ANSYS实例——导体球周围的电场分布

ANSYS实例——导体球周围的电场分布
ANSYS实例——导体球周围的电场分布

本例介绍一个带电导体球周围的电场分布。两个带电导体球分别半径为2,相距为10;电压分别为-5V和+5V,求解导体球周围的电场分布。

小组成员:刘德华,张学友

技术支持:郭富城

该部分的主要操作为:导入外部模型、整合模型、建立体、平移工作平面、恢复工作平面、重合所有的体、定义模型的单元和定义材料属性。该部分是由小组成员刘德华同学完成。

操作包括8个部分,如下见图a

图a

首先,导入外部模型。选择File→→Import→→IGES.出现的选项框中,MERGE Merge coincident keypts 项选择为NO,即把现存YES项勾去即可。点击OK,出现新的框框,点击【浏览】,找到所需文件model.igs后,点击【打开】,点击OK.最后点击Close,关闭框框。

操作结果如下,见图b

图b

然后,整合模型。选择左边框框中Preprocessor→→Numbering ctrls→→Merge Items.出现新的框框,顶格第一项Label Type of Item to be merge定义为all,点击ok。然后【Numbering ctrls】选项中选择Compress Numbers,在新的框框中选择all,点击ok。

建立体。点击左边框框大选项Modeling→→Create→→Volumes →→Arbitrary→→By areas。出现新的框框,鼠标杠杠变成一个箭头,先指着其中一个球,中间点一下,再上面点一下,期间颜色变换两次,点击ok。点击By areas,再对另外一个球重复此操作,点击OK。

建立体结束,可以查看一下。选择上边大选项,plot→→Volumes,建立两个体。

使用Ansys的自身建模方式,来建立周围环境的模型。

平移工作平面。点击上面的大选项Workplane→→Offset WP by Increments,右边出现新的框框。在【X,Y,Z Offsets】标题下的框框中输入【0.0.-10】,此操作即为【Z方向平移-10】。点击OK。

操作结果如下,见图c

图c

然后,再次建立体。Modeling→→Create→→Volumes→→Block →→By Center,Cornr,Z.出现新的框框,在宽、高、深选项中都输入【20】。点击OK。

恢复工作平面。点击上面大选项Workplane→→Align WP with→→Global Cartesian。

最后,采用Bool操作,重合所有的体。点击左边大选项Modeling →→Operate→→Booleans→→Overlap→→Volumes,出现新的框框,点击左下角的【pick all】。

定义模型的单元。点击左边大选项Preprocessor→→Element Type →→Add/Edit/Delete,出现新的框框。点击Add,增加,先增加3012单元,左上方(还算比较大的)框框选择Electrostatic,右上方(还算比较大的)框框选择3D Brick 122,点击OK。然后再点击add,增加,左上方(还算比较大的)框框选择InfiniteBoundary,右上方(还

算比较大的)框框选择,2D Inf Quad 110,点击OK。剩下的框框,点击close关闭。

定义材料属性。点击左边大选项Preprocessor→→Material Properties→→Material Models,出现新的框框。选择右边框框中的Electromagnetics→→Relative Permittivity→→Constant.出现新的框框,在PERX定义的选项框框中,填入1,点击OK。关闭之前出现的框框。

操作结果如下,见图d、图e

图d

图e

本例介绍的是带电导体球周围的电场分布。两个带电导体球分别半径为2,相距为10,电压分别为-5V和+5V,求解导体球周围的电场分布。

小组成员:刘德华,张学友

技术支持:郭富城

前面第一部分的主要操作为:导入外部模型、整合模型、建立体、平移工作平面、恢复工作平面、重合所有的体、定义模型的单元和定义材料属性。该部分是由小组成员刘德华同学完成。

接下来的操作包括有6个部分,是由身为另一小组成员的我来完成并进行分析。

操作步骤流程如下,见图1

图1

首先,关联材料属性。点击左边大选项Preprocessor→→Meshing →→Mesh Attributes→→Picked volumes.出现新的框框,在框框中下方的空白格中输入4,此操作为【选择体4】。点击OK,出现新的框框,点击OK。{Preprocessor→→Meshing→→Mesh Attributes→→}Picked Areas,选择面5到10.出现新的框框,点击【Min,Max,Inc],在其下面的空白格中填入【5,10】,点击OK,出现新的框框,定义单元类型,选择TYPE Element type number→→2 INFIN110,点击OK。

其操作步骤的作用为:在相关操作已完成的基础上(如建立体等),点击相应选项,输入相应数字,选择体,相对应的定义单元类型,为接下来的网格划分控制作好准备。尤其需要注意的是,当选择多个体

时,要定义好最小值、最大值和临界值,否则将导致操作出现错误。

部分操作如下,见图2、图3

图2

图3

然后,进行网格划分控制。点击{Preprocessor→→Meshing→→} Size Cntrls→→SmartSize→→Adv Opts,出现新的框框,不修改默认设置,

点击OK。左上角出现长条框框,点击close。点击Mesh Tool进行网格划分。右边出现大框框,点击左下方Mesh,左边出现大框框,在空白格中输入4,点击OK。网格划分结束。

操作结果如下,见图4

图4

然后,设置电压。Preprocessor→→Loads→→Define Loads →→Apply→→Electric→→Boundary→→Voltage→→On Areas.出现新的框框,在其间的空白格中输入【1,2】,点击OK,出现新的框框,在其间空白格中输入【5】,点击Apply。再在左边框框空白格中输入【3,4】,点击OK,再在新出现的框框空白格中输入【-5】,点击OK。

