遥感变化监测流程

遥感变化监测流程
遥感变化监测流程

多时相土地利用/覆盖变化监测研究

方法及数据选取

土地是一个综合的自然地理概念,它处于地圈-生物圈-大气圈相互作用的界面,是各种自然过程和人类活动最为活跃的场所。地球表层系统最突出的景观标志就是土地利用和土地覆盖( Land Use and Land Cover)。由于土地利用和土地覆盖与人类的生活、生产息息相关,而人类活动正以空前的速度、幅度和空前规模改变着陆地环境。人类对土地资源的利用引起的土地利用和土地覆盖的变化是全球环境变化的重要因素之一,也是地球表面科学研究领域中的一个重要分支。因此,土地利用和土地覆盖的动态监测(Land Use and Land Cover Monitoring)是国内外研究的热点,也是当前全球变化研究计划的重要组成部分。

由多时相遥感数据分析地表变化过程需要进行一系列图像处理工作,大致包括:一、数据源选择,二、几何配准处理,三、辐射处理与归一化,四、变化监测算法及应用等。

一、遥感数据源的选取

不同遥感系统的时间分辨率、空间分辨率、光谱分辨率和辐射分辨率不同,选择合适的遥感数据是变化监测能否成功的前提。因此,在变化监测之前需要对监测区域内的主要问题进行调查,分析监测对象的空间分布特点、光谱特性及时相变化的情况,目的是为分析任务选择合适的遥感数据。同时,考虑到环境因素的影响,用于变化监测的图像最好是由同一个遥感系统获得,如果由于某种原因无法获得同一种遥感系统在不同时段的数据,则需要选择俯视角与光谱波段相近的遥感系统数据。

1时间分辨率

这里需要根据监测对象的时相变化特点来确定遥感监测的频率,如需要一年一次、一季度一次还是一月一次等。同时,在选择多时相遥感数据进行变化监测时需要考虑两个时间条件。首先,应当尽可能选择用每天同一时刻或者相近时间的遥感图像,以消除因太阳高度角不同引起的图像反射特性差异;其次,应尽可能选用年间同一季节,甚至同一日期的遥感数据,以消除因季节性太阳高度角不同和植物物候差异的影响。

2空间分辨率

首先要考虑监测对象的空间尺度及空间变异的情况,以确定其对于遥感数据的空间分辨率的要求。变化监测还要求保证不同时段遥感图像之间的精确配准。因此,最好是采用具有相同瞬时视场(IFOV)的遥感数据,如具有同样空间分辨率的TM图像之间就比较容易配准在一起。当然也可以使用不同瞬时视场遥感系统获取的数据,如某一日期的TM图像(30m ×30m)与另一日期的SPOT图像(20m×20m),来进行变化监测,在这种情况下需要确定一个最小制图单元20m×20m,并对这两个图像数据重采样使之具有一致的像元大小。

一些遥感系统按不同的视场角拍摄地面图像,如SPOT的视场角能达到±27°,在变化监测中如果简单采用俯视角明显不同的两幅遥感图像,就有可能导致错误的分析结果。例如,对一个林区,不均匀地分布着一些大树,以观测天顶角0°拍摄的SPOT图像是直接从上向下观测到树冠顶,而对于一幅以20°观测角拍摄的SPOT图像所记录的是树冠侧面的光谱反射信息。因此,在变化监测分析中必须考虑到所用遥感图像观测角度的影响,而且应当尽可能采用具有相同或相近的俯视角的数据。

3光谱分辨率

应当根据监测对象的类型与相应的光谱特性选择合适的遥感数据类型及相应波段。变化监测分析的一个基本假设是,如果在两个不同时段之间瞬时视场内地面物质发生了变化,则不同时段图像对应像元的光谱响应也就会存在差别。所选择的遥感系统的光谱分辨率应当足以记录光谱区内反射的辐射通量,从而最有效地描述有关对象的光谱属性。但实际上不同的

遥感系统并没有严格地按照相同的电磁谱段记录能量。比较理想的是采用相同的遥感系统来获取多时相数据。若没有条件,则应选择相接近的波段进行分析。如SPOT卫星的波段1(绿)、波段2(红)和波段3(近红外)可以成功地用来与TM的波段2(绿)、波段3(红)和波段4(近红外),或与Landsat MSS的波段4(绿)、波段5(红)和波段7(近红外)进行对比。

4辐射分辨率

变化监测中一般还应采用具有相同辐射分辨率的不同日期遥感图像,如果采用具有不同辐射分辨率的图像进行比较的话,需要把低辐射分辨率遥感图像数据转换为较高辐射分辨率的图像数据,当然这种转换并没有提高其原始数据的亮度值精度。

综上,选取合适的遥感影像数据源是变化检测的基础。研究地表地物变化,首先要选择与研究地物的目标特征相匹配的数据源。卫星遥感技术快速发展到今天,虽然从1100m分辨率的NOAA/AVHRR影像到不足1m分辨率的QuickBird影像都可以应用到土地利用/覆被变化研究中来,但根据监测尺度的不同,遥感数据的选择也有一定差异。目前应用于地区尺度的土地利用/覆被变化研究主要选择Landsat、SPOT、IKONOS、QuickBird、CBERS等卫星的数据。Landsat的MSS、TM、ETM+数据因其价格较便宜和存档数据丰富而被广泛应用,但当其应用于区域或全球尺度时,就会因数据费用昂贵、缺乏适当的分析方法和相配的技术而受到阻碍。近年来,随着混合像元分解技术的发展,以NOAA/AVHRR影像为主要代表的低空间分辨率遥感影像越来越受到人们的关注,并逐渐应用到全球和区域尺度上的土地利用/覆被变化研究。低空间分辨率的EOS/MODIS数据的应用也发展迅猛,美国发射的TERRA和AQUA 上搭载的MODIS传感器所获取的影像,同AVHRR影像相比,其波段数目、分辨率、数据接收和数据格式等方面都作了相当大的改进。其可获取250m(1、2 波段)、500m(3~7 波段)和1000m(8~36 波段)的36个分布在0.405~14.385μm之间的波段数据,其中250 米分辨率的2个波段主要是对陆地的观测。由于MODIS数据在波段和分辨率方面的改进,使得MODIS数据量大幅度地增加(大约相当于AVHRR同期数据量的18倍左右)。另外MODIS 数据还实行全球免费接收,这就更促进了MODIS数据的广泛应用。此外,一些学者经研究后得出一些特定目标变化探测的最小图像空间分辨率,同时也研究了时间分辨率对土地变化检测的影响,结果认为最小3~4 年的时间周期,才能用来较为精确地检测土地变化,提高时间间隔如1~2 年的时相图像,结果会更优。一般来说,综合利用多种空间、时间、光谱遥感影像及地理信息数据有助于提高变化检测的精度。但考虑到数据成本及各种传感器本身的特性,多源数据不易获取,因此应最大程度地利用多源数据的差异部分和减小多源数据的过多"冗余"。

二、几何配准处理

几何配准处理是指利用地面控制点数据对不同时段的遥感图像进行精确的几何校正,及图像与图像之间的配准。不同时相遥感图像之间的配准精度非常重要。研究结果表明,对于变化检测来说,图像之间的配准误差(平均均方误差)应小于半个像元。

三、辐射处理与归一化

用于变化监测的不同时相的遥感图像之间通常需要进行辐射度匹配与归一化处理。即使对于那些已分别作过辐射校正处理的图像这种图像之间的辐射度匹配与归一化处理仍然是必要的。图像之间的辐射度匹配与归一化是以一幅图像的直方图为基础,将其他图像的直方图与之匹配。其主要目的是保证不同时段图像上像元亮度值的可对比性。

