表面照度的简单函数。 2. 色彩具有那几个基本属性描述这些基本属性的含义。 答:色彩是光的物理属性和人眼的视觉属性的综合反映。色彩具有三个基本属性:色调、饱和度和亮度 色调是与混合光谱中主要光波长相联系的(红绿蓝)饱和度表示颜色的深浅程度,与一定色调的纯度有关, 纯光谱色是完全饱和的,随着白光的加入饱和度逐渐减少。(如深红、浅红等)亮度与物体的反射率成正比。 颜色中掺入白色越多就越明亮,掺入黑色越多亮度越小。 { 3.什么是视觉的空间频率特性什么是视觉的时间特性 答:视觉的空间频率特性:空间频率是指视像空间变化的快慢。明亮的图像(清晰明快的画面)意味着有 ),,,,(t z y x f I λ=

小波变换图像处理实现程序课题实现步骤(精)

%这个是 2D-DWT 的函数,是 haar 小波 %c是图像像素矩阵 steps 是变换的阶数 function dwtc = dwt_haar(c, steps % DWTC = CWT_HARR(C - Discrete Wavelet Transform using Haar filter % % M D Plumbley Nov 2003 N = length(c-1; % Max index for filter: 0 .. N % If no steps to do, or the sequence is a single sample, the DWT is itself if (0==N | steps == 0 dwtc = c; return end % Check that N+1 is divisible by 2 if (mod(N+1,2~=0 disp(['Not divisible 2: ' num2str(N+1]; return end % Set the Haar analysis filter h0 = [1/2 1/2]; % Haar Low-pass filter h1 = [-1/2 1/2]; %Haar High-pass filter

% Filter the signal lowpass_c = conv(h0, c; hipass_c =conv(h1, c; % Subsample by factor of 2 and scale c1 = sqrt(2*lowpass_c(2:2:end; d1 = sqrt(2*hipass_c(2:2:end; % Recursively call dwt_haar on the low-pass part, with 1 fewer steps dwtc1 = dwt_haar(c1, steps-1; % Construct the DWT from c1 and d1 dwtc = [dwtc1 d1]; % Done return -------------------------- 分割线 -------------------------- 调用这个函数的例子下面的东西放在另一个文档里 读入一个图像‘ lena ’应该是个最基础的图像了 ~ 之后分别作 0阶和 1阶 2D-DWT 的变换 改变阶数可以做更高阶的 clear all im = imreadreal('lena.bmp'; %read image data