进行求解。点击选择左边大选项中Solution→→Solve→→Current LS,出现新的框框,点击OK,开始求解。求解结束,左上方出现框框,点击close,关闭。

求解结果如下,见图5

图5

然后,设置一下。选择上方大选项,PlotCtrls→→Style→→Edge options,出现新的框框,框框中其中一项选择Edge only/all,点击OK。进入一般划分处理器。点击左边大选项,General PostProc→→Plot Results→→Vector plot→→User defined.出现新的框框,最上面一个空表格输入【ef】,下面倒数第二个选择定义为Vector Mode,点击OK。电场分布出现。

电场分布结果如下,见图6

图6

最后,还可以创建一个面来观察这个面上的电场分布。

首先,选择点击上方的大选项,WorkPlane→→Offset WP by Increments,右边出现新的框框,在【XY,YZ,ZX Angels】定义的空格中输入【0.0.90】,此操作为【沿Z方向旋转90度】,点击OK。

然后,在左边的大选项中点击选择,General PostProc→→Surface Operations→→Create Surface→→On Cutting Plane,出现新的框框。在name长条定的空白格中输入【elecef】,点击OK。

然后,选择Select Surfaces,出现新的框框,点击OK。

然后,映射。选择Map Results,出现新的框框,在其间上面的小空白格中输入【elecef】,在下面的格子中选择DOF Solution→→Electrical Potential,点击OK。

然后,点击选择plot results,出现新的框框,选择elecef,下面的也是选择它,点击OK。显示电压分布情况。结束。

平面显示电压分布情况如下,见图7

图7

10静电场中的导体和电介质习题解答

第十章 静电场中的导体和电介质 一 选择题 1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。设无限远处的电势为零,则导体球的电势为 ( ) 2 02 00π4 . D ) (π4 . C π4 . B π4 .A R) (a qa R a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势 ??'±'±='= ' = 'q q q R R q V 0d π41π4d 00 εε 点电荷q 在球心处的电势为 a q V 0π4ε= 据电势叠加原理,球心处的电势a q V V V 00π4ε= '+=。 所以选(A ) 2. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ ,如图所示,则板外两侧的电场强度的大小为 ( ) 2 . D . C 2 . B 2 .A εd E= εE= E E σσεσ εσ= = 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为S 2σ,可得 0 εσ= E 。 所以选(C ) 3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d

高考必备:高中物理电场知识点总结大全

高中物理电场知识点总结大全 1. 深刻理解库仑定律和电荷守恒定律。 (1)库仑定律:真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上。即: 其中k为静电力常量,k=9.0×10 9 N m2/c2 成立条件:①真空中(空气中也近似成立),②点电荷。即带电体的形状和大小对相互作用力的影响可以忽略不计。(这一点与万有引力很相似,但又有不同:对质量均匀分布的球,无论两球相距多近,r都等于球心距;而对带电导体球,距离近了以后,电荷会重新分布,不能再用球心间距代替r)。 (2)电荷守恒定律:系统与外界无电荷交换时,系统的电荷代数和守恒。 2. 深刻理解电场的力的性质。 电场的最基本的性质是对放入其中的电荷有力的作用。电场强度E是描述电场的力的性质的物理量。 (1)定义:放入电场中某点的电荷所受的电场力F跟它的电荷量q的比值,叫做该点 的电场强度,简称场强。这是电场强度的定义式,适用于任何电场。其中的q为试探电荷(以前称为检验电荷),是电荷量很小的点电荷(可正可负)。电场强度是矢量,规定其方向与正电荷在该点受的电场力方向相同。 (2)点电荷周围的场强公式是:,其中Q是产生该电场的电荷,叫场源电荷。 (3)匀强电场的场强公式是:,其中d是沿电场线方向上的距离。 3. 深刻理解电场的能的性质。 (1)电势φ:是描述电场能的性质的物理量。 ①电势定义为φ=,是一个没有方向意义的物理量,电势有高低之分,按规定:正电荷在电场中某点具有的电势能越大,该点电势越高。 ②电势的值与零电势的选取有关,通常取离电场无穷远处电势为零;实际应用中常取大地电势为零。

大学物理课后答案第七章静电场中的导体和电介质

大学物理课后答案第 七章静电场中的导 体和电介质 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2 习题7 7-2 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题7-2图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少以地的电势为零,则A 板的电势是多少 解: 如题7-2图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为 2σ 题7-2图 (1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴ 2d d 21===AC AB AB AC E E σσ 且 1σ+2σS q A = 得 ,32S q A = σ S q A 321=σ 而 711023 2 -?-=- =-=A C q S q σC C 10172-?-=-=S q B σ (2) 30 1 103.2d d ?== =AC AC AC A E U εσV

3 7-3 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算: (1)外球壳上的电荷分布及电势大小; (2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; *(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量. 解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势 题7-3图 ? ? ∞ ∞==?=2 2 020π4π4d d R R R q r r q r E U εε (2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生: 0π4π42 02 0=- = R q R q U εε (3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且 0π4' π4'π4'2 02 01 0=+-+ - = R q q R q R q U A εεε

电场中的导体(精)