四、多时相土地利用/覆盖变化监测研究方法

不同时相的遥感图像经过以上的几何配准和辐射校正处理后,就需要选取不同的算法来增强和区分出相对变化的区域。

随着卫星遥感技术的快速发展,当前的多时相土地利用/覆盖变化监测研究方法非常多,

研究人员纷纷从不同的角度进行了总结分类,可把它们归为光谱类型特征分析、光谱变化向量分析和时间序列分析等三类以及一些新的检测方法。光谱类型特征分析方法主要基于不同时相遥感图像的光谱分类和计算,确定变化的分布和类型特征;光谱变化向量分析方法基于不同时间图像之间的辐射变化.着重对各波段的差异进行分析,确定变化的强度与方向特征;时间序列分析则是强调利用遥感连续观测数据分析地面监测对象的变化过程与变化趋势。

1. 光谱类型特征分析方法

1)多时相图像叠合方法

在图像处理系统中将不同时相遥感图像的各波段数据分别以R(红)、G(绿)、B(蓝)图像存储,从而对相对变化的区域进行显示增强与识别。例如,在土地利用变化监测中,利用三个时相的SPOT-Pan图像分别赋予红、绿、蓝色。若早期的SPOT图像用红色表示,后期的图像用绿色和蓝色表示,往往由低反射率到高反射率的地表变化(如植被到裸地)显示为青色(cyan),而由高反射率到低反射率的地表变化(如裸地到居住区)则可显示为红色。变化区域由于其对应的亮度值变化,可以在叠合图像上得到清楚的显示。一般反射率变化越大,对应的亮度值变化也大,可指示对应的地表土地利用方式已经发生了变化;而没有变化的地表常显示为灰色调。这种叠合分析方法可以直观地显示两到三个不同时相的变化区域,便于目视解译,但无法定量地提供变化的类型和大小。

2)图像代数变化检测算法

图像代数(Algebra)算法是一种较简单的变化区域及变化量识别方法,包括图像差值与图像比值运算。

图像差值:将一个时间图像的像元值与另一个时间图像对应的像元值相减。在新生成的图像中,图像值为正或为负则是辐射值变化的区域,而没有变化的区域图像值为0。在8bit 图像中,像元值范围为0~255,其图像差值的范围为-255~255.由于差值往往为负值,故可加一个常量C。差值图像的亮度值常近似高斯分布,没有变化的像元多集中在均值周围,而变化的像元分布在直方图的两翼。

图像比值:将一个时间图像的像元值与另一个时间图像对应的像元值相除。新生成的比值图像的值域范围为0~255,没有变化的区域图像值为1。

植被指数差值法:利用光学传感器近红外波段与红波段对植被的显著的响应差,通过比值突出植被信息,再通过阈值提取植被信息和非植被信息。由于植物普遍对红光强烈吸收和对近红外光强烈反射,因此红光和近红外波段之间的比值有利于提高光谱差异。利用波段间比值图像主要有二个优点:不同地物特征的光谱响应曲线差异可能会在比值图像中得到进一步增强;比值能压抑地形效应并对辐射差异进行一定程度的归一化。

图像回归法:首先假定时相Ⅰ的像元值是另一时相Ⅱ像元值的一个线性函数,通过最小二乘法来进行回归,然后再用回归方程计算出的时相Ⅱ的预测值来减去时相Ⅰ的原始像元值,从而获得二时相的回归残差图像。以阈限方法确定变化区域。经过回归处理后的遥感数据在一定程度上类似于进行了辐射校正的相对校正,因而能减弱多时相数据中由于大气条件和太阳高度角的不同所带来的不利影响。从以上方法可以看出,直接比较法大多通过阈值来确定变化区域,所以阈值的确定在这种方法中显得尤为重要。

为了从差值或比值图像上勾画出明显变化区域,需要设置一个阈值(threshold),将差值或比值图像转换为简单的变化/无变化图像,或者正变化/负变化图像,以反映变化的分布和大小。阈值的选择必须根据区域研究对象及周围环境的特点来定。在不同的区域、不同的时间、不同的图像上采用的阈值会有所不同。通常,通过差值或比值图像的直方图来选择"变化"与"无变化"像元间的阈值边界,并需要多次反复试验。

3)多时相图像主成分变化检测

对经过几何配准的不同时相遥感图像进行主成分分析(PCA),生成新的互不相关的变化

分量。由于各主成分分量所含的变化信息不同,生成的多时相主成分分量的合成图像,并直接对各主成分波段信息进行对比,检测变化。主成分是由一个方差-协方差矩阵计算得到,通常需要将协方差矩阵标准化,即除以一个适当的标准偏差,以消除不同变量尺度差异产的影响,提高图像的信噪比。

主成分变化监测方法虽然简便,但只能反映变化的分布和大小,难以表示由某种类型向另种类型变化的特征。

4)分类后对比检测

对经过几何配准的两个(或多个)不同时相遥感图像分别作分类处理后,获得两个(或多个)分类图像,并逐个像元进行比较,生成变化图像。根据变化检测矩阵确定各变化像无的变化类型。此方法的优点在于不仅可以确定变化的空间范围,还可以提供关于变化性质的信息,如由何类型向何类型变化等;其缺点在于一方面必须进行两次图像分类,另一方面变化分析的精度依赖于图像分类的精度。图像分类的可靠性严重影响着变化监测的准确性。

2.光谱变化向量分析方法(CVA---Change Vector Analysis)

对两个不同时相的遥感图像,进行图像的光谱量测,每个像元可以生成一个具有变化方向和变化强度(大小)两个特征的变化向量。变化强度(CMpixel)可以通过确定n维空间中两个数据点之间的距离(欧式距离)求得。对每个像元来说,其变化方向反映了该点在每个波段的变化是正向还是负向,可以根据变化向量的方向和角度来确定。每个像元的变化方向可归为2n种模式。在选用的各波段分别计算得到BV变化之(BVijk(data2)-BVijk(data1)),可得到其变化模式。

变化向量分析的结果可输出两幅几何上配准的图像:变化强度图像和变化方向码图像,以提取区域变化信息。在实际应用中,可根据区域具体情况对变化强度设定一个阈值。若像元的变化强度在此阈值范围内,可以认为该点未发生类型的变化,若超出此阈值范围,则可以判断该点已经发生了类型变化。将变化向量信息与其他图像特征结合起来可以进一步分析区域内有关专题类型变化的规律。

3.时间序列分析

这里所说的时间序列分析,强调的是通过对一个区域进行一定时间段内的连续遥感观测,提取图像有关特征,并分析其变化过程与发展规律。当然首先需要根据监测对象的时相变化特点来确定遥感监测的周期,从而选择合适的遥感数据。为了实现时间序列分析,就要求遥感监测数据有一定的时间积累。如进行区域生态环境变化、土地退化或沙漠化的监测就需要有若干年甚至数十年的遥感数据,才能得出有价值的连续变化结果。