小波变换与PCNN在图像处理中的比较与结合

收稿日期:2005-10-25 基金项目:国家自然科学基金(60572011/f010204),“985”特色项目计划基金(LZ985-231-582627),甘肃省自然科学基金(YS021-A22-00910) 小波变换与PC NN 在图像处理中的比较与结合 田 勇,敦建征,马义德,夏春水,吴记群 (兰州大学信息科学与工程学院,甘肃兰州 730000) 摘 要: 主要介绍了小波变换和PCNN 的基本原理,结合它们在图像处理中的应用,比较说明了小波变换和PCNN 各自的优缺点.通过分析表明,将小波变换和PCNN 技术相结合在图像处理中会产生更好的效果. 关键词: 小波变换;脉冲耦合神经网络(PCNN);图像处理 中图分类号: TN 911.73 文献标识码: A 文章编号:1004-0366(2006)04-0053-03 The Comparison Between Wavelet Transform and PC NN in Image Processing and Their Combination TIAN Yo ng ,DUN Jian-zheng,M A Yi-de,X IA Chun-shui,W U J i-qun (School of Information Science &Engineering ,L anzhou University ,Lanzhou 730000,China ) Abstract : The ba sic principles of w av elet transfo rm and PCNN a re first https://www.360docs.net/doc/e58890303.html, bining their applicatio ns in the image processing ,w e analy ze their adva ntag es and draw backs respectiv ely.From the analysis ,it is co ncluded tha t w e will g et better effects if we co mbine the tw o techniques tog ether in the imag e processing . Key words : wav elet transform;pulse co upled neural netw o rk(PCNN);image processing 小波变换可对函数或信号进行多尺度的细化分析,解决了傅立叶变换不能解决的许多问题,被认为是时间——尺度分析和多分辨率分析的一种新技术[1] .目前,它已被广泛应用于分形、信号处理、图像处理、地震勘探、语音识别等应用领域[1~4].脉冲耦合神经网络PCNN (Pulse Co upled Neural Netw ork,PCNN)是一种不同于传统人工神经网络的新型神经网络.PCNN 有着生物学的背景,是根据对动物的大脑视觉皮层同步脉冲发放所获得的实验结果[5~8] ,建立起来的一种神经网络数学模型.PCNN 在图像处理中的应用已经取得巨大成果[9~12].PCNN 在旋转、平移、尺度不变性等方面起着重要的作用.而小波变换的长处在于它能够生成含有输入信息显著特征的系数并且能够对信号进行由粗及精的逐级多分辨率分析.我们发现小波变换和PCNN 有许多相似点,只是在性能和本质特征上有一些差别. 1 小波变换理论简介 [13~16] 小波(wav elet)即小区域的波.“小”是指在时域 具有紧支集或近似紧支集;“波”指小波具有正负交替的波动性.连续小波函数的确切定义为:设J (t )为一平方可积函数,即J (t )∈L 2(R ),若J (k )(其傅里叶变换)满足容许条件(Admissible Co nditio n) C J =∫ R |J (k )|2 |k |d k <∞(1) 则称J (t )为一个基本小波或母小波(M other Wav elet). 小波函数具有多样性,实际应用中应根据支撑长度、对称性、正则性等标准选择合适的小波.常用的小波有:Haar 小波,Daubechies (dbN )小波系,Bio rthog onal(biorN r.Nd)小波系,Coiflet(coifN )小波系,Sy mletsA (sym N )小波系,M orlet 小波,M exican Hat 小波,M eyer 小波,Battle-Lemarie 小 第18卷 第4期2006年12月 甘肃科学学报Journal of Gans u Sciences Vol.18 No.4 Dec.2006

基于小波变换的数字图像处理

基于小波变换的数字图像处理(MATLAB源代码) clear all; close all; clc; M=256;%原图像长度 N=64; %水印长度 [filename1,pathname]=uigetfile('*.*','select the image'); image1=imread(num2str(filename1)); subplot(2,2,1);imshow(image1); title('original image'); % orginal image for watermarking image1=double(image1); imagew=imread('dmg2.tif'); subplot(2,2,2);imshow(imagew);title('original watermark'); %original watermark %嵌入水印 [ca,ch,cv,cd] = dwt2(image1,'db1'); [cas,chs,cvs,cds] = dwt2(ca,'db1'); for i=1:N for j=1:N if imagew(i,j)==0 a=-1; else a=1; end Ca(i,j)=cas(i,j)*(1+a*0.03); end end IM= idwt2(Ca,chs,cvs,cds,'db1') ; markedimage=double(idwt2(IM,ch,cv,cd,'db1')); %显示嵌入后水印图像 subplot(2,2,3);colormap(gray(256));image(markedimage);title('marked image'); imwrite(markedimage,gray(256),'watermarked.bmp','bmp'); %提取水印 image1=imread(num2str(filename1));image1=double(image1); imaged=imread('watermarked.bmp'); [ca,ch,cv,cd] = dwt2(image1,'db1'); [cas,chs,cvs,cds]=dwt2(ca,'db1'); [caa,chh,cvv,cdd]=dwt2(imaged,'db1'); [caas,chhs,cvvs,cdds]=dwt2(caa,'db1'); for p=1:N for q=1:N