电场中的导体 教学目的:1、知道静电感应现象,并能用于解释有关的问题; 2、知道导体的静电平衡状态及处于平衡状态中的导体电场强度、电荷、 电势等物理量分布的基本特点; 3、利用演示实验,帮助学生正确理解静电学习题的物理情景,克服“静 电学抽象难懂”的心理; 4、总结静电平衡问题的特点,培养学生提高综合运用已学知识,分析、 解决相关问题的能力。 教学重点:处于静电平衡状态的导体的特点 教学难点:静电感应现象中导体的电场、电荷分布 教学方法:以实验、讨论为基础的启发式教学法 教学仪器:投影仪,范格拉夫起电机,验电器,空心导体球,带绝缘架的金属导体。教学过程: 一、组织教学 二、引入新课 【习题1】原来静止的自由电荷在电场力的作用下,总由高的地方向低的地方移动。 讨论:该填入“电场强度”、“电势”还是“电势能”? 【习题2】如果在匀强电场中同时放进带正电的点电荷和带负电的点电荷,正电荷将电场线移动,负电荷将电场线移动; 我们知道,在金属导体中,具有大量的自由电子和金属正离子。 【问题】如果我们把一块导体放进一个电场中,会有什 么情况发生呢? 【板书课题】电场中的导体 三、新课教学 【演示实验1】把验电器的验电球靠近施感电荷,可见 验电器的指针张开。

【讨论】为什么验电器尚未与电荷接触, 验电羽就已经张开? 【结论】把金属导体放进电场中,结果会使导体的电荷重新分布,在导体的两端分别 出现等量的正负电荷,这种现象叫静电感应。 【板书】静电感应 【讨论】发生静电感应时 (1)导体中的自由电子将如何移动? (2)出现的感应电荷会激发电场吗? (3)满足什么条件,电荷的定向移动才会停下来? (4)这时导体的电势和电场强度都有哪些特点? 【结论】发生静电感应的正负电荷形成一个附加电场 E ’ ,当E ’=E 0时,附加电场与 外电场完全抵消,自由电子的定向移动完全停下,这时导体处于静电平衡状态。 【板书】静电平衡 【板书】处于静电平衡状态的导体的基本特点: (1) 导体内部的场强处处为零; (2) 导体内部没有净电荷(净电荷只能全部分布在导体的表面上); (3) 导体是一个等势体(表面是一个等势面); (4) 导体表面附近的电场线跟导体表面垂直,导体内部没有电场线; 四、例题与练习 【习题】一金属球A 放在距一带电量为-4.5×10-10C 的点电荷0.3m 处(如图)求金 甲 乙 丙

ch7-静电场中的导体和电介质-习题及答案

第7章 静电场中的导体和电介质 习题及答案 1. 半径分别为R 和r 的两个导体球,相距甚远。用细导线连接两球并使它带电,电荷面密度分别为1σ和2σ。忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。试证明: R r =21σσ 。 证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以 半径为R 的导体球的电势为 R R V 0211π4επσ= 14εσR = 半径为r 的导体球的电势为 r r V 0222π4επσ= 24εσr = 用细导线连接两球,有21V V =,所以 R r =21σσ 2. 证明:对于两个无限大的平行平面带电导体板来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同。 证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ (1)取与平面垂直且底面分别在A 、B 部的闭合圆柱面为高斯面,由高斯定理得 S S d E S ?+==??)(1 0320 σσε 故 +2σ03=σ 上式说明相向两面上电荷面密度大小相等、符号相反。 (2)在A 部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即 022220 4 030201=---εσεσεσεσ

又 +2σ03=σ 故 1σ4σ= 3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。 解:如图所示,设金属球表面感应电荷为q ',金属球接地时电势0=V 由电势叠加原理,球心电势为 = O V R q dq R 3π4π4100εε+ ? 03π4π400=+'= R q R q εε 故 - ='q 3 q 4.半径为1R 的导体球,带有电量q ,球外有外半径分别为2R 、3R 的同心导体球壳,球壳带有电量Q 。 (1)求导体球和球壳的电势1V 和2V ; (2)如果将球壳接地,求1V 和2V ; (3)若导体球接地(设球壳离地面很远),求1V 和2V 。 解:(1)应用均匀带电球面产生的电势公式和电势叠加原理求解。 半径为R 、带电量为q 的均匀带电球面产生的电势分布为 ???????>≤=)( 4)( 400 R r r q R r R q V πεπε 导体球外表面均匀带电q ;导体球壳表面均匀带电q -,外表面均匀带电Q q +,由电势叠加原理知,空间任一点的电势等于导体球外表面、导体球壳表面和外表面电荷在该点产生的电势的代数和。 导体球是等势体,其上任一点电势为 )( 413 210 1R Q q R q R q V ++-= πε 球壳是等势体,其上任一点电势为

电场中的导体.doc

学科:物理 教学内容:电场中的导体 【基础知识精讲】 1.金属导体特征 金属导体由做热振动的正离子和在它们之间做无规则热运动的自由电子组成. 2.静电感应现象 把金属导体放进电场中,导体内部的自由电子受到电场力的作用,将向电场的反方向定向移动,结果会使导体两端分别出现正、负电荷.此现象叫静电感应.若将上述导体的两部分并拢放置,则再分开为两部分时,可使两部分分别带上等量的正、负电荷,即为感应起电. 3.静电平衡状态 导体中(包括表面)没有电荷定向移动的状态.静电平衡是导体中的电荷在外电场的电场力作用下重新分布,从而产生感应电荷,感应电荷在导体中形成的电场抵消外电场的结果. 4.处于静电平衡状态的导体的特性 (1)导体的内部的合场强处处为零; (2)净电荷只分布在导体的外表面; (3)电场线与导体表面垂直相接. (4)整个导体是一个等势体,其表面是一个等势面. 说明:①净电荷是指导体内正、负电荷中和后所剩下的多余电荷. ②第(4)条要到后面的节次再学习. 5.静电屏蔽 静电平衡时导体内部的场强为零.把电学仪器和电子设备的外面套上金属网或金属皮,仪器和设备就会因其所在处的场强为零而不受外电场的影响,这就是静电屏蔽. 【重点难点解析】 重点静电平衡导体的场强和静电荷分布特点. 难点法拉第圆筒实验. 例1 如图,不带电的导体AB左侧有一带正电的小球+Q.现分别将导体的A端、正中部和B端分三次在初始状态相同的情况下,与地短暂接通又断开,之后导体AB的带电及其内( ) 部的场强情况是 A.正电 B.负电 C.不带电 D.AB上的感应电荷在其内部M点产生的场强不为零,且方向指向+Q