1)变化特征的确定

由于遥感时间序列分析是通过相关图像特征的变化监测来分析地面环境变化的过程与趋势,因此图像特征的选择是重要的,它应当是比较灵敏地反映地面变化的环境指数。NOAA/AVHRR上的红波段(0.58~0.68um)和红外波段(0.72~1.1um)适合于探测植被。健康植物叶绿素对红光强吸收,叶子细胞壁结构对近红外光强反射。强光合作用导致红波段的低反射和近红外波段的高反射。所以电磁波谱的红光和近红外区是植物遥感中使用的主要波段。两波段比值或差值的组合更增强了对光合作用的敏感度。近年来发展了各种各样的植被指数。其中NDVI=(NIR-RED)/(NIR+RED),是最常用的指数。归一化处理后的NDVI值介于(-1,+1)之间,典型情况下的NDVI值:水<0;裸土0~0.1之间;植被>0.1.对于一个特定像元而言,NDVI在一定程度上反映了像元所对应区域的土地覆盖类型的综合情况。因此,在生态环境变化研究中常常采用NDVI或相关的其他环境指数作为时间序列分析的图像特征。区域NDVI值随时间周期性的升高和降低是指被生长周期的典型体现。分析区域植被变化的一个有效方法就是观察像元NDVI曲线的时序变化:植被生长,NDVI增加;植被死亡,NDVI 降低。此外,还可以利用每月或年植被指数(NDVI)的变化系数(COV----Coefficient of Variation)

作为植物生物量监测的变化特征。COV被定义为某一像元NDVI值的标准差和均值之比,是一个无量纲数值,适合于不同时间段数据的对比。

2)变化分析

分析样本通常是时间序列数据。可以对每个像元的变化特征绘制时间序列变化曲线,并分析其变化过程与趋势,例如,COV表示像元的NDVI随时间的变化,可用于测量植被动态变化,估计植被变化范围,如年际变化特点。根据单个像元不同时间段的NDVI值可以组合生成一幅COV图像,表示数据所在时间段内NDVI值的变化。COV的变化可用于识别植被生长周期的变化,如干旱、半干旱区NDVI的变化系数COV的下降,或反映该区雨量的减少或反映该区生物生产力的降低。

在此基础上可以进一步进行定量化变化监测,如对每个像元的COV作一个线性回归,以反映变化趋势。如果COV值随时间减少,可能是与植被生长有关的NDVI降低,即表明该像元代表的地区正在沙漠化;如果回归线的斜率增加,可以认为与植被生长有关的NDVI增大,可能是由于降雨量的增加或者农业灌溉发展造成植被密度变大的结果。

4. 新的遥感变化信息提取与检测方法

新的遥感变化检测方法很多,这里介绍比较常用的两种。

1)交叉相关分析法

美国Earth Satellite 公司提出交叉相关分析法(Cross-Correlation Analysis CCA) 用来进行遥感变化信息的提取及动态监测。这种方法在以前分类图的基础上用当前的遥感图

像检测发生变化的区域。步骤如下:第一步,将当前的遥感图像叠置在旧的分类图上,分类图的边界就将遥感图像划分为不同的小块,统计不同小块的光谱响应均值和标准差,得到"期望值";第二步,比较每个像元期望值与光谱实际值之差(或叫"静态Z 值") 。如果差值比较大,说明是可能发生变化的区域。该方法的难点是差值的阈值的确定。交叉相关分析法的优点是所要监测的两个时相的图像不必要是相同的成像条件。

静态Z 值的计算方法: ( Z 值定量描述了每个像元的反射值与它所属类别的像元均值的距离。)

其中, Zjk代表像元j 行k 列的静态Z 值, i 代表多光谱图像的第i 波段, n 代表波段数,rijk代表图像中i 波段j 行k 列的反射值, cjk代表图像j 行k 列像元对应的专题类别图的类别,μic代表图像i 波段c 类的平均反射值,σi c代表图像i 波段c类的反射值的标准差。

2)Chi Square 变换

Ridd提出用Chi Square 变换的方法来进行遥感变化检测研究。这种方法能将TM 的6 个波段融合在一起形成一个变化图像。Chi Square (χ2) 变换的方程可表示为

其中, Y 表示变化图像的值, X 表示每个像元6个波段两时相差值的向量, M 表示整个图像各波段残差值的向量, T 表示转置矩阵, Σ- 1表示六个波段两时相的协方差矩阵的逆矩阵。这种变换的条件是Y 满足p个自由度χ2 的分布( p 为图像的波段数) 。Y = 0 表示没有发生变化。这种方法的优势是多个波段可以同时被考虑到,其不足是只能用于变化相对不大的影像。

结束语

遥感作为一门先进的科学技术,可为土地利用、植被、土壤侵蚀、环境变化等动态监测研究提供多时相、大范围的实时信息,成为研究地球资源、环境的有力手段之一。在运用遥感检测技术,发现地表变化信息时要充分考虑对象特征、遥感数据和变化信息三者的有机联系,避免出现遥感信息的不确定性问题。

以上就是我对我毕业设计的关于多时相土地利用/覆盖变化监测研究方法及数据选取的一个综述,感谢老师在百忙之中审阅!

遥感变化监测 流程

多时相土地利用/覆盖变化监测研究 方法及数据选取 土地是一个综合的自然地理概念,它处于地圈-生物圈-大气圈相互作用的界面,是各种自然过程和人类活动最为活跃的场所。地球表层系统最突出的景观标志就是土地利用和土地覆盖( Land Use and Land Cover)。由于土地利用和土地覆盖与人类的生活、生产息息相关,而人类活动正以空前的速度、幅度和空前规模改变着陆地环境。人类对土地资源的利用引起的土地利用和土地覆盖的变化是全球环境变化的重要因素之一,也是地球表面科学研究领域中的一个重要分支。因此,土地利用和土地覆盖的动态监测(Land Use and Land Cover Monitoring)是国内外研究的热点,也是当前全球变化研究计划的重要组成部分。 由多时相遥感数据分析地表变化过程需要进行一系列图像处理工作,大致包括:一、数据源选择,二、几何配准处理,三、辐射处理与归一化,四、变化监测算法及应用等。 一、遥感数据源的选取 不同遥感系统的时间分辨率、空间分辨率、光谱分辨率和辐射分辨率不同,选择合适的遥感数据是变化监测能否成功的前提。因此,在变化监测之前需要对监测区域内的主要问题进行调查,分析监测对象的空间分布特点、光谱特性及时相变化的情况,目的是为分析任务选择合适的遥感数据。同时,考虑到环境因素的影响,用于变化监测的图像最好是由同一个遥感系统获得,如果由于某种原因无法获得同一种遥感系统在不同时段的数据,则需要选择俯视角与光谱波段相近的遥感系统数据。 1时间分辨率 这里需要根据监测对象的时相变化特点来确定遥感监测的频率,如需要一年一次、一季度一次还是一月一次等。同时,在选择多时相遥感数据进行变化监测时需要考虑两个时间条件。首先,应当尽可能选择用每天同一时刻或者相近时间的遥感图像,以消除因太阳高度角不同引起的图像反射特性差异;其次,应尽可能选用年间同一季节,甚至同一日期的遥感数据,以消除因季节性太阳高度角不同和植物物候差异的影响。 2空间分辨率 首先要考虑监测对象的空间尺度及空间变异的情况,以确定其对于遥感数据的空间分辨率的要求。变化监测还要求保证不同时段遥感图像之间的精确配准。因此,最好是采用具有相同瞬时视场(IFOV)的遥感数据,如具有同样空间分辨率的TM图像之间就比较容易配准在一起。当然也可以使用不同瞬时视场遥感系统获取的数据,如某一日期的TM图像(30m ×30m)与另一日期的SPOT图像(20m×20m),来进行变化监测,在这种情况下需要确定一个最小制图单元20m×20m,并对这两个图像数据重采样使之具有一致的像元大小。 一些遥感系统按不同的视场角拍摄地面图像,如SPOT的视场角能达到±27°,在变化监测中如果简单采用俯视角明显不同的两幅遥感图像,就有可能导致错误的分析结果。例如,对一个林区,不均匀地分布着一些大树,以观测天顶角0°拍摄的SPOT图像是直接从上向下观测到树冠顶,而对于一幅以20°观测角拍摄的SPOT图像所记录的是树冠侧面的光谱反射信息。因此,在变化监测分析中必须考虑到所用遥感图像观测角度的影响,而且应当尽可能采用具有相同或相近的俯视角的数据。 3光谱分辨率 应当根据监测对象的类型与相应的光谱特性选择合适的遥感数据类型及相应波段。变化监测分析的一个基本假设是,如果在两个不同时段之间瞬时视场内地面物质发生了变化,则不同时段图像对应像元的光谱响应也就会存在差别。所选择的遥感系统的光谱分辨率应当足