小波变换图像处理实现程序课题实现步骤

%这个是2D-DWT的函数,是haar小波 %c是图像像素矩阵steps是变换的阶数 function dwtc = dwt_haar(c, steps) % DWTC = CWT_HARR(C) - Discrete Wavelet Transform using Haar filter % % M D Plumbley Nov 2003 N = length(c)-1; % Max index for filter: 0 .. N % If no steps to do, or the sequence is a single sample, the DWT is itself if (0==N | steps == 0) dwtc = c; return end % Check that N+1 is divisible by 2 if (mod(N+1,2)~=0) disp(['Not divisible 2: ' num2str(N+1)]); return end % Set the Haar analysis filter h0 = [1/2 1/2]; % Haar Low-pass filter h1 = [-1/2 1/2]; %Haar High-pass filter % Filter the signal lowpass_c = conv(h0, c); hipass_c =conv(h1, c); % Subsample by factor of 2 and scale c1 = sqrt(2)*lowpass_c(2:2:end); d1 = sqrt(2)*hipass_c(2:2:end); % Recursively call dwt_haar on the low-pass part, with 1 fewer steps dwtc1 = dwt_haar(c1, steps-1); % Construct the DWT from c1 and d1 dwtc = [dwtc1 d1]; % Done return -------------------------- 分割线-------------------------- 调用这个函数的例子下面的东西放在另一个文档里

利用小波变换实现彩色图像增强

利用小波变换实现彩色图像增强 专业:通信工程姓名:李厚福指导教师:王建华 摘要:中国有句谚语“百闻不如一见”,可见视觉信息的重要性。图像是人们获得信息和传递信息的最重要的媒体,人类视觉信息的获取和传播的最主要载体也是图像,因此图像的增强处理受到越来越多的人们关注。而图像在获取或传输过程中,由于各种原因,可能对图像造成破坏,使图像失真,为了满足人们的视觉效果,必须对这些降质的图像进行处理,满足实际需要,使用不同的方法进行图像增强处理,尽可能对图像进行还原。 图像增强技术是数字图像处理的一个重要分支,其方法有很多,主要可以分为空间域增强和频率域增强两大类。但是传统的方法在增强图像的同时,也会带来相应的块效应,不符合人们的视觉效果。小波变换是多尺度多分辨率的分解方式,可以将噪声和信号在不同尺度上分开,根据噪声分布的规律就可以达到图像增强的目的。本文对小波变换理论、小波阈值滤波和增强的方法,小波阈值滤波及增强中的阈值函数和阈值的选取做了理论上的研究,重点研究利用小波变换对图像进行增强处理。关键词:小波变换,图像增强,噪声,信号

第一章绪论 1.1课题研究的意义 图像是人们获取信息和传递信息的最重要的媒体,人类视觉信息的获取和传播的主要载体也是图像。对于生活中的指纹识别,视频监控,生活拍照,医学拍照等无不与图像有着紧密的关系。所以图像增强的目的是改善图像的视觉效果,这对人们的生活有着重要的意义。 图像增强作为基本的图像处理技术,其目的是要改善图像的视觉效果。针对给定图像的应用场合,通过处理设法有选择的突出便于人或机器分析有用的信息,将原来模糊的图像变得清晰,抑制一些没有的信息,得以改善图像质量,丰富信息量,加强图像判读和识别效果,以提高图像的使用价值。 图像增强有很多种方法,传统的方法在增强图像的同时,也会带来相应的块效应,不符合人们的视觉效果。对于其性质随实践是稳定不变的信号,傅立叶变换是理想的工具。但是在实际应用中的绝大多数信号是非稳定的,而特别适用于非稳定信号的工具就是小波变换。小波变换是傅立叶变换的发展与延拓,它对不同频率成分在时域上的取样步长具有调节性,高频则小,低频则大。具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整。小波变换解决了傅立叶变换不能解决的许多困难问题,运用到图像增强方面有很重要的现实意义。