ANSYS分析指南精华:子结构

第四章子结构 什么是子结构? 子结构就是将一组单元用矩阵凝聚为一个单元的过程。这个单一的矩阵单元称为超单元。在ANSYS分析中,超单元可以象其他单元类型一样使用。唯一的区别就是必须先进行结构生成分析以生成超单元。子结构可以在ANSYS/Mutiphysics,ANSYS/Mechanical和ANSYS/Structural中使用。 使用子结构主要是为了节省机时,并且允许在比较有限的计算机设备资源的基础上求解超大规模的问题。原因之一如a)非线性分析和带有大量重复几何结构的分析。在非线性分析中,可以将模型线性部分作成子结构,这样这部分的单元矩阵就不用在非线性迭代过程中重复计算。在有重复几何结构的模型中(如有四条腿的桌子),可以对于重复的部分生成超单元,然后将它拷贝到不同的位置,这样做可以节省大量的机时。 子结构还用于模型有大转动的情况下。对于这些模型,ANSYS假定每个结构都是围绕其质心转动的。在三维情况下,子结构有三个转动自由度和三个平动自由度。在大转动模型中,用户在使用部分之前无须对子结构施加约束,因为每个子结构都是作为一个单元进行处理,是允许刚体位移的。 另外一个原因b)一个问题就波前大小和需用磁盘空间来说相对于一个计算 1

机系统太庞大了。这样,用户可以通过子结构将问题分块进行分析,每一块对于计算机系统来说都是可以计算的。 如何使用子结构 子结构分析有以下三个步骤: ●生成部分 ●使用部分 ●扩展部分 生成部分就是将普通的有限元单元凝聚为一个超单元。凝聚是通过定义一组主自由度来实现的。主自由度用于定义超单元与模型中其他单元的边界,提取模型的动力学特性。图4-1是一个板状构件用接触单元分析的示意。由于接触单元需要迭代计算,将板状构件形成子结构将显著地节省机时。本例中,主自由度是板与接触单元相连的自由度。 图4-1 子结构使用示例 2

10第十章 静电场中的导体与电介质作业答案

一、选择题 [ B ]1(基础训练2) 一“无限大”均匀带电平面A ,其附近放一与它 平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷 面密度为+σ ,则在导体板B 的两个表面 1和2上的感生电荷面密度为: (A) σ 1 = - σ, σ 2 = + σ. (B) σ 1 = σ21- , σ 2 =σ2 1 +. (C) σ 1 = σ21- , σ 1 = σ2 1 -. (D) σ 1 = - σ, σ 2 = 0. 【提示】“无限大”平面导体板B 是电中性的:σ 1S+σ 2S=0, 静电平衡时平面导体板B 内部的场强为零,由场强叠加原理得: 02220 2010=-+εσεσεσ 联立解得: 122 2 σ σ σσ=- = [ C ]2(基础训练6)半径为R 的金属球与地连接。在与球心O 相距d =2R 处有一电荷为q 的点电荷。如图所示,设地的电势为零,则球上的感生电荷q ' 为: (A) 0. (B) 2q . (C) -2 q . (D) -q . 【提示】静电平衡时金属球是等势体。金属球接地,球心电势为零。球心电 势可用电势叠加法求得: 000'044q dq q R d πεπε' +=?, 00' 01'44q q dq R d πεπε=-?, 'q q R d =-,其中d = 2R ,'2q q ∴=- [ C ]3(基础训练8)两只电容器,C 1 = 8 μF ,C 2 = 2 μF ,分别把 它们充电到 1000 V ,然后将它们反接(如图所示),此时两极板间的电势差 为: (A) 0 V . (B) 200 V . (C) 600 V . (D) 1000 V 【提示】反接,正负电荷抵消后的净电量为 661212(82)101000610Q Q Q C U C U C --=-=-=-??=? 这些电荷重新分布,最后两个电容器的电压相等,相当于并联。并联的等效电容为 512C'10C C F -=+=,电势差为'600()' Q U V C = =。 [ D ]4(基础训练10)两个完全相同的电容器C 1和C 2,串联后与电源连接。现将一各向同性均匀电介质板插入C 1中,如图所示,则(A) 电容器组总电容减小. (B) C 1上的电荷大于C 2上的电荷. (C) C 1上的电压高于C 2上的电压 .(D) 电容器组贮存的总能量增大. 【提示】(A) C 1↑,1/C=(1/C 1)+(1/C 2),∴C ↑ (B) 串联,Q 1=Q 2 (C) U 1=Q/C 1,U 2=Q/C 2 ,∴U 1

高中物理电场总结(最新_强烈推荐)