高光谱遥感在农作物病虫害监测上的应用

高光谱遥感在农作物病虫害监测上的应用高光谱遥感在农作物病虫害监测上的应用高光谱遥感用于病虫害监测的原因高光谱遥感监测农作物病虫害原理和方法 当前遥感监测农作物病虫害的缺陷 未来的展望 农作物病虫害是农业生产上的重要生物灾害,是制约高产、优质、高效益农业持续发展的主导因素之一。据联合国粮农组织估计,世界粮食生产因病虫害常年损失24%;棉花因病虫害常年损失28%。中国是农业大国,每年因病虫害造成的损失与上述统计大致相当。 为了有效地防治病虫害,首先必须及时、准确掌握病虫的发生发展情况。在人类历史的很长时间内,受当时生产条件和科技水平的限制,人们只能在实地用目测手查的方法观察有无病虫害发生及其危害程度,或用捕捉虫蛾等办法判断病虫害爆发的可能性。这些传统的监测方法费时费力不说,其获取信息的滞后性还严重影响病虫预报准确率。为了提高病虫害监测的精度和水平,采用高科技手段,特别是遥感监测已成为病虫害监测的重要研究方向。 高光谱遥感监测农作物病虫害的原理 健康绿色植物的光谱特征主要取决于它的叶子。在可见光谱波段内,植物的光谱特性主要受叶绿素的影响。由于在以450nm为中心的蓝波段以及670nm为中心的红波段的叶绿素强烈吸收辐射能而成吸收谷。叶片的反射率和透射率很低, 在两谷之间吸收相对减少,形成绿色反射峰, 简称“绿峰”,在视觉表现为绿色。当植物生长健康, 处于生长期高峰, 叶绿素含量高时,“绿峰”向蓝光方向偏移, 而植物因病虫危害或缺素而“失绿”时,“绿峰”则向红光方向偏移。

在近红外波段绿色植物的光谱作用取决于叶片内部的细胞结构。当植物受病害侵害时, 叶片组织的水分代谢受到阻碍,此后随着病虫害危害的加重,植物细胞结构遭到破坏,各种色素的含量也随之减少,导致叶片对近红外辐射的反射能力减少。在光谱特征上表现为可见光区(400~700nm)反射率升高而近红外区(720~1100nm)反射率降低。近红外区研究的重点是“红边”。“红边”的定义是反射光谱的一阶微分的最大值对应的光谱位置(波长),通常位于(680~750)之间。“红边”位置依据叶绿素含量、生物量和物候变化, 沿波长轴方向移动。当叶绿素含量高、生长活力旺盛时“红边”会向红外方向偏移;当植物由于感染病虫害或因污染、物候变化而“失绿”时, 则“红边”会向蓝光方向移动。 研究发现近红外部分反射率的改变是发生在可见光部分的反射率发生改变之前的。这是因为在这段时间内,细胞组织中的叶绿素的数量和质量还没有发生改变。 由此可见红外波段的光谱特征的变化早于人用肉眼观测到的病虫危害, 这对于病虫害的早期调查和预报具有极其重大的意义。 高光谱遥感监测农作物病虫害的技术流程 ? 地面光谱获取加农学采样 ? 分析生化参量,农学参量和光谱特征 ? 病虫害光谱诊断模型的建立,验证 ? 高光谱影像的病虫害反演 ? 病虫害波谱库数据 ? 建立病虫害诊断专家系统,发布信息 以冬小麦为例 一( 首先建立试验组和对照组,给试验组采取喷雾法接种条锈病菌。 二( 显症后我们在小麦挑旗期、抽穗期、灌浆期和成熟期分别测量冠层光谱参数、色素含量、病情指数。从而获取高光谱变量特征参数。

ENVI遥感影像变化检测

1.森林开采监测 打开实习数据0-森林开采监测下的实习数据。 ?Compute Difference Map 选择basic tools/change detection/ Compute Difference Map,分别选择原始的影像july_06与july_00,在弹出的Compute Difference Map input parameters窗口下,查看define class thresholds,no change表示没有变化, change(-1)表示减少,change(+1)表示增加;其他默认选项不变, 勾选normalize data range[0-1],选择输出路径与文件名为com_diff。 选择classification/post classification/classification to vector,在输入图层中选择上一步生成的结果,弹出窗口中选择全部,保存路径生成结果, 转化为矢量。(由于耗时过多,故可以不做) ?Image Difference 打开ENVI Zoom 4.8,将原始的影像导入到其中,在ENVI Zoom窗口下的toolbox 中选择image change,弹出image change detection的对话框,将time 1classification image file选择为00年影像,点击OK,time2 classification image file中选择06年影像数据,点击OK,选择下一步,保持默认设置,选择下一步,选择image difference,选择下一步,选择difference of

遥感影像变化检测

遥感影像变化检测报告 学院: 专业: 指导老师: 小组成员: 2013年5月

1、遥感影像变化检测的概念 遥感影像变化检测指利用多时相获取的覆盖同一地表区域的遥感影像及其它辅助数据 来确定和分析地表变化。它利用计算机图像处理系统,对不同时段目标或现象状态的变化进行识别、分析;它能确定一定时间间隔内地物或现象的变化,并提供地物的空间分布及其变化的定性与定量信息。 由此可知,遥感影像变化检测是从不同时期的遥感图像中,定量地分析和确定地物变化的特征和过程。它涉及到变化的类型、分布状况及变化信息的描述,即需要确定变化前后的地物类型、界限和分析变化的属性。变化检测的研究对象为地物,包括自然地物和人造地物,其中人造地物在军事上常被称为目标。描述地物的特性包括:空间分布特性、波谱反射与辐射特性、时相变化特性。遥感影像的变化检测在土地覆盖变化监测、环境变迁动态监测、自然灾害监测、违章建筑物查处、军事目标打击效果分析以及国土资源调查等方面拥有广泛的应用价值和商业价值。 变化检测通常包括以下4个方面的内容: (1)判断是否发生了变化,即确定研究区域内地物是否发生了变化; (2)标定变化发生的区域,即确定在何处发生了变化,将变化像元与未变化像元区分开来; (3)鉴别变化的性质,给出在每个变化像元上所发生变化的类型,即确定变化前后该像元处的地物类型; (4)评估变化的时间和空间分布模式。 其中,前两个方面是变化检测所要解决的基本问题,而后两个方面则根据应用要求决定是否需要做。 2、遥感影像变化检测的三个层次 遥感图像分析过程中通常包括数据层处理、特征层处理和目标层处理三个过程。依据这三个层次划分,可将变化检测分为:像元级变化检测、特征级变化检测和目标级变化检测。 (1)像元级变化检测是指直接在采集的原始图像上进行变化检测。尽管基于像元的变化检测有它一定的局限性,但由于它是基于最原始的图像数据,能更多地保留图像原有的真实感,提供其它变化检测层次所不能提供的细微信息,因而目前绝大多数的变化检测方法都是像元级变化检测。 (2)特征级变化检测是采用一定的算法先从原始图像中提取特征信息,如边缘、形状、轮廓、纹理等,然后对这些特征信息进行综合分析与变化检测。由于特征级的变化检测对特征进行关联处理,把特征分类成有意义的组合,因而它对特征属性的判断具有更高的可信度和准确性。但它不是基于原始数据而是特征,所以在特征提取过程中不可避免地会出现信息的部分丢失,难以提供细微信息。 (3)目标级变化检测主要检测某些特定对象(比如道路、房屋等具有明确含义的目标),是在图像理解和图像识别的基础上进行的变化检测,它是一种基于目标模型的高层分析方法。 变化检测的三个层次在实现上各有优缺点,在具体的变化检测中究竟检测到哪个层次是根据任务的需要确定的。像元级的变化检测保持了尽可能多的原始信息,具有特征级和目标级层次上所不具备的细节信息,但像元级变化检测仅考虑像素属性的变化,而未考虑其空间等特征属性的变化;特征级变化检测不仅考虑到空间形状的变化,而且还要考虑特征属性的变化,但特征级的变化检测依赖于特征提取的结果,但特征提取本身比较困难;目标级的变化检测最大的优点是它接近用户的需求,检测的结果可直接应用,但它的不足之处在于目标提取的困难性。