基于小波变换的图像处理综述

Value Engineering 1小波变换的定义 小波分析是对Fourier 分析的一个重要补充和完善。因此,小波变换的定义应该是尽可能的由少数几个函数生成的;而理想的小波基应该是类似于Fourier 分析的。小波分析主要可以分为两个变换,即连续小波变换和离散小波变换。 2小波分析处理图像的发展 小波分析是一个不断发展的过程,经历“应用-理论-应用”的循环过程。小波分析是多学科交叉理论的结晶,包含泛函数分析、数值分析、分形理论、信息论、调和理论以及逼近论和时频分析等。并提出一种自适应的时-频局部化方法,可在时-频域任意转换,可聚焦任意信号的时段和频段,称为数学中的“望远镜”和“显微镜”。小波变换是Fourier 变换的深层次发展,是近年来工程领域关注的热点,将小波分析用于无损检测、医学CT 、构件探伤等。小波起源就与信号处理密不可分,1984年,法国工程师J.Morlet 和Grossman 对地质信号的分界提出了伸缩、平移的概念,首次提出”Wavelets ”一词。1985年,法国大数学家Meyer 提出光滑正交小波的理念,证明一维小波的存在性,构造出小波函数,是小波数学理论的先驱。随后与他的学生Lemarie 提出多尺度分析的思想。1988年,比利时数学家Ingrid Daubechies 构造出具有紧支撑的有限光滑小波函数,并撰写的《小波十讲(Ten Lectures on Wavelets )》为小波研究和应用领域的专家学者提供了系统的小波理论讲解。1989年,Mallat 在多分辨的基础上,构造mallat 算法进行分解和重构,打开了小波应用的大门。1990年,Latto 和Tenenbaum 将小波分析用于偏微分方程求解,为小波分析的普及、发展及应用提供了动力。 3小波在图像处理中的主要应用:3.1图像变换小波变换具有捕获点奇异性的能力, 而一维信号中的奇异性主要表现为点奇异性,因此,利用小波变换处理一维信号可以取得很好的效果。图像变换相当于是对数字图像阵列的预处理。因为图像阵列维数相对较大,能够直接进行处理复杂度高、计算繁复,就需要一种算法将它变换,减少计算量,小波变换亦能达到良好去除冗余度的效果。 3.2图像压缩 数字图像的压缩目的即减少图像所需的比特数,经小波变换,通过时间域压缩图像的压缩比比传统的压缩方法高,速度快,而压缩后要能够保持信号与图像的特征基本是不变的,这也是一种有损压缩,但是在传递中抗干扰能力相对较强。Shappro 推倒出离散正交小波变换,提出“嵌入”式的“零树”小波编码图像压缩方法,相比于其它图像编码方法压缩比高、无方块效应。目前,基于小波变换的基础发展起来的图像编码方法称为新的静止图像压缩标准。而基于小波变换分析的压缩方法比较成功的是格型矢量量化小波系数编码,小波包最优基方法,多级树集合分裂算法(SPIHT ),小波域多尺度ARMA 模型纹理方法等。 3.3图像增强与恢复 图像去噪方法分空域滤波、频域滤波和最优线性滤波法。Donoho 和Johnstone 在高斯噪声模型下,应用多维独立正态变量决策理论,提出了小波阈值去噪方法和改进的信号去噪的软阈值方法和硬阈值方法,推导出VisuShrink 阈值公式及SureShrink 阈值公式,从理论上证明该阈值是渐进最优的。Weaver 等人通过分析小波变换高频、低频系数的相关特性,提出基于小波变换域内高、低系数相关的去噪方法。图像复原即利用模糊理论、粗糙集理论等去模糊,研究表明,模糊图像是由降质函数与清晰图像卷积得到,通过分析使图像模糊的因素,如高斯噪声、脉冲噪声、白噪声等,建立图像退化模型,根据采集图像提供的资料恢复清晰的图像。 3.4图像分割 —————————————————————— —作者简介:黄奎(1990-),男,重庆人,硕士,研究方向为水工结构工程。 基于小波变换的图像处理综述 Overview of Image Processing Based on Wavelet Transform 黄奎HUANG Kui (重庆交通大学, 重庆400074)(Chongqing Jiaotong University ,Chongqing 400074,China ) 摘要:小波分析主要广泛应用在科学研究和工程技术中。虽然在现阶段的小波理论相对成熟,近些年关于小波理论的应用和研 究也在不断的发展和更新。小波变化在图像处理领域中的应用也囊括图像与处理的所有方面。本文通过介绍小波变换的起源,将小波 应用在图像处理中的压缩、还原图像、边缘检测和图像分割,宏观剖析小波的研究现状历史、发展动向及优势。 Abstract:The wavelet analysis is widely used in scientific research and engineering technology.Although the wavelet theory is relatively mature at this stage,the application and researches on the wavelet theory in recent years is also in constant development and renewal.The application of wavelet transform in image processing covers all aspects of image processing.Through the introduction of the origin of wavelet transform,and by applying wavelet in image compression,image restoration,edge detection and image segmentation,this article analyzes the research situation,development trend and advantage of wavelet. 关键词:小波分析;图像;应用;边缘检测;宏观剖析Key words:wavelet analysis ;image ;application ;edge detection ;macro analysis 中图分类号:TP391文献标识码:A 文章编号:1006-4311(2015)08-0255-02·255· DOI:10.14018/https://www.360docs.net/doc/e58890303.html,13-1085/n.2015.08.143