电场总结 1. 深刻理解库仑定律和电荷守恒定律。 (1)库仑定律:真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上。即: 其中k为静电力常量,k=9.0×10 9 N m2/c2 成立条件:①真空中(空气中也近似成立),②点电荷。即带电体的形状和大小对相互作用力的影响可以忽略不计。(这一点与万有引力很相似,但又有不同:对质量均匀分布的球,无论两球相距多近,r都等于球心距;而对带电导体球,距离近了以后,电荷会重新分布,不能再用球心间距代替r)。 (2)电荷守恒定律:系统与外界无电荷交换时,系统的电荷代数和守恒。 2. 深刻理解电场的力的性质。 电场的最基本的性质是对放入其中的电荷有力的作用。电场强度E是描述电场的力的性质的物理量。 (1)定义:放入电场中某点的电荷所受的电场力F跟它的电荷量q的比值,叫做该点的 电场强度,简称场强。这是电场强度的定义式,适用于任何电场。其中的q为试探电荷(以前称为检验电荷),是电荷量很小的点电荷(可正可负)。电场强度是矢量,规定其方向与正电荷在该点受的电场力方向相同。 (2)点电荷周围的场强公式是:,其中Q是产生该电场的电荷,叫场源电荷。 (3)匀强电场的场强公式是:,其中d是沿电场线方向上的距离。 3. 深刻理解电场的能的性质。 (1)电势φ:是描述电场能的性质的物理量。 ①电势定义为φ=,是一个没有方向意义的物理量,电势有高低之分,按规定:正电荷在电场中某点具有的电势能越大,该点电势越高。 ②电势的值与零电势的选取有关,通常取离电场无穷远处电势为零;实际应用中常取大地电势为零。 ③当存在几个“场源”时,某处合电场的电势为各“场源”在此处电场的电势的代数和。

ANSYS结构分析指 复合材料

ANSYS结构分析指南第五章复合材料 5.1 复合材料的相关概念 复合材料作为结构应用已有相当长的历史。在现代,复合材料构件已被大量应用于飞行器结构、汽车、体育器材及许多消费产品中。 复合材料由一种以上具有不同结构性质的材料构成,它的主要优点是具有很高的比刚度(刚度与重量之比)。在工程应用中,典型复合材料有纤维和叠层型材料,如玻璃纤维、玻璃环氧树脂、石墨环氧树脂、硼环氧树脂等。 ANSYS程序中提供一种特殊单元--层单元来模拟复合材料。利用这些单元就可以作任意的结构分析了(包括非线性如大挠度和应力刚化等问题)。对于热、磁、电场分析,目前尚未提供层单元。 5.2 建立复合材料模型 与铁或钢等各向同性材料相比,建立复合材料的模型要复杂一些。由于各层材料性能为任意正交各向异性,材料性能与材料主轴取向有关,在定义各层材料的材料性能和方向时要特别注意。本节主要探讨如下问题: 选择合适的单元类型; 定义材料层; 确定失效准则; 应遵循的建模和后处理规则。 5.2.1 选择合适的单元类型 用于建立复合材料模型的单元类型有SHELL99、SHELL91、SHELL181、SOLID46和SOLID191 五种单元。但 ANSYS/Professional 只能使用 SHELL99 和 SHELL46 单元。具体应选择哪一类单元要根据具体应用和所需计算结果类型等来确定。所有的层单元允许失效准则计算。 1、SHELL99--线性层状结构壳单元 SHELL99 是一种八节点三维壳单元,每个节点有六个自由度。该单元主要适用于薄到中等厚度的板和壳结构,一般要求宽厚比应大于10。对于宽厚比小于10的结构,则应考虑选用 SOLID46 来建立模型。SHELL99 允许有多达 250 层的等厚材料层,或者 125 层厚度在单元面内呈现双线性变化的不等材料层。如果材料层大于 250,用户可通过输入自己的材料矩阵形式来建立模型。还可以通过一个选项将单元节点偏置到结构的表层或底层。 2、SHELL91--非线性层状结构壳单元 SHELL91 与 SHELL99 有些类似,只是它允许复合材料最多只有 100 层,而且用户不能输入自己的材料性能矩阵。但是,SHELL91 支持塑性、大应变行为

ANSYS-结构稳态(静力)分析之经典实例-命令流格式

ANSYS 结构稳态(静力)分析之经典实例-命令流格式.txt两人之间的感情就像织毛衣,建立 的时候一针一线,小心而漫长,拆除的时候只要轻轻一拉。。。。/FILNAME,Allen-wrench,1 ! Jobname to use for all subsequent files /TITLE,Static analysis of an Allen wrench /UNITS,SI ! Reminder that the SI system of units is used /SHOW ! Specify graphics driver for interactive run; for batch ! run plots are written to pm02.grph ! Define parameters for future use EXX=2.07E11 ! Young's modulus (2.07E11 Pa = 30E6 psi) W_HEX=.01 ! Width of hex across flats (.01m=.39in) *AFUN,DEG ! Units for angular parametric functions定义弧度单位 W_FLAT=W_HEX*TAN(30) ! Width of flat L_SHANK=.075 ! Length of shank (short end) (.075m=3.0in) L_HANDLE=.2 ! Length of handle (long end) (.2m=7.9 in) BENDRAD=.01 ! Bend radius of Allen wrench (.01m=.39 in) L_ELEM=.0075 ! Element length (.0075 m = .30 in) NO_D_HEX=2 ! Number of divisions on hex flat TOL=25E-6 ! Tolerance for selecting nodes (25e-6 m = .001 in) /PREP7 ET,1,SOLID45 ! 3维实体结构单元;Eight-node brick element ET,2,PLANE42 ! 2维平面结构;Four-node quadrilateral (for area mesh) MP,EX,1,EXX ! Young's modulus for material 1;杨氏模量 MP,PRXY,1,0.3 ! Poisson's ratio for material 1;泊松比 RPOLY,6,W_FLAT ! Hexagonal area创建规则的多边形 K,7 ! Keypoint at (0,0,0) K,8,,,-L_SHANK ! Keypoint at shank-handle intersection K,9,,L_HANDLE,-L_SHANK ! Keypoint at end of handle L,4,1 ! Line through middle of hex shape L,7,8 ! Line along middle of shank L,8,9 ! Line along handle LFILLT,8,9,BENDRAD ! Line along bend radius between shank and handle! 产生 一个倒角圆,并生成三个点 /VIEW,,1,1,1 ! Isometric view in window 1 /ANGLE,,90,XM ! Rotates model 90 degrees about X! 不用累积的旋转 /TRIAD,ltop /PNUM,LINE,1 ! Line numbers turned on LPLOT