基于高光谱遥感技术的农作物病虫害应用研究现状_罗红霞

基于高光谱遥感技术的农作物病虫害应用研究现状 罗红霞,阚应波,王玲玲,方纪华,戴声佩 (海南省热带作物信息技术应用研究重点实验室/中国热带农业科学院科技信息研究所,海南儋州571737) 摘要:近年来,随着信息技术的迅猛发展,高光谱遥感作为一种快速监测手段已经被广泛应用于农业病虫害监测中,高光谱遥感在农业中主要的应用领域之一。通过分析近5年来高光谱技术在农作物病虫害研究情况,阐述了应用高光谱遥感技术进行农作物病虫害监测的原理,主要从原始光谱的导数变换及对数变换、光谱位置和面积的特征参数提取、光谱吸收特征参数提取、基于连续同去除的特征参数提取4种方法回顾了国内外应用高光谱进行农作物病虫害监测的研究进展,在此基础上,总结了高光谱遥感技术应用于农作物病虫害监测亟待解决的问题及相应的解决途径。 关键词:高光谱;病虫害监测;农作物;监测 中图分类号:S127文献标识码:A文章编号:1004-874X(2012)18-0076-05 Hyperspectral remote sensing for crop diseases and pest dectection LUO Hong-xia,KAN Ying-bo,WANG Ling-ling,FANG Ji-hua,DAI Sheng-pei (Key Laboratory of Practical Research on Tropical Crops Information Technology In Hainan/Institute of Scientific and Technical Information,China Academy of Tropical Agricultural Sciences,Danzhou571737,China) Abstract:With the advances in electronic and information technologies,Hyperspectral remote sensing have been developed for crop diseases and pest detecting around the world.Hyperspectral remote sensing for crop diseases and pest detection included two aspects which were canopy spectral detection and Hyperspectral image.This paper describes the principle of the application of hyperspectral in monitoring crop diseases and pest in detail,then summarizes the research progresses at home and abroad area,including spectral derivation,feature parameter extraction based on spectral areas and wavelengths’position,spectral absorption feature parameters extraction,and feature parameter extraction based on continuum removal four aspects.At the end,some of the problems and solutions on the use of hyperspectral remote sensing for crop diseases and pest dectecting are also discussed. Key words:hyperspectral remote sensing;diseases and pests;crop;monitoring 作物病虫害是农业生产的主要障碍,是限制作物产量的主要因素之一,同时也是制约优质、高效益农业持续发展的主导因素之一[1-2]。尽早发现农作物病虫害,并掌握病虫害的发生发展过程中的特点,对提高农作物产量,减少因病虫害对农业生产造成经济损失有较为重要的作用。传统的作物病虫害监测方法因为受到当时生产条件及科技水平的限制,只能在实地采用人工自测或者手查等方法进行;这些监测方法不仅费时费力,而且效率较低,其获取信息的滞后性也严重影响了对农作物病虫害预报的准确率,给农业生产造成了不可估量的损失。遥感技术以其方便、快捷、实时性、周期性等优点,越来越广泛应用于农业生产各个环节当中,并逐渐成为农业遥感应用的重要前沿技术手段之一[3]。高光谱遥感又称成像遥感,主要是指在电磁波谱的紫外、可见光、近红外和中红外区域获取许多非常窄且光谱连续的图像数据技术,高光谱遥感技术的出现也使得采用遥感技术监测农作物病虫害成为可能;高光谱遥感技术能准确获得作物病虫害发生、发展的定性和定量空间分布信息,为农业生产决策者在病虫害未对农作物造成严重危害时采取一定的预防措施提供数据支撑。也为农业生产管理部门政策实施提供科学支持。 1高光谱进行病虫害监测的原理 高光谱分辨率高,并具有波段多、信息量丰富的特点。其数据是3维图谱形式—— —空间信息、辐射信息和光谱维信息,其中光谱维的信息正是普通光学遥感所欠缺的。采用高光谱技术进行农业病虫害监测主要是利用其光谱维的相关信息对感染病虫害的农作物进行分析研究。农作物光谱维方向的特征信息主要集中在作物叶片中生物化学成分的变化而形成的吸收波形处,通过对采集的作物光谱数据进行相关的处理分析,可以反映出作物内部物质的吸收波形变化,即作物的各种生化组分的吸收光谱信息[4-5]。 作物受到病虫害感染后会呈现许多的症状,诸如卷叶、叶片枯萎、作物矮小、叶片大面积凋落以及影响作物的正常光合作用等[6],而这些特征的出现也会导致感染病虫害的农作物光谱特征的改变。一般健康的植物其光谱曲线总是呈现明显的“峰和谷”特征[7-8],当作物发生病虫害时,其光谱特征会出现在可见光区域的作物反射率明显上升,而在近红外区域其反射率明显下降的现象。基于此种变化也使得应用高光谱实施监测病害作物成为可能。 收稿日期:2012-07-25 基金项目:海南省热带作物信息技术应用研究重点实验室开放基金(rdzwkfjj014);国家星火计划项目(2011GA800001);2012年“三电合一”农业信息服务项目;中国热带农业科学院院本级中央级公益性科研院所基本科研业务费专项(1630022012018) 作者简介:罗红霞(1985-),女,硕士,研究实习员,E-mail:12008 1008@https://www.360docs.net/doc/ef10777736.html, 通讯作者:阚应波(1970-),男,副研究员,E-mail:ybkan0625@ https://www.360docs.net/doc/ef10777736.html, 广东农业科学2012年第18期 76