小波变换图像去噪MATLAB实现

基于小波图像去噪的MATLAB 实现 一、 论文背景 数字图像处理(Digital Image Processing ,DIP)是指用计算机辅助技术对图像信号进行处理的过程。数字图像处理最早出现于 20世纪50年代,随着过去几十年来计算机、网络技术和通信的快速发展,为信号处理这个学科领域的发展奠定了基础,使得DIP 技术成为信息技术中最重要的学科分支之一。在现实生活中,DIP 应用十分广泛,医疗、艺术、军事、航天等图像处理影响着人类生活和工作的各个方面。 然而,在图像的采集、获取、编码和传输的过程中,都存在不同程度被各种噪声所“污染”的现象。如果图像被污染得比较严重,噪声会变成可见的颗粒形状,导致图像质量的严重下降。根据研究表明,当一张图像信噪比(SNR)低于14.2dB 时,图像分割的误检率就高于0.5%,而参数估计的误差高于0.6%。通过一些卓有成效的噪声处理技术后,尽可能地去除图像噪声,我们在从图像中获取信息时就更容易,有利于进一步的对图像进行如特征提取、信号检测和图像压缩等处理。小波变换处理应用于图像去噪外,在其他图像处理领域都有着十分广泛的应用。本论文以小波变换作为分析工具处理图像噪声,研究数字图像的滤波去噪问题,以提高图像质量。 二、 课题原理 1.小波基本原理 在数学上,小波定义为对给定函数局部化的新领域,小波可由一个定义在有限区域的函数()x ψ来构造,()x ψ称为母小波,(mother wavelet )或者叫做基本小波。一组小波基函数,()}{,x b a ψ,可以通过缩放和平移基本小波 来生成: ())(1 ,a b x a x b a -ψ=ψ (1) 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。当a=2j 和b=ia 的情况下,一维小波基函数序列定义为: ()() 1222,-ψ=ψ--x x j j j i (2) 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波()x ψ为基的连续小波变换定义为函数f (x )和()x b a ,ψ的内积:

《数字图像处理》习题参考答案与解析

《数字图像处理》习题参考答案 第1 章概述 1.1 连续图像和数字图像如何相互转换?答:数字图像将图像看成是许多大小相同、 形状一致的像素组成。这样,数字图像可以 用二维矩阵表示。将自然界的图像通过光学系统成像并由电子器件或系统转化为模拟图像(连续图像)信号,再由模拟/数字转化器(ADC)得到原始的数字图像信号。图像的数字化包括离散和量化两个主要步骤。在空间将连续坐标过程称为离散化,而进一步将图像的幅度值(可能是灰度或色彩)整数化的过程称为量化。 1.2 采用数字图像处理有何优点?答:数字图像处理与光学等 模拟方式相比具有以下鲜明的特点: 1.具有数字信号处理技术共有的特点。(1)处理精度高。(2)重现性能好。(3)灵活性高。 2.数字图像处理后的图像是供人观察和评价的,也可能作为机器视觉的预处理结果。 3.数字图像处理技术适用面宽。 4.数字图像处理技术综合性强。 1.3 数字图像处理主要包括哪些研究内容?答:图像处理的任务是将客观世界的景象进 行获取并转化为数字图像、进行增强、变换、 编码、恢复、重建、编码和压缩、分割等处理,它将一幅图像转化为另一幅具有新的意义的图像。 1.4 讨论数字图像处理系统的组成。列举你熟悉的图像处理系统并分析它们的组成和功能。 答:如图1.8,数字图像处理系统是应用计算机或专用数字设备对图像信息进行处理的信息系统。图像处理系统包括图像处理硬件和图像处理软件。图像处理硬件主要由图像输入设备、图像运算处理设备(微计算机)、图像存储器、图像输出设备等组成。软件系统包括操作系统、控制软件及应用软件等。 图1.8 数字图像处理系统结构 图 1