静电场中的导体与电介质考试题及答案

静电场中的导体与电介质考试题及答案 6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( ) (A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势。由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。 6 -2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。若将导体N 的左端接地(如图所示),则( ) (A ) N 上的负电荷入地 (B )N 上的正电荷入地 (C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地 分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。因而正确答案为(A )。 6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0= = (B )d εq V d εq E 02 0π4,π4== (C )0,0==V E

(D )R εq V d εq E 020π4,π4== 分析与解 达到静电平衡时导体内处处各点电场强度为零。点电荷q 在导 体球表面感应等量异号的感应电荷±q ′,导体球表面的感应电荷±q ′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。因而正确答案为(A )。 6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。下列推论正确的是( ) (A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关 分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。因而正确答案为(E )。 6 -5 对于各向同性的均匀电介质,下列概念正确的是( ) (A ) 电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (B ) 电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍 (C ) 在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该

04.静电场中的导体答案

《大学物理》练习题 No .4 静电场中的导体 电介质及能量 班级 ___________ 学号 ___________ 姓名 ___________ 成绩 ________ 一、 选择题 1. 如图4.1,真空中有一点电荷Q 及空心金属球壳A, A 处于静电平衡, 球内有一点M, 球壳中有一点N, 以下说法正确的是 [ E ] (A) E M ≠0, E N =0 ,Q 在M 处产生电场,而在N 处不产生电场; (B) E M =0, E N ≠0 ,Q 在M 处不产生电场,而在N 处产生电场; (C) E M = E N =0 ,Q 在M 、N 处都不产生电场; (D) E M ≠0,E N ≠0,Q 在M 、N 处都产生电场; (E) E M = E N =0 ,Q 在M 、N 处都产生电场. 2.如图4.2,原先不带电的金属球壳的球心处放一点电荷q 1 , 球外放一点电荷q 2 ,设q 2 、金属内表面的电荷、外表面的电荷对q 1的作用力分别为F 1、F 2、F 3 , q 1受的总电场力为F , 则 [ C ] (A) F 1=F 2=F 3=F =0. (B) F 1= q 1 q 2 / ( 4 π ε0 d 2 ) , F 2 = 0 , F 3 = 0 , F =F 1 . (C) F 1= q 1 q 2 / ( 4 π ε0 d 2 ) , F 2 = 0 ,F 3 =- q 1 q 2 / ( 4 π ε0 d 2 ) (即与F 1反 向), F =0 . (D) F 1= q 1 q 2 / ( 4 π ε0 d 2 ) , F 2 = - q 1 q 2 / ( 4 π ε0 d 2 ) (即与F 1反 向) ,F 3 =0, F =0 . (E) F 1= q 1 q 2 / ( 4 π ε0 d 2 ) , F 2=- q 1 q 2 / ( 4 π ε0 d 2 ) (即与F 1反向), F 3 = 0, F =0 . 3. 一导体球外充满相对电容率为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为: [ B ] (A) ε0E . (B) ε0εr E . (C) εr E . (D) (ε0εr -ε0)E . 4. 两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则: [ C ] (A) 空心球电容值大. (B) 实心球电容值大. (C) 两球电容值相等. (D) 大小关系无法确定. 5.平行板电容器充电后与电源断开,然后在两极板间插入一导体平板,则电容C , 极板间电压V ,极板空间(不含插入的导体板)电场强度E 以及电场的能量W 将(↑表示增大,↓表示减小) [ B ] (A) C ↓,U ↑,W ↑,E ↑. (B) C ↑,U ↓,W ↓,E 不变. (C) C ↑,U ↑,W ↑,E ↑. (D) C ↓,U ↓,W ↓,E ↓. ?Q 图4.1, q 图4.2

ANSYS命令流学习笔记圆柱形shell单元的复合材料分析

A N S Y S命令流学习笔记圆柱形s h e l l单元的 复合材料分析 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