遥感图像的分类与变化监测最终版

遥感图像的分类与变化监测 1.数据准备 1.1研究区域概况 向10度至30度长有210公里,东西宽有15公里至20公里,是川西断陷带和川东隆起带 泉驿区总面积的39.07%、3.86%、57.07%。2009年,龙泉驿区土地总面积5.5698万公顷,其中耕地7367.83公顷,占土地总面积的13.23%;园地2.5295万公顷,占土地总面积的45.42%;林地7628.2公顷,占土地总面积的13.70 %;其他农用地3295.85公顷,占土地总面积的5.92%;居民点及工矿用地1.0742万公顷,占土地总面积的19.29%;交通运输用地539.83公顷,占土地总面积的0. 97%;水利设施用地553.30公顷,占土地总面积的0.99 %;未利用地274.93公顷,占土地总面积的0.49%。 1.2数据下载 在地理空间数据云中先搜索2000年---2005年的数据,选择云量较少,图像 质量高的进行下载;搜索2009年---2015年图像选择质量高的下载,最终选定2001年和2009年龙泉驿区的图像(landsat4--5)。 两期影像的像元信息: 影像 数据 类型 卫星名称 传感 器 条带 号 太阳 高度角 太阳 方位角 平均 云量 数据标示 2001 TM landsat4--5 TM 129 37.5708 141.1516 5.45 LT5129039200104 2009 TM landsat4--5 TM 129 51.3982 133.2621 0 LT5129039200908 2001年影像

2009年图像 2.数据处理 2.1图像格式的转换 2.1.1格式转换 利用Import工具,将下载的TIFF影像转换为后缀为img图像,并选择存储的路径。 2.1.2多波段图像的融合 在interpreter工具中利用image interpreter中的layer stack进行1--7图像的融合, 为后面的处理提供基础。

病虫害监测预警系统-北创科技智慧农业

病虫害防治系统-银川北创科技有限公司 一、建设背景 近年来,农业部启动了一系列全国主要农作物有害生物种类与发生危害情况调查研究项目。包括对农作物有害生物系统的普查与对农作物病虫害的预警和防治。 主要农作物的病、虫、草、鼠害为重点,采取系统调查与普查相结合、定点观测与定位调查相结合、一般调查与重点调查相结合的方法,对主要农作物上的有害生物种类进行全面调查和鉴定,查明危害农作物有害生物的所有种类,获取我国主要农作物上有害生物种类的全部数据,建立《中国主要农作物有害生物数据库》,出版《中国主要农作物有害生物名录》系列丛书;对国内新发生和境外入侵有害生物种类鉴定到种或属,对历史记载进行核实、澄清和更新;对主要有害生物的发生分布区域进行系统调查,结合寄主作物的分布,对农作物有害生物的发生进行区划,绘制主要有害生物种类的发生分布区划图;采用系统监测、抽样调查和统计学方法对重要有害生物的发生程度进行调查研究,明确重要有害生物造成的产量损失;系统分析全球气候变暖、耕作制度变化、农产品贸易全球化、农作物品种抗性变化和有害生物抗药性上升等多种因素对重大农作物有害生物发生发展的影响,阐明重大有害生物长期发生趋势,编写《中国重大农作物有害生物发生趋势分析和控制策略报告》,为制定重大病虫害防控策略,提高防控能力提供依据;通过对小型种、微小种,以及疑难种和近缘种等开展采样调查、分类与鉴定,研究提出上述小型种类有害生物快

速鉴定技术;探索分子生物学技术和“3S”技术(遥感、地理信息系统和全球定位系统)在有害生物调查、鉴定和分析中的应用,形成一系列有害生物调查方法与技术规范。 我国农业生态条件复杂,耕作制度多样,也是世界上农业有害生物灾害多发、频发和重发的国家之一,据不完全统计,我国农作物有害生物1600多种,其中,害虫830多种、病害720多种、杂草60多种、鼠害20多种。开展主要农作物有害生物种类与发生危害特点研究,对于摸清我国主要农作物有害生物发生危害家底,提高植保防灾减灾水平意义十分重大。

遥感图像变化检测

遥感图像变化检测方法(简称变化检测)根据处理目标要求可以分为三类:特定类目标的变化检测,如机场、桥梁、港口、导弹基地等目标的变化检测;线性体目标的变化检测,如道路、机场、桥梁和一般建筑物等目标的变化检测;大面积目标的变化检测,如某地域的植被变化、城市的发展、洪水灾害评估等。本文系统地研究了基于模式识别知识检测特定类目标、线性体目标和大面积目标变化的变化检测方法。 为了实现对特定类目标的变化检测,本文提出了一种基于目标检测的变化检测方法。该变化检测法的工作流程为:多时相图像配准、特定类目标建模、检测特定类目标、确定特定类目标的位置、比较特定类目标在参考图像和检测图像中的位置、报告变化情况。本文提到的特定类目标建模,是对某类特定目标的共同属性进行建模,即一般模型,而不是针对某个具体目标进行详细的状态描述。本论文提出的机场检测法在试验中达到了100%的正确检测率。确定了检测图像中的机场位置后,就可以将检测结果与参考图像中的机场位置进行比较,从而实现机场位置变化的检测。 对于检测线性体目标的变化,本论文提出了一种基于边缘检测的变化检测方法。该变化检测法的工作流程为:多时相图像配准、图像标准化、提取参考图像及检测图像的边缘、匹配边缘图像中的边缘并获得边缘差分图像、标注变化情况。边缘检测算子的性能直接影响变化检测结果。本论文提出了一种全新的边缘检测算子—正弦算子。本论文详细分析了边缘算子的三个性能准则:检测性能、定位性能和响应唯一性,在此基础上提出了正弦算子。正弦算子不但具有较好的容噪能力,并且能够检测到灰度变化较小的边缘。理论结果和试验结果都证明正弦算子是一个性能卓越的边缘检测算子。 本文提出了一种中高分辨率遥感图像的聚类方法。该聚类方法的过程分为两部分:学习过程和识别过程。学习过程为:选取图像特征、使用已知类别的特征训练BPC网络;识别过程为:输入待分类图像、预处理滑动窗口中图像、计算滑动窗口的图像特征、使用BPC网络判断滑动窗口中心像素的类别、在图像中逐点移动滑动窗口、完成整个图像的分类。试验结果表明,本文的特征提取法和图像聚类法能获得较好的图像聚类精度。 遥感图像数据获取系统近期发展的主要方向是提高空间和时间分辨率,这使遥感图像数据量有了巨大的增加。大量的数据和有限的人工分析员必将导致有很多图像无法被浏览。而在实际中,我们却非常需要分析员浏览相关图像。如果我们知道需要浏览的具体图像和图像中的具体目标,这个问题就很容易解决了。然而,大多数情况下,我们并不知道哪个图像中包含了我们需要寻找的信息。但是,我们可以利用数字图像的许多性质,通过计算机浏览所有的图像并把我们的注意力引导至相关的图像。实现这一目的主要有两个方法:使用计算机对图

遥感变化检测实验报告

遥感影像变化检测实验报告 目录 1 遥感影像变化检测概述 (2) 1.1 遥感影像变化检测的内容 (2) 1.2 影响变化检测的因素 (2) 1.3 遥感影像变化检测步骤 (3) 1.4 评判遥感影像检测方法优劣的标准 (3) 2 实验过程(基于ERDAS软件) (3) 2.1 影像数据 (3) 2.2 处理步骤 (3) 2.3 ERDAS操作步骤 (3) 2.3.1 2003年影像配准 (3) 2.3.2 2005年影像配准 (10) 2.3.3 相对大气校正 (11) 2.3.4 差分检测 (15) 3 结语 (16)