1.5 常见的数字图像处理开发工具有哪些?各有什么特点? 答.目前图像处理系统开发的主流工具为 Visual C++(面向对象可视化集成工具) 和 MATLAB 的图像处理工具箱(Image Processing Tool box)。两种开发工具各有所长且有 相互间的软件接口。 Microsoft 公司的 VC++是一种具有高度综合性能的面向对象可视化集成工具,用它开 发出来的 Win 32 程序有着运行速度快、可移植能力强等优点。VC++所提供的 Microsoft 基础类库 MFC 对大部分与用户设计有关的 Win 32 应用程序接口 API 进行了封装,提高 了代码的可重用性,大大缩短了应用程序开发周期,降低了开发成本。由于图像格式多且 复杂,为了减轻程序员将主要精力放在特定问题的图像处理算法上,VC++ 6.0 提供的动 态链接库 ImageLoad.dll 支持BMP、JPG、TIF 等常用6 种格式的读写功能。 MATLAB 的图像处理工具箱MATLAB 是由MathWorks 公司推出的用于数值计算的有力工具,是一种第四代计算机语言,它具有相当强大的矩阵运算和操作功能,力求使人们摆脱繁 杂的程序代码。MATLAB 图像处理工具箱提供了丰富的图像处理函数,灵活运用这些函数可 以完成大部分图像处理工作,从而大大节省编写低层算法代码的时间,避免程序设计中的重 复劳动。MATLAB 图像处理工具箱涵盖了在工程实践中经常遇到的图像处理手段和算法,如 图形句柄、图像的表示、图像变换、二维滤波器、图像增强、四叉树分解域边缘检测、二值 图像处理、小波分析、分形几何、图形用户界面等。但是,MATLAB 也存在不足之处限制了 其在图像处理软件中实际应用。首先,强大的功能只能在安装有MA TLAB 系统的机器上使用 图像处理工具箱中的函数或自编的 m 文件来实现。其次,MATLAB 使用行解释方式执行代码,执行速度很慢。第三,MATLAB 擅长矩阵运算,但对于循环处理和图形界面的处理不及C++ 等语言。为此,通应用程序接口API 和编译器与其他高级语言(如C、 C++、Java 等)混 合编程将会发挥各种程序设计语言之长协同完成图像处理任务。API 支持 MA TLAB 与外部数 据与程序的交互。编译器产生独立于MATLAB 环境的程序,从而使其他语言的应用程序使用MATLAB。 1.6 常见的数字图像应用软件有哪些?各有什么特点?答:图像应用软件是可直接供 用户使用的商品化软件。用户从使用功能出发,只要了解 软件的操作方法就可以完成图像处理的任务。对大部分用户来说,商品化的图像应用软件无 需用户进行编程,操作方便,功能齐全,已经能满足一般需求,因而得到广泛应用。常用图 像处理应用软件有以下几种: 1.PHOTOSHOP:当今世界上一流的图像设计与制作工具,其优越性能令其产品望尘莫及。PHOTOSHOP 已成为出版界中图像处理的专业标准。高版本的 PHOTOSHOP 支持多达 20 多种图像格式和 TWAIN 接口,接受一般扫描仪、数码相机等图像输入设备采集的图像。PHOTOSHOP 支持多图层的工作方式,只是 PHOTOSHOP 的最大特色。使用图层功能可以很 方便地编辑和修改图像,使平面设计充满创意。利用 PHOTOSHOP 还可以方便地对图像进 行各种平面处理、绘制简单的几何图形、对文字进行艺术加工、进行图像格式和颜色模式 的转换、改变图像的尺寸和分辨率、制作网页图像等。 2.CorelDRAW:一种基于矢量绘图、功能强大的图形图像制作与设计软件。位图式图像是 由象素组成的,与其相对,矢量式图像以几何、色彩参数描述图像,其内容以线条和色块为主。可见,采用不同的技术手段可以满足用户的设计要求。位图式图像善于表现连续、丰富 色调的自然景物,数据量较大;而矢量式图像强于表现线条、色块的图案,数据量较小。 合理的利用两种不同类型的图像表现方式,往往会收到意想不到的艺术效果。CorelDraw是

相关文档
最新文档