! ANSYS命令流学习笔记15-圆柱形shell单元的复合材料分析 !学习重点: !1、熟悉单元坐标系下的铺层 当零件形状为规则圆筒时,如何进行铺层建立局部的柱坐标系,将需要铺层单元坐标设置为局部坐标系,进行铺层即可。 譬如圆筒铺层的单元坐标系要建立局部圆柱坐标系。如果还使用笛卡尔坐标系,铺层也能进行,但是铺层方向有很大不同,求解结果也会异常。所以划分网格时,确认单元坐标系选择,划分网格之后,检查单元坐标系情况。确认铺层方向符合预期要求。 本例中要特别注意横向(即Y向)是否符合要求。 !2、熟悉圆面的建模和局部坐标系建立 不解释 !3、熟悉利用MPC施加扭矩 APDL如何对一个圆周施加扭矩在圆心处建立一个节点,然后用MPC单元连接圆心节点和圆周节点,然后在圆心节点上施加一个扭矩即可。 注意将MPC单元的属性改为刚性梁。 注意这里MPC单元的利用,也是自己的一些理解。很多细节也不知道如何在APDL 实现。 !问题描述 ! 传动轴长度为1m,壁厚,直径,铺层共十层,角度为-45/45/-45/45/-45/45/- 45/45/-45/45。一端固定,一端圆周施加扭矩M=2000N·m。 复合材料为横向正交各向异性Ex,Ey,Ez,Vxy,Vyz,Vxz,Gxy,Gyz,Gxz分别为195e9Pa, 35e9Pa, 35e9Pa,, , , 15e9Pa, , 15e9Pa。 应力失效参数:+X:767E6Pa; -X:392E6Pa; +Y:20E6Pa; -Y:70E6Pa; +Z:30E6Pa; -Z:55E6Pa; Sxy: 41E6Pa; Syz: 30E6Pa; Sxz: 41E6Pa。

ansys子结构分析实例解析

ANSYS中的超单元 从8.0版开始,ANSYS中增加了超单元功能,本文通过一些实际例子,探讨了ANSYS 中超单元的具体使用。 1 使用超单元进行静力分析 根据ANSYS帮助文件,使用超单元的过程可以划分为三个阶段(称为Pass): (1) 生成超单元模型(Generation Pass) (2) 使用超单元数据(Use Pass) (3) 扩展模型(Expansion Pass) 以下摘自htbbzzg邹老师博客,请勿乱传! 下面以一个例子加以说明: 一块板,尺寸为20×40×2,材料为钢,一端固支,另一端承受法向载荷。 首先生成原始模型se_all.db,即按照整个结构进行分析,以便后面与超单元结果进行比较: 首先生成两个矩形,尺寸各为20×2。然后定义单元类型shell63; 定义实常数1为: 2 (板厚度)。 材料性能:弹性模量E=201000;波松比μ=0.3;密度ρ=7.8e-9; 单位为mm-s-N-MPa。 采用边长1划分单元;一端设置位移约束all,另一端所有(21个)节点各承受Z向力5。计算模型如下图:

静力分析的计算结果如下:

为了后面比较的方便,分别给出两个area上的结果:

超单元部分,按照上述步骤操作如下: (1) 生成超单元 选择后半段作为超单元,前半段作为非超单元(主单元)。 按照ANSYS使用超单元的要求,超单元与非超单元部分的界面节点必须一致(重合),且最好分别的节点编号也相同,否则需要分别对各节点对建立耦合方程,操作比较麻烦。 实际上,利用ANSYS中提供的mesh200单元,对超单元和非超单元的界面实体,按照同一顺序,先于所有其它实体划分单元,很容易满足界面节点编号相同的要求。对于多级超单元的情况,则还要结合其它操作(如偏移节点号等)以满足这一要求。 对于本例,采用另一办法,即先建立整个模型,然后再划分超单元和非超单元。即:将上述模型分别存为se_1.db (超单元部分)和se_main.db (非超单元部分)两个文件,然后分别处理。 对于se_1.db模型,按照超单元方式进行处理。由于模型及边界条件已建立,只需删除前半段上的划分,结果就是超单元所需的模型。 然后直接进入创建超单元矩阵的操作,首先说明一下创建超单元矩阵的一般步骤: A进入求解模块: 命令:/Solu GUI:Main menu -> Solution B设置分析类型为“子结构或部件模态综合“

ansys命令流学习笔记5-圆柱形shell单元的复合材料分析

! ANSYS命令流学习笔记15-圆柱形shell单元的复合材料分析 !学习重点: !1、熟悉单元坐标系下的铺层 当零件形状为规则圆筒时,如何进行铺层?建立局部的柱坐标系,将需要铺层单元坐标设置为局部坐标系,进行铺层即可。 譬如圆筒铺层的单元坐标系要建立局部圆柱坐标系。如果还使用笛卡尔坐标系,铺层也能进行,但是铺层方向有很大不同,求解结果也会异常。所以划分网格时,确认单元坐标系选择,划分网格之后,检查单元坐标系情况。确认铺层方向符合预期要求。 本例中要特别注意横向(即Y向)是否符合要求。 !2、熟悉圆面的建模和局部坐标系建立 不解释 !3、熟悉利用MPC施加扭矩 APDL如何对一个圆周施加扭矩?在圆心处建立一个节点,然后用MPC单元连接圆心节点和圆周节点,然后在圆心节点上施加一个扭矩即可。 注意将MPC单元的属性改为刚性梁。 注意这里MPC单元的利用,也是自己的一些理解。很多细节也不知道如何在APDL实现。 !问题描述 ! 传动轴长度为1m,壁厚0.003m,直径0.08m,铺层共十层,角度为-45/45/-45/45/-45/45/-45/45/-45/45。一端固定,一端圆周施加扭矩M=2000N·m。 复合材料为横向正交各向异性Ex,Ey,Ez,Vxy,Vyz,Vxz,Gxy,Gyz,Gxz分别为195e9Pa, 35e9Pa, 35e9Pa,0.28, 0.3, 0.3, 15e9Pa, 3.78e9Pa, 15e9Pa。 应力失效参数:+X:767E6Pa; -X:392E6Pa; +Y:20E6Pa; -Y:70E6Pa; +Z:30E6Pa; -Z:55E6Pa; Sxy: 41E6Pa; Syz: 30E6Pa; Sxz: 41E6Pa。 应变失效参数:+X:0.05; -X:0.045; +Y:0.08; -Y:0.06; +Z:0.04; -Z:0.045; Sxy: 0.035; Syz: 0.042; Sxz:0.025。 !APDL命令: finish /clear /title, composite shaft /prep7 et,1,shell181 !选择单元181 keyopt,1,8,1 !保存每一层的数据 et,2,184 keyopt,2,1,1 !定义MPC184单元,利用其施加扭矩。将其属性定义为刚性梁 mptemp,1,0 mpdata,ex,1,,195e9 mpdata,ey,1,,35e9 mpdata,ez,1,,35e9 mpdata,prxy,1,,0.28 mpdata,pryz,1,,0.3 mpdata,prxz,1,,0.3