1 遥感影像变化检测概述 遥感影像变化检测就是对目标或现象在不同时间观测到的状态的差异的识别过程。常用用于遥感影像变化检测的领域有:土地利用/土地覆被变化;森林或植被变化;森林死亡、落叶和灾害评价;森林采伐、再生和选择性砍伐;湿地变化;森林火灾以及林火影响区域检测;地表景观变化;城市变化;环境变化;如农作物检测、轮垦检测、道路分段、冰川总量平衡和表面变化等。 1.1 遥感影像变化检测的内容 遥感影像变化检测的内容为: (1)检测并判断某一研究区域内感兴趣的目标或现象在所研究的时间段内是否发生了变化; (2)确定发生变化区域的位置; (3)遥感影像变化检测结果精度评估; (4)分析、鉴别变化类型,确定变化前后地物类型; (5)分析、评估变化在时间和空间上的分布模式,对其变化规律进行描述和解释; (6)对未来的变化进行预测,为科学决策提供依据。 1.2 影响变化检测的因素 一般来说,影像遥感影像变化检测的因素主要有: (1)多时相影像间的精确几何配准; (2)多时相影像间的定标或规一化; (3)高质量地面真实数据的获取; (4)研究区地面景观和环境的复杂度; (5)变化检测的方法和算法; (6)分类和变化检测的主题(目标); (7)分析人员的技术水平和经验; (8)对研究区的认知和熟悉程度; (9)时间和成本限制。 为此,数据选择时,尽量选择同一传感器、相同辐射和光谱分辨率,并在时间周期上相同或相近的数据,目的是为了能消除外部环境的影响,如太阳高度角、季节和物侯的差异等。在进行变化检测前我们应进行的准备工作主要有: (1)多时相影像必须精确配准; (2)多时相影像间必须精确辐射定标和大气校正或规一化; (3)多时相影像间要有相似的物候状态;

eCognition遥感信息变化监测

eCognition产品 eCognition套件提供了三种不同的组件,它们可以单独或结合起来解决影像分析任务。特点与优点 1.优良的基于对象的影像分析工具和算法集合 2.针对特定的用户的不同客户端版本 3.直观的开发环境 4.现有的工作流程的完全整合 5.从单一的桌面版扩展到企业产品工作流程 6.软件开发工具包(SDK) 7.在线访问规则集资源 8.易于使用的工作流程向导 9.全面的管理工具集 eCognition Developer eCognition的基础 eCognition Developer是一个强大的面向对象的影像分析开发环境。它用来在地球科学领域开发规则集(或为eCognition Architect开发应用程序)以做到遥感数据的自动分析。 特点与优点 1.优良的面向对象的影像分析工具和算法的集合 2.分析栅格、矢量和点云数据 3.两种启动模式——快速使用的QuickMap模式与传统的Developer模式

4.直观的开发环境 5.从单一的桌面版扩展到企业产品工作流程 6.软件开发工具包(SDK) 7.在线访问规则集资源 产品亮点 优良的面向对象的影像分析工具和算法 针对图像分析的不同方面,Definiens Developer提供了一个全面的算法集合。用户能从各种分割算法中进行选择,如多分辨率分割、四义树分割或棋盘分割。分类算法的范围包括基于采样的最邻近法、模糊逻辑隶属函数或专门上下文驱动分析。层操作算法允许应用面对象元的过滤器,如坡度、坡向、边缘提取或用户自定义的层计数。 直观的开发环境 图形用户界面灵活地显示了任何影像数据源。简单的拖放功能,能够让那些没有任何编程技能的用户为标准化分析进行快速开发规则集和应用软件。即使是最高级的任务,高级用户也能利用强大的工具来解决。 自动化和生产 在eCognition Architect中建立一个应用程序后,它可以被存储,并能扩展eCognition

技术在农作物病虫害预测预报上的应用

高新技术在农作物病虫害预测预报上的应用 摘要:本文简要地概述了雷达技术、计算机技术、网络技术、“3S’’技术等高新技术在农作物病虫害预测预报上的应用。这些高新技术的应用极大地改善了有害生物灾变预警和植保宏观决策水平。同时探讨了我国与先进发达国家在这方面的差距以及今后如何缩小这方面的差距。 关键词:高新技术;病虫害;预测预报;遥感;网络 1雷达在测报上的应用 疫蝗和蜜蜂进行了详细的雷达研究。我雷达自“二战”期间诞生以来,主要应用于军翼,以后又开始应用于气象学和鸟类学研究。自Schaefer教授(1968)利用雷达首次对昆虫迁飞的观测后,雷达技术在昆虫中的应用得到了迅猛发展,成为昆虫迁飞研究中一种无可替代的重要工具。[1-5]雷达的基本原理是根据无线电波从目标反射回来的能量来推断目标的位置。常用于观测昆虫的雷达是脉冲雷达。这些雷达的主要种类有:扫描雷达、垂直波束雷达、机载雷达、毫米波雷达、谐波雷达和跟踪雷达。对于具有大区域迁飞性、爆发性和灾害性的害虫,一般都是采用常规的监测手段,即根据田间的虫量和灯下的诱虫量来进行预测,这冲方法往往不能及时地、准确地进行预测,如果遇到迁飞虫量太大时,当田间和灯下见到虫量时,可能已形成了落地成灾的现实,造成无可挽回的损失。随着雷达技术的发展,使我们可以对迁飞性昆虫的起飞、降落、一飞行高度、飞行速度和昆虫密度进行监测。因此,雷达技术是一种可以预测迁飞性害虫的有效监测工具。在美国、英国、澳大利亚、印度等国对迁飞性夜蛾、沙漠飞蝗、褐飞虱、澳大利亚国最早进行昆虫雷达研究是在1983年,吉林省农业科学院建立了中国第一台昆虫雷达—公主岭昆虫雷达。1984年,吉林省农业科学院植保所利用雷达对草地螟、粘虫的迁飞规律进行了研究,以后,南京农业大学植保系利用雷达对褐飞虱进行了迁飞规律的研究。迄今,我国的昆虫雷达主要是用于研究,还没有广泛应用于迁飞性害虫的预测预报中。[6] 2计算机在测报上的应用 2.1 建立病虫害数据库 数据库技术具有“处理速度快、安全可靠、节约空间、操作简单、利于维护、便 于修改、易实现数据共享与长久保存”等优点,是有害生物集中管理的有效途径。应用数据库技术对病虫害的有关资料进行集中管理和信息查询,将大幅提高植保信息的利用率,对科研与生产的贡献率以及信息资源共享程度。[7-8]植保领域中数据库的应用与数据库技术发展历程密切相关,在植保领域中,早先的系统主要

遥感_变化监测实习报告

变化监测实习报告 实习名称变化监测 实习课程遥感图像处理姓名班级 实习时间学号得分 实习原理:非监督分类运用1SODATA算法,完全按照像元的光谱特性进行统计分类,常常用于对分类区没有什么了解的情况。使用该方法时。原始图像的所有波段都参于分类运算,分类结果往往是各类像元数大体等比例。由于人为干预较少,非监督分类过程的自动化程度较高。非监督分类一般要经过以下几个步骤:初始分类、专题判别、分类合并、色彩确定、分类后处理、色彩重定义、栅格矢量转换、统计分析。 实习数据: 遥感影像:LS5_TM_20100725_023435_023501_121040_FASTB_L2 LS5_TM_20081210_022812_022837_121040_FASTB_L2 简析:影像为江西省鄱阳湖地区,在影像生成时间内。时值夏/冬季,但江西地区植被多常绿。 实习内容:就所下载遥感影像,采用非监督分类的方法,对影像中所放映的信息进行分类。 实习目的:掌握非监督分类的方法与过程,加深对非监督分类方法的理解。 实习步骤:

第一步:调出非监督分类对话框 在ERDAS 图标面板工具条中点击Classifier 图标 →C1assification →Unsupervised Classification →Unsupervised classification。对话框如下: 第二步:进行非监督分类 在Unsupervised classification对话框输入数据(如上图右所示)。 确定输出文件(Input Raster File):caijianhou_40.img(要被分类的图像)→确定输出文件(Output File):非监督分类_caijianhou 4001.img即将产生的分类图像)

遥感在植物病虫害应用

遥感在植物病虫害监测中应用 植物病虫害是影响作物最终产量的关键因素之一,对病虫害进行早期预警,是控制病虫害的大范围蔓延、保护作物产量成果的有力方法之一。利用遥感技术特别是高光谱、卫星技术监测病虫害,具有快速、简便、宏观、无损、客观等优点,可以随时提供信息,迅速、准确的对田间作物生长状况进行监测,以便及时采取措施治理或合理安排计划,是作物病虫害监测的发展方向。 1. 植物病虫害遥感监测的基本原理 遥感的基本依据是获取来自地物的反射或发射的电磁波能量,各种物质因结构与组成成分不同,大多数地物又具有BRDF(双向反射分布函数)各向异性的反射特性,所以在光谱反射与辐射特性方面有差异,从而具有该物体诊断意义的光谱特征。据此,不同作物或同一作物在不同生长季节、不同角度和病虫危害及程度下,有其特殊意义的诊断性光谱特征。因此通过光谱分析技术可以探测作物的健康状况以及病虫发生情况。 作物病虫害遥感监测主要在单叶与冠层两个层面上展开。对单叶,因病虫危害导致叶片细胞结构、色素、水分、氮素含量及外部形状等发生变化,从而引起光谱的变化;对冠层,因病虫危害引起LAI、生物量、覆盖度等的变化,可见光到热红外波谱反射光谱与正常作物有明显差异。在大尺度上,受病虫危害的作物在高光谱扫描记录上会引起灰度值的差异,在空间相、光谱相和时间相上有明显的差异。因此,可通过地面获得的遥感数据结合高空成像仪获得的遥感影像监测作物病虫害。 2. 植物病虫害遥感监测技术流程 目前一般小麦、水稻等大规模连片种植的作物常采用地面高光谱遥感数据分析与高光谱航空影像解译分析相结合的方法进行病虫害监测。森林的病虫害监测则主要使用Landsat、Spot等卫星影像进行植被指数分析。植物病虫害遥感监测的一般技术流程如下图: 1

《多源遥感农作物病虫害监测信息采集与发布规范》

ICS 点击此处添加中国标准文献分类号DB 安徽省地方标准 DB XX/ XXXXX—XXXX 多源遥感农作物病虫害监测信息采集与发 布规范 Standard for Collecting and Publishing Monitoring Information of Agricultural Diseases and Pests by Multi-source Remote Sensing 点击此处添加与国际标准一致性程度的标识 (征求意见稿) 2020年5月29日 XXXX-XX-XX发布XXXX-XX-XX实施

目次 前言................................................................................ II 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 多源遥感农作物病虫害监测信息采集与发布流程 (2) 5 数据源及卫星数据的前期处理 (3) 6 计算方法 (3) 7 专题地图制作....................................................... 错误!未定义书签。附录 A (资料性附录)常用中高空间分辨率星载仪器及其近红外和红光通道参数 . (6) 附录 B (规范性附录)卫星数据的前期处理 (7)

前言 本标准由安徽省信息标准化技术委员会归口。 本标准主要起草单位:安徽大学、安徽省农业信息中心、安徽省植物保护总站。 本标准主要起草人:黄林生、赵晋陵、丁作坤、琚书存、丁晶晶、张东彦、郑玲、翁士状、张启勇、邱坤、杜世州、徐超、梁栋、陈阳德、徐建鹏、曾玮、雷雨。

遥感影像基于像素的变化检测方法简介

表2 基于像素得变化检测方法简介 方法 简介 图像差值 使用两个精确配准得图像来产生表示变化得差值图像。可以直接从像素得辐射值或 者在提取得/导出得/变换得图像(如纹理或植被指数)上测量差异。在数学上,差异图像 得表示就是:12(,)(,)(,)d I x y I x y I x y =-,其中I 1与I 2就是时间t 1与t 2得图 像,(x,y )就是坐标,I d 就是差分图像。没有辐射变化得像素分布在均值周围(Lu 等,2005), 而变化得像素分布在分布曲线得尾部(Singh,1989)。 由于变化可能出现在两个方向 上,因此决定由那个图像减去那个图像(Gao,2009)。 图像比值 计算两个共同配准得图像之间得比率。数学上:12(,)(,) r I x y I I x y =,与图像差值不同,图像得顺序并不重要,因为变化结果以比率表示,未变化得区域在理论上应该为1。 回归分析 假定从时间(t 2)开始得图像I 2就是从时间(t 1)开始得图像I 1得线性函数。 图像I 2被视 为“参考”图像。 然后调整I 1图像以匹配参考图像得辐射测量条件。回归分析(如最小 二乘回归)可以通过对I 1图像进行辐射度量归一化以匹配参考图像来帮助识别增益与 偏移量(Lunetta,1999)。 变化(I d )图像由检测到从第一次日期图像中减去回归图像。 数学上:?(,)(,)d d I x y aI x y b =+; ?(,)(,)(,)d d d I x y I x y I x y =- 植被指数差值 植被在红光与近红外波段光谱反射率间得显著差异,通过波段组合,形成植被指数。通 常,对于变化检测,两个图像分别产生植被指数,然后应用基于标准像素得变化检测(例 如差值或比值)。 现有得植被指数有:基于比值得植被指数(RVI ),归一化植被指数(NDVI )与土壤调整植 被指数(SAVI )等。 变化向量分析(CVA ) 可以同时分析变化检测得多个图像波段。 CVA 背后得想法就是,随着时间得推移,具 有不同值得特定像素位于特征空间中基本不同得位置(Jensen,2005)。像素值被视为光 谱波段得矢量,通过减去不同日期所有像素得矢量(Malila,1980)计算变化矢量(CV )。 CV 得方向描绘了变化得类型,而变化得大小对应于CV 得长度。 也可以对转换后得 数据执行CVA (例如,Kauth-ThomasTransformation,KTT )。 主成分分析(PCA ) PCA ,数学上就是基于“主轴转换”,就是将多元数据转换为一组新得成分,从而减少了数 据冗余(Lillesand et al 、,2008)。 PCA 使用协方差矩阵或相关矩阵将数据转换为独立 不相关得数据。结果矩阵得特征向量按降序排序,其中第一主成分(PC)表示大部分数 据变化。随后得分量定义下一个最大得变化量,并且与前面得主分量就是独立得(正交 得)。在PCA 中,假定没有变化得区域就是高度相关得,而变化得区域则不就是。在多 时相图像分析中,PC1与PC2倾向于代表未改变得区域,而PC3与后来得PCs 包含改 变信息(Byrne 等,1980; Ingebritsen 与Lyon,1985; Richards,1984)。使用两种基于PCA 得变化检测方法。第一个,单独得旋转,就是分别从图像获取PC ,然后使用其她变化检 测技术(如图像差值)。第二种就是合并方法,其中双时间图像被合并为一个集合并且 PC 被应用。与双时间数据具有负相关性得PCs 对应于变化。 Coppin 与Bauer(1996)

相关文档
最新文档