静电场中的导体和电介质习题详解Word版

习题二 一、选择题 1.如图所示,一均匀带电球体,总电量为+Q ,其外部同心地罩一内、外半径分别为1r 和2r 的金属球壳。 设无穷远处为电势零点,则球壳内半径为r 的P 点处的场强和电势为[ ] (A )200, 44Q Q E U r r εε= = ππ; (B )01 0, 4Q E U r ε==π; (C )00, 4Q E U r ε==π; (D )020, 4Q E U r ε== π。 答案:D 解:由静电平衡条件得金属壳内0=E ;外球壳内、外表面分别带电为Q -和Q +,根据电势叠加原理得 00 0202 Q Q Q Q U r r r r εεεε-= + += 4π4π4π4π 2.半径为R 的金属球与地连接,在与球心O 相距2d R =处有一电量为q 的点电荷,如图所示。设地的电势为零,则球上的感应电荷q '为[ ] (A )0; (B )2 q ; (C )2q -; (D )q -。 答案:C D? 解:导体球接地,球心处电势为零,即000044q q U d R πεπε'=+ =(球面上所有感应电荷到 球心的距离相等,均为R ),由此解得2 R q q q d '=-=-。 3.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ] (A )2 200,44r Q Q E D r r εεε= =ππ; (B )22 ,44r Q Q E D r r ε==ππ; (C )220,44Q Q E D r r ε==ππ; (D )22 00,44Q Q E D r r εε==ππ。 答案:C

ANSYS命令流学习笔记14-shell单元的铺层复合材料分析

! ANSYS命令流学习笔记14-shell单元的铺层复合材料分析!学习重点: !1、熟悉复合材料的材料特点 工程应用中典型的复合材料为纤维增强复合材料。玻璃纤维增强塑料(玻璃钢)、碳纤维、石墨纤维、硼纤维等高强度和高模量纤维。复合材料各层为正交各向异性材料(Orthotropic)或者横向各向异性材料(Transversal Isotropic),材料的性能与材料主轴的取向有关。 各向异性Anisotropic,一般的各项同性材料需要两个材料参数弹性模量E和泊松比v。而各向异性在XYZ有着不同的材料属性,而且拉伸行为和剪切行为互相关联。定义其几何方程需要21个参数。 正交各向异性orthotropic,在XYZ有着不同的材料属性,而且拉伸行为和剪切行为无关,定义材料需要9个参数:Ex,Ey,Ez,Vxy,Vyz,Vxz,Gxy,Gyz,Gxz。 横向各向异性Transversal Isotropic,属于各向异性材料,但是在某个平面上表现出二维上的各向同性。

!2、熟悉复合材料分析所用的ANSYS单元 复合材料单元关键在于能够实现铺层。不同截面属性的梁单元(beam188, beam189, elbow290),2D对称壳单元(shell208, shell209),3D铺层壳单元(shell181, shell281, shell131, shell132),3D铺层实体单元(solid185, solid186, solsh190, solid278, solid279),均能实现复合材料的搭建。其中Beam单元和2D对称壳单元很少使用。SHELL91、SHELL99、SOLID46、SOLID191用于一些以前的分析教程中,但是现在这些单元已经被淘汰,最好选择下列单元区替代他们。用越来越少的单元做越来越多的事情也是趋势。 Shell208和shell209,2D对称壳单元 前者为2节点3自由度单元,后者为3节点3自由度单元,均能用于薄板和中厚板结构(L/h > 5-8)。能够用于复合材料铺层,三明治结构建模。 shell181和shell281, 3D铺层壳单元 前者为4节点6自由度单元,后者为8节点6自由度单元,均能用于薄板和中厚板结构(L/h > 5-8)。能够用于复合材料铺层,三明治结构建模。复合材料计算精度由一阶剪切变形理论决定。shell131, shell132为热分析单元,单元类型分别类似于shell181,shell281。 [注:经典变形理论假设变形后的中位线仍然垂直于中面,且长度不变。一阶变形理论假设变形后的法线仍然为直线且长度不变。三阶阶变形理论假设变形后的法线为三阶曲线。] solid185和solid186, 3D铺层实体单元 前者为8节点3自由度单元,后者为20节点3自由度单元,用于厚板和实体的复合材料分析,均为六面体单元,均可退化为六棱柱单元。Solid278, solid279为热分析单元,单元类型分别类似于solid185,solid186。 Solsh190,3D铺层实体壳单元 8节点3自由度单元,类似实体单元,但是用于薄板和中厚度板的壳结构分析,其结构行为遵循一阶剪切变形理论。 !3、熟悉复合材料的失效准则

相关文档
最新文档